
41

Shuffles and Circuits (On Lower Bounds for Modern
Parallel Computation)

TIM ROUGHGARDEN, Stanford University

SERGEI VASSILVITSKII, Google, Inc.

JOSHUA R. WANG, Stanford University

The goal of this article is to identify fundamental limitations on how efficiently algorithms implemented on
platforms such as MapReduce and Hadoop can compute the central problems in motivating application do-
mains, such as graph connectivity problems. We introduce an abstract model of massively parallel computa-
tion, where essentially the only restrictions are that the “fan-in” of each machine is limited to s bits, where s is
smaller than the input sizen, and that computation proceeds in synchronized rounds, with no communication
between different machines within a round. Lower bounds on the round complexity of a problem in this model
apply to every computing platform that shares the most basic design principles of MapReduce-type systems.
We prove that computations in our model that use few rounds can be represented as low-degree polynomials
over the reals. This connection allows us to translate a lower bound on the (approximate) polynomial degree
of a Boolean function to a lower bound on the round complexity of every (randomized) massively parallel
computation of that function. These lower bounds apply even in the “unbounded width” version of our model,
where the number of machines can be arbitrarily large. As one example of our general results, computing
any nontrivial monotone graph property—such as connectivity—requires a super-constant number of rounds
when every machine receives only a subpolynomial (in n) number of input bits s . Finally, we prove that, in
two senses, our lower bounds are the best one could hope for. For the unbounded-width model, we prove a
matching upper bound. Restricting to a polynomial number of machines, we show that asymptotically better
lower bounds would separate P from NC1.

CCS Concepts: • Theory of computation → Parallel computing models; Algebraic complexity theory;
Massively parallel algorithms;

Additional Key Words and Phrases: Map-reduce, lower bounds, s-Shuffle

ACM Reference format:

Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. 2018. Shuffles and Circuits (On Lower Bounds
for Modern Parallel Computation). J. ACM 65, 6, Article 41 (November 2018), 24 pages.
https://doi.org/10.1145/3232536

A preliminary version of this paper appeared in the 28th ACM Symposium on Parallelism in Algorithms and Architectures,
July 2016.
T. Roughgarden was supported in part by NSF Grant CCF-1524062.
J. R. Wang was supported in part by a Stanford Graduate Fellowship and NSF Grant CCF-1524062.
Authors’ addresses: T. Roughgarden, Stanford University, Department of Computer Science, 353 Serra Mall, Stanford,
CA 94305; email: tim@cs.stanford.edu; S. Vassilvitskii, sergeiv, Google, 111 8th Ave, New York, NY 10011; email:
sergeiv@google.com; J. R. Wang, joshuawang, Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043; email:
joshuawang@google.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 0004-5411/2018/11-ART41 $15.00
https://doi.org/10.1145/3232536

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

https://doi.org/10.1145/3232536
https://doi.org/10.1145/3232536

41:2 T. Roughgarden et al.

1 INTRODUCTION

The past decade has seen a resurgence of parallel computation, and there is now an impressive
array of frameworks built for working with large datasets: MapReduce, Hadoop, Pregel, Giraph,
Spark, and so on. The goal of this article is to identify fundamental limitations on how efficiently
these frameworks can compute the central problems in motivating application domains, such as
graph connectivity.

Modern architectures for massively parallel computation share a number of common attributes.
First, the data, or the input to the computation, are partitioned arbitrarily across all of the nodes
participating in the computation. Second, computation proceeds in synchronous rounds. In every
round, each machine looks at the local data available and performs some amount of computa-
tion without communicating with other machines. After the computation is done, a communication
round begins, where each machine can send messages to other machines. Importantly, there are no
restrictions on the communicating pairs: the communication pattern can be arbitrary and input-
dependent. Once the communication phase is over, a new round begins. For example, for readers
familiar with the MapReduce framework, the computation corresponds to the reduce phase, the
designation of addressees to the map phase, and the actual communication to the shuffle phase.

Most previous work has focused on designing efficient algorithms for these systems. To that
end, a number of models for MapReduce and its variants have been proposed; see Section 1.2 for a
complete list and a detailed comparison to the present work. Since these works aspire to realizable
positive results, their models aim to be faithful to a specific system and often involve a number of
system-dependent parameters and constraints that govern the algorithmic design space.

In this work, motivated by the rapidly changing landscape of the systems deployed in practice
and in search of impossibility results, we take a different approach. Instead of looking for a faithful
model for the system du jour, we extract the most fundamental constraints shared by all of these
models and examine the consequent restrictions on feasible computations. By focusing on a single
parameter, namely the input size for each machine, and a single benchmark, the number of rounds

of computation, we obtain parameterized lower bounds that apply to every computing framework,
present or future, that shares the same design principles.

1.1 Summary of Contributions

Our first contribution is the definition of the s-Shuffle model of massively parallel computation,
which captures the core properties common to all modern parallel processing systems. Why do we
need yet another model of parallel computation? There is a long tradition in theoretical computer
science of using one (reasonably realistic) computational model to design algorithms for a problem
and a second (stronger and less realistic) model to prove lower bounds. For example, in the field
of streaming algorithms, ideal upper bounds are for algorithms that make one pass over the input
and use small space and minimal processing time, while lower bounds are usually derived in the
(stronger) communication complexity model [2]. In the study of data structures, positive results
take care to quantify preprocessing time and query time in addition to space, while space-time
tradeoffs are typically derived from lower bounds in the extremely powerful cell-probe model [45].
The point of the s-Shuffle model is to act as an ultra-powerful model of parallel computation, akin
to the communication complexity and cell-probe models in which lower bounds are unassailable.

Conceptually, computation in the s-Shuffle model proceeds in synchronous rounds. In
each round, each machine performs an arbitrary computation on its input and sends arbitrary
information to arbitrary machines in the next round, subject only to the constraint that each
machine receives at most s bits each round. In the most powerful unbounded-width version of
our model, where the number of machines is unlimited, the only restriction is that the “fan-in” of

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:3

each machine is limited to s bits, where s is a parameter smaller than the input size n (unlimited
extra space can be used for computations on these inputs).

Second, we prove that computations in the s-Shuffle model that use few rounds can be rep-
resented as low-degree polynomials over the reals. Specifically, we prove that if a function can
be computed by such a computation with fan-in s per machine in r rounds (even with un-
bounded width), then the function has a polynomial representation with degree at most sr (The-
orem 3.1). In particular, computing a function with a polynomial representation of degree n re-
quires �logs n� rounds. This lower bound implies, for example, that computing such a function
with s = nϵ per machine requires 1/ϵ rounds in our model. Similarly, if s is only polylogarithmic,
then Ω(logn/ log logn) rounds are needed. Our lower bounds also extend, with a constant-factor
degradation, to randomized computations.

Are there super-constant lower bounds on the number of rounds required to compute natural
functions when the fan-in s is polynomial in n, such as s =

√
n? Our third contribution is a proof

that, in two senses, our lower bounds are the best one could hope for. For the unbounded-width
model, our lower bound is completely tight as every function can be computed in at most �logs n�
rounds. But what if only a polynomial number of machines are allowed? Here, we show that better
lower bounds require proving very strong circuit lower bounds. Specifically, any lower bound
asymptotically larger than Θ(logs n) for a function in P would separate NC1 from P , a notorious
open question in circuit complexity (Theorem 6.1).

