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Abstract

We present the results of a search for short- and intermediate-duration gravitational-wave signals from four
magnetar bursts in Advanced LIGO’s second observing run. We find no evidence of a signal and set upper bounds
on the root sum squared of the total dimensionless strain (hrss) from incoming intermediate-duration gravitational
waves ranging from 1.1×10−22 at 150 Hz to 4.4×10−22 at 1550 Hz at 50% detection efficiency. From the
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known distance to the magnetar SGR 1806–20 (8.7 kpc), we can place upper bounds on the isotropic
gravitational-wave energy of 3.4×1044 erg at 150 Hz assuming optimal orientation. This represents an
improvement of about a factor of 10 in strain sensitivity from the previous search for such signals, conducted
during initial LIGO’s sixth science run. The short-duration search yielded upper limits of 2.1×1044 erg for short
white noise bursts, and 2.3×1047 erg for 100 ms long ringdowns at 1500 Hz, both at 50% detection efficiency.

Key words: gravitational waves – stars: magnetars

Supporting material: data behind figures

1. Introduction

So far, the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO; Aasi et al. 2015) and Virgo (Acernese et al.
2015) have reported detections of a handful of gravitational-
wave (GW) signals from the coalescence of compact binary
systems (Abbott et al. 2016a, 2016b, 2017b, 2017c, 2017d,
2017e). Isolated compact objects may also emit detectable
GWs, though they are predicted to be much weaker than
compact binary coalescences (Sathyaprakash & Schutz 2009).
Because of the high energies and mass densities required to
generate detectable GWs, neutron stars and supernovae are
among the main targets of nonbinary searches. This paper
focuses on a type of neutron star: magnetars.

Magnetars are highly magnetized isolated neutron stars
(Woods & Thompson 2006; Mereghetti et al. 2015). Originally
classified as anomalous X-ray pulsars (AXPs), or soft gamma
repeaters (SGRs), some AXPs have been observed acting like
SGRs and vice versa. They are now considered to be a single
class of objects defined by their power source: the star’s
magnetic field, which, at 1013–1015G, is about 100× stronger
than a typical neutron star. Magnetars occasionally emit short
bursts of soft γ-rays, but the exact mechanism responsible for
the bursts is unclear. There are currently 23 known magnetars
(and an additional six candidates; Olausen & Kaspi 2014),180

which were identified based on observations across wave-
lengths of bursts, continuous pulsating emission, spindown
rates, and glitches in their rotational frequency. The bursts last
∼0.1 s with luminosity of up to ∼2×1042 erg s−1, and can
usually be localized well enough to allow identification of the
source magnetar. Many magnetars also emit pulsed X-rays and
some are visible in radio.

The large energies involved originally led to the belief that
magnetar bursts could be promising sources of detectable GWs,
e.g., Ioka (2001) and Corsi & Owen (2011). Further theoretical
investigation indicates that most mechanisms are likely too
weak to be detectable by current detectors (Levin & van
Hoven 2011; Zink et al. 2012). Nevertheless, due to the large
amount of energy stored in their magnetic fields and known
transient activity, magnetars remain a promising source of GW
detections for ground-based detectors with rich underlying
physics.

The search presented in this paper is triggered following
the identification of magnetar bursts by γ-ray telescopes. The
methodology is similar to the one done during initial LIGO’s
sixth science run (Quitzow-James 2016; Quitzow-James
et al. 2017), with a few improvements and the use of an
additional pipeline targeted toward shorter duration signals
(X-Pipeline; Sutton et al. 2010). This pipeline has been used
to look for GWs coincident with γ-ray bursts (GRBs; see

Abbott et al. 2017a for such searches during advanced
LIGO’s first observing run).
The first searches for GW counterparts from magnetar

activity targeted the 2004 hyperflare of SGR 1806–20. Initial
LIGO data were used to constrain the GW emission associated
with the quasiperiodic seismic oscillations (QPOs) of the
magnetar following this catastrophic cosmic event (Abbott
et al. 2007; Matone & Márka 2007) as well as the instantaneous
gravitational emission (Kalmus et al. 2007; Abbott et al. 2008).
Abbott et al. (2008) and Abadie et al. (2011) reported on GW
emission limits associated with additional magnetar activity
observed during the initial detector era until 2009 June. LIGO
data coinciding with the 2006 SGR 1900+14 storm was
additionally analyzed by “stacking” GW data (Kalmus et al.
2009) corresponding to individual bursts in the storm’s EM
light curve (Abbott et al. 2009). Additionally, a magnetar was
considered as a possible source for a GRB during initial LIGO
(GRB 051103), and a search using X-Pipeline and the Flare
pipeline placed upper limits on GW emission from the star’s
fundamental ringing mode (Abadie et al. 2012).
The rest of this paper is laid out as follows: in Section 2, we

provide a brief overview of the astrophysics of magnetars as is
relevant to GW astronomy and the short bursts used in this
analysis. Next, in Section 3, we describe the methodology of
the GW search. Section 4 describes the results and upper limits
on possible gravitational radiation from the studied bursts.
Appendix B contains a discussion of the effect of GW
polarization on the sensitivity of the intermediate-duration
search.

