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Abstract

Advanced LIGO’s second observing run (O2), conducted from 2016 November 30 to 2017 August 25, combined
with Advanced Virgo’s first observations in 2017 August, witnessed the birth of gravitational-wave
multimessenger astronomy. The first ever gravitational-wave detection from the coalescence of two neutron
stars, GW170817, and its gamma-ray counterpart, GRB 170817A, led to an electromagnetic follow-up of the event
at an unprecedented scale. Several teams from across the world searched for EM/neutrino counterparts to
GW170817, paving the way for the discovery of optical, X-ray, and radio counterparts. In this article, we describe
the online identification of gravitational-wave transients and the distribution of gravitational-wave alerts by the
LIGO and Virgo collaborations during O2. We also describe the gravitational-wave observables that were sent in
the alerts to enable searches for their counterparts. Finally, we give an overview of the online candidate alerts
shared with observing partners during O2. Alerts were issued for 14 candidates, 6 of which have been confirmed as
gravitational-wave events associated with the merger of black holes or neutron stars. Of the 14 alerts, 8 were issued
less than an hour after data acquisition.

Key words: gravitational waves – methods: data analysis

1. Introduction

Gravitational-wave (GW) multimessenger astronomy pro-
vides a unique view of the cosmos. In this paper, we explain
the procedures used during the second observing run of the
advanced ground-based gravitational-wave-detector network to
issue alerts for multimessenger follow-up. We also include a
summary of all alerts issued to observing partners and an
update on the status of candidate events.

The Advanced Laser Interferometer Gravitational-wave
Observatory (LIGO) detectors (LIGO Scientific Collaboration
et al. 2015) are installed in the US at Hanford, WA and
Livingston, LA, and the Advanced Virgo detector (Acernese
et al. 2015) is located in Cascina, Italy near Pisa. The detectors
use a modified Michelson laser interferometer design to
measure GW strain. A passing GW causes a differential length
change in the detector arms, producing interference of the laser
beams at the beam splitter, and giving an optical readout
proportional to the GW strain.

In 2015 September the two Advanced LIGO detectors began
their first observing run (O1), lasting four months. The first
direct detection of gravitational waves, GW150914, from the
coalescence of binary black holes (BBHs; Abbott et al. 2016b),
marked the beginning of gravitational-wave (GW) astronomy.
Two additional BBH merger signals, GW151012181 (Abbott
et al. 2016c) and GW151226 (Abbott et al. 2016d), were
identified before the end of O1. Following hardware and
software upgrades, the second Advanced LIGO observing run
(O2) began on 2016 November 30. Advanced Virgo joined the
network in 2017 August for the last month of data acquisition.

A number of additional BBH coalescences were detected in
O2 (see Abbott et al. 2017a, 2017b, 2017c, LIGO Scientific
Collaboration et al. 2018). Furthermore, on 2017 August 17, at
12:41:04 UTC a binary neutron star (BNS) inspiral signal
(GW170817) was observed (Abbott et al. 2017d). Less than
two seconds later, the short gamma-ray burst (sGRB) GRB
170817A was detected by two space-based instruments: the
Gamma-ray Burst Monitor (GBM) on board Fermi (Goldstein
et al. 2017), and the spectrometer anti-coincidence shield (SPI-
ACS) on board INTEGRAL (Savchenko et al. 2017). This joint
observation provided the first direct evidence that at least a
fraction of sGRBs have a BNS system as a progenitor, as
predicted by Eichler et al. (1989), Paczynski (1986), and
Paczynski (1991). Short GRBs are typically expected to result

in a long-lasting, multiwavelength afterglow emission in X-ray,
optical, and radio bands (for a review see Nakar 2007;
Berger 2014; D’Avanzo 2015).
The extensive electromagnetic (EM) observational campaign

using the well-constrained, three-detector skymap from the
detection of GW170817 led to the discovery of an optical
transient (SSS17a/AT 2017gfo) in the host galaxy NGC 4993
(Coulter et al. 2017); the counterpart was also detected at
ultraviolet and infrared wavelengths (Abbott et al. 2017e).
Photometric and spectroscopic observations of the counterpart
support the hypothesis that BNS mergers are sites of r-process
nucleosynthesis of heavy elements that decay, thus powering
so-called kilonova emission in UV/optical/NIR (see, e.g., Li &
Paczyński 1998; Kulkarni 2005; Tanaka 2016; Evans
et al. 2017; Kasen et al. 2017; Metzger 2017; Pian
et al. 2017; Villar et al. 2017). Several days after the BNS
merger, X-ray (Troja et al. 2017) and radio (Hallinan
et al. 2017a) emissions were also discovered at the transient’s
position (see also Abbott et al. 2017e and references therein).
These observations are consistent with the expected interaction
of merger ejecta with the interstellar medium on timescales of
up to years (see, e.g., Nakar & Piran 2011; Hotokezaka &
Piran 2015; Hotokezaka et al. 2016). Data from exhaustive
follow-up in the X-ray, radio, and optical, covering almost one
year, allowed detailed modeling of emission mechanisms, such
as an off-axis structured jet (see, e.g., D’Avanzo et al. 2018;
Dobie et al. 2018; Margutti et al. 2018; Mooley et al. 2018a;
Ruan et al. 2018). The degeneracy among the various models
has been broken with late-time radio observations that support
the emergence of a relativistic jet from the BNS merger
(Ghirlanda et al. 2018; Mooley et al. 2018b).
Besides compact binary mergers, other transient GW sources

that may be observed by ground-based interferometers include
the core-collapse of massive stars, which are expected to emit
GWs if some asymmetry is present (see Kotake et al. 2006;
Ott 2009; Gossan et al. 2016 for an overview). The core-
collapse of a massive star is accompanied by supernova (SN)

emissions, starting in the ultraviolet and soft X-ray bands from
the shock breakout of the stellar surface (see, e.g., Falk &
Arnett 1977; Klein & Chevalier 1978; Ensman & Bur-
rows 1992; Andreoni et al. 2016), and followed by emissions
at optical and radio frequencies that typically start from days to
weeks after the collapse and last for weeks up to years.
Neutrinos are also emitted during core-collapse supernovae as
confirmed on 1987 February 23 when MeV neutrinos were
detected from SN 1987A in the Large Magellanic Cloud (at a

181
The candidate LVT151012 has been confirmed as a gravitational-wave

event, and is now called GW151012 (LIGO Scientific Collaboration et al. 2018).
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distance of ∼50 kpc) by the Kamiokande-II (Hirata et al. 1987)
and the Irvine–Michigan–Brookhaven (Bionta et al. 1987)
neutrino detectors, a few hours before its optical counterpart
was discovered. In addition, GRBs and SNe are expected to
produce relativistic outflows in which particles (protons and
nuclei) can be accelerated and produce high-energy neutrinos
by interacting with the surrounding medium and radiation (see,
e.g., Murase 2018).

Another class of transient GW sources is magnetars, i.e.,
rotating NSs with very intense magnetic fields (∼1015G).
Theoretical models predict that when these stars undergo
starquakes, asymmetric strains can temporarily alter the
geometry of the star and GWs can be emitted (see, e.g., Corsi
& Owen 2011). Electromagnetic phenomena possibly asso-
ciated with magnetar starquakes include soft gamma repeaters
(SGRs) and anomalous X-ray pulsars (AXPs), sources that
sporadically emit short bursts of gamma-rays and X-rays (see
Mereghetti 2008 for a review). Starquakes can also cause
radio/X-ray pulsar glitches: sudden increases in the rotational
frequency of a highly magnetized, rotating NS (pulsar)
followed by exponential decays, which bring the pulsar
rotational frequency back down to its initial value (see, e.g.,
Espinoza et al. 2011).

