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Abstract. Quality improvement of interferometric data collected by gravitational-
wave detectors such as Advanced LIGO and Virgo is mission critical for the success
of gravitational-wave astrophysics. Gravitational-wave detectors are sensitive to a
variety of disturbances of non-astrophysical origin with characteristic frequencies in
the instrument band of sensitivity. Removing non-astrophysical artifacts that cor-
rupt the data stream is crucial for increasing the number and statistical significance
of gravitational-wave detections and enabling refined astrophysical interpretations of
the data. Machine learning has proved to be a powerful tool for analysis of massive
quantities of complex data in astronomy and related fields of study. We present two
machine learning methods, based on random forest and genetic programming algo-
rithms, that can be used to determine the origin of non-astrophysical transients in the
LIGO detectors. We use two classes of transients with known instrumental origin that
were identified during the first observing run of Advanced LIGO to show that the
algorithms can successfully identify the origin of non-astrophysical transients in real
interferometric data and thus assist in the mitigation of instrumental and environmen-
tal disturbances in gravitational-wave searches. While the datasets described in this
paper are specific to LIGO, and the exact procedures employed were unique to the
same, the random forest and genetic programming code bases and means by which
they were applied as a dual machine learning approach are completely portable to any
number of instruments in which noise is believed to be generated through mechanical
couplings, the source of which is not yet discovered.
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1 Introduction

On February 11th, 2016, scientists from the Laser Interferometer Gravitational-wave Ob-
servatory (LIGO) [1] Scientific Collaboration (LSC) and the European Virgo Collabora-
tion [2] announced the first direct detection of gravitational waves from a coalescing pair
of two stellar-mass black holes [3]. Detection of the GW150914 gravitational-wave signal,
recorded at the LIGO sites in the morning of September 14" 2015, marks the beginning
of a new observational era in astrophysics. Strong, dynamical relativistic gravitational
fields can now be used to map the dark universe and probe fundamental physics. One
hundred years after the formulation of general relativity, fifty years after the pioneering
work of Joseph Weber, and several decades after the foundation of LIGO, gravitational-
wave astrophysics is a reality.

The next decade will see this new branch of scientific research expand to a mature
field [4]. Since GW150914, another four gravitational-wave detections from binary black
hole systems [5-8] and a detection from a binary neutron star system [9] were recorded in
the data stream of the Advanced LIGO and Virgo interferometers. More varied detections
are anticipated in future LIGO and Virgo observation runs [10-12], spurring a plethora of
astrophysical and theoretical investigations. KAGRA [13] and LIGO-India [14] will join
the international network, enormously improving localization of astrophysical sources
and the network duty cycle. Commissioning activities will strive to bring the instruments
to design sensitivity. Instrumental R&D will focus on the design and realization of the
next generation of gravitational-wave interferometric detectors on Earth [15] and in space
[16]. All these activities will be crucial for the growth of gravitational-wave astrophysics
from a sensational news item to a full-grown scientific method to explore our universe.

The measured rate of gravitational-wave detections in the first observing run (O1) and
second observing run (O2) of Advanced LIGO and Virgo implies that the international
network of interferometers is poised to detect a significant number of gravitational-wave
events in the coming years. The third Advanced LIGO-Virgo observing run (O3) is sched-
uled for early 2019. As the gravitational-wave detector network reaches a stage that sup-
ports rates of detections of astrophysical gravitational-wave sources as high as ~1 day !,
a fast and accurate assessment of data quality will be critical.

The Advanced LIGO and Virgo detectors are sensitive to a variety of disturbances of
non-astrophysical origin with characteristic frequencies in the instrument band of sensi-
tivity [17,18]. Noise transients of instrumental or environmental origin increase the false
alarm rate of searches for gravitational-wave bursts and compact binary coalescences as
well as affect measurements of these signals. The most remarkable example of the effect
of a noise transient on a gravitational-wave signal is undoubtedly the glitch that occurred
in the LIGO-Livingston detector in coincidence with the binary neutron star merger de-
tection [9] and had to be carefully modeled and subtracted from the data to accurately
determine the properties of the signal. Noise in the frequency domain affects searches
for long-lived transients, continuous waves and stochastic background. Removing non-
astrophysical artifacts from the data and improving the background of LIGO’s searches is
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crucial for reducing non-stationarity in the detectors, extending the network duty cycle,
and increasing the statistical significance of gravitational-wave candidate events. Im-
provements in these areas, in turn, boost parameter estimation of the signals and enable
refined astrophysical interpretations of the data. For all of these reasons, the understand-
ing and mitigation of non-astrophysical disturbances in the detectors is one of the top
priorities of the LSC and the Virgo Collaboration.

In recent years, a significant part of LSC and Virgo activities has been devoted to in-
vestigations aimed at characterizing non-astrophysical noise, improving data quality of
gravitational-wave searches and detector commissioning. Examples of these activities in-
clude investigations of noise transients and spectral features of known and unknown ori-
gin, studies of correlations between environmental and instrumental channels, detector
performance assessment, and generation of data quality flags and vetoes for LIGO and
Virgo’s searches. Many of these activities are conducted by instrument specialists, com-
missioners and data analysts working together to identify, categorize and mitigate unde-
sirable noise transients and spectral features that corrupt LIGO-Virgo gravitational-wave
searches. These tasks are generally performed by mining the data of the gravitational-
wave strain channel and a large number (~ 400,000) of environmental and instrumental
auxiliary channels. Data quality investigations and detector characterization were criti-
cal to validating the first detections by reducing gravitational-wave search backgrounds
and increasing the significance of the signals.

Over the years, LSC researchers have developed and implemented many methods
and algorithms to perform these tasks [17,18]. Some of the data quality tools run online
to provide a fast assessment of the status of the interferometers for low-latency searches.
A different set of tools is used offline for deeper searches and follow-up of gravitational-
wave candidates. With the LIGO detectors striving to reach design sensitivity and an
anticipated large number of gravitational-wave detections in the upcoming observing
runs, understanding and mitigating instrumental and environmental noise sources will
become increasingly more important.

The expected increase in detections from compact binary systems and the discovery of
gravitational waves from other kinds of astrophysical sources will likely render current
methods for data quality assessment inadequate for the tasks ahead. For this reason,
the development of improved methods to investigate noise and the exploration of new
approaches to data quality issues are recognized priorities of LIGO and Virgo researchers.

Ground-based interferometric gravitational-wave detectors are complex devices that
exhibit non-linear couplings across instrumental subsystems and the environment. As
a consequence, the LIGO-Virgo detector noise is non-Gaussian, variable across many
parameters, and cannot be fully analytically modelled. Machine Learning (ML) cus-
tomarily denotes the science of design, development, and applications of computer al-
gorithms that “learn” to perform specific tasks and automatically improve their perfor-
mance through the use of adaptive techniques and iterative procedures. Methods based
on computational learning theory are powerful tools to analyse complex system data and
may prove valuable for improving the manner in which LIGO and Virgo operate in the
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area of data quality.

Recently, several groups in the LSC and Virgo collaboration have investigated the
use of ML techniques for data analysis and detector characterization. The “Gravity Spy”
project, for example, aims at using citizen science and ML for classification of LIGO noise
transients over the next observing runs [19]. Supervised deep learning algorithms have
been proposed for glitch classification [20-23] as well as real-time gravitational-wave
detection [24], parameter estimation [25] and signal classification [26-29]. Multivariate
random forest classifiers [30, 31] and unsupervised ML algorithms based on Principal
Component Analysis [32,33] have been used on interferometric data over the years. ML
methods can provide complementary approaches to existing detector characterization
techniques as they are computationally inexpensive, able to deliver results in low latency,
and derive predictive models of the system producing the data.