2. Magnetar Bursts

Magnetars are currently not well understood. Their magnetic
fields are strong and complex (Braithwaite & Spruit 2006), and
power the star’s activity. Occasionally and unpredictably,
magnetars give off short bursts of γ-rays whose exact mechanism
is unknown, but may be caused by seismic events, Alfvén waves
in the star’s atmosphere, magnetic reconnection events, or some
combination of these; see, e.g., Thompson & Duncan (1995).
After some of the brighter bursts (giant flares, which have been
seen only three times), there is a soft X-ray tail that lasts for
hundreds of seconds. QPOs have been observed in the tail of
giant flares (Israel et al. 2005; Strohmayer & Watts 2005) and
some short bursts (Huppenkothen et al. 2014a, 2014b), during
which various frequencies appear, stay for hundreds of seconds,
and then disappear again, indicating a resonance within the
magnetar. Many possible resonant modes in the core and crust of
the magnetar have been suggested to cause the QPOs, although
it is unclear which modes actually produce them. Some of
these modes, such as f-modes and r-modes, couple well to GWs,
and so, if sufficiently excited, could produce detectable GWs,
though current models indicate that they will be too weak
(Levin & van Hoven 2011; Zink et al. 2012). Other modes, such
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as the lowest order torsional mode, do not create the time-
changing quadrupole moment needed for GW emission. None
of these models provide precise predictions for emitted GW
waveforms.

This search was performed on data coincident with the four
short bursts from magnetars during advanced LIGO’s second
observing run for which there was sufficient data (we require
data from two detectors) for both short- (less than a second
long) and intermediate-duration (hundreds of seconds long)
signals. Table 1 describes the four bursts. In addition to the four
studied bursts, there were five bursts that occurred during times
when at least one detector was offline. No GW analysis was
done on them. All GW detector data come from the two LIGO
detectors because Virgo was not taking data during any of these
bursts.

Three bursts come from the magnetar SGR 1806–20. They
were all identified by the Burst Alert Telescope (BAT) aboard
NASA’s Swift satellite (Gehrels et al. 2004). These were
subthreshold events that were found in BAT data (D. M.
Palmer 2017, personal communication), an example of which is
shown in Figure 1, with the data from the other two found in
Appendix C. The fourth was a short GRB with a soft spectrum
observed by the Fermi Gamma-ray Burst Monitor (Atwood
et al. 2009) and named GRB 170304A.

3. Method

3.1. Excess Power Searches

Fundamentally, all multidetector GW searches seek to
identify GW signals that are consistent with the data collected
at both detectors. Some searches identify candidate signals in
each detector separately, then later consider only the candidates
that occur in all detectors within the light-travel time and with
the same signal parameters. This approach is disfavored in
searches that do not rely on templates. We cannot perform a
templated search here because there is no current model that
can produce templates for magnetar GW bursts. Instead, we
first combine the two data streams to create a time–frequency
map where the value in each time–frequency pixel represents
some measure of the GWs (often energy) consistent with the
observations from the detectors.

The next step is to identify GW signals in the time–
frequency map. This is done by clustering together groups of
pixels, calculating the significance of each cluster with a
metric, and searching for the most significant cluster. In order
to cover a broader range of frequencies and timescales, we use
two different analysis pipelines, which use different clustering
algorithms.

The short-duration search uses seed-based clustering imple-
mented by X-Pipeline, which focuses on groups of bright
pixels (the seed; Sutton et al. 2010). Specifically, the clusters

considered by X-Pipeline are groups of neighboring pixels that
are all louder than a chosen threshold. This approach works
well for short-duration searches, but fails for longer duration
signals for two reasons: random noise will tend to break up the
signal into multiple clusters, and each pixel is closer to the
background, so fewer of them will be above the threshold.
We rely on STAMP (Thrane et al. 2011) for the

intermediate-duration search. STAMP offers a seedless method
whose clustering algorithm integrates over many, randomly
chosen Bézier curves (Thrane & Coughlin 2013, 2014).
Because of this, it can jump over gaps in clusters caused by
noise, and thus it is better suited for longer duration signals.
Additionally, it can build up the signal-to-noise ratio (S/N)

over many pixels of only slightly elevated S/N. This method
was previously used to search for signals from magnetars
during initial LIGO (Quitzow-James 2016; Quitzow-James
et al. 2017).