During O1 and O2, extensive EM observing campaigns
searched for counterparts to GW candidates identified in low-
latency. Significant improvements were made between these
two observing runs regarding the data analysis software and
source modeling, allowing important additional information to
be distributed in low-latency during O2. For CBC events, 3D
sky localization maps were released, providing information
about the direction and the luminosity distance of the source
(Singer et al. 2016a), while in O1, only 2D sky localization
maps were provided, without distance information. During O2,
probabilities that at least one low-mass object was present in

the coalescing binary system and that tidally disrupted material

formed a massive accretion disk around the merged object were

reported. This information is useful for assessing the likelihood

that a merger could power an EM transient (Foucart 2012;

Pannarale & Ohme 2014).
During O1 and the first part of O2, with the GW network

formed only by the two Advanced LIGO interferometers,

sources were typically localized in sky areas ranging from a

few hundreds to several thousands of square degrees (see, e.g.,

Abbott et al. 2017a, 2016d, 2016e). Improvements in

localization areas have been made since Advanced Virgo

joined the gravitational-wave detector network starting 2017

August 1. For instance, GW170814 and GW170817 were

localized by the three-detector network within a few tens of

square degrees; see Abbott et al. (2017b, 2017d).
Jointly observing the same event in both gravitational waves

and electromagnetic radiation provides complementary insights

into the progenitor and its local environment. The GW signal is

key to determining several physical properties of the source

such as the masses and system properties (inclination,

orientation, spin, etc.). The EM counterpart provides informa-

tion about radioactive decay, shocks, the emission mechanism

of the central engine, magnetic fields, and beaming; and also

probes the surrounding environment of the source (see, for

instance, Berger 2014). The detection of an EM counterpart

also can give precise localization and lead to the identification

of the host galaxy of the source. The distance estimated from

the GW data, combined with the measured redshift of the host

galaxy, enables measurement of the Hubble constant

(Schutz 1986; Holz & Hughes 2005; Nissanke et al.

2010, 2013a; Abbott et al. 2017f; Hotokezaka et al. 2018;

Seto & Kyutoku 2018; Vitale & Chen 2018). Precise

measurements of the host galaxy distance and the binary

inclination given by the EM observations can be used to reduce

the degeneracy in the GW parameter estimation (see, e.g.,

Guidorzi et al. 2017; Cantiello et al. 2018; Chen et al. 2018;

Mandel 2018). Furthermore, the detection of an EM counter-

part may increase the confidence in the astrophysical origin of a

weak GW signal (Kochanek & Piran 1993). It also provides

constraints on the relative merger rates of the two classes of

compact binaries (BNS and NS–BH), on the beaming angle of

sGRBs, and the NS equation of state (Abadie et al. 2010; Chen

& Holz 2013; Pannarale & Ohme 2014; Clark et al. 2015;

Dominik et al. 2015; Regimbau et al. 2015; Siellez et al. 2016;

Radice et al. 2018). Finally, joint GW and EM observations can

provide constraints on fundamental physics (Abbott

et al. 2017g).
In this paper, we describe the identification of GW transients

and the distribution of GW alerts performed during O2 by the

LIGO and Virgo collaborations. We also detail the GW event

information shared with the astronomy community and give an

overview of the EM follow-up strategies.
In Section 2 we present an overview of the online GW

analysis, with a description of the online analysis detection

pipelines, and the vetting and approval processes for potential

GW events. In Section 3 we summarize the GW alerts that were

distributed during O2 and the properties of the gravitational-

wave candidates after the offline analysis. We describe the

information that was shared with astronomers, including how

this was used during the electromagnetic/neutrino follow-up

activities. Finally, in Section 4 we present our conclusions.

Table 1

Major Parameters of the O2 Online Search Pipelines Based on Compact Binary
Merger Waveform Models

PyCBC Live GstLAL MBTAOnline

Total mass 2 Me–500 Me

a 2 Me–150 Me

a 2 Me–100 Me

Mass ratio 1–98 1–98 1–99

Minimum comp-

onent mass

1 Me 1 Me 1 Me

Spin magni-

tude (m < 2 Me)

0–0.05 0–0.05 0–0.05

Spin magni-

tude (m > 2 Me)

0–0.998 0–0.999 0–0.9899

Single-detector S/N

threshold for

triggering

5.5 4b 5.5c

Notes.
a
The maximum total mass for PyCBC Live and GstLAL is in fact a function of

mass ratio and component spins (Dal Canton & Harry 2017; Mukherjee

et al. 2018) and we indicate the highest total mass limit over all mass ratios and

spins. The offline GstLAL search uses a template bank extended to a larger

maximum total mass of 400 Me.
b
This threshold was applied to the two LIGO detectors only for the online

GstLAL analysis. The minimum trigger S/N in Virgo was not determined by

an explicit threshold, but instead by a restriction to record at most 1 trigger per

second in a given template.
c
MBTAOnline uses a higher LIGO S/N threshold (6) to form coincidences

with Virgo.
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2. Online Gravitational-wave Analysis

In this section, we describe the two classes of searches for GW
transients, modeled and unmodeled, that contributed triggers for
low-latency EM follow-up (in Section 2.1). We also present
the full vetting and validation process of candidate events
(in Section 2.2) and distribution of low-latency alerts during O2
(in Section 2.3). Offline search pipelines182 also led to the
identification of additional candidate events GW170729 and
GW170818 (see LIGO Scientific Collaboration et al. 2018).

2.1. Brief Description of Online Pipelines

The modeled (CBC) searches specifically look for signals
from compact binary mergers of neutron stars and black holes
(BNS, NS–BH, and BBH systems). The unmodeled (burst)
searches, on the other hand, are capable of detecting signals
from a wide variety of astrophysical sources in addition to
compact binary mergers: core-collapse of massive stars,
magnetar starquakes, and more speculative sources such as
intersecting cosmic strings or currently unknown GW sources.

2.1.1. Online Modeled Searches

GstLAL (Messick et al. 2017), MBTAOnline (Multi-Band
Template Analysis, Adams et al. 2016) and PyCBC Live (Nitz
et al. 2018) are analysis pipelines designed to detect and report
compact binary merger events with sub-minute latencies. Such
pipelines use discrete banks of waveform templates to cover the
target parameter space of compact binaries and perform
matched filtering on the data using those templates, similar to
the offline analyses (Usman et al. 2016; Messick et al. 2017)
that produced the O1 and O2 catalog of compact binaries
(LIGO Scientific Collaboration et al. 2018). The online and
offline analyses differ in various ways. The most important
configuration choices of online analyses are reviewed here.

The mass and spin parameter space considered by the online
pipelines in O2 is summarized in Table 1. All pipelines assume
that, while the gravitational-wave signal dwells in the detector
sensitive band, the spins of the compact objects are aligned or
antialigned with the orbital angular momentum, and that orbital
eccentricity is negligible. Additional details of the PyCBC Live
and GstLAL banks can be found in Dal Canton & Harry (2017)
and Mukherjee et al. (2018), respectively. In the case of
PyCBC Live, the online and final offline analyses covered
exactly the same space. For GstLAL, the offline bank extended
to a larger total mass of 400Me.

A matched-filtering analysis is performed by each pipeline,
producing triggers for each detector’s data stream whenever the
matched-filter single-detector signal-to-noise ratio (S/N) peaks
above a threshold given in Table 1. Due to the small probability
of a signal being detectable in Virgo and not in LIGO during
O2, PyCBC Live did not use Virgo to produce triggers; Virgo’s
data were nevertheless still analyzed and used for the sky
localization of candidates from LIGO.

Matched filtering alone is insufficient in non-Gaussian
detector noise, producing frequent non-astrophysical triggers
with large S/N (Abbott et al. 2016f). Pipelines can choose
among different techniques to mitigate this effect: calculating
additional statistics based on the template waveform (signal-

based vetoes), explicitly zeroing out loud and short instru-
mental transients before matched-filtering (gating), and vetoing
triggers based on known data quality issues that are reported
with the same latency as the strain data itself. In O2, all
matched-filter searches employed signal-based vetoes; PyCBC
Live and MBTAOnline applied vetoes based on low-latency
data quality information, while GstLAL applied gating.
The trigger lists produced by matched filtering and cleaned

via the aforementioned procedures are searched for coin-
cidences between detectors. Coincident triggers are ranked
based on their S/Ns and signal-based vetoes and the
consistency of their S/Ns, arrival times, and arrival phases at
the different detectors with an astrophysical signal. The
pipelines construct this ranking and convert it to a statistical
significance in different ways, described next. A measure of
significance produced by all pipelines for each candidate is the
estimated false-alarm rate (FAR), i.e., the rate at which we
expect events with at least as high a ranking as the candidate to
be generated due to detector noise.
MBTAOnline constructs a background distribution of the

ranking statistic by generating every possible coincidence from
single-detector triggers over a few hours of recent data. It then
folds in the probability of a pair of triggers passing the time
coincidence test.
PyCBC Live’s ranking of coincident triggers in O2 was

somewhat simpler than the final offline analysis: it did not
account for the variation of background over the parameter
space (Nitz et al. 2017) and it did not include the sine-Gaussian
signal-based veto (Nitz 2018). PyCBC Live estimated the
background of accidental coincidences using time shifts
between triggers from different detectors, as done by the
offline analysis (Usman et al. 2016). The amount of live time
used for background estimation in PyCBC Live was 5 hr, to
be compared with ∼5 days of the offline analysis. This choice
limited the inverse FAR of online detections to ∼100 yr
maximum, insufficient for claiming a very significant detection,
but adequate for generating rapid alerts for astronomers. On the
other hand, this choice gave the background estimation a faster
response to variations in noise characteristics, which is useful
considering the limited data quality flags available to the online
analysis.
GstLAL calculates the significance of triggers by construct-

ing a likelihood-ratio ranking statistic that models the
distribution of trigger properties for noise and GW events
(Cannon et al. 2015). The background is computed by
synthesizing likelihood ratios from a random sampling of a
probability density that is estimated using non-coincident
triggers accumulated over the course of an observing run,
which are taken to be noise.