In this paper we present a new application of ML to an old problem in experimen-
tal detection physics: the identification of instrumental mechanical couplings leading to
excess noise in the detector. Our analysis focuses on ground-based gravitational-wave
interferometric detectors, in particular the LIGO-Virgo instruments. However, the meth-
ods presented here are general and can be applied to any complex physical device with a
main output channel and a set of auxiliary channels that monitor the status of the instru-
ment and its environment.

The ultimate goal of detector characterization is not only to flag and veto noisy times
in the instrument main output data stream, but also identify the instrumental or environ-
mental source of the noise and, if possible, adjust the detector such that the disturbance
can be removed permanently. Whereas different ML techniques have been developed
by various LSC groups to classify noise transients, or glitches, ML has not been applied
yet to the problem of identifying the cause of non-astrophysical noise in LIGO-Virgo de-
tectors. Herein lies the novelty of our approach: We introduce two ML algorithms that
provide simple, yet robust methods to mine the data of auxiliary channels and infer the
origin of noise transients in the main detector output. The codes developed for this task
are based on two, widely-used flavors of ML known as Random Forest (RF) and Genetic
Programming (GP). This choice is motivated by our final goal of providing fast and ef-
fective tools that commissioners and data analysts can use with little tuning. Contrarily
to more black box approaches to ML such as deep learning and neural network-based
algorithms, RF and GP methods are interpretable, easy to use and tune, and can work
with relatively small datasets without the inherent risk of overfitting. The methods that
we illustrate below only require an input list of times when a specific class of noise tran-
sients occurs. Rather than generating ML features in the form of time-frequency images
for deep learning image-based classification (a time-consuming process), the required
features are drawn directly from numerical metadata that are generated by real-time
data quality pipelines for generic detector characterization investigations readily already
available on the LIGO computing clusters. This approach minimizes the feature gener-
ation step of the process, which is the typical bottleneck for low-latency investigations.
The ML dataset is readily assembled by putting together the features of the noise tran-
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sients and additional, randomly-selected background triggers. The RF and GP codes that
we developed can be trained and run in minutes on LIGO computing clusters and allow
the user to complete a typical analysis with a number of noise transients of the order of a
few thousands in low-latency and with minimal input.

In the following sections we illustrate this approach by applying the RF and GP meth-
ods to two set of glitches in LIGO data from LIGO-Virgo O1 and O2 observing runs. The
origin of these glitches was identified by LIGO-Virgo commissioners and scientists, even-
tually leading to the successful mitigation of these disturbances and their removal from
later data. While our present work does not have a direct impact on the searches for tran-
sient gravitational waves with O1 and O2 data, it presents a proof-of-concept that our
method can be implemented within the current LIGO-Virgo data quality infrastructure,
which will be in place in the upcoming observing runs, and used to infer instrumental
and environmental mechanical couplings affecting the detectors in O3 and beyond.

2 Machine learning algorithms

In this section we briefly introduce the basics of the RF and GP algorithms. A full intro-
duction to these methods is beyond the scope of this paper and we only present informa-
tion which is essential for the understanding of our analysis. For a deeper discussion of
RF and GP, the reader is referred to Refs. [34, 35].

2.1 Random Forests

RF denote a popular supervised ML technique for data classification and regression
which operates without human intervention, employing off-line training (learning) and
test (validation) to produce the outcome. The basic principle of the RF method is the
construction of a number of decision trees at training time and then averaging over these
trees to improve their performance on the testing set. A decision tree can be represented
by a graph with three types of elements representing tests on input features (internal
nodes), test outcomes (branches) and labels that are used to make predictions (leaves).
The topmost node in a tree is called the root node. Paths from root to end leaves repre-
sent classification or regression rules. An example of decision tree is shown in Fig. 1.

Single decision trees may have high bias and overfit the training set, as well as be very
sensitive to outlier data. In order to avoid this, the RF method calculates a combination of
independently-sampled tree predictors. This averaging procedure avoids both false min-
ima and over-training leading to a single, more complex, final tree which is less likely to
overfit. One of the main advantages of RF is the transparent nature of its computational
algorithm. Ensemble algorithms such as RF are typically more powerful than other ML
techniques. They require little data preparation and are easy to interpret. As they have
few hyperparameters to tune, they can produce accurate results even with default set-
tings. Feature importance and algorithm accuracy are generated automatically.
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Figure 1: Graphical representation of a decision tree. The root node is represented by the red element, internal
nodes are represented by green elements, leaves are represented by blue elements and branches are represented
by black connector lines which denote success or failure of the stated condition.

In our analysis we used the standard scikit-learn [34] implementation of the RF algo-
rithm with default settings with the exception of the number of estimators (trees in the
forest) that we chose in the range of 300-500. The RF methods allows for a straightfor-
ward computation of the feature importance, i.e., how much each feature contributes to
the model’s predictive performance. In the scikit-learn implementation of the RF algo-
rithm, the feature importance is defined as the “gini importance” [36], i.e., the average
over all trees of the total decrease in node impurity, weighted by the probability of reach-
ing that node.

In order to increase the signal-to-noise ratio of the RF algorithm, we refit multiple
times with each iteration removing features below a user-defined threshold until no fea-
tures below the chosen cutoff value are left. This process allows us to denoise the out-
put by eliminating features that are marginal in the determination of the source of the
glitches. The features belonging to the same auxiliary channel are then grouped together
to build the channel importance, which measures the relevance of the given channel in
discriminating generic background noise triggers (label 0) from the glitches inder inves-
tigation (label 1).

2.2 Genetic programming

GP is a supervised machine learning algorithm, an analog to biological natural selection
that evolves a population of programs to solve a particular problem [37]. An individual
GP program is an hypothesis which when executed takes the form of a mathematical,
multivariate expression.

In training, GP compares the output of each executed hypothesis (predict) to an as-
sociated, qualified label (truth). This comparison is quantified as a fitness score. GP
programs that demonstrate a higher fitness score are more likely (but not guaranteed)
to be selected for the next generation. Thus, each subsequent generation of programs is
more likely (but not guaranteed) to solve the given problem than the prior [38].
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Figure 2: Graphical representation of a GP syntax tree. The depth of a tree is defined as the number of rows
in the tree, i.e., two, three and four in the diagrams from left to right, respectively.

As shown in Fig. 2, GP multivariate expressions are often represented as a syntax
tree, where the trees have a root (top center), nodes (mathematical operators), and leaves
(operands). Operators can be arithmetic, trigonometric, and boolean, for example. Oper-
ands are variable place-holders for the real-world data. When evaluated, the real-world
values of the data are substituted for the variables in the multivariate expressions, data
point by data point. The depth of a tree determines the complexity of the resulting,
evolved multivariate expression.

User defined parameters affect the quality and speed of the evolutionary process, in-
cluding the size and type of GP trees in the initial population, the number of GP programs
selected for each fitness score comparison and the type of comparison applied, and the
termination criterion (eg: number of generations).

The work-flow of a generational GP run incorporates three basic steps: a) Generation
of an initial, stochastic population; b) Iterative selection, evaluation, and application of
genetic operations (reproduction, mutation and crossover — see Fig. 3); c) transfer of the
evolved copy into the subsequent generation. Steps b) and c) are repeated until the user-
defined termination criteria are met [38].

Key to the acceptance of GP across many fields of research is the transparent nature of
its computational engine. At any stage of the evolutionary process, the internal workings
of GP can be readily exposed and reviewed, and the populations archived. As compared
to other, more black box machine learning algorithms, GP provides insight to how it
arrives to its evolved solution. Moreover, as the GP model is a stand-alone mathemati-
cal expression whose variables call upon data features, it can be readily employed as a
portable model for online data classification or regression analysis. The algorithm can
be tuned by choosing a number of user-defined hyperparameters, which include base,
maximum and minimum tree depth, the size of the program population, the number of
generations and the tournament size.