3.2. X-Pipeline

X-Pipeline is a software package designed to search for
short-duration GW signals in multiple detectors and includes
automatic glitch rejection, background calculation, and soft-
ware injection processing (for details, see Sutton et al. 2010). It
forms coherent combinations from multiple detectors, thus
making it relatively insensitive to non-GW signals, such as
instrumental artifacts. X-Pipeline is used primarily to search for
GWs coincident with GRBs, but is suitable for any short-
duration coherent search.
X-Pipeline takes a likelihood approach to estimating the GW

energy found in each time–frequency pixel. It models the data
collected at the detectors as a combination of signal and
detector noise, then uses a maximum-likelihood technique to
calculate the estimated GW signal power in each time–
frequency pixel.

Table 1

List of Magnetar Bursts Considered in This GW Search

Source Date Time Duration Fluence Distance

(UTC) (s) (erg cm−2) (kpc)

SGR 1806–20 2017 Feb 11 21:51:58 0.256 8.9×10−11 8.7

SGR 1806–20 2017 Feb 25 06:15:07 0.016 1.2×10−11 8.7

GRB 170304A 2017 Mar 4 00:04:26 0.16 3.1×10−10 L

SGR 1806–20 2017 Apr 29 17:00:44 0.008 1.4×10−11 8.7

Note. GRB 170304A is described in GCN Circular 20813; data on the SGR 1806–20 burst activity are courtesy of David M. Palmer.

Figure 1. Swift BAT’s data for the February 11 burst from SGR 1806–20.
Image courtesy of David M. Palmer.
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For clustering, X-Pipeline selects the loudest 1% of pixels
and connects neighboring pixels. Each connected group is a
cluster, and the clusters are scored based on the likelihood
described in the previous paragraph. We want to pick the time
length of the pixels in the time–frequency map so that the
signal is present in the smallest number of time–frequency
pixels, as this will recover the signal with the highest
likelihood. Because we do not have a model for the waveform
we are searching for, we use multiple pixel lengths and run the
clustering algorithm on all of them. After clusters are identified,
X-Pipeline identifies which candidate clusters are likely
glitches by comparing three measurements of signal energy:
coherent energy consistent with GWs, coherent energy
inconsistent with GWs, and sum of the signal energy in all
detectors (referred to as incoherent energy). GW signals can be
differentiated from noise by the ratio of coherent energy
inconsistent with GWs to the incoherent energy (see Sections
2.6 and 3.4 of Sutton et al. 2010 for full details).

The primary target of this search are GWs produced from the
excitation of the magnetar’s fundamental mode, which are
primarily dampened by the emission of GWs (Detweiler 1975;
Andersson & Kokkotas 1998). We have chosen parameters for
X-Pipeline to search for signals a few hundred milliseconds
long. The search window begins 4 s before the γ-rays arrive
and ends 4 s after. The frequency range for the short-duration
search is 64–4000 Hz, and the pixel lengths are every factor of
2 between 2 s and 1/128 s, inclusive.

3.3. STAMP

STAMP is an unmodeled, coherent, directed excess power
search suitable for longer duration signals, described in
more detail in Thrane et al. (2011). In short, the pipeline
calculates the cross-power between the two detectors,
accounting for the time delay due to the light-travel time
between detectors. It then makes this into a time–frequency
S/N map, where the pixel S/N is estimated from the

variable Y t f Q t f s t f s t f; , , Re ; , 2 ; ;IJ I J*ˆ ( ˆ ) [ ˜ ( ˆ )( ˜ ( ) ˜ ( ))].