2.1.2. Online Unmodeled Searches

The two unmodeled signal searches (burst), cWB and oLIB,
work by looking for excess power in the time-frequency (TF)

domain of the GW strain data (Klimenko et al. 2016; Lynch
et al. 2017). The cWB pipeline does this by creating TF maps at
multiple resolutions across the GW detector network and
identifying clusters of TF data samples with power above the
baseline detector noise. Excess power clusters in different
detectors that overlap in time and frequency indicate the
presence of a GW event. The signal waveforms and the source
sky location are reconstructed with the maximum likelihood
method by maximizing over all possible time-of-flight delays in

182
The offline O2 results were obtained after a complete regeneration of O2

strain data with noise subtraction performed for the LIGO detectors (Davis
et al. 2018).
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the detector network. The cWB detection statistic is based on
the coherent energy obtained by cross-correlating the signal
waveforms reconstructed in the detectors. It is compared to the
corresponding background distribution to identify significant
GW candidates.

oLIB uses the Q transform to decompose GW strain data into
several TF planes of constant quality factors Q, where Q∼τ
f0. Here, τ and f0 are the time resolution and central frequency
of the transform’s filter/wavelet, respectively. The pipeline
flags data segments containing excess power and searches for
clusters of these segments with identical f0 and Q spaced within
100 ms of each other. Coincidences among the detector
network of clusters with a time-of-flight window up to 10 ms
are then analyzed with a coherent (i.e., correlated across the
detector network) signal model to identify possible GW
candidate events.

Similar to PyCBC Live, both cWB and oLIB use local time
slides to estimate the background and calculate the candidates’
false-alarm rates (FARs are detailed in Section 3.3.1).

2.2. Vetting and Approval Process

During O1 and O2, all CBC and burst GW triggers were
stored in an interactive database (see Section 2.2.1) and
required to pass a series of vetting procedures, both automatic
(Section 2.2.3) and manual (Section 2.2.4), with the help of
supervised protocols (2.2.2).

2.2.1. GraceDb and LVAlert

The Gravitational-wave Candidate Event Database
(GraceDb183) is a centralized hub for aggregating and
disseminating information about candidate events from GW
searches. It features a web interface for displaying event
information in a human-friendly format, as well as a
representational state transfer application program interface
(RESTful API) for programmatic interaction with the service.
A Python-based client code package is also maintained to
facilitate interactions with the API; this set of tools allows users
to add new candidate events to the database, annotate existing
events, search for events, upload files, and more.

During O2, GraceDb sent push notifications about candidate
event creation and annotation to registered listeners via the
LIGO/Virgo Alert System (LVAlert), a real-time messaging
service based on the Extensible Messaging and Presence
Protocol (XMPP) and its publish-subscribe (pubsub) extension.
Python-based command-line tools were provided to send and
receive notifications, create messaging nodes, and manage node
subscriptions. Typical receivers of LVAlert messages were
automated follow-up processes that, when triggered, performed
tasks such as parameter estimation or detector characterization
for a candidate event (details in Section 2.2.3).

2.2.2. Supervised Follow-up Process

Several follow-up processes responded to the entry of a GW
candidate into GraceDb, notified by the arrival of an LVAlert
message. Three of these processes were of immediate relevance
to the EM follow-up effort: the low-latency sky localization
probability map (skymap) generator for CBC triggers,
BAYESTAR (Singer & Price 2016), the tracker of candidate
event status/incoming information and alert generator/sender

(approval_processorMP), and the tracker of other follow-up
processing (eventSupervisor).
In particular, approval_processorMP was responsible for the

decision to send alerts based on the following incoming state
information: basic trigger properties from the pipelines (FAR,
event time, detectors involved with the trigger), data quality
and data products (Sections 2.2.3 and 3.3.2), detector operator
and advocate signoffs determining the result of human vetting
(Section 2.2.4), and other labels identifying time-correlated
external triggers or signal injections performed in hardware at
the sites. Hardware signal injections are simulated GW signals
created by physically displacing the detectors’ test masses
(Biwer et al. 2017). Triggers with FARs below an agreed-upon
FAR threshold and with no injection or data quality veto labels
generated alerts to the astronomers involved in the LIGO and
Virgo EM follow-up community via the GCN network (see
Section 3.2) and GraceDb web services.

2.2.3. Online Automatic Data Vetting

State information was provided to low-latency analysis
pipelines indicating when the detectors’ data were suitable for
use in astrophysical analysis. This included times when the
detectors were operating in a nominal state and data calibration
was accurate. The low-latency pipelines also dealt with the
additional challenge of transient noise artifacts known as
glitches, which often occurred in the detectors’ data (Abbott
et al. 2016f, 2019).
To reduce the effect of glitches, which can mimic true GW

signals to some degree but are uncorrelated in the GW
detectors, multiple strategies were employed by LIGO and
Virgo, including automatically produced data quality vetoes
and human vetting of candidate events (see Section 2.2.4). Data
quality vetoes indicated times when a noise source known to
contaminate the astrophysical searches was active. These
vetoes were defined using sensors that measured the behavior
of the instruments and their environment. This data quality
information was applied in several steps. A set of data quality
vetoes was generated in real time and provided to the low-
latency pipelines alongside the detector state information. If a
candidate GW event occurred during a time that had been
vetoed, it was not reported for EM follow-up. Given that these
vetoes could potentially prevent a true GW signal from being
distributed, this category of data quality information was
reserved for severe noise sources.
In parallel with this effort, low-latency algorithms searched

LIGO data for correlations between witness sensors and the
GW strain data to identify noise sources that might not have
been included in defined data quality vetoes. For example, iDQ
(a streaming machine learning pipeline based on Essick
et al. 2013 and Biswas et al. 2013) reported the probability
that there was a glitch in h(t) based on the presence of glitches
in witness sensors at the time of the event. In O2, iDQ was used
to vet unmodeled low-latency pipeline triggers automatically.

2.2.4. Human Vetting

Human vetting of GW triggers was a critical part of the EM
follow-up program, and had to be completed before sending
any alert to the astronomers during O2. Potentially interesting
triggers were labeled by approval_processorMP to require
signoffs from follow-up advocates and operators at each
relevant detector site.183

https://gracedb.ligo.org
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Table 2

Characteristics of the Distributed Triggers That Passed the EM Follow-up Validation Process

GW ID Event Time Final Status Source
Triggers Latency (minutes)

UTC Classification Search(es)a Online FAR (yr−1
) GraceDb submission Initial GCN Notice