In our analysis we used a tree-based open source python code, Karoo GP [39], that
was originally written by one of the authors (KS) for the mitigation of RFI in radio as-
tronomy at the Square Kilometre Array [40]. Karoo GP is scalable, with multicore and
GPU support enabled by the library TensorFlow, with capacity to work with very large
datasets [41].
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Figure 3: Genetic operators for evolutionary computation: Point mutation (top left), branch mutation (bottom
left), and crossover or sexual reproduction (right). Reproduction is defined as no change in a tree when copied
from the current to the next generation.

3 Data sets for algorithm testing

In order to illustrate how ML can be used to identify non-astrophysical transients in LIGO
data and recover mechanical couplings in the detector subsystems, we consider two sets
of glitches with known origin in analysis-ready data from Advanced LIGO’s first Ob-
serving Run (O1: September 12, 2015, to January 19, 2016) and second Observing Run
(O2: November 30th 2016, to August 25t 2017). Here “analysis ready” denotes data
taken with the interferometers in a nominal observing state.

During observing runs the status of the LIGO interferometers is continuously moni-
tored through a number of physical sensors that probe the detector subsystems and their
environment. The digital output of these sensors is recorded in thousands of auxiliary
channels as raw time series. Dedicated detector characterization pipelines use these raw
data to identify non-astrophysical noise transients and spectral features that may affect
the instrument main output, or gravitational-wave strain channel. Auxiliary channels
are typically separated in “safe” and “unsafe” channels. Safe auxiliary channels are not
expected to show any excess noise when an astrophysical signal is present in the grav-
itational strain channel. For example, physical environmental monitor (PEM) channels
are considered safe, as a gravitational wave is not supposed to generate any signal in
environmental sensors. Thus excess noise in these channels generally denotes a non-
astrophysical disturbance.

Data quality flags and ultimately vetoes can be created from safe channels to reduce
the instrumental background and improve the gravitational-wave searches. Unsafe aux-
iliary channels are known to couple to astrophysical signals. If a gravitational wave is
present in the data, its signal is expected to couple to some of the detector subsystems,
for example the interferometer output mode cleaner. Unsafe channels cannot be used
to create vetoes and are not considered in detector characterization investigations. Stan-
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dard lists of safe and unsafe channels are made for each observing run and periodically
tested through insertions of simulated signals in the instrument (hardware injections).
In our analysis we consider the standard O1 and O2 lists of safe auxiliary channels
as determined by the detector characterization working group and used by the hveto
pipeline [42], comprising 840 and 919 channels, respectively.

The first set that we consider in our study contains 2049 glitches that were identified
by the hveto pipeline in a magnetometer located at one of the end-test stations of the
LIGO-Livingston interferometer between February 9, 2017 and April 10%, 2017. LIGO’s
equipment which is hosted in electronics racks generates magnetic fields that may couple
to other components of the detector, such as cables, connectors and actuators. In order to
measure these spurious magnetic fields, several magnetometers are deployed in the main
interferometer stations. These magnetometers are also used to monitor DC power supply
glitches and currents that may produce artifacts in the gravitational wave channel [43].

After a power outage on February 7%, 2017 the hveto pipeline identified a series
of new glitches of electromagnetic origin in the LIGO-Livingston interferometer within
the detector search frequency band, around ~ 50-60 Hz. The noise transients appeared
as short-lived spikes in one of the PEM-EX_MAINSMON_EBAY _DQ auxiliary channels,
the Physical Environmental Monitor (PEM) mains voltage monitor (MAINSMON) of the
Electronics Bay (EBAY) in the X-arm end station (EX), as well as in EX magnetometers.
In the days following their first appearance, these glitches amounted to about 15% of all
short-lived noise transients seen in the gravitational-wave strain channel. After a few
weeks of testing and diagnostics by the LSC detector characterization group, on April
11* LIGO commissioners successfully mitigated the glitches by modifying the ground-
ing system of the electronics bay with the installation of a ground rod which eliminated
a spurious current at the origin of the electromagnetic disturbance.

The EX magnetometer glitches provide a good playground for ML testing because
of their distinct spatial and temporal localization, as well as their understood origin and
successful mitigation. Moreover, due to their electromagnetic nature they appear only in
a well-defined subset of auxiliary channels. This allows for a clear-cut test of the algo-
rithm’s ability to identify the correct auxiliary channels related to the noise and infer the
source of the instrumental coupling.

The second set contains 42 short-lived noise transients that were caused by an air
compressor seismically coupling to the LIGO-Hanford interferometer between Septem-
ber 18" 2015 and December 28, 2015. In September 2015 detector characterization in-
vestigations indicated the presence of some transient excess noise of unknown origin at a
frequency around 50 Hz in the gravitational strain output of the LIGO-Hanford interfer-
ometer. The origin of the noise was recognized to originate in the EX station. The hveto
pipeline indicated a correlation in time with glitches in the EX PEM seismic (SEIS) and
accelerometer (ACC) auxiliary channels, as well as the Streckeisen STS-2 (STS) inertial
sensors monitoring the ground motion (GND) of the active seismic isolation internal to
the vacuum system (ISI). The effect of the excess noise due to the seismic coupling on the
transmitted light (TR) along the direction of the interferometer X arm caused some excess
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pitch and yaw motion of the EX test mass that was recorded in the Alignment Sensing
and Control (ASC) channels. Dedicated investigations pointed to a mechanical coupling
as the origin of the transients, such as a motor or a transformer core pulse inducing the
50 Hz characteristic. A time delay between the occurrence of the noise in the accelerom-
eters and the voltage monitors indicated that the origin of the transients was not located
in the immediate vicinity of the EX optics table. The culprit was eventually identified
as an air compressor turning on in the EX station which was seismically coupling to the
detector via the optics table. Follow-up investigations with Gravity Spy [19] led to the
identification of all the 42 glitches in our dataset. Although the overall number of these
glitches is quite low for ML training purposes, their physical properties are well charac-
terized and their instrumental mechanical couplings are well understood. Similarly to
the magnetometer set, the air compressor glitches provide a good playground for testing
the efficiency of the ML algorithms in determining the origin of noise disturbances.

These diverse sets allow us to test the effectiveness of the ML algorithms in two ex-
treme cases that are typical of LIGO noise investigations, where thousands or just a hand-
ful of glitches can be identified by detector characterization pipelines or manual data
mining techniques.

3.1 Data set preparation

Short-lived noise transients are generally identified by a trigger in the form of a single
GPS time or a time interval where the disturbance has its peak. The peak of the glitch
may be computed by simply recording the time where the value of a given auxiliary
channel time series passes a pre-defined threshold or through more refined methods, for
example by defining a Signal-to-Noise Ratio (SNR) or looking at correlations between
channels and/or the main interferometer output.

Our analysis is based on Omicron triggers. Omicron is a widely used LIGO pipeline
to identify glitches in instrumental and environmental auxiliary channels [44]. The algo-
rithm is based on a C++ burst-type Event Trigger Generator (ETG) which is itself based on
the Q-transform [45], a modification of the standard short-time Fourier transform similar
in construction to the continuous wavelet transform. The channel time series is projected
onto a parameter space tiled in time, frequency, and Q planes. An omicron trigger is iden-
tified when the SNR of a time-frequency tile is above a user pre-defined threshold. The
characteristics of each trigger are recorded in a user-configurable data vector describing
the physical parameters of the trigger. Elements of this data vector can be used as raw
features for the ML algorithm. In our analysis, we use a six-dimensional omicron data
vector with peak frequency, central frequency, bandwidth, amplitude, SNR and phase
elements.