Fourth, by relating MapReduce-type computations to polynomials, we can apply the sophisti-
cated toolbox known for polynomials to reason about these computations. As one example, by
combining the Rivest-Vuillemin solution to the Aanderaa-Rosenberg conjecture [38] with known
relationships between decision tree complexity and polynomial degree, we obtain a lower bound
of approximately 1

2 logs n on the number of rounds required for deciding any nontrivial monotone
graph property, wheren is the number of vertices and the input is given as the characteristic vector
of the graph’s edge set (Theorem 4.3).

Finally, we develop new machinery for proving lower bounds on the polynomial degree of
Boolean functions and hence on the round complexity of massively parallel computations. While
tight polynomial degree bounds are of course known for many Boolean functions, we prove new
(tight) lower bounds for graph problems, including undirected st-Connectivity (Theorem 5.5).
These degree lower bounds imply lower bounds of roughly 2 logs n on the round complexity of
connectivity problems in any conceivable MapReduce-type system, even when the width is un-
bounded (Corollaries 5.4, 5.6, 5.8, and 5.10).

1.2 Related Work

The MRC Model and Its Precursors. MapReduce was introduced as a system for large-scale data
processing by Dean and Ghemawat [10]. Karloff et al. [24], inspired in part by Feldman et al. [15],
introduced a computational model specially for MapReduce-type computations. This model is
called MRC, and it identified the number of synchronous rounds as the key metric for comparing
different algorithms. Furthermore, they limited the amount of parallelism allowed in the model,
insisting that it be not too small by restricting the memory of each machine to be sublinear in
the input, but also not too large by restricting the total number of machines to be sublinear in the
input as well. They showed how to simulate a subclass of EREW algorithms in MRC, but left open
the question of whether all NC languages can be simulated. Goodrich et al. [19] further extended
these simulation results and gave MRC algorithms for sorting and searching.

The MRC model in Karloff et al. [24] only placed upper bounds on the number of machines
and the space available on each, limiting both to n1−ϵ for an input of size n and some fixed ϵ > 0.
Goodrich et al. [19] were the first to focus on the total input to each machine, the key parameter

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:4 T. Roughgarden et al.

of the model of the present work. This measure was subsequently adopted by several authors in
proving upper bounds on the space-round tradeoffs in these computations, and this parameter has
been variously called memory, space, and key-complexity [3, 6, 17, 29, 36]. The algorithmic tools
and techniques developed for efficient computation in this model include notions of filtering [29],
multi-round sampling [14, 28], and coresets [4, 32], among others. Recently, Fish et al. [16] in-
troduced a uniform version of MRC and proved strict hierarchy theorems with respect to the
computation time per processor.

Valiant’s bulk-synchronous parallel (BSP) model [42] anticipated many of the features of
MapReduce-type computations. Computation in the BSP model proceeds in “supersteps,” anal-
ogous to rounds in the MRC model, with each processor sending and receiving at most h messages
between rounds (so h corresponds to our fan-in parameter s). Positive results in the BSP model
generally focus on minimizing a combination of delays from synchronization and the amount of
computation time performed. One interesting exception is the work of Goodrich [18], who gave
asymptotically matching upper and lower bounds on the number of supersteps for sorting in the
BSP model. The lower bound in Goodrich [18] uses a reduction to sorting from computing the log-
ical OR function and adapts an argument from Cook et al. [9] for “ideal PRAMs” to prove a lower
bound of Ω(logh n), where n is the input length. This lower bound is analogous to our warm-up
result in Corollary 4.1, where we prove a tight lower bound of �logs n� on the number of rounds
needed to compute the OR function (among others) in our model. Further lower bounds for the
BSP model appear in MacKenzie and Ramachandran [31].

Lower Bounds for MapReduce-type Computations. Most of the known lower bounds for explicit
functions in models of massively parallel computation concern either communication (with a fixed
number of rounds) or restricted classes of algorithms (for round lower bounds). Pietracaprina
et al. [36] prove nontrivial lower bounds for matrix multiplication in a limited setting, which
requires computing all elementary products (and specifically excludes Strassen-like algorithms).
Similar kinds of limitations are required by Jacob et al. [22] and Beame et al. [6] to prove lower
bounds for a list ranking problem and relational query processing, respectively. Bilardi et al. [7]
prove tight lower bounds on the fan-in required to compute the Fast Fourier Transform in a re-
stricted BSP model, where the computation conforms to a directed acyclic graph on the operations
to be performed. Finally, both Beame et al. [6] and Afrati et al. [1] study, for a fixed number of
rounds (usually a single round), space–communication tradeoffs.

In distributed computing, the total amount of communication is often the most relevant com-
plexity measure. For example, Woodruff and Zhang [44] and Klauck et al. [25] identify models and
problems for which there is no algorithm that beats the communication benchmark of sending
the entire input to a single machine. Because massively parallel systems are designed to send a
potentially large amount of data in a single round, such communication lower bounds do not gen-
erally imply lower bounds for round complexity. For example, in practice, matrix multiplication
is regarded as an “easy” problem in MapReduce—indeed, MapReduce was invented for precisely
such computations (see, e.g., Leskovec et al. [30])—even though its solution requires total commu-
nication proportional to the size of the matrix.

We next compare and contrast our s-Shuffle model with several other parallel and distributed
computational models that have been studied.

Congested Clique. The “congested clique” model is the special case of the CONGEST model [35]
in which each pair of machines is connected by a direct link (see Drucker et al. [13] and the refer-
ences therein). The original motivation for this model was the design and analysis of distributed
algorithms, but it is also relevant to massively parallel computation. In the most commonly studied
version of the model, n machines with unlimited computational power communicate in synchro-
nized rounds. Each machine initially holds some numberm of input bits, and, in each round, each

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:5

machine can send a (different) message ofw bits to every other machine. (Typically,w = Θ(logn).)
Thus, the numbernw of bits that a machine can send and receive in each round automatically scales
linearly with the number of machines.

In our model, we allow the number s of bits that a machine can receive in a given round to
be sublinear in the total number of machines. In this sense, our model is weaker than the con-
gested clique model (when s = o(n)).1 On the other hand, MapReduce-type systems differ from
distributed settings in that there is little motivation for restricting the amount of point-to-point
communication in a round. In our model, a machine can receive all s of its bits in a round from a
single other machine. In this sense, our model is stronger than the congested clique model (when
s = ω (w)). Hegeman and Pemmaraju [20] show that congested clique computations can be sim-
ulated by MapReduce computations (in the model in Karloff et al. [24]), albeit with space-per-
machine proportional to the communication-per-machine in the congested clique computation.
As already noted, the latter generally scales with the number of machines, while we are generally
interested in space-per-machine smaller than this.