G268556 2017 Jan 04 10:11:58 Confident BBH PyCBC, cWB 1.9b 264 395

GW170104 EM-Bright: 0% GstLAL, oLIB

G270580 2017 Jan 20 12:30:59 Retracted Burst cWB 5.0 2 67

EM-Bright: N/A

G274296 2017 Feb 17 06:05:53 NFI Burst cWB 5.4 715 813

EM-Bright: N/A

G275404 2017 Feb 25 18:30:21 NFI NS–BH PyCBC, GstLAL 6.0 <1 24

EM-Bright: 90%

G275697 2017 Feb 27 18:57:31 NFI BNS PyCBC, GstLAL, 4.5 <1 27

EM-Bright: 100% MBTAOnline

G277583 2017 Mar 13 22:40:09 NFI Burst cWB 2.7 3 30

EM-Bright: N/A

G284239 2017 May 02 22:26:07 NFI Burst oLIB 4.0 12 963

EM-Bright: N/A

G288732 2017 Jun 08 02:01:16 Confident BBH PyCBC, cWB, GstLALc 2.6b 650 818

GW170608 EM-Bright: 0%

G296853 2017 Aug 09 08:28:22 Confident BBH GstLAL, cWB 0.2 <1 49

GW170809 EM-Bright: 0% MBTAOnline

G297595 2017 Aug 14 10:30:44 Confident BBH GstLAL, oLIB, 1.2×10−5
<1 31

GW170814 EM-Bright: 0% PyCBC, cWBd

G298048 2017 Aug 17 12:41:04 Confident BNS GstLALd, PyCBC 1.1×10−4 6 27e

GW170817 EM-Bright: 100%

G298389 2017 Aug 19 15:50:46 NFI Burst oLIB 4.9 16 192

EM-Bright: N/A

G298936 2017 Aug 23 13:13:59 Confident BBH cWB, oLIB, GstLAL, 5.5×10−4
<1 22

GW170823 EM-Bright: 0% PyCBC, MBTAOnline

G299232 2017 Aug 25 13:13:37 NFI NS–BH MBTAOnlinef 5.3 <1 25

EM-Bright: 100%

Notes. The table provides the following information: time of the GW candidate event, status of the event after offline analysis (confident, i.e., confidently detected GW event; retracted due to further noise investigation;

or NFI i.e., no further interest, not present in the offline analysis or consistent with noise), nature of the candidate with an EM-bright classifier (described in Section 3.3.2; if N/A, classifier not available for burst triggers),
list of online searches that detected the candidate event (the pipeline selected for the distributed alert is in bold; some of the pipelines are not indicated in the first GCN Circular because they reported the trigger with

larger latency), its FAR (online pipeline-dependent, see Section 3.3.1), the latency between the event time and ;event submission into GraceDb and the delay between the event time and the alert distribution (first GW

notice sent to GCN for distribution to partners; see Section 3.2).
a
In bold is the selected pipeline for distribution of the alert to O2 partners.

b
Due to the non-standard way in which this trigger was found, the PyCBC Live low-latency pipeline was run by hand over a short period of data (tens of minutes) in order to produce a trigger for follow-up as quickly as

possible. The precision of the FAR estimate is limited by the use of a shorter than normal period of data.
c
The online GstLAL trigger was identified as a single-detector trigger.

d
The sky localization sent to partners five hours after the trigger time was derived from a PyCBC analysis after the high-amplitude glitch in LIGO-Livingston was windowed out (LIGO Scientific Collaboration & Virgo

Collaboration 2017b; Abbott et al. 2017d). The FAR was calculated with H1 only.
e
The first circular sent to partners for G298048 informed that a GW candidate event with a single instrument was associated with the time of a Fermi GBM trigger (LIGO Scientific Collaboration & Virgo

Collaboration 2017c). The initial Notice sent to partners, at 13:08 UTC, contained a skymap simply representing the quadrupolar antenna response function of the LIGO-Hanford detector over the entire sky.
f
The sky localization sent to partners was derived from a PyCBC analysis (LIGO Scientific Collaboration & Virgo Collaboration 2017d).
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Different groups of persons from the collaborations were
involved in the decision-making process, including Rapid
Response Teams (RRT) with commissioning, computing, and
calibration experts from each of the detector sites, pipeline
experts, detector characterization experts, and EM follow-up
advocates.

First, the on-site operators had to check the status of the
instruments within one minute of the trigger, to ensure that
unusual events (thunderstorms, trucks driving close to the
buildings, etc.) did not happen at the time of the GW trigger
and that the interferometer status was nominal.

Second, the experts and on-duty advocates met during an on-
call validation process organized immediately after being notified
of the trigger. All previously mentioned algorithms in Section 2.2.3
and additional data quality information not accessible at low-
latency timescales were considered. For example, the Omega scan
and Omicron scan algorithms (Chatterji et al. 2004; Robinet 2016)
created time-frequency visualizations of witness sensor data
around the time of the candidate event. This allowed for detailed
views of instrumental or environmental noise that could
potentially influence the detectors’ GW strain data. In O2, this
information was used to identify false triggers due to noise and
veto them before they were reported for EM follow-up.

Third, pipeline experts were asked to check pipeline results,
in particular to evaluate the significance of marginal triggers. In
the case of more than one viable candidate event (within 1 s for
CBC and 5 s for burst triggers), the advocates selected the most
promising candidate based on pre-established criteria (e.g.,
lowest FAR, choosing CBC over burst triggers).

When Virgo joined the LIGO network, it was not used to
estimate the FAR of the GW candidate, but only to constrain
the sky localization.

Finally, the EM follow-up advocates selected the skymap to
send depending on the cross-checks done by the RRT at the
different instrument sites, with priority given to the two LIGO
detectors as the most sensitive instruments in the network.
Then, they released the skymap to the external community and
composed the GCN circular (see Section 3.2).

When necessary, the pipeline experts and the data quality
team, with the help of the RRT, recommended a retraction after
days or weeks, using extended data investigation (Abbott
et al. 2019) and/or updated FAR calculation based on
additional background data.

2.3. Triggers Distributed during O2

During O2, only GW candidates that passed the above series
of checks were distributed to partner astronomers (see Table 2).
Approximately half the triggers were rejected during the human
vetting process (described in Section 2.2.4) due to the presence
of glitches (see Abbott et al. 2018a, 2019). The number of
vetoed triggers decreased by 80% from the first half of the O2
observing run to the second due to pipeline software upgrades
to avoid transient noise. Other candidate events were vetoed
because they were generated due to specific hardware problems
or by not meeting the requirements of the O2 alert distribution
policy (e.g., single-detector triggers, FAR being above the O2
threshold value, and very high latencies).

A list of distributed triggers during O2 and their online
characteristics is provided in Table 2. We note that both CBC
and burst pipelines identified the loudest GW candidate events.
Six low-latency CBC candidates were ultimately confirmed as GW
detections and are described in detail in Abbott et al. (2018a).

G288732 (subsequently named GW170608) occurred when LIGO-
Hanford was undergoing angle-to-length decoupling (a regular
maintenance procedure that minimizes the coupling between the
angular position of the test-mass mirrors and the measurement of
the strain) Abbott et al. (2017a), whereas for G268556 (i.e.,
GW170104), the calibration state was not nominal (Abbott
et al. 2017c), creating a high latency in the distribution of alerts.
These two real events were recovered due to expert vigilance rather
than automated procedures. Moreover, G298048 (i.e., GW170817)
was first identified as a single-detector trigger in the LIGO-Hanford
data; a glitch in LIGO-Livingston caused the trigger to be rejected
and the S/N was too low in Virgo to be detected.
Burst event G270580 was retracted offline due to its correlation

with seismic noise (LIGO Scientific Collaboration & Virgo
Collaboration 2017a). The CBC candidates G275697, G275404
and G299232 were not present in the offline pipeline analysis,
whereas other marginal candidates were listed in LIGO Scientific
Collaboration et al. (2018). The burst triggers G274296,
G277583, G284239, and G298389 are consistent with back-
ground noise based on their event parameters and FARs; hence
they are of no further interest. The high latency in sending alerts
for the two oLIB events, G284239 and G298389, was due to their
skymap generation.

3. Distribution of Alerts

In this section, we present GW candidate information that we
distributed and detail how this supported the EM observational
campaigns.

3.1. O2 Partners Network

For O2, LIGO/Virgo signed 95 memoranda of under-
standing (MoUs) with different institutions, agencies, and
groups of astronomers from more than 20 countries. The goal
was to enable multimessenger observations of astrophysical
events by GW detectors with a wide range of telescopes and
instruments from EM and neutrino astronomy.
During O2, 88 groups had operational facilities and the ability

to receive and send notifcations regarding their observations
through the GCN network (see Section 3.2). More than 100 space
and ground-based instruments were involved in the EM follow-up
campaign by covering radio, optical, near-infrared, X-ray, and
gamma-ray wavelengths. The telescopes sensitive in the optical
bands were the most numerous, representing half of the
instruments. The follow-up network also included three facilities
capable of detecting high-energy neutrinos: IceCube, ANTARES,
Pierre Auger, searching for transients in the northern and southern
hemispheres.