The Omicron pipeline ran daily in O1 and O2 on the standard list of auxiliary chan-
nels, recording noise triggers with SNR > 5.5. The Omicron features corresponding to
the magnetometer and air compressor glitches are obtained by selecting for each glitch
time and auxiliary channel the online Omicron trigger with the highest SNR within a



M. Cavaglia, K. Staats and T. Gill / Commun. Comput. Phys., 25 (2019), pp. 963-987 973

coincidence window of 0.1 seconds. As some of the auxiliary channels may be not ac-
tive at any given time during the observing run, we consider only the subset of triggers
that have available Omicron triggers for a minimum number of auxiliary channels. The
higher the number of features and triggers in the data set, the better the ML training.
However, maximization of the number of features reduces the number of usable triggers
in the set, as fewer Omicron triggers with all the required auxiliary channels are avail-
able. A good trade-off between these two competing factors reduces the magnetometer
set to 2000 triggers and 749 auxiliary channels, for a total of 4494 features per trigger, and
the air compressor set to 16 triggers and 429 auxiliary channels, for a total of 2856 features
per trigger. The ML training datasets are completed by adding a number of background
triggers (label 0) to the noise triggers (label 1). These are obtained by randomly select-
ing a comparable number of Omicron triggers in the gravitational strain channel with
SNR > 6 that are not coincident with any of the glitch triggers (exclusion window equal
to 10 seconds) and then obtaining the features for each auxiliary channel as done for
the glitch set. Finally, label 0 and label 1 triggers in the datasets are randomized with 2/3
of the entries being used for ML training and internal validation, and the remaining 1/3
being reserved for testing.

4 Results

In order to test the ML algorithms and illustrate how to infer the glitch mechanical cou-
plings, we first ran the RF algorithm on the training sets to compute the channel impor-
tance (defined as the sum of the feature importances for the given channel). We tested
the procedure by varying the number of estimators and the iteration threshold, noticing
no significant change in the results. For illustration purposes, here we present results for
500 estimators and an iteration threshold of 0.005 and 0 for the magnetometer and air
compressor sets, respectively. The RF results were successfully validated with Karoo GP,
which was run multiple times with different hyperparameter configurations to test the
robustness of the procedure. Below we present results averaged on all Karoo GP runs, as
well as some of the results from the best performing runs.

4.1 Magnetometer set

The list of auxiliary channels with nonzero importance obtained with RF iteration thresh-
old equal to 0.005 is listed in Table 1. Out of the ten auxiliary channels, nine channels are
related to the EX detector subsystem and one channel, PEM_EY_MAINSMON_EBAY_1_
DQ, is the MAINSMON channel of the end-Y (EY) station’s EBAY. As the latter has
the lowest importance and can be removed by choosing a higher RF iteration thresh-
old while preserving most of the EX channels, we can safely conclude that it is not
related to the actual mechanical coupling originating the glitches. Eight of the auxil-
iary channels related to the EX subsystems are PEM channels for the EBAY and the
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Table 1: Auxiliary channels with nonzero RF importance for the magnetometer set. Different colors denote
instrumental and environmental auxiliary channels corresponding to different detector subsystems: Olive green=
Internal Seismic Isolation (ISI), sienna=Physical and Environmental Monitor (PEM).

Auxiliary channel RF Importance
ISI-ETMX_ST1.BLND_Z_T240_CUR_IN1.DQ 041
PEM-EX_MAG_EBAY_SUSRACK_QUAD_SUM_DQ 071
PEM-EX_MAG_EBAY _SUSRACK_X_DQ 155
PEM-EX_.MAG_EBAY_SUSRACK_Z_DQ 041
PEM-EX.MAG_VEA_FLOOR_QUAD_SUM_DQ 108
PEM-EX_MAG_VEA_FLOOR_X_DQ 174
PEM-EX_MAINSMON_EBAY_1_DQ 075
PEM-EX_MAINSMON_EBAY_3_DQ 026
PEM-EX_MAINSMON_EBAY_QUAD_SUM_DQ 298
PEM-EY_MAINSMON_EBAY_1_DQ 011

Vacuum Equipment Area (VEA) magnetometers and for the MAINSMON. The addi-
tional channel monitors the Nanometrics Trillium 240 (T240) Inertial broadband sen-
sor picked off at the input to the BLEND filter bank of the active internal seismic iso-
lation of the end test mass. The data in Table 1 are shown as a histogram in Fig. 4.
The RF algorithm correctly identifies the voltage monitor of the EX electronics bay as
the origin of the noise transients. The winning channel is PEM-EX_ MAINSMON_EBAY_
QUAD_SUM_DQ, i.e., the quadrature sum of the raw EBAY MAINSMON output recor-
ded by the Data Acquisition System (DQ). The three MAINSMON channels account for
about ~ 40% of the features used in the RF classification. The PEM-EX_MAG_EBAY_
SUSRACK channels recording the raw output of the EX rack magnetometer and the
PEM-EX_MAG._ VEA_FLOOR channels recording the output of the VEA magnetometer
account for about ~27% and ~28% of the features, respectively. This result clearly points
to an electromagnetic origin of the glitches in the EX station, in agreement with the re-
sults first obtained with the hveto pipeline and later confirmed by LIGO commissioners.
The identification of the ISI-FETMX_ST1_BLND_Z_T240_CUR_IN1_DQ by the RF code is
interesting, as it may seem puzzling that electromagnetic glitches show in the output of
an accelerometer. A possible explanation for the inclusion of this channel could simply
be algorithm noise, as is the case with the PEM_EY_MAINSMON_EBAY_1_DQ channel.
However, the fact that this auxiliary channel is one of the accelerometer channels in the
EX station and cannot be eliminated by increasing the iteration threshold without also
eliminating most of the other EX channels suggests that the coupling may be real. In-
deed, broadband seismometers may couple to environmental magnetic fields [46,47]. In
particular, the coherence of the T240 has been studied in detail in Ref. [48], where it is
shown that strong magnetic fields may even dominate the seismometer signal. Thus the
inclusion of ISI-ETMX_ST1_.BLND_Z_T240_CUR_IN1_DQ indicates that the electromag-
netic disturbance is sufficiently strong to couple to the ETMX seismometer, a fact that
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Figure 4: Histogram of RF channel importance for the magnetometer set from the data in Table 1. Different
colors denote different detector subsystems and auxiliary channels: Seagreen = Armlength Stabilization (ALS),
orchid=Alignment Sensing and Control (ASC), goldenrod=Photon Calibrator (CAL) royal blue=Hydraulic Ex-
ternal Pre-lsolator (HPI), lime green=Input Mode Cleaner (IMC), olive green=Internal Seismic Isolation (ISI),
violet=Length Sensing and Control (LSC), gray=Output Mode Cleaner (OMC), sienna=Physical and Environ-
mental Monitor (PEM), orange=Pre-Stabilized Laser (PSL), turquoise=Suspension (SUS), magenta=Thermal
Compensation (TCS). The plot clearly shows how the glitches arise from an environmental electromagnetic dis-
turbance in the EX station.

had not been recognized during standard detector characterization investigations lead-
ing to the mitigation of the glitches.

The above results can be validated with Karoo GP. As the code does not include a
standard function to compute the feature importance, we build a GP analog of this quan-
tity as follows. We run the code multiple times with varying hyperparameters and select
the runs that produce a classification of the testing set with recall and specificity both
above a given threshold. Then we define the channel importance by counting how many
times the features of each channel are used in the winning GP multivariate expression
of the selected runs and normalize to the total number of features used. Although this
is a rough method of defining the feature importance, it is sufficient for our simple RF
validation task. Fig. 6 shows the results from eight runs passing a 92% threshold (out of
a total of 160 runs). The confusion matrix, precision and recall for these runs are shown
in Table 2. Histograms of precision and recall for all 160 runs are shown in Fig. 5.

