

Reaction of a ruthenium B-carboranyl hydride complex and $\text{BH}_3(\text{SMe}_2)$: Selective formation of a pincer-supported metallaborane $\text{LRu}(\text{B}_3\text{H}_8)$

Bennett J. Eleazer, Mark D. Smith, Dmitry V. Peryshkov*

Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC 29208, United States

ARTICLE INFO

Article history:

Received 18 December 2018
Received in revised form
30 January 2019
Accepted 1 February 2019
Available online 4 February 2019

Keywords:

Metallaboranes
Carboranes
Boranes
Hydrides

ABSTRACT

Reaction of a boryl hydride pincer complex ($\text{POBOP}\text{Ru}(\text{H})(\text{PPh}_3)$) ($\text{POBOP} = 1,7\text{-OP}(\text{i-Pr})_2\text{-}m\text{-}2\text{-carboranyl}$) and $\text{BH}_3(\text{SMe}_2)$ at 70°C led to the selective formation of a pincer-supported metallaborane ($\text{POBOP}\text{Ru}(\text{B}_3\text{H}_8)$). Single crystal structure of ($\text{POBOP}\text{Ru}(\text{B}_3\text{H}_8)$) was determined. This complex features coordination of the carborane cluster through adjacent boryl and borane groups that impose significantly different *trans*-influence on the coordinated B_3H_8 fragment.

© 2019 Elsevier Ltd. All rights reserved.

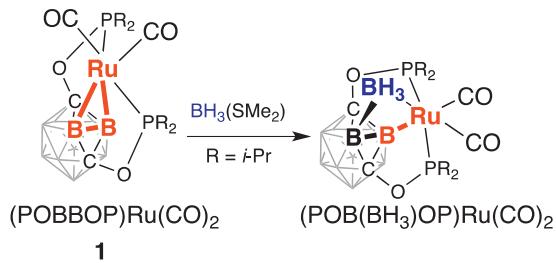
1. Introduction

Boron clusters continue to attract attention due to their potential for application in inorganic chemistry, catalysis, polymers, batteries, medicine, luminescent materials, and liquid crystals [1–7]. Metallaboranes are related to both polyhedral boron clusters and multinuclear metal clusters as they often feature both multi-centered metal–boron and metal–metal bonds [8–11]. One of the convenient methods of metallaborane synthesis is the reaction of transition metal halides or hydrides and monoborane sources ($\text{BH}_3(\text{THF})$ or LiBH_4) that led to the discoveries of a wide range of clusters from smallest trinuclear to large 20-vertex systems [12–16].

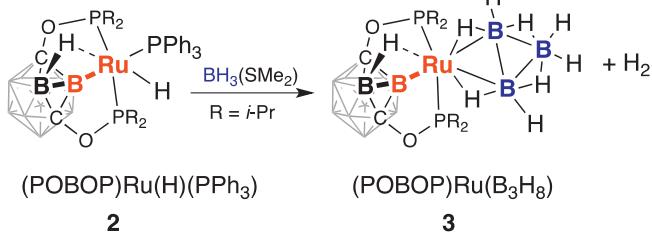
We have recently reported the synthesis of the first example of the (BB)-carbonyne complex ($\text{POBBOP}\text{Ru}(\text{CO})_2$) (**1**) which features a strained (BB)>Ru three-membered metallacycle ($\text{POBBOP} = 1,7\text{-OP}(\text{i-Pr})_2\text{-}2,6\text{-dehydro-}m\text{-carborane}$) [17]. We have shown that boryl centers of (BB)-carbonyne are strongly nucleophilic and react with variety of electrophiles. Instead of producing a metallaborane, the reaction of the carbonyne complex and $\text{BH}_3(\text{SMe}_2)$ led to the formation of the exohedral B–B bond between the boron cluster

and the borylhydroborate group (Scheme 1). This transformation was the first example of the regioselective formation of an exohedral B–B bond between a carborane and a borane under metal-promoted conditions.