3.2. Distribution of the Alerts via the GCN Network

The Gamma-ray Coordinates Network (GCN)
184 was

adopted from the GRB community to be used as an alert
platform for both LIGO/Virgo observations and multimessen-
ger follow-up. There are two types of GCN alerts: notices and
circulars. During O2, the LIGO/Virgo GCN network was
private; a requester had to be a member of the LV-EM
Forum185 to receive and send any messages. This is in contrast
with normal public operation of GCN as used by the GRB

184
https://gcn.gsfc.nasa.gov

185
https://gw-astronomy.org/

11

The Astrophysical Journal, 875:161 (20pp), 2019 April 20 Abbott et al.



community for decades. The LV-EM Forum, which consists of
a wiki and mailing list, allowed registered astronomers to
access information about GW candidate events selected for
follow-up observations.

GCN/LVC notices (i.e., LIGO/Virgo-astronomers notices)

are machine-readable-computer-generated messages containing

basic information about GW candidate events (e.g., time of the
event and/or a sky localization probability map) or EM
counterpart candidates. For the LIGO and Virgo collaborations’
alerts, three types of GCN/LVC notices were produced:
preliminary, initial, and update, although the preliminary
notices were distributed only internally within the LIGO/Virgo

Table 3

Properties of the GW Alerts, Including the Network S/N, the Candidate Event FAR, the Sky Localization Area, and Luminosity Distances

GW ID
Interferometers

S/Nb FARb Luminosity Distance Sky Localization Area References

Triggering Skymap (algorithm) (yr−1
) Median ±90% c.i. (Mpc) 50%/90% c.i. (deg2)

G268556 online H1, L1 H1, L1 (BAYESTAR) 12.4 1.9 730 320
340

430/1630 A

GW170104 offline H1, L1 (LALInference) 13.0 <1.4×10−5
960 420

440
200/920 B

G270580 online H1, L1 H1, L1 (LIB) 8.7 5.0 L 600/3120 C

offline L L L D

G274296 online H1, L1 H1, L1 (cWB) 11.0 5.4 L 430/2140 E

offline L L L F

G275404 online H1, L1 H1, L1 (BAYESTAR) 8.7 6.0 270 130
150

460/2100 G

offline L
c

L L L L L H

G275697 online H1, L1 H1, L1 (BAYESTAR) 8.7 4.5 180 90
90 480/1820 I

offline L
c

L L L L L J

G277583 online H1, L1 H1, L1 (cWB, LIB)
d 9.3 2.7 L 2130/12140d K

offline L L L L

G284239 online H1, L1 H1, L1 (LIB) 8.2 4.0 L 1030/3590 L

offline L L L L

G288732 online H1, L1 H1, L1 (BAYESTAR) 12.7 2.6 310 120
200

230/860 M

GW170608 offline H1, L1 (LALInference) 15.4 <3.1×10−4
320 100

130
100/400 B

G296853 online H1, L1 H1, L1 (BAYESTAR) 11.3 0.2 1080 470
520

320/1160 N

GW170809 offline H1, L1 H1, L1, V1 (LALInference) 12.4 <1.0×10−7
980 350

350
70/310e B

G297595 online H1, L1 H1, L1, V1 (BAYESTAR) 16.1 1.2×10−5
480 170

190
22/97e O

GW170814 offline H1, L1, V1 (LALInference) 15.9 <1.0×10−7
570 180

190
16/87e B

G298048 online H1 H1 (BAYESTAR) 14.5 1.1×10−4
40 20

20
8060/24220 P

H1, L1 H1, L1, V1 (BAYESTAR) L L 40 10
10

9/31e Q

GW170817 offline H1, L1 H1, L1, V1 (LALInference) 33.0 <1.0×10−7
40 10

10
5/16e B

G298389 online H1, L1 H1, L1 (LIB) 15.6 4.9 L 250/800 R

offline L L L L

G298936 online H1, L1 H1, L1 (BAYESTAR) 11.3 5.5×10−4
1380 670

700
610/2140 S

H1, L1 H1, L1, V1 (BAYESTAR) L 1540 680
690

277/1219e T

GW170823 offline H1, L1 H1, L1 (LALInference) 11.5 <1.0×10−7
1860 850

920
440/1670 B

G299232 online H1, L1 H1, L1, V1 (BAYESTAR) 9.1 5.3 330 160
200

451/2040e U

offline L
c

L L L L L L

Notes. Note that sky localization area and luminosity distances for the online search can differ from results mentioned in the distributed GCNsa. Furthermore,the

distance estimates stated in GCN circulars are the a posteriori mean±standard deviation, while the distance estimates and confidence intervals stated in the table are

the a posteriori median and central 90% intervals. For confident GW events, the table shows results obtained from the offline refined analysis for comparison. Network

S/N and FAR are the offline analysis results obtained with the pipeline selected for online distribution of the alerts (see Tables 1 and 2 in LIGO Scientific

Collaboration et al. 2018). Offline luminosity distance and sky localization area (50% and 90% confidence regions) are listed also in Table 8 from LIGO Scientific

Collaboration et al. (2018), with small differences arising from using the posterior data samples directly versus the generated skymap files.
a
Differences with respect to areas reported in GCN circulars are due to the rounding algorithm used to calculate the enclosed probability of 50% and 90%,which now

is more accurate.
b
The network S/N and the false-alarm rate depend on the pipeline that triggered the event.

c
No candidate event was found during the offline analysis.

d
Localization is obtained as the arithmetic mean of cWB and LIB.

e
All skymaps, excluding those using Virgo data, round sky localization areas to the nearest 10; otherwise, they are rounded to the nearest 1.

References. (A) LIGO Scientific Collaboration & Virgo Collaboration (2017e), (B) LIGO Scientific Collaboration et al. (2018), (C) LIGO Scientific Collaboration &

Virgo Collaboration (2017f), (D) LIGO Scientific Collaboration & Virgo Collaboration (2017a, 2017g), (E) LIGO Scientific Collaboration & Virgo Collaboration

(2017h), (F) LIGO Scientific Collaboration & Virgo Collaboration (2017i), (G) LIGO Scientific Collaboration & Virgo Collaboration (2017j), (H) LIGO Scientific

Collaboration & Virgo Collaboration (2017k, 2017l), (I) LIGO Scientific Collaboration & Virgo Collaboration (2017m), (J) LIGO Scientific Collaboration & Virgo

Collaboration (2017n, 2017o), (K) LIGO Scientific Collaboration & Virgo Collaboration (2017p), (L) LIGO Scientific Collaboration & Virgo Collaboration (2017q),

(M) LIGO Scientific Collaboration & Virgo Collaboration (2017r), (N) LIGO Scientific Collaboration & Virgo Collaboration (2017s), (O) LIGO Scientific

Collaboration & Virgo Collaboration (2017t), (P) LIGO Scientific Collaboration & Virgo Collaboration (2017u), (Q) LIGO Scientific Collaboration & Virgo

Collaboration (2017b), (R) LIGO Scientific Collaboration & Virgo Collaboration (2017v), (S) LIGO Scientific Collaboration & Virgo Collaboration (2017w), (T)

LIGO Scientific Collaboration & Virgo Collaboration (2017x), (U) LIGO Scientific Collaboration & Virgo Collaboration (2017d).
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collaborations, while the others were sent to all members of the
LV-EM forum. There was the possibility of sending a
retraction notice as well.

1. The preliminary notice contains only basic trigger
information such as the trigger time (equivalent to the
event UTC time), the online pipeline that generated the
trigger, and the event FAR. It may also contain a skymap
if one is available. It reports unvetted GW candidates and
is produced ∼1–3 minutes after the actual event time.

2. The initial notice is available ∼20–1000 minutes after the
event (see Table 2) and is the result of further processing
and human vetting of the event (see Section 2.2). In
addition to the fields provided in the preliminary notices,
it contains a link to the first sky localization probability
map and source classification information if available for
CBC candidate events.

3. The update notice is available from hours to months after
the event and reports offline and parameter estimation
analysis, in terms of improved FAR and sky localization.

During O2, there were 198 individuals and groups that
received one or more of the three LVC notice types by any of
the distribution methods and formats (i.e., VOevents, binary
socket packets, and email-based methods).

The GCN circulars are human-generated prose-style descrip-
tions of the event or follow-up observations made. They are
generally sent shortly after their associated notices. For
example, the LVC team generated one or two circulars for
each GW candidate event, with the first being sent ∼1–2 hr
after the event time. Circulars are largely used to give
information about follow-up observations, characteristics of
the instruments/telescopes, and EM counterpart candidates.
During O2, there were 385 recipients of the LVC/astronomers
private circulars.