Because of the limited number of runs used to compute the channel importance, the
GP results are generally noisier than the RF results. However, the GP feature importance
is in excellent agreement with the RF importance calculated earlier. Table 3 and Fig. 6
show the channels with GP importance larger than 0.012. The auxiliary channels most
used by Karoo GP to separate the magnetometer glitches from the background are two
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Table 2: Confusion matrix for the eight best Karoo GP runs on the magnetometer set (out of 160 total runs) that
are used to determine the GP channel importance. TN=True negatives (background noise correctly identified),
FN=False Positives (background noise mis-identified as magnetometer glitch), FP=False Negatives (glitch mis-
identified as background noise), TP=True Positives (glitch correctly identified), RC= Recall, PR = Precision.
Run 11 has the best recall. The run with the best precision (PR=0.998) fails to pass the recall cut-off
(RC=0.864) and is not included in the runs used for the computation of the channel importance.

Run | TN | FP | FN | TP | RC PR

11 634 | 42 | 44 | 623 | 0.934 | 0.937
82 659 | 17 | 50 | 617 | 0.925 | 0.973
91 644 | 32 | 50 | 617 | 0.925 | 0.951
126 | 634 | 42 | 50 | 617 | 0.925 | 0.936
134 | 638 | 38 | 49 | 618 | 0.927 | 0.942
146 | 625 | 51 | 45 | 622 | 0.933 | 0.924
148 | 629 | 47 | 50 | 617 | 0.925 | 0.929
153 | 644 | 32 | 53 | 614 | 0.921 | 0.950

Table 3: Auxiliary channels with GP importance larger than 0.012 for the magnetometer set. As in Fig. 4,
different colors denote instrumental and environmental auxiliary channels corresponding to different detector
subsystems. Channels in italic denote those selected also by the RF algorithm (see Table 1).

Auxiliary channel GP Importance
ISI-ETMX_ST1_.BLND _Z_T240_CUR_IN1-DQ 0.049
ISI-ETMX_ST1_BLND_RY_T240_CUR_IN1_.DQ 0.042
ISI-HAM2 BLND_GS13RZ_IN1_-DQ 0.027
LSC-POP_A_RF9_I_.ERR_DQ 0.015
PEM-EX_MAINSMON_EBAY _QUAD_SUM_DQ 0.042
PEM-EX_MAINSMON_EBAY_1_.DQ 0.020
PEM-EY_MAINSMON_EBAY _3_DQ 0.015
PEM-EX_MAG_VEA_FLOOR_Z_DQ 0.013
PEM-EX_MAINSMON_EBAY 3_-DQ 0.013
SUS-MC1-M2_NOISEMON_LR_.OUT_DQ 0.027

channels of the T240 accelerometer in the EX station (ISI_LETMX_ST1_BLND_Z_T240_CUR_
IN1_DQ and ISI.LETMX_ST1_BLND_RY_T240_CUR_IN1_DQ) and the PEM_EX_MAINSM
ON_EBAY_QUAD_SUM_DQ channel. The first of the ISI channels and the PEM chan-
nel are the channels with the highest RF importance for the ISI and PEM subsystem,
respectively. As remarked above, the presence of additional, unrelated channels such
as ISI_THAM2_BLND_GS13RZ_IN1_DQ, LSC_POP_A_RF9_I_ERR_DQ and SUS.MC1_-M2_
NOISEMON_LR_-OUT_DQ), denotes noisier GP results compared to the RF results. As the
GP process is stochastic, cleaner results may be obtained by increasing the number of
runs and/or the efficiency threshold used for the selection of the winning multivariate
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Figure 5: Karoo GP precision (left) and recall (right) for the magnetometer testing set from 160 runs with varying
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standard deviation of the Gaussian fits are shown in the legend.
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Figure 6: Channel importance for the magnetometer set from Karoo GP. Only auxiliary channels with GP
importance >0.012 are shown.

expressions. Another way to improve on these results would be to replace the rough
count of the channel features with a better definition of channel importance.

4.2 Air Compressor set

We repeat the investigation of the previous section for the air compressor set. As this
dataset is reduced to only 16 air compressor noise transients after data preparation, and
training occurs only on 2/3 of the glitches (plus an equal number of background triggers)
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Table 4: Auxiliary channels with nonzero RF importance for the air compressor set. Different colors denote
instrumental and environmental auxiliary channels corresponding to different detector subsystems: Orchid =
Alignment Sensing and Control (ASC), royal blue=Hydraulic External Pre-Isolator (HPI), olive green=Internal
Seismic Isolation (ISI), sienna=Physical and Environmental Monitor (PEM), turquoise=Suspension (SUS).

Auxiliary channel RF Importance
ASC-X_TR_B_PIT_.OUT_DQ .079
ASC-X_TR_B_.YAW_OUT_DQ 169
HPI-ETMX_BLND_L4C_RX_IN1_DQ .052
HPI-ETMX_BLND_L4C_RY_IN1_DQ .008
HPI-ETMX_BLND_L4C_RZ_IN1_DQ .010
HPI-ETMX_BLND_L4C_Y_IN1_DQ .038
ISI-GND_STS_LETMX_X_DQ 228
ISI-GND_STS_ETMX_Y_DQ 012
PEM-EX_ACC_BSC9_ETMX_Z_DQ .055
PEM-EX_ACC_EBAY_FLOOR-Z_-DQ 203
PEM-EX_ACC_OPLEV_ETMX_.Y_DQ .008
PEM-EX_ACC_VEA_FLOOR_Z_DQ .045
PEM-EX_SEIS_.VEA_FLOOR_Y_DQ 024
SUS-ETMX_L3_OPLEV_YAW_OUT_DQ .069

we do not expect the air compressor results to be as clear-cut as the results for the mag-
netometer set. However, even if the identification of the mechanical couplings were to
fail, this test would provide important information about the effectiveness of the method
for small datasets. Prompt identification of the origin of mechanical couplings in the
detector is of paramount importance for gravitational-wave searches during observing
runs. If the origin of mechanical couplings can be inferred with just a limited number
of recorded glitches as soon as they appear in the detector, the method may prove very
useful for commissioning purposes.

As before, we run the RF code to identify the most relevant auxiliary channels related
to the air compressor set. The list of auxiliary channels with nonzero importance obtained
with an RF iteration threshold of 0 is listed in Table 4 and graphically shown in Fig. 7.
The code identifies five detector subsystems related to the glitch class: the Alignment
Sensing and Control (ASC) subsystem with two auxiliary channels accounting for a total
feature importance percentage of ~25%, the Hydraulic External Pre-Isolator (HPI) sub-
system with four auxiliary channels accounting for ~ 10%, the Internal Seismic Isolation
(ISI) subsystem with two channels accounting for ~ 24%, the Physical and Environmen-
tal Monitor (PEM) with five channels accounting for ~ 34% and the Suspension (SUS)
subsystem accounting for ~7%. The winning channels of the HPI, ISI and PEM systems
clearly pinpoint the origin of the glitches as a disturbance originating at the end-test mass
X (ETMX). In particular, the PEM signal originates from the accelerometers, thus signal-
ing a disturbance of seismic origin. The presence of the ASC channels correctly identifies
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Figure 7: Histogram of RF channel importance for the air compressor set from the data in Table 4. Different
colors denote different detector subsystems and auxiliary channels: Orchid = Alignment Sensing and Control
(ASC), royal blue=Hydraulic External Pre-Isolator (HPI), lime green=Input Mode Cleaner (IMC), olive green=
Internal Seismic Isolation (ISI), violet=Length Sensing and Control (LSC), sienna=Physical and Environmental
Monitor (PEM), orange = Pre-Stabilized Laser (PSL), turquoise=Suspension (SUS).