Here, s t f;Ĩ ( ) is the Fourier-transformed data from detector I

and Q t f; ,IJ
˜ ( ˆ ) is the filter function required given the

locations and orientations of the pair of detectors and the sky

position ˆ of the source (Thrane et al. 2011). The ideal filter
function also depends on the polarization of the incoming
GWs, which is unknown. Thus, the best we can do is to use
the unpolarized filter function, which causes a loss of signal
power (though this loss is nearly zero for optimal sky
locations). This is more fully discussed in Appendix B.
To identify signals, STAMP uses seedless clustering and

searches over a large number of clusters (30 million in this
search; see Section 3 of Thrane & Coughlin 2013). For clusters,
we use Bézier curves, which are parameterized by three points
(Thrane & Coughlin 2013).
GWs radiated through the mechanisms related to QPOs

would be monochromatic, or close to it. So, it makes sense to
only search for such signals. Through STAMP, this is easily
accomplished by restricting the search to clusters whose
frequencies change by only a small amount. This reduces the
number of possible clusters, which means we get all of the
benefits of searching more clusters without the additional
computational cost. Restricting the frequency change too much
may cause signals to be missed completely. Compromising
between these, we restrict the searched clusters to those with a
frequency change less than 10%.
To estimate the background for this search, we use

approximately 15 hr of data from each detector collected
around the time of each burst, excluding the data, coincident
with the burst, that were searched for GWs (the on-source). We
can then perform background experiments free of any possible

Figure 2. S/N distribution of the background (lines) and on-source result (open
circles) for each burst for the intermediate-duration search. As expected, the
background distributions are similar; because many background analyses give
higher S/N than the on-source results, we conclude that no signal has been
detected. Inset: a detailed view of the on-source results. The data used to create
this figure are available.

Table 2

Upper Limits on Isotropic Energy from the Short-duration Search for the
February 25 Burst from SGR 1806–20

Injection

Type

Frequency

(Hz) Duration/ hrss Energy (erg)

τ (ms)

Chirplet 100 10 5.42×10−23 8.49×1043

Chirplet 150 6.667 4.93×10−23 1.58×1044

Chirplet 300 3.333 5.29×10−23 7.27×1044

Chirplet 1000 1 1.15×10−22 3.82×1046

Chirplet 1500 0.6667 1.69×10−22 1.81×1047

Chirplet 2000 0.5 2.32×10−22 5.92×1047

Chirplet 2500 0.4 3.06×10−22 1.56×1048

Chirplet 3000 0.3333 3.96×10−22 3.65×1048

Chirplet 3500 0.2857 5.30×10−22 8.51×1048

White noise

burst

100–200 11 5.57×10−23 2.09×1044

White noise

burst

100–200 100 7.88×10−23 4.15×1044

White noise

burst

100–1000 11 1.00×10−22 1.04×1046

White noise

burst

100–1000 100 1.83×10−22 3.55×1046

Ringdown 1500 200 1.89×10−22 2.25×1047

Ringdown 2500 200 2.87×10−22 1.37×1048

Ringdown 1500 100 1.89×10−22 2.25×1047

Ringdown 2500 100 2.80×10−22 1.30×1048

Note. For white noise bursts, we give the duration of the injection, and for the

other waveforms, the characteristic time. All limits are given at 50% detection

efficiency, meaning that a signal with the given parameters would be detected

50% of the time.
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coincident GW signal by pairing data taken at different times as

if they were coincident. Then, breaking up the background data

into 33 segments, we generate 1056 background experiments.

Each of these is run in exactly the same way as the on-source

analysis, giving an estimate of the S/N that can be expected

from detector noise. The resulting distributions for the

background data for each burst, along with the on-source

results, are shown in Figure 2.
With unlimited computing power, we would calculate

upper limits by adding software injections of increasing

amplitude until the desired fraction of injections are

recovered. However, this is prohibitively expensive in

computing time. Instead, at each amplitude for the injection,

we search only over a few previously identified clusters. To

pick those clusters, we do a full run using the seedless

algorithm with 15 injections at varied amplitudes around the

expected recovery threshold and identify clusters that recover

the injection, setting the same random seed as was used for

the on-source recovery. We then analyze a large number of

injections using only the pre-identified clusters and calculate

the maximum S/N of those clusters. The injections at all

amplitudes are done with the same time–frequency para-

meters. This allows us to efficiently recover the injection by

searching a small fraction of the total clusters. This is shown

to work as expected in Appendix A.
Because choosing a random seed also chooses which

clusters will be searched, this value can affect the final upper

limit values. This effect is limited by using a large number of

clusters (30 million), and analysis performed with different

seeds shows this effect leads to about a 10% uncertainty in

the resulting upper limit value. However, this is not a

completely new source of error—changing the seed is

functionally equivalent to changing the time–frequency

location of the software injections. In addition, the on-source

analysis uses only one seed because it is only run once, so

this uncertainty is a manifestation of the random nature of the

search.