3.3. Information Sent to Observing Partners

During O1 and O2, LIGO/Virgo notices and circulars
contained basic trigger information such as the event time,
corresponding online pipeline name, the list of contributing
instruments (H1, L1, V1), and a sky localization probability
map. In the case of CBC triggers for O2, additional information
about the nature of the source (see Section 3.3.2) and its
localization with distance (see Section 3.3.3) was provided.

3.3.1. Significance of the Alerts

The significance of an online GW trigger during O2 was
determined primarily by its FAR. The FAR of a trigger
quantifies the rate at which triggers of a given kind would be
generated by an online detection pipeline from data that are
void of any GW signal. Only triggers with a FAR below a pre-
defined threshold were considered for EM follow-up. For the
majority of O2, this threshold on FAR was once per two
months (1.9× 10−7 Hz). Thus, any trigger that was generated
by an online detection pipeline which could have been
generated simply by noise at a rate higher than once per two
months was rejected for the EM follow-up program. The FAR
estimation is specific to the pipeline that triggered the event
(see Section 2.1 and Table 3 for distributed alerts and the
associated FARs). In Table 2, the eight triggers that were not
confirmed as confident events were reported by five different
pipelines. This is consistent with the expected number of false

alarms from five pipelines in 118 days of coincident data from
LIGO-Hanford, LIGO-Livingston, and Virgo (LIGO Scientific
Collaboration et al. 2018).

3.3.2. Source Classification of CBC Candidate Events

In an event where at least one of the component compact
objects is a neutron star, the GW event is more likely to be
accompanied by an EM counterpart. A new low-latency
pipeline was implemented in O2 to provide observers with a
source classification for compact binary coalescences. In low
latency, the earliest event information that is available to use
are the point estimates. The point estimates are values of the
masses (m1, m2), and the aligned components of spin (χ1, χ2)

of the template that triggered to give the lowest FAR during the
search. However, these point estimates have uncertainties and
are expected to be offset with respect to the true component
values (Finn & Chernoff 1993; Cutler & Flanagan 1994;
Jaranowski & Krolak 1994; Poisson & Will 1995; Arun
et al. 2005; Lindblom et al. 2008; Hannam et al. 2013;
Nielsen 2013; Ohme et al. 2013). Thus, any inferences drawn
purely from the point estimates are prone to detection pipeline
biases. To mitigate this effect, an effective Fisher formalism,
introduced in Cho et al. (2013), was employed to construct an
ellipsoidal region around the triggered point. This region,
called the ambiguity ellipsoid, increases the chances of
including the region of the parameter space that matches best
with the true parameters of the source. This ambiguity ellipsoid
is populated with 1000 points (a total of 1001 points including
the original point estimate) which are called the ellipsoid
samples. For each ellipsoid sample, the source classification
quantities are computed. The dimensionality of the ambiguity
ellipsoid is determined by the number of parameters required to
compute the source classification quantities.
In O2 we delivered a twofold classification, one class giving

the probability that at least one neutron star is present in the
binary, and the second one giving the probability that there is
some baryonic mass left outside the merger remnant, i.e., the
EM-Bright classification. While the first classification requires
only one parameter for the inference to be conducted, namely
the secondary mass component, the second classification,
which is more model-dependent, potentially needs more
parameters than just the secondary mass. Indeed, we adopted
the EM-Bright classification method from Foucart (2012) and
implemented it as in Pannarale & Ohme (2014), which uses
three parameters (m1, m2, χ1), the masses of the primary and
secondary objects, and the aligned spin component of the
primary object, respectively. The method estimates the mass
remaining outside the black hole after a NS–BH merger, which
includes the mass of the accretion disk, the tidal tail, and/or
unbound ejecta. A 3D ambiguity ellipsoid was generated
around the triggered point to enclose a region of a 90% match
within its boundary. This was done in the , ,

c 1
( )

parameter space where m m m m
c 1 2

3 5
1 2

1 5
( ) ( ) is the

chirp mass and m m m m1 2 1 2
2

( ) is the symmetric mass
ratio. This was achieved using infrastructure developed in
Pankow et al. (2015). The fraction of ellipsoid samples with
secondary mass less than 2.83 Me constituted the first
classifier, namely the probability that there is at least one
neutron star in the binary.
Next, the mass left outside the black hole was computed for

each ellipsoid sample using the fitting formula, Equation (8) of
Foucart (2012). The fraction of ellipsoid samples for which this
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was greater than zero was calculated. This constituted the
second classifier.

It is important to note that Foucart’s fitting formula is only
valid in the NS–BH region of the parameter space. In O2, we
made the assumption that BNS mergers always emit EM
radiation (i.e., EM-Bright: 100%) and BBH mergers are always
void of such emission (i.e., EM-Bright: 0%, or equivalently,
EM-Dark). Thus, the second classifier was computed only for
ellipsoid samples with one component mass less than 2.83 Me.

In Figure 1, we can see different regions of the parameter
space where the aligned spin component has been suppressed
and only the mass values are shown. The blue region is the
BNS parameter space where every ellipsoid sample is treated as
EM-Bright. The dark gray region depicts the BBH parameter
space where all ellipsoid samples are treated as EM-Dark. The
light gray and green shaded regions are the NS–BH part of the
parameter space where the EM-Bright probability is computed
using Foucart’s fitting formula. The green shaded regions show
at which part of this parameter space the ellipsoid samples will
give non-zero remnant mass outside the final black hole. The
various shades of green discriminate between different χ1

values, so that, for example, an ellipsoid sample with mass
values (7.0, 2.0) Me will give non-zero remnant mass outside
the black hole according to Foucart’s fitting formula if the
value of χ1 is slightly greater than 0.5, but no mass left outside
the black hole below this value. Additionally, this figure also
shows ellipsoid samples for GW170817. The detection pipeline
point estimate for this source was consistent with a BNS
system. Upon construction of the ambiguity ellipsoid around

this point estimate, we found that all the ellipsoid samples lie
completely within the blue shaded region that is always
assumed to be EM-Bright. In contrast, a second event that is a
BBH system, GW170608, is also depicted, and its ellipsoid
samples lie entirely in the EM-Dark regime.
During O2, source classification information was provided

(see Table 2) on the basis of the detection pipeline within a few
minutes (depending upon the component masses) of the GW
detection. In the future, during the third observing run of LIGO
and Virgo (O3), source classification information will be
provided at multiple levels of refinement as parameter
estimation results are made available.

3.3.3. Skymaps and Luminosity Distances

Currently, CBC sky localization probability maps (skymaps)
for modeled searches are produced by two different algorithms,
based on latency and sophistication: LALInference and
BAYESTAR. LALInference uses stochastic sampling techni-
ques for the entire parameter space of a CBC signal, such as
Markov Chain Monte Carlo (MCMC) and nested sampling
(Veitch et al. 2015). Kernel density estimation is applied to the
posterior samples to construct a smooth probability distribution
from which the sky location and distance information is
calculated. Although LALInference skymaps use the most
complete description of the signal, sampling is computationally
expensive, with a latency ranging from hours to days and
weeks. BAYESTAR circumvents this issue by utilizing the fact
that most of the information related to localization is captured
by the arrival time, coalescence phase, and amplitude of the
signal (Singer & Price 2016).186 As implemented in O2, the
BAYESTAR likelihood is equivalent to that of LALInference.
The marginalization is carried out via Gaussian quadratures and
lookup tables. Hence, the computation can be completed within
a few seconds. Due to its highly parallel nature, a typical
BAYESTAR skymap is computed in 30 s.
Both LALInference and BAYESTAR provide distance

information in the skymaps. The distance is estimated from
the moments of the posterior distance distribution conditioned
on-sky position.187 In the case of LALInference the moments
are calculated from a kernel density estimate trained on the
posterior samples, while for BAYESTAR the moments are
calculated by numerical quadrature of the posterior probability
distribution.
As mentioned in Section 2.1.2, burst triggers are generated

by two algorithms, cWB and oLIB, which produce their
respective skymaps. The detection statistic of cWB is sensitive
to the time delay in arrival of the signal at the detector sites, and
thus is a function of the sky position. The skymap is
constructed based on the likelihood at each point in the sky
(see Klimenko et al. 2016 for details). The oLIB skymap
algorithm, LALInferenceBurst, is similar to its CBC counter-
part, LALInference, in the sense of being a template-based
search algorithm, except that it uses only sine-Gaussian
templates. It reports a posterior in nine parameters where
marginalization of parameters apart from sky position forms the
skymap. Unlike CBC skymaps, burst skymaps do not contain
distance information due to the lack of a signal model.

