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This paper details a decentralized passivity-based control to
improve the robustness of biped locomotion in the presence
of gait-generating external torques and parametric errors
in the biped model. Previous work demonstrated a passive
output for biped systems based on a generalized energy that,
when directly used for feedback control, increases the basin
of attraction and convergence rate of the biped to a stable
limit cycle. This paper extends the concept with a theoretical
framework to address both uncertainty in the biped model
and a lack of sensing hardware, by allowing the designer to
neglect arbitrary states and parameters in the system. This
framework also allows the control to be implemented on wear-
able devices, such as a lower-limb exoskeleton or powered
prosthesis, without the needing a model of the user’s dynam-
ics. Simulations on a 6-link biped model demonstrate that the
proposed control scheme increases the convergence rate of
the biped to a walking gait and improves the robustness to
perturbations and to changes in ground slope.

1 Introduction
Autonomous biped control is an application defined by a

number of challenges including nonlinear dynamics, hybrid
dynamics, and underactuation. One of the classic goals of
control design for these systems is to drive the joint torques
of the biped to perform some repetitive locomotion task, like
walking or running, which can be modeled with a nonlinear
stability concept called a limit cycle (i.e., a periodic orbit in
the state space of the system) [1]. This limit cycle experiences
discrete jumps in velocity due to hybrid dynamics that model
the plastic impacts of the biped with the ground. Underactua-
tion restricts the ability to arbitrarily control the dynamics of
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the biped to generate a desired limit cycle [2]. It is possible to
embrace this property and design controllers which stabilize
desired trajectories based on Hybrid Zero Dynamics, as in [3].
This methodology has been implemented on a wide range
of systems, as demonstrated in [4] and [5]. However, these
trajectories are designed for specific tasks and with specific
optimization criteria. Trajectory free control methods are of
interest for a more task-invariant approach.

A particularly well-known phenomena in biped locomo-
tion is that of passive dynamic walking, as first reported by
McGeer et al. in [6], where an uncontrolled biped is able to
walk down a shallow slope under the power of gravity. In
other words, a stable limit cycle can naturally emerge from
the interaction of the biped with the environment. The basin
of attraction of the natural limit cycle is quite small, meaning
that it will only converge to the walking gait from a small set
of states. The limit cycle can be characterized by the equilib-
rium between the simultaneous decrease of kinetic energy and
increase of potential energy at impact, which causes the me-
chanical energy of the system to be conserved along the limit
cycle. Goswami et al. were the first to exploit these natural
dynamics and use passivity-based control (PBC) to drive the
biped’s energy to this conserved value, in order to enlarge the
basin of attraction of the limit cycle in a trajectory free man-
ner [1]. A PBC is a control law that exploits an input-output
relationship that bounds the rate of change of an energy-like
storage function in the system, and is complimentary related
to the idea of passive walking.

Others have built on these ideas and demonstrated more
sophisticated examples of energy-based control for biped lo-
comotion [7]. Methodologies such as Energy Shaping [8–12],
Interconnection and Damping Assignment Passivity-Based
Control (IDA-PBC) [13], and the Rapidly Exponentially Sta-



bilizing Control Lyapunov Function (RES-CLF) [14] have
also utilized these connections between energy and limit cy-
cles to create stable walking gaits. However, these methods
have their limitations. Energy shaping and IDA-PBC rely
on the system meeting a matching criteria that restricts the
degree of underactuation allowed and generally requires an
inversion of the system mass matrix, which can be sensitive
to error in the model parameters. The energy tracking PBC
methods in [1] and [7] require a conserved mechanical en-
ergy, which is impractical for a real system. The RES-CLF
method [15] does not have a demonstrated passivity property
to date, which can limit its performance in uncertain environ-
ments (i.e., unknown terrains or human-robot interactions).
Recently, concepts from [15] were leveraged to generalize the
energy tracking method of [7] to bipeds with pre-existing con-
trol inputs that do work (e.g., human locomotion), while also
allowing arbitrary underactuation in the PBC [16]. However,
this control approach required full knowledge of the state
variables and model parameters, which presents significant
implementation challenges.

This paper addresses this gap by developing a new de-
centralized formulation that provides a theoretical framework
to address both uncertainty in the biped model and a lack of
sensing, by allowing the designer to ignore arbitrary states
and model parameters in the system. A decentralized control
scheme, in general, utilizes multiple sub-controllers work-
ing in concert to achieve a task [17]. Each controller only
has access to a subset of the state and model information
(termed “local” information). This scheme is desirable in
the control of biped locomotion for a number of reasons. It
can allow for a reduction of sensing components in the hard-
ware, compensate for uncertainties in the dynamic model of
the biped, and reduce the computational complexity of the
control [18, 19]. It is of critical concern when considering
the potential application to wearable devices (e.g., a powered
prosthesis or lower-limb exoskeleton) where a user guides
and generates their own limit cycle, but a high fidelity model
for their dynamics cannot be obtained [20]. The decentral-
ized PBC retains useful qualities of the centralized approach,
such as arbitrary underactuation, synergy with inner-loop con-
trollers, and improved robustness and convergence rate of the
limit cycle.

The format of the paper is as follows: Sec. II introduces
the hybrid dynamic model of a 6-link biped and a PD con-
troller that generates a walking gait for the biped. Sec. III
offers a brief review of passivity and derives a centralized
PBC from an energy-based storage function. Numerical sim-
ulations of this control applied to the biped model are given.
Sec. IV extends the PBC with a decentralized formulation that
bases the construction of the storage function on a Lagrangian
subsystem, then comparisons between the simulations of the
centralized and decentralized PBCs are made. Sec. V offers
a modification of the PBCs that has an adaptive reference
energy. Sec. VI discusses issues of implementation on a phys-
ical system and offers a potential method of achieving this.
Sec. VII contains concluding remarks and ideas for future
work.
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Fig. 1. Kinematic model of the biped. COP denotes the Center of
Pressure. The solid links denote the stance leg, the dashed links
denote the swing leg.

Notation. Given two matrices a and b of suitable dimen-
sions, the matrix [a>, b>]> where > denotes the transpose
operator is denoted by [a;b].

2 Modeling and Dynamics

In this paper, we use the model given in [21] and offer
a brief review of it in this section. For simplicity, the link
between the two hip joints is modeled as a single joint and
there is no torso link. Thus, together with a foot, shank, and
thigh link for each leg, the model is a 6-link biped. The biped
is modeled as a planar kinematic chain with respect to an
inertial reference frame (IRF) defined at either the stance heel
or stance toe, depending on the phase of the single-support
period (to be discussed in Sec. 2.2). A diagram of the biped
is shown in Fig. 1.