the excess pitch and yaw motion of the EX test mass due to the seismic coupling. Thus
the RF code identifies the same ASC, PEM and ISI channels that were identified by the
hveto pipeline. In addition, the SUS optical lever (OPLEV) channel measuring the yaw
(YAW) motion of the bottom stage of the end-test mass X quadruple suspension (L3),
and the HPI channels monitoring the stage of the seismic isolation external to the vac-
uum between the ground and the active isolation internal to the chamber clearly show
that the disturbance propagates from the ground to the end-test mass through the vari-
ous stages of the ETMX suspension. Even with such a limited dataset, the RF algorithm
correctly identifies the seismic origin of the glitches in the EX station. This results seems
to indicate that a number of glitches of the order of a few tens, or even less, may be
sufficient to infer the origin of localized disturbances in the instrument and how these
disturbances couple to the different detector subsystems. The above results are vali-
dated with Karoo GP by computing the auxiliary channel importance according to the
same procedure used for the magnetometer set. As expected, the Karoo GP results for
the air compressor set are less clear-cut than the results for the magnetometer set due
to the limited number of triggers on which the GP algorithm can train. The channels
with GP importance larger than 0.01 are shown in Table 5 and Fig. 8 for 34 runs that pass
an efficiency threshold on true positives and true negatives of 66%. This relatively low
threshold is required to build enough statistics for the channel count. As the dataset is
limited, very few runs produce multivariate expression with high true positive/true neg-
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Table 5: Auxiliary channels with Karoo GP importance above .01 for the air compressor set. Channels in italic
denote those selected also by the RF algorithm (see Table 4).

Auxiliary channel GP Importance
ASC-X_TR_B_PIT_-OUT-DQ 0.011
ASC-X_TR_.B_.YAW_OUT_-DQ 0.022
HPI-ETMX_BLND_L4C_RX_IN1_DQ 0.013
ISI-GND_STS_ETMX_X_DQ 0.024
ISI-GND_STS_ETMX_Y_DQ 0.014
ISI-HAM4 _BLND_GS13RZ_IN1_-DQ 0.010
PEM-EX_ACC_BSC9_ETMX_Z_DQ 0.010
PEM-EX_ACC_EBAY_FLOOR_Z_DQ 0.025
PEM-EX_ACC_OPLEV_ETMX_Y_DQ 0.010
PEM-EX_SEIS_.VEA_FLOOR.Y_DQ 0.011
SUS-ETMX_L3_OPLEV_YAW_OUT_DQ 0.011
SUS-MC3_M1_.DAMP_T_IN1.DQ 0.010
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Figure 8: Channel importance for the air compressor set from Karoo GP. Only auxiliary channels with importance
>0.01 are shown.

ative efficiency. Although noisier than the RF results, Karoo GP results well agree with
the RF results. Exceptions are the presence of the ISI-HAM4_BLND_GS13RZ_IN1_DQ and
SUS-MC3_M1_DAMP_T_IN1_.DQ channels. These channels are clearly not related to the
disturbance and are a noise artifact of the GP algorithm likely to go away with more runs
and a higher threshold on the efficiency for the feature computation.
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4.3 Effect of dataset size on algorithm performance

We have seen in the previous section that even with a handful of glitch times both the RF
method and the GP method provide a very good characterization of the air compressor
glitches. In this section we will provide some evidence that small dataset with dimension
of a few tens of glitches can indeed be used to effectively infer the mechanical systems
at their origin. In order to do this, we consider again the magnetometer set and reduce
its dimension by selecting a (smaller) number n of magnetometer glitches and building
a reduced training dataset of dimension 2n by adding an equal number of randomly
selected background glitches. We train the ML algorithms on this 2n-dimensional set
with fixed identical hyperparameters for all runs and test the result on all the remaining
glitches+background that were not used for training. Fig. 9 shows the RF results for a
number of estimators equal to 500, iteration threshold equal to 0.005 and four different
dataset sizes: n =10, n =20, n =100 and n =500.

The results for n =10 successfully single out the magnetic origin of the glitches in the
EX station by identifying the correct PEM EX channels, although the results are contam-
inated by the appearance of a few PEM channels of magnetometers located in the inter-
ferometer Corner Station (CS). The importance of these channels stands out only when
the dimension of the dataset is strongly reduced (1 =10, n =20, n=100) and may be due
to algorithm noise or some contamination in the dataset. For example, some of the mag-
netometer glitches may be caused by environmental electromagnetic disturbances which
spread-out across the interferometer (e.g., lightning or power glitches) and thus be er-
roneously included in the dataset. Likewise, the identification of a Length Sensing and
Control (LSC) channel for the n=10 dataset and a couple of Output Mode Cleaner (OMC)
channels for the n =20 dataset may be due to algorithm noise or indicate that these auxil-
iary channels are not safe. Similarly to the CS channels, the importance of these channels
stands out only when the dimension of the dataset is strongly reduced. The results for
n=500 are basically consistent with the results of the full dataset discussed in Section 4.1.

We test the accuracy of the GP algorithm as the dataset size is varied by running the
code with fixed hyperparameters and then comparing the confusion matrix of the various
datasets. We run Karoo GP 80 times per dataset with tree base depth=>5, maximum tree
depth=>5, minimum tree depth= 3, population= 300, generations= 100 and tournament
size=20. Fig. 10 shows the ROC space (recall vs. fall-out) of the runs with datasets of
size n =10 to n=1300, the latter essentially corresponding to the full dataset. Each point
in the scatterplot represents the result of a Karoo GP run. Average values and standard
deviations for each dataset sample size are also plotted. Clearly, increasing the dataset
sample size improves the binary classification of glitches vs. background. However, even
for small dataset size the algorithm performs fairly well, with average recall above ~85%
and fall-out below ~ 15%. Fig. 11 shows the channels with GP importance larger than
0.02 for reduced datasets with dimensions n=10, n =20, n=100 and n=>500. The channel
importance is extracted from the Karoo GP runs with an efficiency threshold of 88% for
true positives and true negatives. This lower threshold compared to the threshold used



982

M. Cavaglia, K. Staats and T. Gill / Commun. Comput. Phys., 25 (2019), pp. 963-987

Dataset dimension n=20

100 Dataset dimension n=10 100
o o
g g
£ £
s &
£ £
Q Q
E 3
= 10" || £t
o 3
2 2
£ £
o [
2 2
| ‘I | ‘ \
e w
o | o
2 2
10 Auxiliary channel 10 Auxiliary channel
100 Dataset dimension n=100 100 Dataset dimension n=50¢
o o
g g
£ £
s &
£ £
Q Q
E 3
=107 =10t
g ¢
£ £
o [
2 2
o { | o
e w
o 3
102 107

Auxiliary channel

Auxiliary channel

Figure 9: RF channel importance for dimensionally-reduced magnetometer datasets. From top left, clockwise:
n=10, n=20, n=>500 and n=100.
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the result of a Karoo GP run with fixed hyperparameters (tree base depth=>5, maximum tree depth=5, minimum
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Figure 11: GP channel importance for dimensionally-reduced magnetometer datasets. From top left, clockwise:
n=10, n=20, n=500 and n=100. Only channels with importance larger than 0.02 are shown.

for the full dataset in Section 4.1 is required to obtain enough statistics for the smaller
datasets, where Karoo GP performance is worse (9, 15, 32 and 66 runs pass this threshold
for the dimensions n =10, n=20, n =100 and n =500 datasets, respectively). As a conse-
quence of the lower threshold, the results are noisier than for the full dataset. However,
the trend is clear as the identification of the correct auxiliary channels improves with the
dataset dimension. The dataset n =500 produces a GP channel importance ranking that
would undoubtedly allow commissioners to identify the disturbance as originating in
the EX station. Datasets with n <100 seem to provide a less-clear cut answer. However,
as the GP process is stochastic, the low statistics of these datasets may affect the results.
Performing more runs with different hyperparameters is likely to improve the channel
selection. Although less strong than the RF method, the GP method seems to be able to
provide useful information on the origin of mechanical couplings also for datasets with
minimal dimensionality.