Figure 1. This figure shows the different regimes of operation by the source
classifier used in O2. The BNS region is given by m m M, 0, 2.831 2( ) ( )

(cyan). The upper limit of 2.83Me is the maximum NS mass allowed by the 2H
equation of state Kyutoku et al. (2010) used in the source classification
software. Any system lying in this region is always considered to have an EM
counterpart. The region m1>2.83 Me with m2�2.83 Me is the NS–BH
region of the source classifier. The baryonic mass left outside the BH is
computed in this region. In this scheme, the presence of any such matter is
considered to provide the potential for an EM counterpart. This boundary of
zero mass left outside the final BH is a function of the spin of the system.
Increasing spin implies the increased possibility of an EM counterpart. Dotted
contours, tagged by different χBH values, indicate the EM-bright/dark
boundary, with the bright region shaded for that particular χBH value. The

chirp mass, m m m mc 1 2
3 5

1 2
1 5

( ) ( ) , is the most accurately measured
quantity from the GW waveform. A few chirp mass contours,

M1.5, 3.5, 6.0c ( ) , are overlaid as solid lines for comparison. Ellipsoid

samples corresponding to a BBH merger, GW170608, and a BNS merger,
GW170817, are also displayed, showing consistent results with the source
classifier.

186
During the late stages of O2 with the Virgo detector, more complex

matched-filter S/N time series from the detection pipelines were used in place
of the point estimates.
187

See Section 5 of Singer et al. (2016b) for details on volume reconstruction.
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Each skymap is distributed as a FITS file, a post-processed

representation of the posterior samples to facilitate common
queries and calculations regarding area and distance/volume

when applicable. Consistent but non-numerically identical
results are expected of integrals computed using FITS files

versus MCMC with the posterior samples. Thus, luminosity
distance medians in Table 3 and in Table 3 of LIGO Scientific

Collaboration et al. (2018) differ but agree to within about 5%
of the uncertainties in these quantities.

It is not unusual for both CBC and burst pipelines to identify

the same astrophysical event, especially for heavier BBH
mergers where the waveform is of shorter duration. In such

cases, it is expected that the modeled CBC skymaps have
smaller sky localizations. While there might be differences in

the sky localizations, most of the probability is contained
around the true location (see Vitale et al. 2017 for a

comparative study).
Figure 2 shows the skymaps distributed during O2 using the

low-latency algorithms discussed above. The upper panel

shows the sky localizations of the high significance candidates
(FAR<1/(100 yr)=3×10−10 Hz), which are confident
GW events. Their corresponding refined sky localizations are
shown in Figure 3. Taking into account the 90% confidence
region, the initial sky localizations are largely consistent with
the final localizations, with GW170814 being the exception
(see Section 3.3.4).
A number of candidates (principally from burst pipelines)

are consistent with noise and are not considered to be GW
events. These are shown in the middle panel of Figure 2. The
bottom panel of the same figure shows the triggers rejected by
offline analysis.

3.3.4. Three-detector Observations

The Virgo contribution to O2 is noteworthy for significantly
improving the localizations of the events GW170809, GW170814
and GW170817.188 As an example, for GW170814, the 50%
sky localization area is confined in a single region of tens of
square degrees in the southern hemisphere. We note that Virgo
data was used to produce updated skymaps of GW170823
(LIGO Scientific Collaboration & Virgo Collaboration 2017d,
2017x) soon after identification of the signal. Subsequent data
validation studies identified problems with the Virgo data
around GW170823, which made it unreliable for use in
parameter estimation: the final sky localization relies only on
the LIGO data.
A note should be made regarding the initial and refined

skymaps of GW170814 (Abbott et al. 2017b, 2017d): it is
expected that the initial and updated skymaps for compact
binary coalescence events are similar unless there are
significant changes in data calibration, data quality or glitch
treatment, or low-latency parameter estimations.
We observed a significant shift between the first GW170814

sky localization area and its update (LIGO Scientific
Collaboration & Virgo Collaboration 2017y, 2017z). At the
time of GW170814, the Virgo power spectral density (PSD)

changed significantly with respect to the estimated PSD used to
precompute the template bank by the GstLAL online search.
Consequently, the phase of the whitening filter for Virgo was
no longer canceled out by the templates. This resulted in a
Virgo residual phase, which produced a phase shift in the Virgo

Figure 2. Distributed low-latency O2 skymaps in ICRS coordinates—
Mollweide projection. The shaded areas correspond to the confidence region
that encloses 90% of the localization probability. The inner lines define the
target regions at a 10% confidence level with changing color scheme at every
10% increase in confidence. The upper panel shows confident events, the
middle panel shows GW candidates that are consistent with noise, and the
bottom panel shows the triggers rejected by the offline analysis.

Figure 3. Offline O2 sky localizations for the confident events published in the
official LIGO and Virgo catalog—Mollweide projection. The shaded areas
define the 90% confidence levels. The inner lines define the target regions at a
10% confidence level, with a changing color scheme at every 10% increase in
confidence.

188
Virgo data also contributed to good localization of the event GW170818

that was found by the offline search (LIGO Scientific Collaboration et al.
2018).
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S/N time series causing an east shift of the 50% credible region

of the sky localization area.
The antenna patterns for the three detectors are shown in

Figure 4. The patterns represent the sensitivity of a detector to

an event on the sky. The generic L-shaped detectors are most

sensitive to signals coming from a direction perpendicular to

the plane of its arms; this explains the two antipodal regions of

maximum sensitivity. The plane of the arms of the detector

form the least sensitive region. In this plane, the detectors are

insensitive to the signal if directed along a diagonal of the L

shape giving four islands of insensitivity.

3.4. Electromagnetic/Neutrino Follow-up Activity of
Gravitational-wave Alerts

Searches for electromagnetic/neutrino counterparts
employed a variety of observing strategies, including archival
analysis, prompt searches with all-sky instruments, wide-field
tiled searches, targeted searches of potential host galaxies, and
deep follow-up of individual sources. They took into account
the properties of the instruments, their observational capabil-
ities (e.g., location on Earth for ground-based telescopes,
pointing strategy for space-based instruments), and the
characteristics of possible counterparts within their sensitivity
band. For instance, the GW170817/GRB 170817A observa-
tional campaign perfectly illustrates the different observing
strategies that led to the identification of the associated
multiwavelength electromagnetic emission: the independent
identification of the sGRB by Fermi, the all-sky archival
searches and wide field-of-view follow-up, the discovery of the
host galaxy and the optical GW counterpart by galaxy catalog
targeted searches, the spectroscopic characterization of the
optical counterpart, and the identification of X-ray and radio
counterparts with deep follow-up (Abbott et al. 2017e). Similar
strategies were applied to the other triggers sent in O2, but on a
more modest scale.
All-sky searches. Using temporal and spatial information, the

large survey instruments (thousands of square degrees, up to
over half of the sky) matched their independent transient
database with the GW event or performed sub-threshold
investigation near the trigger time and localization area of
GW events. These strategies were used by neutrino detectors
(ANTARES and IceCube, Bartos et al. 2017; Dornic et al.
2017), and high-energy instruments like HAWC, Fermi/GBM,
CGBM/Calet, Swift/BAT, AstroSAT/CZTI, and INTEGRAL
(Martinez-Castellanos & Smith 2017; Sakamoto et al. 2017;
Barthelmy et al. 2017; Bhalerao et al. 2017; Ferrigno et al.
2017; Hamburg et al. 2017; Xiongs et al. 2017). Wide-field
optical survey data like SVOM/mini-GWAC (Wu et al. 2017),
Pan-STARRS (Smartt et al. 2017a), and iPTF (Kasliwal
et al. 2017), provided pre-merger images and for prompt/early
emission. The time window around the GW candidate used to
search for the EM counterpart is defined on the basis of the type
of GW event and the counterpart properties expected in a
specific band. For GRBs, it typically covered a few seconds to
minutes. In the case of neutrinos, a window of ±500 s around
the merger was used to search for neutrinos associated with
prompt and extended gamma-ray emission (Baret et al. 2011),
and a longer 14 day time window after the GW detection to
cover predictions of longer-lived emission processes (Fang &
Metzger 2017).
Tiled and galaxy catalog targeted searches. The LIGO/