The generalized coordinates of the biped model are de-
fined as q = [px, py,φ,θa,θk,θh,θsk,θsa]

> ∈ R8×1, where px
and py represent the Cartesian position of the stance heel or
stance toe in the inertial reference frame, and φ is the an-
gle of the heel-to-ankle vector with respect to the vertical
axis. The subscript i∈ {a,k,h,sk,sa} denotes the ankle, knee,
hip, stance knee, and stance ankle, respectively, and is used
to describe the angles θi between each link. The mass m j,
length l j and inertia I j of the links are indexed by the subscript
j ∈ {f,s, t,h,st,ss,sf} which denotes the stance foot, stance
shank, stance thigh, hip, swing thigh, swing shank, and swing
foot, respectively.



2.1 Continuous Lagrangian Dynamics
The dynamics are derived using the Lagrangian formula-

tion [22] to obtain the equation

M(q)q̈+C(q, q̇)q̇+N(q)+A(q)>λ = τ, (1)

where M(q) ∈ R8×8 is the inertia matrix, C(q, q̇) ∈ R8×8 is
the Coriolis/centrifugal matrix, and N(q) ∈ R8×1 is the grav-
ity force vector. The term A(q)>λ models the interaction
between the biped’s foot and the ground, where the matrix
A(q) ∈ Rc×8 is defined as the gradient of the constraint func-
tions, and c is the number of contact constraints that may
change during different contact conditions. The Lagrange
multiplier λ ∈Rc×1 is calculated using the method in [21,23]
and satisfies the assumption that the ground reaction forces do
no work on the system. The torque vector is τ = Buu+Bvv,
where Bu ∈ R8×d and Bv ∈ R8×m map the PBC torques u and
additional control torques v (defined in later sections) into the
generalized coordinates, respectively. The number of control
inputs d and m do not need to be the same.

2.2 Contact Constraints
Based on [24, 25], the single-support period can be bro-

ken down into three sub-phases: heel contact, flat foot, and
toe contact, where holonomic contact constraints can be prop-
erly defined. Following the convention in [21], we express
the holonomic contact constraints of the biped as relations
between the position variables of the form

asub(q1,q2, ...,qc) = 0c×1, (2)

where q j denotes the j-th element of the configuration vector
q and sub∈ {heel,flat, toe} indicates the contact phase. There
are c = 2 constraints for heel contact and toe contact whereas
flat foot has c = 3 constraints. The constraint matrix can then
be defined for all contact conditions as

Asub =
∂a(q)

∂q
= [Ic×c 0c×(8−c)]. (3)

This form can be achieved by defining the IRF at the stance
heel during heel contact and flat foot, and at the stance toe
during toe contact.

2.3 Hybrid Dynamics
Biped locomotion can be modeled as a hybrid dynamical

system which includes continuous and discrete dynamics [26].
The system follows a sequence of continuous dynamics and
their discrete transitions. It cycles through different contact
configurations defined in Sec. 2.2 during stance period and
encounters impacts when the swing heel hits the ground or
the flat foot slaps the ground. Following the same assumption
in [26], the discrete transitions model an instantaneous double-
support phase at heel strike and plastic impacts. The map from

pre-impact state to post-impact state is derived based on the
assumption that the impact impulsively constrains the contact
point to the ground, which can cause an instant change in the
velocity and thus the kinetic energy of the biped.

Based on the method in [21], the hybrid dynamic regimes
over one step are computed in the following sequence:

heel regime :

1. Mq̈+T (q, q̇)+A>heelλ = τ if aflat 6= 0,

2. q̇+ = (I−X(AflatX)−1Aflat)q̇− if aflat = 0,
flat regime :

3. Mq̈+T (q, q̇)+A>flatλ = τ if |cp(q, q̇)|< lf,

4. q̇+ = q̇−,(q(1)+,q(2)+)> = G if |cp(q, q̇)|= lf,

toeregime :

5. Mq̈+T (q, q̇)+A>toeλ = τ if h(q) 6= 0,

6. (q+, q̇+) = R(q−, q̇−) if h(q) = 0,

The vector T groups the Coriolis/centrifugal terms and poten-
tial forces for brevity. The superscripts “−” and “+” indicate
the pre-impact and the post-impact values, respectively. The
terms X = M−1A>flat and G= (lf cos(γ), lf sin(γ))> model the
change in inertial reference frame, cp is the location of the
center of pressure, γ is the ground slope angle, and lf is the
foot length. The ground clearance of the swing heel is de-
noted by h(q), and R denotes the swing heel ground-strike
impact map derived based on [26].

2.4 Inner Loop PD Control
Part of the model from [21] is a set-point PD controller

that generates a stable limit cycle while walking down a shal-
low slope. It has the form

v =−Kp(qm− θ̄)−Kd q̇m. (4)

Here, qm is the actuated coordinates vector, θ̄ is the equi-
librium vector, and the diagonal control gain matrices are
denoted as Kp,Kd ∈ R5×5. The mapping matrix Bv is con-
structed such that the PD controller actuates the ankles, knees,
and hip of the biped. We term this PD controller v the “inner
loop” and the to-be-derived PBC u the “outer loop”, since the
PBC derivation relies on the existence a limit cycle.

3 Centralized PBC
The passive compass-gait biped has no external force

input during its continuous dynamics, thus the only work
done on the system is by the discrete impacts with the ground.
On a passive limit cycle, the kinetic energy of the biped is
essentially reset after each impact, while the datum defining
the potential energy is shifted to reset the potential energy.
This gives rise to a constant system energy [1]. A similar



phenomena exists for an n-link biped on a limit cycle gener-
ated by a controller v that does work. During the continuous
dynamics, the work done by the controller exactly accounts
for the change in the mechanical energy. If the work is reset to
zero after each impact (which we can enforce by convention),
this gives rise to a sequence of generalized system energies
that are conserved on the limit cycle [15]. We seek to utilize
this conservation to formulate a passivity-based control u that
increases the basin of attraction of the pre-existing limit cycle.

The concept of passivity is a powerful tool for analyzing
the stability of nonlinear systems and designing controllers for
those systems, and it is distinct from the way “passive” is used
to describe the compass gait walker. Passive in that context
means there is no actuation, while passivity is an input-output
relationship of dynamic systems. Historically, it has been
used to show that the change of energy in a system is bounded
by a function of the control input and establish stability proofs
using arguments similar to the method of Lyapunov [22]. The
formal definition for passivity is given as follows [27]:

Definition 1. Let S(q, q̇) : R2n → R be a continuously dif-
ferentiable, non-negative scalar function. A system is pas-
sive from input u to output y with storage function S(q, q̇) if
Ṡ(q, q̇)≤ y>u.