5 Conclusions and outlook

Mitigation of non-astrophysical, instrumental or environmental noise in ground-based
interferometric detectors is critical for improving data quality, reducing the background
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of gravitational-wave searches and increasing the amount of physical information that
can be extracted from detected signals. Identification of the unwarranted mechanical
couplings that cause instrumental noise may greatly help scientists in performing this
effort.

In this paper we have shown that ML methods may be used to infer the possible loca-
tions and coupling mechanisms of noise artifacts in LIGO data. We focused our study on
RF and GP algorithms, testing these methods on two sets of non-astrophysical noise tran-
sients with known origin from the first and second observing runs of Advanced LIGO.
The magnetometer dataset contains over 2000 noise artifacts of electromagnetic nature. The
air compressor dataset contains a few tens of noise artifacts due to environmental seismic
coupling. Due to their well-defined spatial and temporal localization, and their well-
understood origin, these datasets provide useful testbeds for the RF and GP algorithms
in two extreme cases of large and small samples.

In order to test the applicability of our methods in real-world situations, we gener-
ated ML features derived from the Omicron pipeline, the standard LIGO-Virgo event
trigger generator that is used to identify glitches in LIGO’s auxiliary channels during ob-
serving runs. The mechanical couplings at the origin of the disturbances are inferred by
computing and then ranking the importance of the Omicron auxiliary channel features
as employed by an ML binary classification scheme of glitches versus background. The
RF channel importance is evaluated by running the standard scikit’s RF classifier with
fixed number of estimators, and then iterating on the results to remove the features with
importance below a pre-defined threshold. The GP channel importance is calculated by
counting the number of channel occurrences in a subset of Karoo GP multivariate expres-
sions over a fixed number of runs with varying hyperparameters.

Both the RF method and the GP method are able to identify the origin of the glitches
and infer the relevant mechanical couplings in the detector. Although the ranking of
the auxiliary channels becomes noisier as the size of the training dataset decreases, the
algorithms allow for a successful identification of the relevant channels even in the case
of small datasets with few tens of glitches, such as the air compressor set. The ability
to work with just a handful of triggers is relevant for prompt mitigation of new noise
artifacts appearing suddenly in the data, as it would allow detector commissioners to
quickly determine the origin of these artifacts without the need to collect a large glitch
sample.

As our methods rely on standard Omicron triggers which are generated in low-laten-
cy at the LIGO and Virgo sites, once a list of GPS times for a class of (unknown) noise tran-
sients with common characteristics in the gravitational-wave strain channel or a given
auxiliary channel is provided, mechanical couplings can be quickly determined. Prepa-
ration of a training dataset with a few tens of noise triggers requires a few minutes on the
LIGO computing clusters and channel rankings can be obtained within minutes by either
of the two codes. Thus we envision the RF and GP codes as quick tools for on-demand
data quality investigations during observing runs and commissioning periods.

In addition to providing a new commissioning tool, RF and GP techniques provide
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the proof of concept that ML can be successfully applied to the problem of inferring in-
strumental mechanical couplings. The ML landscape is very rich, with many different
methods for scientific data analysis. It is not unlikely that the results presented in this
paper may be further improved by considering other ML approaches, as well as different
methods of feature generation that exploit all aspects of the detector data. The methods
presented above could also be easily adapted to investigations beyond detector charac-
terization. For example, when applied to astrophysical signals, the feature importance
ranking could be used to extract information about the most relevant physical properties
of the gravitational-wave sources. Along this direction, several investigations are cur-
rently being pursued in the LIGO and Virgo collaborations to apply ML techniques to
different problems from identification and parameter estimation of gravitational-wave
signals [24, 25, 28, 49] to detector instrumentation [50]. The future of ML applied to the
analysis of gravitational-wave detector data is certainly bright.

Acknowledgments

This work has been supported by NSF grants PHY-1707668 and PHY-1404139. The au-
thors would like to thank colleagues of the LIGO Scientific Collaboration and the Virgo
Collaboration for their help and useful comments, in particular Dripta Bhattacharjee,
Scott Coughlin, Elena Cuoco, Kate Dooley, Luciano Errico, Hunter Gabbard, Hartmut

Grote, Sumeet Kulkarni, Shrobona Loveall, Lorena Magafia Zertuche, Kentaro Mogushi,
and Jade Powell.

References

[1] J. Aasi et al. [LIGO Scientific Collaboration], “Advanced LIGO,” Class. Quant. Grav. 32,
074001 (2015). doi:10.1088/0264-9381/32/7 /074001 [arXiv:1411.4547 [gr-qc]].

[2] E Acernese [Virgo Collaboration], “The Advanced Virgo detector,” ]. Phys. Conf. Ser. 610,
no. 1,012014 (2015). doi:10.1088 /1742-6596/610/1/012014.

[3] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], “Observation of Gravita-
tional Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, no. 6, 061102 (2016).
doi:10.1103 /PhysRevLett.116.061102 [arXiv:1602.03837 [gr-qc]].

[4] “New Worlds, New Horizons: A Midterm Assessment (2016),” The National Academies
Press, ISBN: 978-0-309-44510-8, DOI: 10.17226/23560.

[5] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], “GW151226: Observation of
Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence,” Phys. Rev. Lett.
116, no. 24, 241103 (2016). doi:10.1103 /PhysRevLett.116.241103 [arXiv:1606.04855 [gr-qc]].

[6] B. P. Abbott et al. [LIGO Scientific and VIRGO Collaborations], Phys. Rev. Lett. 118, no. 22,
221101 (2017). d0i:10.1103 /PhysRevLett.118.221101 [arXiv:1706.01812 [gr-qc]].

[7] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Phys. Rev. Lett. 119, no. 14,
141101 (2017). doi:10.1103 /PhysRevLett.119.141101 [arXiv:1709.09660 [gr-qc]].

[8] B.P. Abbottet al. [LIGO Scientific and Virgo Collaborations], arXiv:1711.05578 [astro-ph.HE].

[9] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Phys. Rev. Lett. 119, no. 16,
161101 (2017). d0i:10.1103 /PhysRevLett.119.161101 [arXiv:1710.05832 [gr-qc]].



986 M. Cavaglia, K. Staats and T. Gill / Commun. Comput. Phys., 25 (2019), pp. 963-987

[10] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], “Upper limits on the rates
of binary neutron star and neutron-star-black-hole mergers from Advanced LIGO’s first
observing run,” Ap] Letters, in press, arXiv:1607.07456 [astro-ph.HE].

[11] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], “The Rate of Binary Black
Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914,”
arXiv:1602.03842 [astro-ph.HE].

[12] J. Aasi et al. [LIGO Scientific and VIRGO Collaborations], “Prospects for Observing and Lo-
calizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo,” Living
Rev. Rel. 19, 1 (2016). d0i:10.1007 /1rr-2016-1 [arXiv:1304.0670 [gr-qc]].