Subsequently, we have reported the synthesis of the pincer complex ($\text{POBOP}\text{Ru}(\text{H})(\text{PPh}_3)$) (**2**), which featured a boryl, borane, and hydride ligands at the ruthenium center ($\text{POBOP} = 1,7\text{-OP}(\text{i-Pr})_2\text{-}m\text{-}2\text{-carboranyl}$) [18]. The presence of the bridging B–H···Ru interaction vicinal to the B–Ru bond led to the significant distortion of the metal–boryl bond that manifested in an acute exohedral angle of $69.4(2)^\circ$ between this bond and the cluster (for comparison, an unstrained exohedral angle for an idealized icosahedron is 120°).


In this work, we explored the reaction of **2** and $\text{BH}_3(\text{SMe}_2)$ to probe whether the strained nucleophilic metal–boron bond will be a reaction center analogous to that in the (BB)-carbonyne complex **1**, or if the terminal metal hydride group will interact with an incoming borane to form a metallaborane. We found that the latter outcome is in operation as this reaction exclusively produced ($\text{POBOP}\text{Ru}(\text{B}_3\text{H}_8)$) complex (Scheme 1).

2. Results and discussion


The reaction of ($\text{POBOP}\text{Ru}(\text{H})(\text{PPh}_3)$) and excess $\text{BH}_3(\text{THF})$ at 70°C in THF for 16 h led to the clean formation of a single product

* Corresponding author.

E-mail address: perashkov@sc.edu (D.V. Peryshkov).

Insertion of BH_3 into the Ru–B bond

This work: formation of metallaborane

Scheme 1. Reactions of (BB)-carbonyne complex (POBOP)Ru(CO)₂ (**1**) and carboranyl hydride complex (POBOP)Ru(H)(PPh₃) (**2**) with $\text{BH}_3(\text{SMe}_2)$.

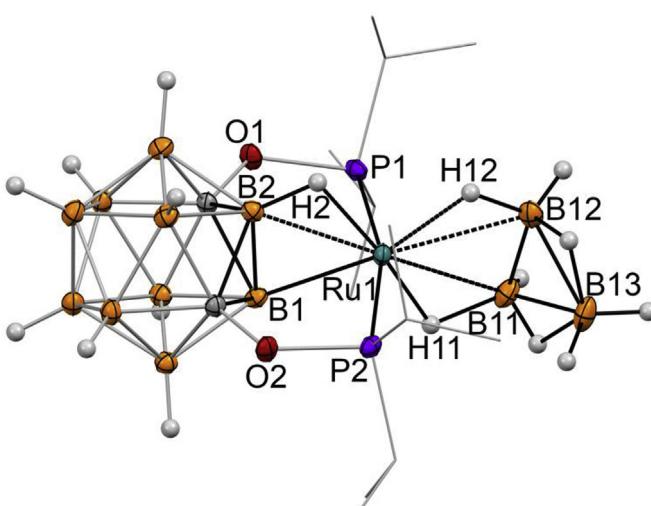
according to ^{31}P NMR spectroscopy. In the spectrum of the reaction mixture, a set of two doublets was observed indicating inequivalence of two phosphinite arms in the product. The product was isolated as light brown solid in 69% yield.

Single crystals were grown from an acetonitrile solution by slow solvent evaporation at room temperature. The single crystal X-ray diffraction study revealed the molecular structure of (POBOP)Ru(B₃H₈) (**3**, Fig. 1). The asymmetric unit consists of half of one complex, which is located on a crystallographic mirror plane. The B₃H₈ fragment bonded to the ruthenium atom is disordered across the mirror plane. The structure can be described as the seven skeletal electron pair *arachno* LRuB₃H₈ cluster derived from the butterfly-shaped cluster B₄H₁₀, in which one of the BH₂ groups is replaced by the ruthenium center. The carborane cluster is