Drucker et al. [13] forge an interesting connection between congested clique computations and
circuits. In analogy with our “barrier” result in Section 6, they prove a simulation result implying
that even slightly super-constant lower bounds on the round complexity of congested clique com-
putations for a problem in NP would imply better circuit size-depth tradeoffs for such problems
than are currently known (for unbounded fan-in circuits with unweighted threshold gates or with
mod-m gates, e.g.m = 6).2

Circuits with Medium Fan-in. Another related model is “circuits with medium fan-in”—arbitrary
gates with fan-in that scales with, but is smaller than, the input size—introduced recently in Hrubes
and Rao [21]. Our model is stronger than the one in Hrubes and Rao [21], with the most significant
difference being that the communication pattern in our model can be input-dependent. Our round
complexity lower bounds imply depth lower bounds for the model in Hrubes and Rao [21]. The
focus of that work [21] is on circuit size (rather than depth), so the lower bounds and barriers to
lower bounds identified in Hrubes and Rao [21] appear incomparable to ours.

Ideal PRAMs. The much older model of “ideal CREW PRAMs” is also highly relevant to our
unbounded-width model. In this model, which was introduced in Cook et al. [9], there is an un-
bounded number of processors with unbounded computational power and a shared memory. Com-
putation proceeds in synchronous rounds. In each round, each processor can read a single memory
cell and write to a single memory cell subject to the constraint that, at each time step, at most one
processor can write to any given memory cell. Perhaps the most intriguing result in Cook et al. [9]
is a parallel algorithm that computes the logical OR function (and, through reductions, many other
functions) in strictly fewer than log2 n rounds. The key idea in this result is to implicitly transmit
extra information by not writing to a memory cell. This potential “power of staying silent” is ex-
actly what makes our lower bounds in Section 3 interesting and nontrivial. Cook et al. [9] also
prove a lower bound of Ω(logn) on the number of rounds required to compute the OR function
(and many others). This lower bound translates (via a simulation argument) to a lower bound of
the form Ω(s−1 logn) in our model (in Cook et al. [9] each processor reads only one cell in each
round, while in our model each machine receives s bits per round). This implied lower bound is
nontrivial only when s = o(logn), and our lower bound of Ω(logs n) is asymptotically superior for
all super-constant s .

1For a simple example, suppose the machines want to compute the logical OR of their nm input bits. In the congested
clique model, this problem can be solved in 1 round. In our model, when the parameter s is less than n, more than 1 round
is required.
2To match our barrier in Section 6 and resolve N C1 vs. P using the techniques in Drucker et al. [13], it seems necessary
to prove logarithmic (rather than just super-constant) round lower bounds for congested clique computations.

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:6 T. Roughgarden et al.

The work of Cook et al. [9] also inspired Nisan [33] to introduce the fundamental concept of
the “block sensitivity” of a Boolean function (the logarithm of which characterizes the ideal PRAM
round complexity, up to a constant factor), which in turn is polynomially related to the decision
tree complexity, degree, and approximate degree of the function [33, 34]. Our results in Section 4
rely on this circle of ideas.

Finally, our technique of characterizing parallel computations as polynomials resembles the
work of Dietzfelbinger et al. [11], who used related ideas to sharpen the lower bound in Cook
et al. [9] by a constant factor for many Boolean functions.3

2 THE S-SHUFFLE MODEL

Section 2.1 develops intuition for our computational model by presenting an example and high-
lights some ways in which MapReduce-type computations differ from traditional circuit compu-
tations. Section 2.2 formally defines the s-Shuffle model. Section 2.3 presents the slightly more
general s–Shuffle(Σ) model and proves that it is powerful enough to simulate MapReduce com-
putations. Only Section 2.2 is essential for understanding most of the rest of this article.

2.1 A Warm-Up Example

Before formally defining our model, we study a specific example adapted from Nisan and
Szegedy [34]. The first purpose of this example is to introduce the reader to the abstract s-Shuffle
model in a concrete way. The second is to build an appreciation for the lower bounds in Sections 3–
5 by illustrating the cleverness possible in a parallel computation.4

Example 2.1 (Silence Is Golden). Consider the Boolean function E12 : {0, 1}3 → {0, 1} on three
inputs, which evaluates to 1 if and only if exactly one or two inputs are 1. Define E2

12 : {0, 1}9 →
{0, 1} as the Boolean function that takes nine inputs, applies E12 to each block of three inputs, and
then applies E12 to the results of the three blocks. For instance:

• E2
12 (0, 0, 1, 0, 1, 0, 1, 0, 0) = E12 (1, 1, 1) = 0;

• E2
12 (0, 0, 0, 1, 1, 0, 1, 1, 1) = E12 (0, 1, 0) = 1.

We now describe a remarkably efficient strategy for computing E2
12 in parallel, using only ma-

chines that operate on two (ordered) bits at a time. We first show how to compute E12 in two
“rounds.” Let (x1,x2,x3) denote the input. The first machine reads the bits x1 and x2; the second
machine x2 and x3; and the last machine x3 and x1. There is also a fourth machine which belongs
to “the second round.” Each machine in the first round sends a 1 to the second-round machine if its
inputs are 0 and 1 (in this order); otherwise, it stays silent (i.e., sends nothing). The second-round
machine receives either a 1 bit (if E12 (x1,x2,x3) = 1) or no bits at all (if E12 (x1,x2,x3) = 0), and in
all cases can correctly determine and output the value of the function.

To compute the function E2
12, we use a layered version of the same idea (see also Figure 1). We

think of the nine input bits as three blocks of three bits each. There are nine machines in the first
round, three for each block. There are three machines in the second round, each responsible for a
pair of blocks. There is a single machine in the third round, responsible for the final output.

The three bits of a block are distributed to the corresponding three first-round machines (in
ordered pairs), as in the computation of E12. Second-round machines have two “ports” in that their
inputs are also ordered; each has a “first input” (possibly empty) and a “second input” (again, possi-
bly empty). If the inputs of a first-round machine are 0 and 1 (in this order), then the machine sends

3More broadly, variations of “the polynomial method” have been used previously to prove lower bounds in many fields of
complexity theory, including circuit complexity [37, 41] and quantum query complexity [5].
4Of course, there are countless examples of analogously clever parallel algorithms in the literature.

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:7

Fig. 1. The parallel computation of E2
12 for two different inputs. The arrows show how the machines send

bits: an arrow pointing to the bottom left of a machine indicates that the bit is sent to the first port, while the

bottom right indicates the second port. Notice that at most one arrow points to a given port, but the arrow

that does so may change from input to input. Red arrows represent a zero bit and blue arrows represent a

one bit.

a 1 to the two second-round machines responsible for its block; otherwise, it sends nothing. The
communication pattern between the three blocks of first-round machines and the second-round
machines mirrors that of the distribution of bits to first-round machines: the first second-round
machine receives bits (if any) from the first and second blocks of first-round machines on its first
and second ports, respectively; the middle second-round machine receives bits from the second
and third blocks on its first and second ports, respectively; and the last second-round machine
receives bits from the third and first blocks on its first and second ports, respectively. If a second-
round machine receives nothing as its first input and a 1 as its second input, then it sends a 1 to the
third-round machine; otherwise, it sends nothing. Finally, the third-round machine outputs 1 if it
was sent a 1, and otherwise (in which case it receives nothing) it outputs 0. It is straightforward
to verify that this computation correctly evaluates E2

12 on all inputs. The computation uses three
rounds of communication, with each machine receiving at most two bits of input.