The mechanical energy of a system often acts as the
storage function and the output is the vector of joint velocities
[28]. However, a storage function does not have to be a
quantity with a direct physical interpretation. In this section,
we use an energy-squared storage function, which can be
interpreted as the distance between a given state vector and the
desired energy state. The main idea is to feedback the passive
output by setting u=−y to stabilize the set of states where y=
0. This principle is used in the following sections for control
design. In the analysis, the arguments of dependent variables
or functions will sometimes be dropped for conciseness.

3.1 Centralized Derivation
As shown in [15], we can define a generalized system

energy as

E(q, q̇,v, t) = K(q, q̇)+P(q)−W (q, q̇,v, t). (5)

The mechanical energy of the system is the kinetic energy
K plus the potential energy P, while the work done by the
inner-loop controller is

W =
∫ t

0
q̇>Bvv dτ . (6)

The work W accounts for the energy stored, added, and dissi-
pated over time t by the inner loop control torque v. Note that
the exact form of this control is left arbitrary. In the following
analysis, the important feature is that it generates a limit cycle
for the biped.

Consider the following storage function from [29] for the
derivation of a passivity-based controller:

S(q, q̇) =
1
2
(E−Ere f )

2, (7)

where Ere f is the constant reference energy defined on a given
limit cycle. Taking the time-derivative of S, we obtain

Ṡ = (E−Ere f )(Ė− Ėre f ). (8)

Since Ere f is constant, Ėre f = 0 and all that remains is to
calculate Ė. From (5) and (1), the time-derivative is

Ė =
d(K +P)

dt
− dW

dt
. (9)

From the definition of W , the application of the fundamental
theorem of calculus, and the conservation of energy in a
mechanical system,

Ė = (q̇>Buu+ q̇>Bvv)− q̇>Bvv = q̇>Buu. (10)

It follows that the time-derivative of the storage function
becomes

Ṡ = (E−Ere f )q̇>Buu (11)

with passive output

y(q, q̇,v, t)> = (E−Ere f )q̇>Bu ∈ R1×d . (12)

Following the paradigm of passive output feedback, the PBC
is

u(q, q̇,v, t) =−kΩy =−kΩ(E−Ere f )B>u q̇, (13)

where k is a scalar gain and Ω is a diagonal, positive-definite
matrix that assigns relative weights to the outputs. As a
convention, we limit the magnitude of the elements in Ω to
be between 0 and 1.

3.2 Centralized Analysis
Our system is a hybrid system, with multiple dynamic

regimes and switching behaviors. Because each regime has
a conserved energy (Eheel,Eflat,Etoe), we can define corre-
sponding storage functions (Sheel ,S f lat ,Stoe) and control laws
(uheel ,u f lat ,utoe). All other parameters are identical between
the controllers. The switching strategy is that when the dy-
namics switch contact configuration, the control is correspond-
ingly switched. Our analysis applies to all of the continuous
regimes, so we drop the subscripts for generality.



The convergence behavior in the continuous dynamics
can be investigated by substituting the control law into the
time-derivative of the storage function to get

Ṡ =− ky>Ωy

=− (E−Ere f )
2q̇>BukΩB>u q̇

=−2kS||q̇||2Ω , (14)

where

||q̇||2Ω = q̇>BuΩB>u q̇ (15)

is the square of a weighted norm. If we make the assumption
that ||q̇||2

Ω
≥ η≥ 0, then

S(t)≤ S(0)e−2kηt , (16)

which implies a minimum exponential convergence of the
storage function, as long as the bound η holds.

One of the beneficial properties of PBC is that it is easy
and natural to extend these results to the case of actuator
saturation. Consider a saturated version of the control

u = sat(−k(E−Ere f )ΩB>u q̇). (17)

This changes (14) to

Ṡ =−ky>Ωsat(y)≤ 0, (18)

and the resulting system is still passive because the function
output preserves the sign of the input, similar to the results
in [30].

The main contribution of this derivation and analysis
is to generalize similar results from Spong in [29] in two
ways: to systems that already have a feedback controller (the
“inner loop” here) and to systems with an arbitrary degree of
underactuation.

Remark 1. The derivation of the control based on a con-
served generalized system energy (5) gives a justification for
why the PBC should work in conjunction with a pre-existing
feedback controller. If the system is on the limit cycle, the
energy is always equal to the reference energy and the PBC
is always zero. Thus, the behavior of the system on the limit
cycle is preserved in the presence of the PBC. However, it is
important to note that the convergence of the system’s general-
ized energy to the reference energy does not necessarily mean
the biped is on the desired limit cycle (i.e., the walking gait).
LaSalle’s theorem in [29] only guarantees local asymptotic
stability of the walking trajectory in the continuous dynamics.
The condition Ṡ≡ 0 can produce multiple invariant sets that
are locally asymptotically stable, including both sets where
E −Ere f ≡ 0 and sets where ||q̇||2

Ω
≡ 0. Furthermore, the

form of these invariant sets is dependent on the biped model
and the inner-loop control inputs v. For example, a stationary
biped could be one of these invariant sets because ||q̇||2

Ω
≡ 0.

Remark 2. The way the Ω-norm (15) enters into the storage
function relation (14) gives a justification for why the con-
troller should function with arbitrary underactuation. The
fundamental relationship between the storage function and its
derivative is always the same regardless of degree of under-
actuation. The only thing that changes is the bound η, which
should increase with an increase in the number of actuators.
From (16), we can see that this means more actuators cause
an increase in the convergence rate of the storage function.
However, more actuators and increased convergence speed
is not always better. The basin of attraction of the limit cycle
is shaped by every parameter that enters into the dynamics,
in particular the choices of k, Ω, and Bu. In Sec. 3.3.3, we
demonstrate the importance of these parameter choices in
simulation and show that an increase in the number of ac-
tuators can actually lead to a degradation of performance.

So far, we have not analyzed the passivity and stability
of the full hybrid system. There are several different notions
of hybrid passivity that guarantee stability [31, 32]. These
notions rely on showing that the jump in storage caused by
the discrete dynamics is bounded by the product of the input
and output in some manner. This is a somewhat difficult
to show analytically for our biped system, since an impact
can increase the storage function by lowering the energy
below the reference energy. However, if the storage decreases
between periods of the same contact configuration (e.g., the
second instance of the heel phase has less storage than the
first), then the hybrid dynamics converge to the reference
energies.

The behavior of the jumps depends on both the contin-
uous and discrete dynamics, and can be analyzed using the
linearization of the Poincaré return map, P(q, q̇), as in [3].
This map takes a post-jump point xL = [q+L ; q̇+L ] at the begin-
ning of step L and maps to the next post-jump point at step
L+1:

xL+1 = P(xL). (19)

If this map has a fixed point, then there exists an associated
limit cycle and conserved generalized system energy. For
our multi-phase hybrid system, one can use a single linear
approximation of the map to confirm the local stability of the
entire system numerically [3]. We do this in the following
simulation section.