4. Results and Discussion

No signals were found by either the short- or intermediate-

duration searches. We present the results and upper limits on

GW strain and energy for each analysis below.

4.1. Short-duration Search Upper Limits

No significant signal was found by X-Pipeline. After glitch
rejection, the most significant cluster for the February 25 burst
had a p-value of 0.63.
Following the previous f-mode search (Abadie et al. 2012),

we injected white noise bursts (frequencies: 100–200 Hz and
100–1000 Hz; durations: 11 and 100 ms), ringdowns (damped
sinusoids, at frequencies: 1500 and 2500 Hz; time constants:
100 and 200 ms), and chirplets (chirping sine-Gaussians; this
differs from the prior search, which used sine-Gaussians). The
best limits for the white noise bursts were for the 11 ms long
bursts in the 100–200 Hz band, at 2.1×1044 erg in total
isotropic energy and hrss of 5.6×10−23 at the detectors. We
are most sensitive to ringdowns at 1500 Hz and a time constant
of 100 ms, with an upper limit of 2.3×1047 erg and hrss of
1.9×10−22. Directly comparing the hrss limits to Abadie et al.
(2011), we see that limits have improved by roughly a factor of
10, though the ringdowns we used had slightly different
parameters. Comparing to Abadie et al. (2012), which provided
only energy upper limits assuming a distance of 3.6 Mpc, we
see an improvement of a factor of 60 after correcting for the
larger distance. This corresponds to roughly a factor of 8
improvement in hrss limits. A full list of upper limits for the
waveforms tested is found in Table 2.

4.2. Intermediate-duration Search Upper Limits

To calculate upper limits, we add software injections of two
waveforms (half sine-Gaussians and exponentially decaying
sinusoids) at five frequencies (55, 150, 450, 750, and 1550 Hz)
and at two timescales (150 and 400 s). Reported upper limits
are for 50% recovery efficiency, where recovery is defined as
finding a cluster, at the same time and frequency as the
injection, with S/N greater than that of the on-source (for the
February 25 event, it was 6.09). Full results are shown in
Table 3.
Due to the improved sensitivity of advanced LIGO, we are

able to set strain upper limits about a factor of 10 lower than the
previous search during initial LIGO (Quitzow-James et al.
2017); see Figure 3. Unlike the previous search, this search
showed little difference in hrss sensitivity between the two
injection lengths. STAMP has been refined to improve power
spectral density estimation, which explains the small gap
between the injection timescales for this search.

Table 3

Upper Limits on GW Strain and Energy from the Intermediate-duration Search for the February 25 Burst from SGR 1806–20

Frequency (Hz) Tau (s)
hrss Energy (erg)

Half Sine-Gaussian Ringdown Half Sine-Gaussian Ringdown

55 400 2.29×10−22 2.43×10−22 1.82×1044 2.06×1044

55 150 1.97×10−22 2.11×10−22 1.35×1044 1.55×1044

150 400 1.32×10−22 1.37×10−22 4.52×1044 4.86×1044

150 150 1.14×10−22 1.22×10−22 3.37×1044 3.89×1044

450 400 1.69×10−22 1.79×10−22 6.62×1045 7.47×1045

450 150 1.78×10−22 1.83×10−22 7.43×1045 7.83×1045

750 400 2.56×10−22 2.70×10−22 4.21×1046 4.69×1046

750 150 2.11×10−22 2.37×10−22 2.87×1046 3.61×1046

1550 400 5.86×10−22 6.22×10−22 9.21×1047 1.03×1048

1550 150 4.38×10−22 4.58×10−22 5.16×1047 5.62×1047

Note. All limits are at 50% detection efficiency.
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4.3. Discussion

This search has set the strongest upper limits on the short-
and intermediate-duration GW emission associated with
magnetar bursts. The energy limits, which are as low as
1044–1047 erg, are now well below the EM energy scale of
magnetar giant flares (1046 erg). The short bursts analyzed here

were much weaker than a giant flare (see Table 1), so for these
bursts, the limit is much larger than the observed electro-
magnetic energy. In addition, these limits assume ideal
orientation of the magnetar (both sky position and polarization
of produced GWs). The impact of other polarizations on the
intermediate-duration search is discussed in Appendix B and
plotted in Figure 4.