Shuffles vs. Circuits. There are, unsurprisingly, many similarities between this parallel computa-
tion and circuits: each picture in Figure 1 looks like a Boolean circuit, with machines corresponding
to gates, the number of rounds corresponding to the depth, the number of machines correspond-
ing to the size, and the number of input ports corresponding to the fan-in. We note, however, that
no circuit with fan-in 2 and depth 3 (of any size) computes the function E2

12, as the function de-
pends on all nine of its inputs. This is true even for circuits with an alphabet larger than {0, 1},
such as {0, 1, “nothing”}. In general, while �logs n� is an obvious lower bound on the depth of any
circuit with fan-in s that computes a function that depends on all inputs, this lower bound does
not necessarily hold for the number of rounds required by a MapReduce-type computation.

2.2 The Basic Model

What augmentations to standard circuit models are required to capture arbitrary MapReduce-type
computations? The first two are evident from our parallel computation of E2

12 in Section 2.1.

(1) The communication pattern, which plays the role of the circuit topology (i.e., which gates
are connected to which), can be input-dependent. (Cf., Figure 1.)

(2) Each machine has the option of staying silent and sending nothing. We refer to this as
“sending a ⊥.”

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:8 T. Roughgarden et al.

At first blush, extension (2) might seem equivalent to enlarging the alphabet by one character. This
is not quite correct, since ⊥’s combine with each other and with other bits in a particular way.

Definition 2.2 (⊥-sum). The ⊥-sum of z1, z2, . . . , zm ∈ {0, 1,⊥} is:

• 1 if exactly one zi is 1 and the rest are ⊥;
• 0 if exactly one zi is 0 and the rest are ⊥;
• ⊥ if every zi is ⊥;
• undefined (or invalid) otherwise.

The ⊥-sum ofm s-tuples a1, . . . ,am is the entry-by-entry ⊥-sum, denoted �m
i=1ai .

Most circuit models severely restrict the computational power of each gate. This is not appropri-
ate in the present context, where each “gate” corresponds to a general-purpose machine embedded
in a MapReduce-type infrastructure. This motivates our third extension.

(3) Each machine can perform an arbitrary computation on its inputs.5

Our formal model extends the usual notion of a circuit (with fan-in s) to accommodate (1)–(3).
Our notation follows that in Vollmer [43] for circuits.

Definition 2.3 (s-Shuffle Computation). An R-round s-Shuffle computation with inputs

x1, . . . ,xn and outputs y1, . . . ,yk has the following ingredients:

(1) A setV of machines, which includes one machine for each input bit xi and each output bit
yi .

(2) An assignment of a round r (v) to each machine v ∈ V . Machines corresponding to input
bits have round 0. Machines corresponding to output bits have round R + 1. All other
machines have a round in {1, 2, . . . ,R}.

(3) For each pair (u,v) of machines with r (u) < r (v), a function αuv from {0, 1,⊥}s to
{0, 1,⊥}s .

We think of each machine as having s “ports,” where each port can accept at most 1 bit. The
interpretation of a function αuv is: given that machine u received z = z1, . . . , zs on its s input
ports (where each zi ∈ {0, 1,⊥}), it sends the message αuv (z) ∈ {0, 1,⊥}s to the s input ports ofv .6

Thus, machine u explicitly communicates with machine v (on at least one port) if and only if at
least one coordinate of αuv (z) is not ⊥. We conclude that the model supports input-dependent
communication patterns, as in (1). The model also supports (2) and (3), by definition.

The output of an s-Shuffle computation is evaluated as in a circuit, with the important con-
straint that, on every input, each input port should receive a bit (i.e., a non-⊥) from at most one
machine.

Definition 2.4 (Result of an s-Shuffle Computation). The result of an s-Shuffle computation
assigns a value д(v) ∈ {0, 1,⊥}s to every machine v ∈ V and is defined inductively as follows.

(1) For a round-0 machine v , corresponding to an input bit xi , the value д(v) is the s-tuple
(xi ,⊥,⊥, . . . ,⊥).

5When the goal is to prove algorithmically meaningful upper bounds, it would be sensible to restrict machines to efficient
computations. Also, the total space used by a machine, both for its input and for its computations, should be small (certainly
sublinear in the total input size). Given our focus on lower bounds, our allowance of arbitrary computations and unlimited
scratch space on each machine only makes our results stronger.
6The model allows a machine to communicate with machines in all later rounds, not just machines in the next round.
Computations of the former type can be translated to computations of the latter type by adding dummy machines, so this
is not an important distinction.

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:9

(2) Given the value д(u) assigned to every machine u with r (u) < q, the value assigned to
a machine v with r (v) = q is the ⊥-sum, over all machines u with r (u) < r (v), of the
message αuv (д(u)) sent to v by u:

д(v) := �u : r (u)<r (v)αuv (д(u)). (1)

The result of an s-Shuffle computation is valid if every ⊥-sum in Equation (1) is well de-
fined, and, if for every machine v corresponding to an output bit yi , the value д(v) is either
(0,⊥,⊥, . . . ,⊥) or (1,⊥,⊥, . . . ,⊥). The “0” or “1” in the first coordinate is then interpreted
as the corresponding output bit yi . Unless otherwise noted, we consider only valid s-Shuffle
computations.

By convention, the machines corresponding to the input and output bits of the function do not
contribute to the number of rounds: these are “placeholdermachines” that cannot do any nontrivial
computations. Translating the parallel computations in Section 2.1 of the functions E12 and E2

12
into the formalism of Definitions 2.3 and 2.4 yields 2-round and 3-round s-Shuffle computations,
respectively, in accordance with intuition.

The following definition is analogous to that for circuits.

Definition 2.5 (Width). The width of an s-Shuffle computation is the maximum number of ma-
chines in a round other than round 0 and the final round.

Remark 2.6 (Randomized Computations). A randomized s-Shuffle computation is a probability
distribution over deterministic s-Shuffle computations.7 We say that such a computation com-
putes a function f if, for every input x, the output of the computation equals f (x) with probability
at least 2/3.

2.3 Simulating MapReduce in the s-Shuffle Model

In the definition of the s-Shuffle model, the input ports of each machine are ordered, and a
message from one machine to another includes a designation of which outbound bit is destined
for which input port. In actual MapReduce computations, in each round, a machine receives
an unordered collection of key-value pairs sent from other machines. We next extend the basic
s-Shuffle model to accommodate such unordered sets of messages.