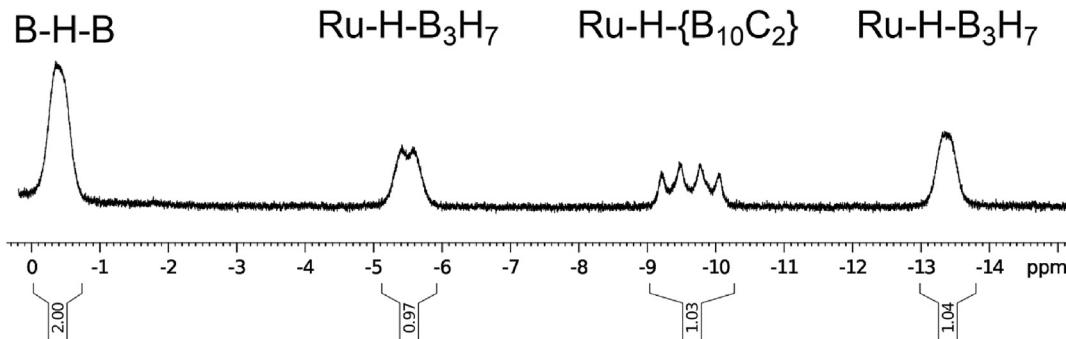
coordinated to the metal center through the 2c-2e Ru–B bond (2.143(2) Å) and the 3c-2e B–H···Ru bridging interaction (B2(H2)···Ru1 distance is 2.265(2) Å). This bridging interaction features the shortest Ru···B distance for a neutral carborane cluster reported to date. The closeness of the metal–boron distances for these two distinctly different coordination interactions results in the severe strain of the metal–boryl B1–Ru1 bond. An unstrained bond angle for an exohedral substituent on the idealized icosahedral cluster is 120° while the B2–B1–Ru1 angle in **2** is acute at 70.7(1)°. This dramatic distortion of the exohedral bonding is due to the propensity of the metal center to strongly coordinate to the vicinal B–H bond in addition to coordination to the carborane cluster through the metal–boryl bond within the POBOP pincer framework.

The B₃H₈ anion is coordinated to the ruthenium center through two B–H···Ru bridging interactions. The B12 atom is *trans*-to the anionic boryl center B1 and the B11 atom is *trans*-to the neutral borane center B2(H2). The strong *trans*-influence of the boryl anion results in the significantly longer B12(H)···Ru1 distance (2.441(3) Å) than the B11(H)···Ru1 distance (2.361(4) Å). The B–B bond lengths in the B₃H₈ fragment in **2** are comparable with those in complexes with the related geometry [19,20].

The dihedral angle between the planes Ru1–B11–B12 and B11–B12–B13 is 122.6°, which is within the typical range for *arachno*-2-metallatetaboranes. The B₃H₈ fragment is tilted relative to the mirror plane of the carborane cluster with the dihedral angle between planes B2–B1–Ru1 and Ru1–B11–B12 of 11°.


The NMR spectra of **2** in solution are consistent with its molecular structure. The presence of two sharp doublets in the ^{31}P NMR spectrum indicates the static coordination of the B₃H₈ fragment to the metal center. As the B₃H₈ anion is bent, it causes inequivalence between phosphinite groups of the pincer ligand. The ^1H NMR spectrum features a signal from the bridging carborane–metal interaction B–H···Ru at –9.62 ppm as a 1:1:1:1 quartet with $J_{\text{BH}} = 100$ Hz (Fig. 2). In addition, signals from the B₃H₈ group are observed with two protons of the B–H···Ru bonds at –5.48 and –13.37 ppm and two B–H–B protons at –0.38 ppm. The remaining three signals from terminal BH and BH₂ protons overlap with signals from BH groups of the carborane cluster. The ^{11}B NMR spectrum contains partially overlapping signals from the boron cluster at –11 to –19 ppm, a signal from the metallated boron vertex at –3.0 ppm and three signals from the B₃H₈ fragment at 3.16, –36.2, and –42.3 ppm.

The coordination sphere of the ruthenium center is a distorted octahedron with one boryl ligand, one borane group of the cluster and two borane groups of the B₃H₈ anion. The chemical shift difference between the boron atoms of the B₃H₈ anion is indicative of a strong *trans*-influence of the boryl part of the POBOP ligand.


Formation of metallaboranes containing B₃H₈ fragment has been observed in reactions of cyclopentadienyl complexes of Fe(I), Mo(I), Re(VII), or W(PMe₃)₆ with $\text{BH}_3(\text{THF})$ [12,16,19]. Notably, thermolysis of Cp*⁺Ru(PMe₃)(B₂H₇) led to the formation of Cp*⁺Ru(PMe₃)(B₃H₈) in trace quantities [20]. In our case, the presence of the terminal hydride functionality appears to drive the reaction towards the selective formation of the Ru(B₃H₈)⁺ moiety. It has been shown that the *arachno*-2-metallaboranes L_nMB₃H₈ can convert upon thermolysis into *arachno*-1 complexes through wing-to-hinge isomerization [19,20]. Heating **3** at 110 °C in toluene for 24 h did not lead to any changes in ^{31}P NMR spectra of the sample, indicating that no thermal rearrangement occurred. Furthermore, the metallaborane **3** was found to be stable towards reactions with electrophiles such as CH₃I and PhCH₂Br.