Figure 3. Upper limits for the the intermediate-duration search (above) and short-duration search (below), along with the sensitivity of the detectors. We plot hrss at
90% detection efficiency for the intermediate-duration search here to allow direct comparison to published figures for the previous search in initial LIGO (Quitzow-
James et al. 2017). Short-duration limits are for 50% efficiency as before. The advanced LIGO search limits are for the February 25 burst from SGR 1806–20 during
the second observing run, and detector sensitivity is calculated from data during the analysis window. The data used to create this figure are available.
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The upper limits set by this search are still far above the GW
energy from f-mode excitation during a giant flare according to
Zink et al. (2012), unless the magnetic field strength is far
higher than the currently accepted value of 2×1015G
(Olausen & Kaspi 2014). Using Equation (2) from Zink et al.
(2012), f-mode GW emission from a giant flare would be about
1.4×1038 erg. A surface magnetic field of 1.8×1016G
would be required to reach the best upper limit found with the
short-duration source.

As the LIGO detectors increase in sensitivity, these upper
limits will improve and will be well positioned to place
meaningful limits on emitted GW energy in the event of a
future nearby magnetar giant flare.
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Appendix A
Validation of the Injection Recovery Method

In Section 3, we described the way we obtain the precise

detectability threshold of injected waveforms. Given that this

method is an approximation of the full search protocol, we

check to see how closely the results match that of the full

search. Figure 5 shows the result of this test, run over 100

injection trials. A point falling below the diagonal indicates that

the noise and injected signal conspire together in such a way

that the cluster with the highest S/N is one that had not been

previously identified. This test indicates that this happens

infrequently. On average, we recover 98% of the S/N that is

found by the full search.

Figure 5. Direct comparison of the S/N recovered by a full run of 30 million clusters and a run with only a few previously selected clusters. This shows that this
method is highly effective in recovering the injected signal, at a small fraction of the computational cost.
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Appendix B
STAMP Polarization

The cross-power of a pixel in the time–frequency

map is calculated with Y Q t f C t fRe ; , ;IJ IJ
ˆ [ ( ˆ ) ( )], where

Q t f; ,IJ ( ˆ ) is the filter function that depends on the polarization

of the GWs. Because we do not know the polarization of the

GWs that we are looking for, we use an approximation of the

ideal filter function. We choose the unpolarized filter function

Q t f e; ,IJ
t

if x c1

;

2

IJ

IJ( ˆ )
( ˆ )

ˆ · (Thrane et al. 2011). The

second term in this equation corrects for a difference in phase due

to different travel distances from the source to the two detectors.

For this discussion, we will set it to 1 for simplicity.
If the GWs emitted from magnetars are due to a pure

quadrupole, we expect them to be polarized elliptically

according to standard linearized gravity, with the polarization

depending on the orientation of the source’s time-changing

quadrupole moment with respect to our detectors.
Using Equation A48 from Thrane et al. (2011), we can see

how the cross-power of an individual pixel will change with

changing polarization. In Figure 6, we plot this parametrically

in the complex plane for two of the bursts analyzed. The main

effect of the filter function is to pick a phase (the cross-power is

multiplied by the filter function, then the real part is taken).

The unpolarized filter function sets that phase to zero, so the

imaginary part of the cross-power is ignored, which limits the

sensitivity to nearly all elliptically polarized waveforms.

Because the time–frequency map is normalized by the average

value of the power spectral density nearby in time, the

magnitude of the filter function only matters if it changes over

the course of a time–frequency map.
In addition, for some polarizations, the cross-power is

negative, which will result in pixels in the S/N map being

negative. For this reason, these signals, no matter how large in

amplitude, would be missed by this search. However, these

signals produce little cross-power (as evidenced by how close

they are to zero) such that the likelihood of detecting them even

with the ideal filter function is low. It is possible to recover

these by taking the absolute value of each cluster, but doing

this is roughly equivalent to running the search twice with

opposite phase filter functions. Thus, it will double the

background.

Figure 6. Parametric plots of the complex-valued cross-power, due to elliptically polarized signals of varying polarizations from two different sky locations (left: SGR
1806–20 during the event on April 29; right: SGR 1806–20 during the event on February 25). The polarization of incoming GWs is defined by two angles, ι and ψ. ι is
the angle between the vector from Earth to the source and the source’s rotation vector, while ψ indicates the orientation of the source’s rotation vector when projected
onto a plane perpendicular to the propagation vector. The ends of the boomerang are at ι=0, π; changing ψ changes the real part only. For ideal sky positions, the
boomerang collapses to the real axis and reaches about 0.95. It does not reach 1 because the detectors are not aligned.
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Appendix C
Supplementary Data

Figure 7 shows Swift BAT’s data for the February 25 and

April 29 bursts from SGR 1806–20.
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