Fix a word size w , the largest message size (in bits) that one machine can send to another. (In
our MapReduce simulation,w will be n1−ϵ for a parameter ϵ > 0.) Let Σ denote all possible multi-
sets of bit strings with length at most w . The s–Shuffle(Σ) model is defined analogously to the
s-Shuffle model, with the following changes. The value д(u) assigned to a machine u, other than
the machines corresponding to the inputs and the outputs, is now an element of Σ with total bit
complexity (i.e., sum of message lengths) at most s . Thus, a machine now receives an unordered set
of messages with at mostw bits each but is still constrained to receive at most s bits of information
per round. We redefine the functions αuv to have domain and range equal to the elements of Σ that
have total bit complexity at most s . A ⊥-sum of such multi-sets is their union (with multiplicities
adding) and is undefined if the total bit complexity of this union exceeds s . The value of the ith
round-0 machine is {xi }, where xi is the ith input bit. In a valid s–Shuffle(Σ) computation, the
value of every machine corresponding to an output bit is either {0} or {1}.

With this extension to the model, it is straightforward to map an arbitrary r -round MapReduce
computation that usesm machines with space at most s bits each to an (r + 1)-round s–Shuffle(Σ)

7This definition corresponds to “public coins,” in that it allows different machines to coordinate their coin flips with no
communication. One could also define a “private coins” model where each machine flips its own coins. Our lower bounds
are for the stronger public-coin model and apply to the private-coin model as a special case.

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:10 T. Roughgarden et al.

computation that usesm(r + 1) machines (not counting the machines that correspond to input and
output bits). To be more precise, we focus specifically on the computational model used to define
the MRC complexity class in Karloff et al. [24]. In this model, there is a parameter ϵ > 0, and
there are at most n1−ϵ machines, each with space at most n1−ϵ bits. The basic unit of information
in a MapReduce computation is a 〈key;value〉 pair. The computation in a given round is defined
by two sets of functions, mappers and reducers. A mapper is a function that takes as input some
number of 〈key;value〉 pairs and, independently for each such pair, produces a finite multiset of
〈key;value〉 pairs. A reducer is a function that takes as input a binary string, representing a key k ,
and a set of values v1,v2, . . . (from key-value pairs with key k), and outputs a set of 〈key;value〉
pairs. We can think of the set of reducers as being indexed by the corresponding key k . The shuffle
step of a round is responsible for routing the key-value pairs generated by the mappers in that
round to the appropriate reducers in that round essentially by grouping and assigning together
key-value pairs that have the same key. The key-value pairs emitted by reducers proceed straight
to the mappers of the next round; no routing between machines is necessary. It should be possible
to deduce the output of the computation from the key-value pairs produced by the reducers in the
final round. Every machine used in the MapReduce computation can host any number of mappers
and reducers subject to the per-machine space constraint of n1−ϵ bits.

Proposition 2.7 (Simulating MapReduce). Every r -round MapReduce computation withm ma-

chines and space s per machine can be simulated by an (r + 1)-round s–Shuffle(Σ) computation with

(r + 1)m machines and word size s .

Proof. The idea is to make the machines in a round of the s–Shuffle(Σ) computation respon-
sible for simulating the computation and communication that occurs in the corresponding round
of the MapReduce computation.

In detail, fix a MapReduce computation that uses m machines with space at most s each. Call
these machines M-machines to distinguish them from the machines used in our s–Shuffle(Σ) com-
putation, which we call S-machines. We simulate the MapReduce computation in the s–Shuffle(Σ)
model as follows. In addition to the usual (fictitious) S-machines corresponding to input and out-
put bits, there are m S-machines for each round 1, 2, . . . , r + 1. The functions αuv from round-0
S-machines u to round-1 S-machines v are defined to simulate the initial assignment of input bits
to the m M-machines of the MapReduce computation. In a generic round of the s–Shuffle(Σ)
simulation, every round-i S-machine simulates the round-(i − 1) reducers and the round-i map-
pers of the corresponding M-machine and also the routing of key-value pairs to reducers done in
the ith shuffle step of the MapReduce computation. (For i = 1, round-1 S-machines only need to
simulate the corresponding round-1 mappers and the subsequent shuffle step.) Thus, for round-i
and round-(i + 1) S-machines u and v , the function αuv is defined as the set of key-value pairs
generated by the M-machine corresponding to u (by its round-(i − 1) reducers composed with its
round-i mappers, given the key-value pairs it was assigned in the previous round) that get routed
to the M-machine corresponding to v in the shuffle step of round i of the MapReduce computa-
tion. Because the M-machines have space only s , the total bit complexity of the messages sent to
an S-machine in the simulation is at most s .

Inductively, the value д(u) assigned to an S-machine u in round i of the s–Shuffle(Σ) com-
putation is exactly the set of key-value pairs given to the round-(i − 1) reducers hosted on the
corresponding M-machine in the MapReduce computation. Thus, the round-(r + 1) S-machines
are assigned the final key-value pairs of the MapReduce computation, from which the output bits
can be deduced and sent to the corresponding output S-machines. This completes the simulation
of MapReduce computations in the s–Shuffle(Σ) model. �

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:11

3 REPRESENTING SHUFFLES AS POLYNOMIALS

This section shows that low-round s-Shuffle computations with small s can only compute
Boolean functions that can be represented as low-degree polynomials. Section 3.1 proves this for
the basic s-Shuffle model. Section 3.2 shows that the implied lower bounds on round complexity
are the best possible for the unbounded-width s-Shuffle model. Section 3.3 extends these lower
bounds to randomized computations and Section 3.4 to the s–Shuffle(Σ) model from Section 2.3.

3.1 Representing s-Shuffle Computations

To prove lower bounds on the number of rounds required by an s-Shuffle computation, we as-
sociate each computation with a polynomial over the reals that matches (on {0, 1}n) the function
it computes. We show that the number of rounds used by the computation governs the maximum
degree of this polynomial, and hence functions that correspond to polynomials of high degree
cannot be computed in few rounds.

Theorem 3.1 (Round-Efficient Shuffles Are Low-Degree Polynomials). Suppose that an

s-Shuffle computation correctly computes the function f : {0, 1}n → {0, 1}k in r rounds. Then,

there are k polynomials {pi (x1, . . . ,xn)}ki=1 of degree at most sr such that pi (x) = f (x)i for all

i ∈ {1, 2, . . . ,k } and x ∈ {0, 1}n .

Proof. We proceed by induction on the number of rounds. We claim that for every non-output
machine v ∈ V and value z ∈ {0, 1,⊥}s , there is a polynomial pv,z (x1, . . . ,xn) that evaluates to 1
on points x for which the computation’s assigned value д(v) to v is z and to 0 on all other points
x ∈ {0, 1}n . Furthermore, pv,z has degree at most sr (v) .

The base case of the induction is for a machine v in round zero (r (v) = 0). Each such machine
corresponds to an input bit xi , and its value д(v) is (xi ,⊥,⊥, . . . ,⊥). The (degree-1) polynomials
for z = (0,⊥, . . . ,⊥) and z = (1,⊥, . . . ,⊥) are pv,z (x1, . . . ,xn) = 1 − xi and pv,z (x1, . . . ,xn) = xi ,
respectively. All other values of z are impossible for such a machine, so they have polynomials
pv,z (x1, . . . ,xn) = 0.