3. Summary

The reaction of (POBOP)Ru(H)(PPh₃) that possesses both

Fig. 1. Displacement ellipsoid plot (50% probability) of (POBOP)Ru(B₃H₈) (POBOP = 1,7-OP(*i*-Pr)₂-2-dehydro-*m*-carboranyl) (**3**). Atoms belonging to isopropyl groups of the ligand arms have been omitted for clarity. Selected bond distances (Å) and angles (°): Ru1–B1 = 2.143(2), Ru1···B2 = 2.265(2) Å, Ru1···B11 = 2.361(4), Ru1···B12 = 2.441(3), B11–B12 = 1.747(5), B11–B13 = 1.787(5), B12–B13 = 1.798(5), B2–B1–Ru1 = 70.7(1).

Fig. 2. A portion of the ^1H NMR spectrum of (POBOP)Ru(B_3H_8) (**3**) in C_6D_6 featuring signals from $\text{Ru}\cdots(\text{H})(\text{B})$ bridging protons.

nucleophilic boryl and terminal metal hydride reaction sites with $\text{BH}_3(\text{SMe}_2)$ led to the selective formation of the *arachno*-2-metallaborane (POBOP)Ru(B_3H_8) through the interaction of the borane with the Ru–H bond. (POBOP)Ru(B_3H_8) features coordination of the carborane cluster through adjacent boryl and borane groups.

4. Experimental

All synthetic manipulations were carried out either in a nitrogen-filled drybox or on an air-free dual-manifold Schlenk line, unless stated otherwise [21]. The solvents were sparged with nitrogen, passed through activated alumina, and stored over activated 4 Å Linde-type molecular sieves. Benzene- d_6 was degassed and stored over activated 4 Å Linde-type molecular sieves. NMR spectra were recorded using Varian spectrometers at 400 (^1H), 100 (^{13}C), 162 (^{31}P), 128 (^{11}B) MHz, reported in δ (parts per million) and referenced to the residual $^1\text{H}/^{13}\text{C}$ signals of the deuterated solvent or an external 85% H_3PO_4 (^{31}P (δ): 0.0 ppm) and $\text{BF}_3(\text{Et}_2\text{O})$ (^{11}B (δ): 0.0 ppm) standards. J values are given in Hz. Midwest Microlab, Indianapolis, Indiana provided the elemental analysis results.

POBOP(Ru)(H)(PPh_3) (POBOP = 1,7-OP(*i*-Pr)₂-*m*-2-carboranyl) (**2**) was prepared using the previously reported procedure [18]. $\text{Ru}(\text{PPh}_3)_3\text{Cl}_2$ (Strem), *m*-carborane $\text{C}_2\text{B}_{10}\text{H}_{12}$ (Katchem), and $\text{BH}_3(\text{SMe}_2)$ (1 M solution in THF) were used as received.

4.1. Synthesis of (POBOP)Ru(B_3H_8) (**3**)

A portion of (POBOP)Ru(H)(PPh_3) (0.025 g; 0.032 mmol) was dissolved in 1.5 mL of benzene and then transferred to a J. Young valve NMR tube. A portion (0.17 mL, 0.17 mmol; 5.3 equiv.) of a 1 M solution of $\text{BH}_3(\text{SMe}_2)$ in THF was then added and the reaction mixture was heated at 70 °C for 16 h. The resulting dark brown solution was then dried under vacuum, triturated with acetonitrile (3 × 1 mL), filtered, and triturated with hexanes (3 × 1 mL) to yield light brown powder. Yield: 0.012 g, 0.022 mmol, 69%.