[13] T. Akutsu [KAGRA Collaboration], “Large-scale cryogenic gravitational-wave telescope in
Japan: KAGRA,” J. Phys. Conf. Ser. 610, no. 1, 012016 (2015).
doi:10.1088/1742-6596/610/1/012016.

[14] C.S. Unnikrishnan, “IndIGO and LIGO-India: Scope and plans for gravitational wave re-
search and precision metrology in India,” Int. J. Mod. Phys. D 22, 1341010 (2013).
doi:10.1142/50218271813410101 [arXiv:1510.06059 [physics.ins-det]].

[15] B.P. Abbott et al. [LIGO Scientific Collaboration], “Exploring the Sensitivity of Next Gener-
ation Gravitational Wave Detectors,” arXiv:1607.08697 [astro-ph.IM].

[16] https://www.elisascience.org/

[17] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], “Characterization of transient
noise in Advanced LIGO relevant to gravitational wave signal GW150914,” Class. Quant.
Grav. 33, no. 13, 134001 (2016). d0i:10.1088/0264-9381/33/13/134001 [arXiv:1602.03844 [gr-
qcll.

[18] J. Slutsky et al., Class. Quant. Grav. 27, 165023 (2010). doi:10.1088/0264-9381/27 /16 /165023
[arXiv:1004.0998 [gr-qc]].

[19] M. Zevin et al., Class. Quant. Grav. 34, no. 6, 064003 (2017). doi:10.1088/1361-6382/aa5cea
[arXiv:1611.04596 [gr-qc]].

[20] N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra and N. S. Philip, Phys. Rev. D 95, no. 10,
104059 (2017). d0i:10.1103 /PhysRevD.95.104059 [arXiv:1609.07259 [astro-ph.IM]].

[21] E. Cuoco and M. Razzano, “Image-based deep learning for classification of noise transients
in gravitational-wave detectors,” LIGO Document P1700254-v3.

[22] D. George, H. Shen and E. A. Huerta, arXiv:1711.07468 [astro-ph.IM].

[23] D. George, H. Shen and E. A. Huerta, Phys. Rev. D 97, no. 10, 101501 (2018).
do0i:10.1103 /PhysRevD.97.101501.

[24] D. George and E. A. Huerta, Phys. Rev. D 97, no. 4, 044039 (2018).
d0i:10.1103 /PhysRevD.97.044039 [arXiv:1701.00008 [astro-ph.IM]].

[25] D. George and E. A. Huerta, Phys. Lett. B 778, 64 (2018). d0i:10.1016/j.physletb.2017.12.053
[arXiv:1711.03121 [gr-qc]].

[26] S.]. Kapadia, T. Dent and T. Dal Canton, Phys. Rev. D 96, no. 10, 104015 (2017).
d0i:10.1103 /PhysRevD.96.104015 [arXiv:1709.02421 [astro-ph.IM]].

[27] S. Vinciguerra et al., Class. Quant. Grav. 34, no. 9, 094003 (2017).
doi:10.1088/1361-6382 /aa6654 [arXiv:1702.03208 [astro-ph.IM]].

[28] H. Gabbard, M. Williams, F. Hayes and C. Messenger, arXiv:1712.06041 [astro-ph.IM].

[29] Timothy Gebhard, Niki Kilbertus, Giambattista Parascandolo, lan Harry and Bernhard
Scholkopf, Deep Learning for Physical Sciences (DLPS) 2017 workshop, 31st Annual Confer-
ence on Neural Information Processing Systems (NIPS), Long Beach CA, December 8, 2017,
https:/ /dl4physicalsciences.github.io/files /nips_dlps_2017_13.

[30] R. Vaulin, L. Blackburn, R. Essick and E. Katsavounidis, “iDQ: The Real-Time Pipeline for



M. Cavaglia, K. Staats and T. Gill / Commun. Comput. Phys., 25 (2019), pp. 963-987 987

Glitch Identification,” LIGO Document G1300253-v1.

[31] R. Biswas et al., Phys. Rev. D 88, no. 6, 062003 (2013). doi:10.1103/PhysRevD.88.062003
[arXiv:1303.6984 [astro-ph.IM]].

[32] J. Powell, D. Trifiro, E. Cuoco, I. S. Heng and M. Cavaglia, Class. Quant. Grav. 32, no. 21,
215012 (2015). doi:10.1088 /0264-9381/32 /21 /215012 [arXiv:1505.01299 [astro-ph.IM]].

[33] J. Powell, A. Torres-Forné, R. Lynch, D. Trifird, E. Cuoco, M. Cavaglia, I. S. Heng and
J. A. Font, Class. Quant. Grav. 34, no. 3, 034002 (2017). doi:10.1088 /1361-6382 /34 /3 /034002
[arXiv:1609.06262 [astro-ph.IM]].

[34] http://www.scikitlearn.org

[35] http://www.geneticprogramming.com

[36] E Breiman, “Classification and regression trees”, Chapman and Hall/CRC; 1 edition (Jan-
uary 3, 1984), ISBN-10: 0412048418, ISBN-13: 978-04120484181984.

[37] J.R. Koza, “Genetic Programming: On the Programming of Computers by Means of Natural
Selection,” MIT Press (1992), ISBN 0-262-11170-5.

[38] R. Poli, W.B. Langdon and N.F. McPhee, “A Field Guide to Genetic Programming,” creative
commons (2008), ISBN 978-1-4092-0073-4.

[39] https:/ /kstaats.github.io/karoo_gp/

[40] K. Staats, “Genetic programming applied to RFI mitigation in radio astronomy,” M.Sc. The-
sis, University of Cape Town (2016), https://open.uct.ac.za/handle /11427 /23703.

[41] K. Staats, E. Pantridge, M. Cavaglia, I. Milovanov and A. Aniyan, “TensorFlow enabled ge-
netic programming” GECCO “17 Proceedings of the Genetic and Evolutionary Computation
Conference Companion, Berlin, Germany July 15 - 19, 2017, ACM New York (2017) p. 1872-
1879, ISBN: 978-1-4503-4939-0.

[42] J. R. Smith, T. Abbott, E. Hirose, N. Leroy, D. Macleod, J. Mclver, P. Saulson and
P. Shawhan, Class. Quant. Grav. 28, 235005 (2011). doi:10.1088/0264-9381/28/23 /235005
[arXiv:1107.2948 [gr-qc]].

[43] “aLIGO PEM System Upgrade,” LIGO Document T1200221-v5.

[44] E. Robinet, “Omicron: an algorithm to detect and characterize transient events in
gravitational-wave detectors,” Virgo Technical Note VIR-0545B-14, 2016, https:/ /tds.ego-
gw.it/ql/?c=10651.

[45] SK. Chatterji, “The search for gravitational wave bursts in data from the sec-
ond LIGO science run,” Ph.D. Thesis, Massachusetts Institute of Technology, 2005,
http://hdl.handle.net/1721.1/34388.

[46] T. Forbriger et al., Geophysical Journal International, Volume 183, Issue 1, 303-312, (2010).
doi:10.1111/j.1365-246X.2010.04719.x.

[47] T. Forbriger et al., Geophysical Journal International, Volume 169, Issue 1, 240-258 (2007).
doi:10.1111/}.1365-246X.2006.03295 .

[48] C.Dufortand F. Matichard, “On Seismometers Multi-Channel Huddle Testing and Magnetic
Fields Disturbance in Urban environment,” LIGO Document P1400087.

[49] H. Shen, D. George, E. A. Huerta and Z. Zhao, arXiv:1711.09919 [gr-qc].

[50] G. Vajente, “Deep learning for lock acquisition,” LIGO Document T1700466.