3.3 Centralized Simulations
This section offers simulations to exemplify how the cen-

tralized PBC affects the qualitative behavior of the biped sys-
tem and demonstrate the analysis methods we use to quantify
performance. A nominal limit cycle was found in [21] for a
walking gait down on a slope of α = 0.095 radians. This limit



Table 1. Model Parameters

Parameter Variable Value

Hip mass mh 31.73 [kg]

Thigh mass mt,mst 9.457 [kg]

Shank mass ms,mss 4.053 [kg]

Foot mass mf,msf 1 [kg]

Thigh moment of inertia It, Ist 0.1995 [kg·m2]

Shank moment of inertia Is, Iss 0.0369 [kg·m2]

Full biped thigh length lt, lst 0.428 [m]

Full biped shank length ls, lss 0.428 [m]

Full biped heel length la,msa 0.07 [m]

Full biped foot length lf, lsf 0.2 [m]

Hip equilibrium angle θ̄h −0.5 [rad]

Hip proportional gain Kph 182.250 [N·m/rad]

Hip derivative gain Kdh 35.100 [N·m·s/rad]

Swing knee equilibrium angle θ̄sk 0.2 [rad]

Swing knee proportional gain Kpsk 182.250 [N·m/rad]

Swing knee derivative gain Kdsk 18.900 [N·m·s/rad]

Swing ankle equilibrium angle θ̄sa −0.25 [rad]

Swing ankle proportional gain Kpsa 182.250 [N·m/rad]

Swing ankle derivative gain Kdsa 0.810 [N·m·s/rad]

Stance ankle equilibrium angle θ̄a 0.01 [rad]

Stance ankle proportional gain Kpa 546.750 [N·m/rad]

Stance ankle derivative gain Kda 21.278 [N·m·s/rad]

Stance knee equilibrium angle θ̄k −0.05 [rad]

Stance knee proportional gain Kpk 546.750 [N·m/rad]

Stance knee derivative gain Kdk 21.278 [N·m·s/rad]

cycle is used to determine the reference energies for the PBC.
The exact parameters used in the biped model and in the PD
control are specified in Tab. 1, which are adopted from [21]
and are human inspired. The PBC is applied as an outer loop
of the PD control (inner loop). Since px, py are always con-
strained to the ground, the biped is fully-actuated during the
flat foot phase and underactuated with degree one during heel
and toe contact due to φ. The entries in the diagonal vector
for Ω that correspond to px, py are, and φ are always zero
since they are unactuated. The PBC is always saturated at
50 Nm, as a reasonable limit of the physical capability of the
actuators on an exoskeleton [12].

The PD controlled biped has three contact configurations
which cause the nominal limit cycle to transition between
three different constant system energies, Eheel→ Eflat→ Etoe.
This can be seen in the periodic, constant jumps in Fig. 2,
which shows the trajectory for the generalized energy E =
K +P−W versus time, for three steps. The jumps are an
artifact caused by the physical decrease in kinetic energy due

Fig. 2. Generalized energy (E) of the PD controlled (inner-loop)
biped system while traversing the limit cycle. There are three con-
stant energy levels with discrete jumps between them.

to an impact, the shift of the virtual potential energy datum
between different locations on the biped, and the reset of
the work integral between steps. The three distinct energies
Eheel, Eflat, and Etoe are used as the reference values for the
centralized PBC during the corresponding contact constraint.

3.3.1 Storage Convergence
When the system is solely under the influence of the

PD controller, the storage function S and system energy E
remain constant during the continuous dynamics, and are
only changed by the discrete dynamics (i.e., impacts). Im-
plementing the PBC on top of the PD controller qualitatively
changes the system behavior by forcing the storage function
to converge during the continuous dynamics as well. This
is demonstrated in Fig. 3, which gives the storage over time
of the biped system perturbed by ∆xo = [08×1;0.4 q̇o]. Here,
the control parameters Ω = [0,0,0,1,1,0.001,1,1]I8×8 and
k = 1 were chosen for simplicity and to respect the physical
symmetry of the biped. Similar to Fig. 2, the discrete jumps
in the storage are caused by the impact dynamics. The storage
decreases between periods of the same contact configuration
(e.g., the second instance of the heel phase has less storage
than the first) with or without PBC, which is important for the
notion of hybrid passivity from [31]. The convergence of the
storage function during the continuous dynamics appears to
be exponential for the PBC case, with different rates for each
contact condition. This result is expected based on (16). The
effect of this behavior is that the centralized PBC forces the
storage close to zero in 5 steps, which is much faster than the
PD control alone. If we consider the storage as a metric for
how close the biped is to the nominal limit cycle, then we can
conclude that the PBC causes the biped to reach steady-state
walking faster. However, the storage only gives an indication
of convergence speed. It does not definitively demonstrate
stability of the hybrid limit cycle nor does it demonstrate a
notion of robustness; these ideas are discussed in Sec 3.3.3.
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Fig. 3. Centralized storage function for the perturbed system with
PBC and without PBC, over 5 steps. The transition between steps is
marked by a large decrease in storage, caused by heel impact.

3.3.2 Control Torques
The torques of PBC for the first three steps of the sim-

ulation from Fig. 3 are given in Fig. 4. The specific joint
where the control torque ui acts is indicated by the subscript
i ∈ {a,k,h,sk,sa}. The figure indicates that the saturation ef-
fect does significantly influence the torque profile, especially
for the stance ankle actuator. It is interesting to note that the
torques for the stance leg are generally larger than those for
the swing leg; this is because the velocities of the joints in
the swing leg are smaller in general. The torque trajectory in
the first phase has an exponential like trajectory for all the
joints, which corresponds to the exponential convergence of
the energy to the reference since the torque is proportional to
this term. When the energy error becomes small enough, the
dynamics of the joint velocities begin to have a larger influ-
ence on the control torques. Again, the jumps in the control
torque are caused by the instantaneous changes in velocity
and energy at impact.

3.3.3 Stability and Robustness
At the end of Sec. 3.2, we stated that the stability of

the limit cycle of the hybrid system can be determined by
calculating the eigenvalues of the linearized Poincaré map. If
the eigenvalues Λ of the linearization lie within the unit circle,
then the limit cycle is locally exponentially stable [3]. Fig.
5 displays the largest magnitude of all the eigenvalues as k
is varied from 0 to 10 with Ω = [0,0,0,1,1,0.001,1,1]I8×8.
This single value is displayed for clarity and conciseness,
because the linearization has 16 eigenvalues. The figure indi-
cates that the system is stable for this range of gains since the
value is always less than one.