^1H (C_6D_6): δ 4.8–0.5 (br. 10H, $\text{C}_2\text{B}_{10}\text{H}_{10}$), 1.87 (m, 1H, $\text{CH}(\text{CH}_3)_2$), 1.68 (m, 3H, $\text{CH}(\text{CH}_3)_2$), 1.25 (m, 6H, $\text{CH}(\text{CH}_3)_2$), 0.97 (m, 6H, $\text{CH}(\text{CH}_3)_2$), 0.86 (m, 6H, $\text{CH}(\text{CH}_3)_2$), 0.71 (m, 6H, $\text{CH}(\text{CH}_3)_2$), –0.38 (br, 2H, B-H-B), –5.59 (br, 1H, Ru-H-B), –9.62 (q, $\text{J}_{\text{BH}} = 100$ Hz, 1H, Ru-H-B), –13.37 (br, 1H, Ru-H-B). $^{11}\text{B}\{^1\text{H}\}$ (C_6D_6): δ 3.16, –2.98, –10.95, –13.26, –13.57, –16.05, –17.07, –19.03, –36.15, –42.32. ^{13}C (C_6D_6): δ 30.3 ($\text{CH}(\text{CH}_3)_2$), 29.6 ($\text{CH}(\text{CH}_3)_2$), 27.5 ($\text{CH}(\text{CH}_3)_2$), 19.4 ($\text{CH}(\text{CH}_3)_2$), 18.7 ($\text{CH}(\text{CH}_3)_2$), 18.2 ($\text{CH}(\text{CH}_3)_2$), 17.8 ($\text{CH}(\text{CH}_3)_2$), 16.9 ($\text{CH}(\text{CH}_3)_2$), 14.8 ($\text{CH}(\text{CH}_3)_2$). A signal from carbon atoms of the carborane cluster was not observed.

$^{31}\text{P}\{^1\text{H}\}$ (C_6D_6): δ 217.1 (d, 1P), 211.0 (d, 1P). Calcd. for $\text{C}_{14}\text{H}_{45}\text{B}_{13}\text{O}_2\text{P}_2\text{Ru}$: C, 30.62; H, 8.26. Found: C, 30.98; H, 7.84.

4.2. Crystal data

For POBOP(Ru)(B_3H_8) (**2**) ($M = 549.04$ g/mol): orthorhombic, space group $Pnma$ (no. 62), $a = 9.5885(5)$ Å, $b = 18.2114(9)$ Å, $c = 15.5618(7)$ Å, $V = 2717.4(2)$ Å³, $Z = 4$, $T = 100(2)$ K, $\mu(\text{MoK}_\alpha) = 0.707$ mm^{−1}, $D_{\text{calc}} = 1.342$ g/cm³, 44433 reflections measured ($4.474^\circ \leq 2\Theta \leq 60.112^\circ$), 4096 unique ($R_{\text{int}} = 0.0536$, $R_\sigma = 0.0278$) which were used in all calculations. The final R_1 was 0.0257 ($I > 2\sigma(I)$) and wR_2 was 0.0573 (all data).

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Center as supplementary publication CCDC 1885710. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223–336033 or e-mail: deposit@ccdc.cam.ac.uk).

Acknowledgements

This material is based in part upon work supported by the National Science Foundation under Award CHE-1654301.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.tet.2019.02.010>.

References

- [1] R.N. Grimes, Carboranes in the chemist's toolbox, *Dalton Trans.* **44** (2015) 5939–5956.
- [2] B.P. Dash, R. Satapathy, J.A. Maguire, N.S. Hosmane, Polyhedral boron clusters in materials science, *N. J. Chem.* **35** (2011) 1955–1972.
- [3] R. Núñez, M. Tarrés, A. Ferrer-Ugalde, F.F. de Biani, F. Teixidor, Electrochemistry and photoluminescence of icosahedral carboranes, boranes, metalcarboranes, and their derivatives, *Chem. Rev.* **116** (2016) 14307–14378.
- [4] D. Jung, L.M.A. Saleh, Z.J. Berkson, et al., A molecular cross-linking approach for hybrid metal oxides, *Nat. Mater.* **17** (2018) 341.
- [5] B.J. Eleazer, D.V. Peryshkov, Coordination chemistry of carborane clusters: metal–boron bonds in carborane, carboranyl, and carboryne complexes, *Comments Inorg. Chem.* **38** (2018) 79–109.
- [6] A.L. Chan, J. Estrada, C.E. Kefalidis, V. Lavallo, Changing the charge: electrostatic effects in Pd-catalyzed cross-coupling, *Organometallics* **35** (2016) 3257–3260.
- [7] J.C. Axtell, L.M.A. Saleh, E.A. Qian, A.I. Wixstrom, A.M. Spokoiny, Synthesis and applications of perfunctionalized boron clusters, *Inorg. Chem.* **57** (2018) 2333–2350.
- [8] R.N. Grimes, Carboranes, third ed., Academic Press, Amsterdam ; Boston, 2016 third ed.
- [9] B. Mondal, R. Borthakur, S. Ghosh, Organometallic chemistry and catalysis of transition metal–borane compounds, in: *Handbook of Boron Science, World Scientific (Europe)*, 2018, pp. 201–237.
- [10] Fehlner T, Halet J-F, Saillard J-Y. Molecular Clusters by Thomas Fehlner. (Cambridge Core).
- [11] A.K. Saxena, J.A. Maguire, N.S. Hosmane, Recent advances in the chemistry of heterocarborane complexes incorporating s- and p-block elements, *Chem. Rev.* **97** (1997) 2421–2462.