Consider a machine v that corresponds to neither an input bit nor an output bit. Fix some po-
tential value z ∈ {0, 1,⊥}s of д(v) and focus first on the ith coordinate of д(v). When is it equal
to zi? We first consider the case where zi is 0 or 1 (and not ⊥). The entry д(v)i is a ⊥-sum of the
messages that machinev receives on port i from all machines in previous rounds. Henceд(v)i = zi

when a single machine in a previous round sends zi on port i to machinev (and the rest send ⊥’s).
Consider some machine u of a previous round. It sends zi on port i to machine v when αuv (д(u))
has an ith entry of zi . The set of assigned values д(u) to u that cause it to do this is the preimage,
under αuv , of the subset of {0, 1,⊥}s containing all elements with a zi in the ith coordinate. By our
inductive hypothesis, for each value д(u) in this preimage, there is a polynomial of degree at most
sr (v)−1 that indicates the inputs x for which u receives this value. Since u is assigned exactly one
value, we can sum these polynomials together to get a polynomial (of degree at most sr (v)−1) that
indicates when u receives any value in this preimage. This polynomial indicates the inputs x for
which u sends zi to port i of machine v . Furthermore, since the s-Shuffle computation is valid,
at most one machine in a previous round can send a non-⊥ value to v on port i . Summing over
the polynomials of all machines in previous rounds yields a polynomial, still with degree at most
sr (v)−1, that indicates whether or not v received zi on port i (from any machine).

The inputs x for which д(v)i = ⊥ are those for which no machine from a previous round sends
a 0 or a 1 to v on the ith port. A polynomial for this case is just 1 minus the polynomials for the
д(v)i = 0 and д(v)i = 1 cases. The degree of this polynomial is at most sr (v)−1.

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:12 T. Roughgarden et al.

To obtain a polynomial that represents the inputs x for which д(v) = z, we just take the product
of the polynomials that represent the eventsд(v)1 = z1, . . . ,д(v)s = zs . This polynomial has degree
at most sr (v) , and this completes the inductive step.

Finally, consider a machinev that corresponds to an output bit yi . As in the preceding inductive
step, we can represent the first coordinate ofд(yi) with a polynomialpi of degree at most sr (yi)−1 =
sr . Since the s-Shuffle computation is valid, the polynomial pi also represents the ith output bit
of the function f . �

The following corollary is immediate.

Corollary 3.2 (Round Lower Bound). If some output bit of the function f : {0, 1}n → {0, 1}k
cannot be represented by a polynomial with degree less than d , then every s-Shuffle computation

that computes f uses at least �logs d� rounds.

There is a mature toolbox for bounding below the polynomial degree necessary to represent
Boolean functions; we apply and contribute to this toolbox in Section 4.

Theorem 3.1 and Corollary 3.2 apply even to unbounded-width s-Shuffle computations. For
functions f with d = n, Proposition 3.4 gives a matching upper bound in the unbounded-width
model.

Remark 3.3 (No Converse to Theorem 3.1). A natural question (raised by a referee) is whether the
converse to Theorem 3.1 also holds: can every degree-sr polynomial be computed by an r -round
s-Shuffle? The answer is no. One simple counterexample is the degree-3 polynomial

p (x1,x2,x3,x4) = (x1 + x2 + x3 + x4) − (x1x2 + x1x3 + x1x4) − 2(x2x3 + x2x4 + x3x4)

+ (x1x2x3 + x1x2x4 + x1x3x4) + 3x2x3x4

in four variables. Restricted to the set {0, 1}4, p is a Boolean function, equal to 1 on every point
(x1,x2,x3,x4) with Hamming weight 1 or 4, and also every point with Hamming weight 2 for which
x1 = 1. A simple case analysis shows that there is no 1-round 3-shuffle computation that computes
this function. We leave as an open question the problem of characterizing the set of functions that
can be computed by r -round s-Shuffle computations.

3.2 A Matching Upper Bound in Unbounded Width Model

We next show that the round lower bound in Corollary 3.2 is best possible in the unbounded-width
s-Shuffle model (with an unlimited number of machines): for every s ≥ 2 and every function f :
{0, 1}n → {0, 1}k , f can be computed by an s-Shuffle computation in �logs n� rounds.We conclude
that stronger lower bounds are only possible under additional assumptions. The prospects for
stronger lower bounds for polynomial-width s-Shuffle computations are the subject of Section 6.

Proposition 3.4 (Unbounded Width Upper Bound). For every s ≥ 2, every function f :
{0, 1}n → {0, 1}k can be computed by an s-Shuffle computation in �logs n� rounds.

Proof. The idea is for every possible input to have a dedicated set of machines responsible
for computing f on that input. In more detail, there is one machine vx at round �logs n�—the last
round before the outputs—for each possible input x ∈ {0, 1}n . Each machine vx serves as the root
of a tree Tx with branching factor s and depth �logs n�. The machines of Tx are responsible for
notifying vx whether or not the input is in fact x. Each of the �n/s� machines at the leaves checks
if the s input bits that it monitors conforms to x, and, if so, it notifies its parent accordingly. After
�logs n� levels of such computations, vx knows whether or not the input is indeed x. The machine
vx either sends nothing to the outputs (in the likely case that the input is not x) or the bits of the
answer f (x) to the k output machines (if the input is x). �

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:13

3.3 Randomized Computations

We say that a polynomial p (x1, . . . ,xn) approximately represents a Boolean function f : {0, 1}n →
{0, 1} if |p (x) − f (x) | ≤ 1

3 for every x ∈ {0, 1}n . The approximate degree of a Boolean function is
the smallest value of d such that f can be approximately represented by a degree-d polynomial.
We next give an analog of Theorem 3.1 for randomized s-Shuffle computations (Remark 2.6),
which connects the rounds required by such computations to the approximate degree of Boolean
functions.

Theorem 3.5 (Round-Efficient Randomized Shuffles Are Low-Degree Approximate Poly-
nomials). Suppose that a randomized s-Shuffle computation computes the function f : {0, 1}n →
{0, 1}k in r rounds. Then there are k polynomials {pi (x1, . . . ,xn)}ki=1 of degree at most sr such that

|pi (x) − f (x)i | ≤ 1
3 for all i ∈ {1, 2, . . . ,k } and x ∈ {0, 1}n .

Proof. A randomized s-Shuffle computation is a distribution over deterministic computa-
tions. By Theorem 3.1, we can represent each output bit of these deterministic computations by a
polynomial of degree at most sr . The weighted averages of these polynomials, with the weights
equal to the probabilities of the corresponding deterministic computations, yield polynomials
p1, . . . ,pk such that, for every i and x ∈ {0, 1}n , pi (x) equals the probability that the randomized
s-Shuffle computation outputs a 1 on the input x. Since the randomized computation computes f
in the sense of Remark 2.6, these polynomials satisfy the conclusion of the theorem. �

Corollary 3.6 (Round Lower Bound (Randomized)). If some output bit of the function f :
{0, 1}n → {0, 1}k has approximate degree at least d , then every randomized s-Shuffle computation

that computes f uses at least �logs d� rounds.