The linearization of the Poincaré map can give some no-
tion of robustness, namely the margin from largest eigenvalue
to the unit circle (basically a gain margin). However, there
is not a consensus in the field of biped locomotion on what
exactly “robustness” means. Many researchers use the eigen-
values as described and say that an increased margin indicates
a more robust walking gait [33, 34]. This has drawbacks,
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Fig. 4. Torque over time for the centralized controller U for the first
three steps

namely that eigenvalues characterize local stability and rate
of convergence; they contain little information about global
properties of the nonlinear system like basin of attraction or
robustness. Furthermore, sensitivity to numerical error can
result in unstable eigenvalues for a stable orbit (an effect we
saw while working with these simulations). A more thor-
ough discussion of the robustness of walking bipeds exists in
other works [35, 36]. Because of these issues, we turn to a
modification of this metric.

A metric called the “gait sensitivity norm”, with the no-
tation ||∂g/∂e||2, was proposed in [36] to provide a measure
of the robustness of bipedal gait. It has been subsequently
utilized in several other works [37–39]. We use it to compare
the effectiveness of the different PBCs in our simulations
by considering an increase in 1/||∂g/∂e||2 as an increase in
robustness. The calculation of this norm requires gait indi-
cators, gait perturbations, and a linearization of the Poincaré
return map. The indicators are essentially failure modes of
the system and the perturbations are characteristic of actions
on the system that cause failure. We regard “failure” as the
biped ceasing to walk. The gait indicators are step length,
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Fig. 5. Maximum absolute value of the eigenvalues of the lineariza-
tion of the Poincaré map as the gain k is varied from 0 to 10



step time, and the minimum ground clearance of the swing
leg heel over the duration of midstance. The disturbances
are a change of slope by ±1 radian and a perturbation vector
∆xo = [08×1;0.4 q̇o] that introduces a scaled initial velocity at
heel strike. We calculate the Poincaré return map [3] at heel
strike after 3 steps in our analysis. Based on our choice of in-
dicators and perturbations, we can interpret limit cycles with
“better” gait sensitivity norms as being robust to changes in
ground slope and velocity disturbances, in the sense that they
are farther away from the minimum “allowable” indicator
values.

The nominal limit cycle of biped system under PD con-
trol alone has a reciprocal norm of 1/||∂g/∂e||2 = 0.1584.
The biped with the centralized PBC with the parameters used
to generate Fig. 3 has a reciprocal norm of 1/||∂g/∂e||2 =
0.0248, which indicates a less robust system. This might seem
to indicate that the PBC cannot achieve the goal of improving
the robustness of the biped. However, by simply changing
the PBC parameters to Ω = [0,0,0,1,1,0.001,1,0]I8×8 (re-
moving the PBC actuator at the swing ankle and keeping
everything else the same), we find an increase in robustness
with 1/||∂g/∂e||2 = 0.6341. This demonstrates that it is im-
portant to judiciously choose values in Ω. To understand
why such a dramatic change occurs, consider an edge case
when Ω = [0,0,0,0,0,0,0,1]I8×8. Essentially, this causes the
swing foot to act as a reaction wheel pendulum in a similar
manner to [30]. Since the impact map is extremely sensitive
to the state of the swing foot at impact, this control parameter
choice contracts the basin of attraction of the desired limit
cycle dramatically. This causes the biped to fall over when
the generalized energy is slightly perturbed.

4 Decentralized PBC
The controller in the previous section relies on the abil-

ity to measure all inertial and geometrical properties of the
biped. It also relies on measuring all the joint positions and
velocities, inner-loop torques, and external forces applied to
the system in order to continuously calculate the generalized
system energy. In the context of the application to a pow-
ered prosthesis or exoskeleton, one generally has an accurate
model of the powered device and rough estimates of the user’s
mass distribution and geometry. The biggest challenge relates
to the inability to measure all of the user’s joint velocities and
torques. The straightforward approach might seem to be to
partition the system into user and device [20], and then use
the energy of the device to construct a PBC. However, we
can improve upon this with a partitioning scheme that utilizes
all the available model parameter and state information to
construct a PBC that is robust to parametric error.

4.1 Decentralized Derivation
The set of model parameters Θ contains all of the mass,

inertia, and link length parameters of the biped given in (1).
From this, the set of measured parameters ΘO ⊂ Θ can be
constructed to collect all of the model parameters that are
available in the design of the PBC. Note that the subset ΘO

can also contain mass, inertia, and link length parameters.
Similarly, a vector of measured states xO = [qO; q̇O] ∈ R2b×1

can be extracted from the state vector x = [q; q̇], where the
vectors of measured position and velocity variables are qO ∈
Rb×1 and q̇O ∈ Rb×1, respectively. The number of joints with
position and velocity measurements is given by b.

Equipped with ΘO and xO, we can use them to find a
subexpression in the Lagrangian of the mechanical system
L(x,Θ) = K−P that represents the measurable subsystem
LO(xO,ΘO) such that

L= LO +LŌ, (20)

where LŌ is an unmeasured or unmodeled part of the system
that cannot explicitly enter into the controller. To do this, we
proceed by finding a subexpression KO(qO, q̇O,ΘO) for the
kinetic energy and PO(qO,ΘO) for the potential energy such
that LO(qO, q̇O,ΘO) = KO−PO.

The kinetic energy of the biped system is

K =
1
2

q̇>M(q,Θ)q̇. (21)

The mass matrix M in the expression for K can be calculated
using the method from [23] as

M =
n

∑
j=1

J>j (q)MjJj(q). (22)

This method constructs the mass matrix link by link, where
Jj ∈ R6×n and Mj ∈ R6×6 are the body Jacobian and gener-
alized inertia matrix of the jth link, respectively. The mass
matrix can be partitioned into

M = Ψ+MO(qO,ΘO) (23)

MO =
n

∑
j=1

Jj>OMjOJjO, (24)

where MO(qO,ΘO) is a modified mass matrix that collects
additive terms in M that are functions of the symbols in ΘO
and xO, exclusively. As it will be shown, MO is constructed
by obtaining a modified body Jacobian JjO(qO,ΘO) and a
modified inertia matrix MjO(ΘO) for each link through a
partitioning scheme. The remainders of the terms from this
scheme are all collected in the variable Ψ, and we make no
claims about its properties.