[12] S. Ghosh, A.M. Beatty, T.P. Fehlner, The reaction of Cp^*ReH_6 , $\text{Cp}^* = \text{C}_5\text{Me}_5$, with monoborane to yield a novel rhenaborane. *Synthesis and characterization of arachno- $\text{cp}^*\text{ReH}_3\text{B}_3\text{H}_8$* , *Collect. Czech Chem. Commun.* 67 (2002) 808–812.

[13] M. Zafar, S. Kar, C. Nandi, R. Ramalakshmi, S. Ghosh, Cluster fusion: face-fused macropolyhedral tetracobaltaboranes, *Inorg. Chem.* 58 (2019) 47–51.

[14] D.K. Roy, S.K. Bose, R.S. Anju, B. Mondal, V. Ramkumar, S. Ghosh, Boron beyond the icosahedral barrier: a 16-vertex metallaborane, *Angew. Chem. Int. Ed.* 52 (2013) 3222–3226.

[15] D.K. Roy, S.K. Bose, K. Geetharani, K.K. Varma Chakraborti, S.M. Mobin, S. Ghosh, Synthesis and structural characterization of new divanada- and diniobaboranes containing chalcogen atoms, *Chem. Eur. J.* 18 (2012) 9983–9991.

[16] P.D. Grebenik, J.B. Leach, M.L.H. Green, N.M. Walker, Transition metal mediated homologation of $\text{BH}_3\cdot\text{THF}$: synthesis and crystal structure of $[\text{WH}_3(\text{PMe}_3)_3\text{B}_3\text{H}_8]$, *J. Organomet. Chem.* 345 (1988) C31–C34.

[17] B.J. Eleazer, M.D. Smith, A.A. Popov, D.V. Peryshkov, (BB)-Carboryne complex of ruthenium: synthesis by double B–H activation at a single metal center, *J. Am. Chem. Soc.* 138 (2016) 10531–10538.

[18] B.J. Eleazer, M.D. Smith, A.A. Popov, D.V. Peryshkov, Rapid reversible borane to boryl hydride exchange by metal shuttling on the carborane cluster surface, *Chem. Sci.* 8 (2017) 5399–5407.

[19] K. Geetharani, Shubhankar Kumar Bose, Goutam Pramanik, Tanmoy Kumar Saha, V. Ramkumar, Sundargopal Ghosh, An efficient route to group 6 and 8 metallaborane compounds: synthesis of arachno- $[\text{cp}^*\text{Fe}(\text{CO})\text{B}_3\text{H}_8]$ and closo- $[(\text{cp}^*\text{M})_2\text{B}_5\text{H}_9]$ ($\text{M} = \text{Mo, W}$), *Eur. J. Inorg. Chem.* 2009 (2009) 1483–1487.

[20] M.L.H. Green, J.B. Leach, M.A. Kelland, Synthesis and interconversion of some small ruthenaboranes: reaction of a ruthenium borohydride with pentaborane(9) to form larger ruthenaboranes, *Organometallics* 26 (2007) 4031–4037.

[21] D.F. Shriver, M.A. Drezdzon, *The Manipulation of Air-Sensitive Compounds*, second ed., Wiley-Interscience, New York, 1986.