Section 4 applies tools for bounding from below the approximate degree of Boolean functions
to derive round lower bounds for randomized s-Shuffle computations.

3.4 Representing the s–Shuffle(Σ) Model

Finally, we extend Theorem 3.1 to the s–Shuffle(Σ) model of Section 2.3.

Theorem 3.7 (Extension to the s–Shuffle (Σ) Model). Suppose that an s–Shuffle(Σ) compu-

tation correctly computes the function f : {0, 1}n → {0, 1}k in r rounds. Then, there are k polynomials

{pi (x1, . . . ,xn)}ki=1 of degree at most sr such thatpi (x) = f (x)i for all i ∈ {1, 2, . . . ,k } and x ∈ {0, 1}n .

Proof. The proof follows that of Theorem 3.1, with minor changes. We will again have a poly-
nomial pv,z (x1, . . . ,xn) that indicates the inputs x for which machine v is assigned the value z.
Note that z is now an element of Σ—a multi-set of strings each with length at most w—with total
bit complexity at most s , rather than an element of {0, 1,⊥}s . We define degree-1 polynomials for
the input machines as in the proof of Theorem 3.1.

For the general case, consider a machinev that corresponds to neither an input bit nor an output
bit. We can no longer argue coordinate-by-coordinate. First consider an input z with maximum-
possible bit complexity s . For a given assignment of the messages in z to (at most s) machines in
rounds prior to r (v), the event that v receives the value z in precisely this way can be inductively
expressed as the product of at most s polynomials that have degree at most sr (v)−1 each, yielding
a polynomial with degree at most sr (v) . (Because z has the maximum-allowable size s and the
computation is valid, the other machines must send nothing to v .) Summing over all possible
assignments of z to previous machines yields a degree-sr (v) polynomial that indicates the inputs
for which v is assigned the value z.

Now consider a value z with bit complexity only s − 1. The event thatv receives some superset of

z can be likewise expressed as a polynomial with degree at most sr (v) . Subtracting out the events

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:14 T. Roughgarden et al.

corresponding to strict supersets of z—which must have bit complexity exactly s and hence are
each representable by an sr (v)-degree polynomial—gives a degree-sr (v) polynomial that indicates
the inputs for which v is assigned the value z. Continuing the argument with values z with s − 2
bits, and so on, gives a degree-sr (v) polynomial representation for every v and z.

Finally, in a valid s–Shuffle(Σ) computation, an outputmachine receives either a singlemessage
of {0} or a single message of {1}. Indicating which of these is the case can be expressed as a sum of
polynomials from the last non-output round of the computation and hence also has an sr -degree
polynomial representation. �

Corollary 3.8 (Round Lower Bound (s–Shuffle (Σ) Model)). If some output bit of the func-

tion f : {0, 1}n → {0, 1}k cannot be represented by a polynomial with degree less than d , then every

s–Shuffle(Σ) computation that computes f uses at least �logs d� rounds.

By the simulation argument in Proposition 2.7, the same lower bound (less 1) applies to the
computational model of MapReduce used to define theMRC complexity class in [24].

4 LOWER BOUNDS FOR POLYNOMIAL DEGREE

Corollary 3.2 and its extensions reduce the problem of proving lower bounds on the round com-
plexity of s-Shuffle computations to proving lower bounds on the degree of polynomials that
exactly or approximately represent the function to be computed. There is a sophisticated set of
tools for proving the latter type of lower bounds, which we now put to use.

4.1 Warm-Up

Consider a Boolean function f : {0, 1}n → {0, 1}. If f can be represented by a polynomial p, mean-
ing f (x) = p (x) for all x ∈ {0, 1}n , then it can be represented by a multilinear polynomial (since
x2

i = xi for xi ∈ {0, 1}). Recall that for every such function f , there is a unique multilinear polyno-
mial that represents it (see, e.g., Donnell [12]). We call the degree of this polynomial the degree of
the Boolean function. The maximum-possible degree is n.

For example, since the ANDn function is represented (uniquely) by the polynomial
∏n

i=1 xi , it
has the maximum-possible degree. Similarly, the ORn function has degree n because it is repre-
sented by the polynomial 1 −∏n

i=1 (1 − xi). Corollary 3.2 immediately implies the following for
s-Shuffle computations.

Corollary 4.1 (Lower Bound for ANDn and ORn). Every s-Shuffle computation that com-

putes the ANDn or the ORn function uses at least �logs n� rounds.

Corollary 3.8 implies the same lower bound for s–Shuffle(Σ) computations.

4.2 Monotone Graph Properties

While pinning down the precise degree of a Boolean function representing a graph problem can
be a difficult task, there are powerful tools for proving loose but useful lower bounds.

The first ingredient concerns the decision tree complexity of monotone graph properties. Recall
that a graph property is a property of undirected graphs that is independent of the vertex labeling.
It is nontrivial if it does not assign the same value to all graphs, and it is monotone if adding edges
cannot destroy the property. The Aanderaa-Rosenberg conjecture states that, for every nontrivial
monotone graph property, the decision-tree complexity is Ω(n2) [39]. It was first proved by Rivest
and Vuillemin with a lower bound of n2/16 [38], and a long line of work has yielded a lower bound
of n2/3 − o(n2) [23, 26, 27, 40].

The second ingredient is the known polynomial relationship between the decision tree com-
plexity and the degree of a Boolean function. Specifically, Nisan and Smolensky (cited in Buhrman

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:15

and de Wolf [8]) proved that, for every Boolean function f , the decision-tree complexity of f is at
most 2 deg(f)4, where deg(f) is the degree of f .

Combining these two ingredients with Corollary 3.2 yields the following.

Theorem 4.2 (Lower Bound for Monotone Graph Properties). For every nontrivial mono-

tone graph property f : {0, 1}(
n

2) → {0, 1} of graphs withn vertices, every s-Shuffle computation that

computes f requires at least 1
2 logs n − 1

4 logs 6 rounds.

In Section 5 we prove tight-degree lower bounds for polynomials that represent classical con-
nectivity problems (special cases of monotone graph properties), improving the lower bound in
Theorem 4.2 by roughly a factor of 4 (Corollaries 5.4, 5.6, 5.8, and 5.10).

4.3 Approximate Degree and Randomized Computations

Recall from Corollary 3.6 that lower bounds on the approximate degree of a Boolean function
translate to lower bounds on the number of rounds required by randomized s-Shuffle computa-
tions. It is also known that both the degree and decision tree complexity of every Boolean function

are polynomially related to its approximate degree: deg(f) ≤ D (f) ≤ 216 · d̃eg(f)6, where d̃eg de-
notes the approximate degree [5, 34].8 We therefore have the following analog of Theorem 4.2 for
randomized computations.

Theorem 4.3 (Lower Bound for Monotone Graph Properties (Randomized)). For every

nontrivial monotone graph property f : {0, 1}(
n

2) → {0, 1} of graphs withn vertices, every randomized

s-Shuffle computation that computes f requires at least 1
3 logs n − 1

6 logs 648 rounds.