The matrix Mj is always positive definite by construction
because it has the form

Mj = diag(mj,mj,mj, Ijxx, Ijyy, Ijzz) (25)

which contains on the diagonal the mass and the inertias about
the principal axes of the link. It can be decomposed into

Mj =MjO +MjŌ, (26)



where MjO is a diagonal matrix that extracts all the symbols
in Mj that are also in ΘO. It is important to note that any MjO
is positive semi-definite as long as Mj contains at least one
symbol in ΘO. The remainder MjŌ is collected into Ψ. Now
all that remains is to partition the body Jacobian.

In general, each element ei,k in Jj has the form

ei,k =
n

∑
z=1

dz lz fz(qz) =
n

∑
z=1

Tz, (27)

based on [23]. The coefficient dz takes values between zero
and one depending on where the center of mass of the jth
link is relative to the rest of the kinematic chain, while lz is
an arbitrary link length in Θ. The function fz depends on a
vector of position state variables qz, the exact form of which
depends on the type of joints (revolute or prismatic) that make
up the kinematic chain. We partition each element into

ei,k = eOi,k + eŌi,k, (28)

where eOi,k is the summation of the terms Tz where lz ∈ ΘO
and qz is a symbol in xO. The term eŌi,k is collected into the
remainder Ψ.

The body Jacobian matrix can then be partitioned
element-by-element so that JjO is constructed from the eOi,k
elements. Thus we have demonstrated the methods for con-
structing the JjO and MjO terms in (24). As previously noted,
each MjO is positive semi-definite, which implies MO is also
positive semi-definite.

By substituting (23) into (21), the kinetic energy can be
written as

K =
1
2
[
q̇>O q̇>Ō

]
(MO +Ψ)

[
q̇O
q̇Ō

]
. (29)

We can construct the subexpression KO which retains a
quadratic form of

KO =
1
2
[
q̇>O 0

]
MO

[
q̇O
0

]
(30)

so that KO ≥ 0. This means that KO can be treated as the
kinetic energy of a subsystem.

Similarly, we can partition the potential energy into two
components. To see this, consider the definition for the poten-
tial energy

P(q) = ∑
n=1

mjhj(q,Θ)g. (31)

It is also possible to partition this energy into

P = PO(qO,ΘO)+PŌ, (32)

by extracting the terms in the summation that belong to qO
and ΘO. Since P depends only on position state information,
any subexpression PO will also depend on only position state
information and as such can be considered a new potential
energy. Thus, the subexpression LO is Lagrangian and defines
a Lagrangian subsystem. The dynamics of this system are

MO(qO,ΘO)q̈O +CO(qO, q̇O,ΘO)q̇O +NO(qO,ΘO) =

Γ(q, q̇,Θ,v,uO)+BOuO, (33)

where MO ∈ Rb×b is the mass matrix for the subsystem,
CO ∈ Rb×b is the corresponding Coriolis/centrifugal matrix,
and NO ∈ Rb×1 is a gravitational force vector. Torques gener-
ated by both the interaction with the un-modeled system LŌ
and the inner-loop control v are represented by Γ, while the
torques applied by local actuators and their mapping into the
subsystem are represented by the term BOuO.

A generalized energy can be defined for this subsystem
and used in a constructive analysis similar to the previous
section to arrive at a decentralized PBC for the subsystem.
We begin with

EO(qO, q̇O,ΘO,Γ, t) = KO +PO−WO(qO, q̇>O ,Γ, t) (34)

where

WO =
∫ t

0
q̇>OΓ dτ , (35)

and define a storage function for the decentralized subsystem
as

SO(qO, q̇O,ΘO,Γ, t) =
1
2
(EO−EO re f )

2. (36)

Then, we follow the procedure applied in Sec. 3.1 to go from
(7) to (13). We take the time-derivative of SO to find

ṠO = (EO−EO re f )(ĖO− ĖO re f ), (37)

and EO to find

ĖO =
d(KO +PO)

dt
− dWO

dt
(38)

= (q̇>OBOuO + q̇>OΓ)− q̇>OΓ

= q̇>OBOuO, (39)

which follows from (33) and (35). By substituting ĖO into ṠO,
we find

ṠO = (EO−EO re f )(q̇>OBOuO− ĖO re f ) . (40)



Upon inspection of ĖO, it is apparent that the generalized
energy does indeed take a constant value on the limit cycle,
since ĖO = 0 when uO = 0. This means ĖO re f = 0 on the
limit cycle for the uncontrolled subsystem. Thus, we can
define a decentralized controller

uO(qO, q̇O,ΘO,Γ, t) =−kOΩO(EO−EO re f )B>O q̇O (41)

with similar passivity, saturation, and exponential conver-
gence properties to the centralized case.

4.2 Decentralized Analysis
The dynamics of the decentralized system indicate that

the control is robust to parametric error, which can be real-
ized by considering the partitioning schemes for (26) and
(27). The parametric error can be captured by a set Θe, where
each element θe ∈ Θe is the difference between an estimated
parameter and the true parameter. This implies the general-
ized inertia tensor Mj and the body Jacobian element ji,k will
have corresponding error terms. However, if we use the esti-
mated parameters in the partitioning scheme then the errors
will be absorbed into the remainder term Ψ and will prop-
agate into the decentralized dynamics through Γ. By (39),
the generalized energy for this system with error will still
have a conserved value along the limit cycle. Essentially, the
estimated parameters can be used to determine and track the
subsystem reference energy, regardless of parametric error.

One of the interesting properties of this decentralized
controller is that it has immediate implications for the storage
function of the centralized system. This controller ensures
convergence of the decentralized system to the target refer-
ence energy EO re f , but it also makes the storage function for
the centralized system converge to some finite energy value
that emerges due to the new dynamics. This is because uO can
be considered as a passive input to both systems, which im-
plies ĖO = Ė. Thus, in the continuous dynamics EO→ EO re f
as uO → 0, and E will converge to some steady-state error
relative to Ere f . When uO = 0, the biped is still under the
influence of the inner-loop control v, and still has a stable
limit cycle. Therefore, the discrete dynamics should cause
E→ Ere f as seen in Fig. 3.

4.3 Decentralized Simulations
This section explores the behavior of the biped with two

different decentralized PBCs while comparing them amongst
each other, to the centralized PBC, and to the biped with
only PD control. The motivation behind these comparisons
is to gain an understanding for the potential application to an
exoskeleton. The centralized PBC represents the theoretical
case if we could get perfect measurements of the human pa-
rameters and motion, while the decentralized cases represent
the compromise made by the choice of the system model. The
PD control alone represents the human walking without any
assistance. Again, all the PBC controllers were saturated at
50 Nm.