Virgo alerts enabled EM follow-up campaigns by scanning
large portions of the gravitational-wave sky localization error
box or by targeting galaxies located within it (Gehrels
et al. 2016). In the case of CBC triggers, the 3D sky-distance
maps (see Section 3.3.3) were used to set observational
strategies using the available galaxy catalogs (LIGO Scientific
Collaboration et al. 2012; Nissanke et al. 2013b; Hanna
et al. 2014). Other strategies were also employed, such as, for
example, selecting strong-lensing galaxy clusters that lie within
the 90% credible region (GLGW Hunters Smith et al. 2017).
This early follow-up of gravitational waves generally lasted
tens of hours after the alert with observations from X-ray
telescopes (such as Swift/XRT Evans et al. 2017 and

Figure 4. Antenna patterns of the GW detectors in the network at the time of
the GW170817 event Upper panel: LIGO-Hanford. Middle panel: LIGO-
Livingston. Bottom panel: Virgo. ICRS coordinates—Mollweide projection.
The position of the optical transient AT 2017gfo is indicated with a red star.
The color indicates the strength of the response, with yellow being the strongest
and blue being the weakest. At the location of GW170817, the antenna pattern
amplitude for V is 2.5 to 3 times lower than that for H and L.
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MAXI/GSC Sugita et al. 2017), as well as ground-based
telescopes (e.g., MASTER, Lipunov et al. 2017; PAN-
STARRs, Smartt et al. 2017b; DESGW/DECam, Soares-
Santos et al. 2017; GRAWITA/REM, Davanzo et al. 2017;
J-GEM/Subaru Hyper Suprime-Came Utsumi, et al. 2017;
GRAWITA/VST, Greco et al. 2017; Las Cumbres/2-m,
Hosseinzadeh et al. 2017; KU/LSGT, Im et al. 2017;
Pirate/0.43 cm Roberts et al. 2017).

Deep follow-up and classification of the counterpart

candidates. After identification of potential counterparts,
further classification was pursued with narrow field-of-view
and sensitive instruments. The large numbers of candidates and
limited availability of larger instruments were two of the
difficulties in counterpart identification.

During the O2 follow-up campaign, most of the X-ray and
optical candidates were classified through spectroscopic
observations that identified contaminants such as Galactic
novae, supernovae, and active galactic nuclei (see, e.g., the
observation campaign of GW170814 campaign by Copper-
wheat et al. 2017).189

During the GW170104 follow-up campaign, the ATLAS
survey reported a rapidly fading optical source called
ATLAS17aeu in coincidence with the GW skymaps,
∼21.5 hr after the GW trigger time. Deeper investigations
with a collective approach demonstrated that ATLAS17aeu
was the afterglow of a long, soft gamma-ray burst GRB
170105A, unrelated with GW170104 (Bhalerao et al. 2017;
Stalder et al. 2017; Melandri et al. 2018). This was an example
where a coordinated follow-up of a GW event led to a
serendipitous observation of an unrelated interesting event in
time-domain astronomy.

Long-term follow-up. The long-term follow-up of gravita-
tional waves is also indispensable. One of the main challenges
in radio follow-up of GW events is the association of the
counterpart candidate found in the GW source localization
region with the GW event, primarily due to a lack of temporal
coincidence (Hotokezaka & Piran 2015; Palliyaguru et al.
2016). However, the science return is potentially immense for
such long-term follow-up. For example, long-term X-rays,
optical, and radio monitoring of GW170817 provided con-
straints on jet emission scenarios and models (Hotokezaka
et al. 2016; Haggard et al. 2017; Hallinan et al. 2017b; Mooley
et al. 2017; Ghirlanda et al. 2018; Margutti et al. 2018).

Figure 5 summarizes the exchange of information between
LIGO/Virgo and observing partners showing the extensive
follow-up activity. More than 20 circulars were generated
during each follow-up campaign. From Table 3, we note that
the two oLIB events (G284239 and G298389) were the least
followed due to their lower significance and higher latency in
delivery of the initial skymaps. Also, more than 40 GCNs were
generated for GW candidates that included a neutron star as one
of the binary components (G275404, G275697, G298048, and
G299232). G299232 was more extensively followed due to its
classification as a potential NS–BH, compared to confident
detections like GW170814 or GW170608, which were BBH
coalescences. This underscores the importance of source
classification during O3, when observers might want to allocate
their valuable resources in the most efficient manner possible.

From the EM follow-up activity side, no significant
counterpart associated with BBH events was discovered; the

most promising candidate was a weak gamma-ray transient
found by AGILE during GW170104 lasting 32 ms and
occurring 0.5 s before the GW event (Verrecchia et al. 2017)
but not confirmed by other instruments.

4. Conclusion

The O2 follow-up campaign of GW candidate events was a
comprehensive effort of collaborating groups in astronomy and
astroparticle physics. This effort was enabled by GW alerts
distributed by the LIGO and Virgo collaborations. The triggers
were produced by modeled searches for compact binary
coalescences and unmodeled searches for transients such as
the core-collapse of massive stars or neutron star instabilities.
During O2, 14 alerts were distributed with latencies ranging

from 22 minutes up to 16 hr, most of them in less than an hour.
Six events were declared as confident GW events associated
with the merger of black holes or neutrons stars. The latency in
sending alerts was dominated by human vetting of the
candidate, which was necessary to validate data quality
information beyond the ability of automated checks being in
place. O2 alerts, with FARs less than one per two months, were
distributed via the private GCN and contained GW information
required for an efficient follow-up: the event time, sky
localization probability map, and estimated FARs. For compact
binary merger candidates, skymaps with a third dimension
(distance), the probability of the system to contain a neutron
star and the probability to be electromagnetically bright, were
provided. The sky localization area of distributed events, which
was hundreds to thousands of square degrees with the two
LIGO interferometers, was dramatically reduced at the end of
the campaign with the inclusion of Virgo.
The O2 follow-up program enabled the first combined

observation of a neutron-star merger in gravitational waves
(GW170817), gamma-rays (GRB 170817A), and at optical
wavelengths (AT 2017gfo). Together with the identification of
the host galaxy and the subsequent observations of the X-ray
and radio counterparts, the data collected on this event have
yielded multiple groundbreaking insights into kilonova phy-
sics, the origin of heavy elements, the nature of neutron-star
matter, cosmology, and basic physics. The success of
GW170817 and the larger O2 follow-up campaign demon-
strates the importance of a coordinated multiwavelength
follow-up program for O3 and beyond.

Figure 5. Summary of the exchange of information between LIGO/Virgo and
its partners showing the extensive follow-up activity. The color code for the
alerts refers to the status of the alerts (confident, rejected, no further interest
triggers).

189
https://gcn.gsfc.nasa.gov/other/G297595.gcn3
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Future priorities of the LIGO/Virgo Collaborations include
further reduction in the latency of GW alerts. The first hours
after BNS mergers are crucial for observing the early X-ray,
UV, and optical emissions with space- and ground-based
instruments. For example, in the case of GW170817, the five
hour delay in distributing skymaps, due to human intervention
required to window out a glitch in LIGO-Livingston data,
prevented the discovery of early emission, which could have
revealed more about the the merger remnant and emission
processes.

Beginning with the O3 observing run, LIGO and Virgo will
issue public alerts.190 There will be automated preliminary

notices generated based on the low-latency analysis. The FAR
threshold for issuing preliminary notices will be set so that it
yields alerts with high confidence (at the level of 90%) of
having an astrophysical origin for GW source types with
populations that have been reliably measured until now. For
other transient sources that have not been detected yet, the
threshold will be lower, at the level of 1 per year. These will be
followed by human-vetted initial notices or retraction notices
with a latency on the order of tens of minutes for high-interest
candidates and within hours for more routine detections. We
expect an increase in the number of GW events; BBH merger
candidates will dominate by one order of magnitude from a few
per week to a few per month, whereas the BNS coalescence
candidates are anticipated to occur a few times per year
(Abadie et al. 2010; Abbott et al. 2016c, 2017d, 2018b, LIGO
Scientific Collaboration et al. 2018). Both the increase in the
number of significant candidate events and the need to reduce
the latency of sending alerts will require an updated alert
distribution infrastructure with a nearly fully-automated vetting
protocol.

We have detailed the transient identification and alert
systems utilized during the second LIGO/Virgo observing
run. This work played a crucial role in ushering in the era of
gravitational-wave multimessenger astronomy.
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