We have the two decentralized controls Uζ,Uξ and the
centralized control U . The main difference between the two

decentralized controls is the model information that they use.
Specifically, Uζ utilizes the same full model parameter set Θ

as the centralized control U , but it restricts the state informa-
tion to a vector xO local to the stance leg such that

xO = [px, py,φ,θa,θk, ṗx, ṗy, φ̇, θ̇a, θ̇k]
>. (42)

The second decentralized PBC Uξ uses the restricted state
information xO and also uses a restricted model parameter set

ΘO = {m f ,ms, I f , Is, l f , ls} (43)

that is also local to the stance leg. This is essentially modeling
the stance leg as a completely separate subsystem. This gives
rise to subsystems with generalized energies Eζ(xO,Θ) and
Eξ(xO,ΘO) that are used to construct the controls Uζ and Uξ,
respectively. The energy Eξ has a physical interpretation: it is
the energy of the stance shank and foot. The energy Eζ does
not have such an intuitive meaning.

In order to implement the decentralized controllers Uζ

and Uξ, we need target reference energies for each of them at
each contact configuration. These can be found in simulation
by simply computing the value of their generalized energies
over the nominal limit cycle of the biped under PD control
alone. We see in Fig. 6 that the decentralized energies take
constant values on the limit cycle, as expected. Since the
construction of Eξ ignores the majority of the mass and inertia
terms of the biped system, it is expected that its value along
the limit cycle is significantly smaller compared to the other
two energies. In contrast, when Eζ is compared to the real
system energy E, it has an increased virtual potential energy
which makes it larger than E.

4.3.1 Storage Convergence
We constructed an experiment of four simulations with a

perturbation to the biped’s initial condition on the limit cycle.
The independent variable is the control method used in each

0 0.5 1 1.5
10

12.5

15

E  (PBC)
E  (PBC)
E  (PBC)

460

470

480

490

500

Fig. 6. Generalized energy of all three systems while traversing the
limit cycle. There is a break in the y-axis of the graph to accommo-
date the difference in average magnitude of the energy trajectories.



simulation. The control parameters for all three PBC con-
trollers were kept the same, with Ω = [0,0,0,1,1,0,0,0]I8×8
and k = 1, which limits actuation to the stance side knee and
ankle. The same perturbation to the state of the biped on the
limit cycle at heel strike ∆xo = [08×1;0.4 q̇o] was used in each
simulation. Since the point of introducing control into the
system is to make the entire biped system converge back to
the limit cycle, we examined the centralized storage function
that utilizes the full state and model parameter information.
By contrast, the storage function of one of the decentralized
systems only gives information about the convergence of a
portion of the biped.

From Fig. 7, we can see that the behavior for the PBC
Uξ is very close to the system with PD control only, while the
decentralized PBC Uζ is very close to the “best case” scenario
of the centralized system. Again, the convergence rate back
to the limit cycle is significantly faster for U and Uζ than
for Uξ and PD control alone. This confirms that there a gain
in performance from the partitioning scheme in Sec. 4 to
generate Uζ rather than simply modeling the stance leg as a
localized subsystem to generate Uξ. The decentralized control
Uζ does not converge quite as quickly as U , but this is to be
expected since it does not utilize the full state feedback.

This plot exemplifies the points made in Sec. 6 and Sec.
5 about the connections between the implementation method
and storage injection. The reason why the decentralized con-
trol Uξ essentially acts like the biped with PD control alone is
because the magnitude of the energy error is small compared
to the other PBCs. This means less storage is injected to the
system at each impact and since this storage does not accu-
rately account for the “real distance” to the limit cycle, the
control is less effective. The decentralized PBC Uξ resembles
the performance of to the centralized control U precisely be-
cause the generalized energy for that decentralized subsystem
is close to the centralized energy.

4.3.2 Robustness
The robustness properties of each system are character-

ized by the gait sensitivity norm. We performed a simulation
experiment to examine this across an array of different scaling
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Fig. 7. System storage function across PBC implementations

gains k for each control while maintaining the same weighting
matrix Ω = [0,0,0,1,1,0,0,0]I8×8. This allows a rigourous
comparison of the robustness of the different controls. The
results of this experiment are displayed in Tab. 2. This table
demonstrates the same relationship observed in the storage
analysis; that U and Uζ are similar in behavior while Uξ acts
more like PD control alone. Also, there is a strict ordering
of the control methods across all the selected gains, in terms
of robustness, that correlates with the amount of information
available to the control. In other words, utilizing a larger
information set to construct the PBC makes the biped more
robust. While the table seems to indicate that increasing the
scaling gain always makes the gait more robust, this is not
always the case. For example, increasing the gain of the
centralized control to k = 100 makes the reciprocal of the
gait sensitivity norm 1/||∂g/∂e||2 = 2.0055, and increasing
further still to k = 1000 makes 1/||∂g/∂e||2 = 0.001, which
is a large decrease in robustness. These results reveal that
there exists a limit on the scaling gain such that exceeding the
limit actually makes the system performance worse.

4.4 Model Parameter Error
In this section we explore the effect of parameter error in

the energy function of the decentralized control Uζ. Based on
the results in the previous section, this control represents the
best version that could be implemented on a wearable device.
However, it is practically guaranteed that measures or esti-
mates of the inertia of the user will have some error. Further-
more, we believe that the characteristics of the parameter error
in this scenario should generalize to the other control cases
based on the analysis at the end of Sec. 4 and results in Sec.
4.3. An example simulation is given in Fig. 8 that uses Uζ

with control parameters Ω = [0,0,0,1,1,0,0,0]I8×8, k = 1,
and a set of arbitrarily chosen model parameter errors of
±30% difference from the parameters in Θ. It is perturbed
off the limit cycle at heel strike by ∆xo = [08×1;0.4q̇o]. It is
important to note that the reference energies are calculated
with the inaccurate model parameters and then used in the
control with the same error. This method ensures the storage
function is zero along the limit cycle and also is reflective of
a real-world implementation.

Even with model parameter error, the decentralized con-
trol still causes the biped to converge to the limit cycle in less

Table 2. Reciprocal of the gait sensitivity norm calculated across
controllers and scaling gains

Reciprocal of Gait Sensitivity Norm ( 1/||∂g/∂e||2 )

k = 0.01 k = 1 k = 10

U 0.1614 0.6614 3.0454

Uζ 0.1594 0.3345 2.2086

Uξ 0.1584 0.1597 0.1755

PD 0.1584
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Fig. 8. System storage function for a decentralized PBC with perfect
model parameters versus a decentralized PBC with random ±30%
error in the model parameters

steps than without PBC, as seen in Fig. 8. During heel contact
of the second and third step, it seems that the storage function
is larger than the non-PBC case but this behavior is transient
and quickly disappears. In addition, the value of the recipro-
cal gait sensitivity norm for the control with parameter error
is 1/||∂g/∂e||2 = 0.6614, which is greater than the non-PBC
system.

To investigate the general behavior of the PBC under
model parameter error, we ran an experiment with consistent
control parameters where we calculated the gait sensitivity
norm for the system with 30 random sets of model parameter
errors. The error multiple for each parameter µ ∈ Θ was
a uniform random variable in ±0.3, and we calculated the
parameter error norm as the 2-norm of all these error values.
A scatter plot of the results is given in Fig. 9. All of the values
on the plot are significantly larger than the gait sensitivity
norm for the PD control alone. These results support the idea
discussed in Sec. 5, that as long as the scheme for calculating
the storage injection at each impact correlates with the energy
of the system, the control should make the system more robust.
The major point of the experiment is to show the efficacy of
the PBC under random parametric error and not some “cherry-
picked” values.

5 Adaptive Reference Energy
In Sec. 3.1, an assumption about the magnitude of the

velocity norm was given in order to bound the convergence of
the storage function. This technical detail can be removed by
utilizing a time-varying reference energy, as opposed to a con-
stant reference energy, as seen in [40]. With this technique, the
storage function remains the same though its time-derivative
changes to

Ṡ = (E−Ere f )(q̇>Buu− Ėre f ) . (44)
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Fig. 9. Robustness of decentralized control vs model parameter er-
ror norm with k = 1

In [40], the adaptation law for the reference energy is

Ėre f = kre f (E−Ere f ) , (45)

which when combined with the control law (13), results in

Ṡ = (E−Ere f )(−k||q̇||2Ω(E−Ere f )− kre f (E−Ere f )) (46)

= (E−Ere f )
2(−k||q̇||2Ω− kre f ), (47)

where kre f is an adaptation gain that can be utilized for design.
This shows that even when ||q̇||2

Ω
= 0, the storage function is

bounded by

S(t)≤ S(0)e−2kre f t , (48)

which gives an absolute, deterministic convergence rate. How-
ever, the association of a constant reference energy with a
specific desired limit cycle of the system is lost.

5.1 Adaptive Simulation
In this section we explore the effect of the variation of

the adaptation gain kre f in a time-varying reference energy.
As mentioned in Sec. 5, if the norm of the joint velocities be-
comes zero then we loose the exponential convergence of the
storage function, but this can be addressed by the time-varying
energy. We choose to use the centralized U in these simula-
tions, with parameters of Ω = [0,0,0,1,1,0.001,1,0]I8×8 and
k = 1. In Fig. 10, we show some example cases of the system
with the perturbation ∆xo = [08×1;0.4q̇o] off the limit cycle
at heel strike. The storage function in this figure uses the
constant reference energies from Fig. 2, not the time-varying
energy, in order for the storage to be a valid metric for conver-
gence to the limit cycle. However, we stress that the control
has an adaptive, time-varying reference energy as input. As
the figure shows, having a high adaptation gain kre f makes
the system behave as if the PBC was inactive. This is because
the adaptation causes the reference energy to converge to the
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Fig. 10. System storage function for the centralized PBC with var-
ious adaptation gains. The scaling gain k = 1 is used across all
cases. The PD control by itself is given for comparison.

current system energy very quickly without dissipating error
from the original limit cycle. The figure also indicates the
system converges back to the desired limit cycle regardless of
the adaptation gain.

6 Discussion on Implementation
In the application to wearable devices, all of the control

methods appear to require knowledge of human joint torques
and/or the interaction forces between the user and the device.
Distinguishing between forces caused by nominal walking
behavior and forces caused by a disturbance is not a trivial
task. However, here we suggest an implementation of the
PBC that allows us to shortcut these challenges.

By considering the generalized system energy (5) and its
derivative (10), we can rewrite the energy as

E = Einit(q+, q̇+)+
∫ t

0
q̇>Buu dt (49)

= Einit − k
∫ t

0
(E−Ere f )q̇>BuΩB>u q̇ (50)

where Einit is the mechanical energy at t = 0, since W (0) = 0
by convention. Equation (49) implies that a PBC implemen-
tation could determine the value of Ere f on the limit cycle,
update the post-impact mechanical energy Einit at each impact,
and continuously measure the velocities B>u q̇ at the actuated
joints. This method can be used for both the centralized and
decentralized controllers.

The trade-off of this implementation is a loss of distur-
bance rejection in the continuous dynamics. As previously
stated, this is caused by not accounting for torques generated
outside of the PBC. However, external disturbances will cause
a change in the pre-impact state, which should propagate to
a change in the post-impact mechanical energy, which will
change Einit . This indicates that the PBC will begin to react
to the disturbance at the start of the next step.

The control implementation is equivalent to a scheme for

injecting a finite amount of storage

Sinit(q+, q̇+) =
1
2
(Einit(q+, q̇+)−Ere f )

2 (51)

at impact and then allowing the control to dissipate it. The
intuition behind the PBC is that this value should quantify
the “distance” in the energy space to the desired limit cycle.
Though we derive the method for calculating Sinit based on a
model, the decentralized analysis suggests that it is valid to
use any metric that becomes zero on the desired limit cycle.
It should also correlate with the system energy in such a way
that the notion of hybrid passivity in [31] is preserved from
one stride to the next (i.e., the impact dynamics dissipate the
metric).

In addition, there are other schemes for choosing the post-
impact storage update. For example the method in [1] adds
a term into Sinit to push the biped towards a desired walking
speed that is different from the original target limit cycle. It
is well known that a biped’s walking speed correlates with
kinetic energy [9, 41], which provides some intuition as to
why this is effective. Since walking speed is only one feature
of a walking gait, this idea could be extended to account for a
wider variation of tasks in a neighborhood of a known limit
cycle.

7 Conclusion
We conclude that a decentralized PBC can be generated

that has performance close to the centralized control by maxi-
mizing the use of available state and model parameter infor-
mation. We also show that control can improve the robustness
and convergence of the biped to the limit cycle, even in the
presence of model parameter error. This decentralization di-
rectly addresses the challenges introduced by the application
to wearable devices, since the human user represents a highly
complex unmodeled dynamical system. The control is also
passive, which has been used in teleoperation [42] and has
useful properties for the general domain of human-machine
interaction by ensuring that the energy output of the system is
bounded by the human input. This could help us design con-
trollers for wearable robots that are responsive to the human
input while also having confidence in the safety and stability
of the device and user. One of the limitations of this work is
the issue of implementation on a physical system. The imple-
mentation method we suggest does not attempt to measure
the external forces applied to the system in the continuous
dynamics, which may limit the responsiveness of the control
method. However, we believe that the method can still impart
benefits, such as an increase in the basin of attraction. The au-
thors plan to implement this method in hardware and perform
physical experimentation as future work.
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