In general, round lower bounds for deterministic s-Shuffle computations proved via Corollar-
ies 3.2 and 3.8 extend automatically, with a small constant-factor loss, to randomized computations.

5 LOWER BOUNDS FOR GRAPH COMPUTATIONS

The goal of this section is to develop and apply a technique for showing that many problems that
are important in the field of algorithms (as opposed to in Boolean function analysis), such as graph
connectivity problems, have maximum-possible degree.

Buhrman and de Wolf [8] credit Yaoyun Shi with the observation that a Boolean function has
degree n if and only if the number of even solutions (i.e., assignments with an even number of
1s for which the function evaluates to 1) is not equal to the number of odd solutions. For the
reader familiar with Boolean Fourier analysis, this corresponds to computing whether f̂ ([n]), the
function’s Fourier coefficient for the set [n], is nonzero. For example, the function XORn has no
even solutions and 2n−1 odd solutions, so the function has degree n, and hence (by Corollary 3.2)
s-Shuffle computations require �logs n� rounds to compute it.

5.1 Parity Difference Preliminaries

We first establish some notation and lemmas that simplify the proofs.

Definition 5.1 (Parity Difference). Given a set S ⊆ {0, 1}n , define the parity difference function as
the number of even inputs in S minus the number of odd inputs in S :

Φ(S) =
∑
x ∈S

∏
i

(−1)xi .

Define the parity difference of a Boolean function f on n bits by Φ(f) = Φ({x | f (x) = 1}).

8For some specific functions, better bounds are known. For example, the majority function has approximate degree
Ω(
√

n) [37].

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:16 T. Roughgarden et al.

In Fourier-analytic terms, Φ(f) is exactly 2n f̂ ([n]). We have the following identities.

Lemma 5.2 (Properties of Parity Differences). Fix a set S ⊆ {0, 1}n .

(a) If S1, S2 form a partition of S , then

Φ(S) = Φ(S1) + Φ(S2).

(b) If S is the Cartesian product S1 × S2 of sets S1, S2, then

Φ(S) = Φ(S1) · Φ(S2).

Proof. The lemma follows immediately from basic Boolean Fourier analysis if we consider the
functions that represent the characteristic vectors of S , S1, and S2.

It is also easy to prove the lemma directly from definitions. For part (a), using the partition
assumption, we have ∑

x ∈S

∏
i

(−1)xi =
∑
y∈S1

∏
i

(−1)yi +
∑
z∈S2

∏
i

(−1)zi .

For part (b), we can split each x ∈ S according to the product S1 × S2 to factor the sum:∑
x ∈S

∏
i

(−1)xi =
∑
y∈S1

∑
z∈S2

∏
i

(−1)yi

∏
i

(−1)zi

=
∑
y∈S1

∏
i

(−1)yi

∑
z∈S2

∏
i

(−1)zi . �

5.2 Graph Connectivity Problems

We express graph problems as Boolean functions using a
(

n
2

)
-variable input to represent an undi-

rected graph on n vertices (or a 2
(
n
2

)
-variable input for directed graphs), where each variable in-

dicates the presence or absence of a given edge. This is effectively the adjacency matrix represen-
tation of the graph.

The Connectivity problem is: Given a graph G = (V ,E), is there a path from every vertex to
every other vertex? The related st-Connectivity problem is: Given a graph G = (V ,E) and two
vertices s, t ∈ V , is there a path from s to t? We pinpoint the degree of both of these problems
for both undirected and directed graphs. The proof strategy is similar in all four cases: We in-
duct on the number of vertices n, decompose larger problems into smaller problems, and use this
decomposition to analyze the highest degree Fourier coefficient.

5.2.1 Undirected Connectivity. We begin with the undirected case. Recall that to prove that a
Boolean function has maximum-possible degree, it suffices to show that its parity difference is
non-zero.

Theorem 5.3 (Undirected Connectivity). The degree of the Boolean function for undirected

Connectivity on graphs with n vertices is
(
n
2

)
.

Proof. Let fn denote the Boolean function representing undirected Connectivity for graphs
with n vertices. We prove that

Φ(fn) = (−1)n−1 (n − 1)!, (2)

which implies the theorem.
We proceed by induction on n. The base case n = 1 is trivial; the graph is always connected and

never has any edges, so Φ(f1) = 1.

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:17

Suppose that our inductive hypothesis is true for all smaller values of n. Consider the first vertex
of our graph on n vertices. If we begin with a connected graph and remove this vertex, we obtain
a partition of the remaining n − 1 vertices into connected components. We can split the set S of all
connected graphs into sets SP , which yield the same partition P of connected components when
the first vertex is removed. By Lemma 5.2(a), Φ(S) =

∑
P Φ(SP).

Consider a particular partition P of n − 1 vertices. Each class of the partition must be connected,
and the first vertex of the graph must be connected to each partition class with at least one edge.
Thus, SP can be thought of as a cross-product between the set of ways to connect the first vertex to
the first class, the set of ways to connect the first class, the set of ways to connect the first vertex
to the second class, the set of ways to connect the second class, and so on. By Lemma 5.2(b), it
suffices to compute the parity difference of each of these sets separately and take their product.

First, we consider the set of ways to connect the first vertex to a class with k vertices. There
are k possible edges, and the only forbidden choice is the one with no edges. Hence there are 2k−1

odd choices but only 2k−1 − 1 even choices (the missing choice is even), and the parity difference
of this set is −1.

By induction, the set of ways of connecting a class of size k has parity difference (−1)k−1 (k − 1)!.
Multiplying this with the parity difference of the set of ways that the first vertex can be con-
nected to the class, the factor of a partition’s parity difference corresponding to a class of size k is
(−1)k (k − 1)!. The contribution of a single partition is the product of such terms, with one term
per class.

Finally, we need to sum the parity differences over all partitions. Since these are all partitions
of n − 1 vertices, they all have the same sign: (−1)n−1. We need to show that the total magnitude
is (n − 1)! to complete the proof.

To see this, consider all (n − 1)! permutations of n − 1 items. Think of a permutation in cycle
notation, with one cycle per orbit of the permutation and with the smallest element of the cycle
written first. The cycles of a permutation yield a partition of n − 1 vertices. A class of k vertices
can be created by any of (k − 1)! possible cycles on these vertices. Multiplying over the classes of a
partition, we see that the number of permutations that map to a partition is exactly the magnitude
of the parity difference of the partition. This implies that the total parity difference magnitude is
the number (n − 1)! of permutations, which completes the inductive hypothesis and the proof. �

Corollary 5.4 (Lower Bound for Undirected Connectivity). Every s-Shuffle or s–
Shuffle(Σ) computation that computes the undirected Connectivity function uses at least

�logs

(
n
2

)
� ≈ 2 logs n − logs 2 rounds.

Theorem 5.5 (Undirected s-t Connectivity). The degree of the Boolean function representing

undirected st-Connectivity on graphs with n vertices is
(

n
2

)
.

Proof. Let fn denote the Boolean function representing undirected st-Connectivity for
graphs with n vertices. By convention, we assume that s and t are the first and second vertices. We
show that Φ(fn) = (−1)n−1 (n − 2)! � 0.

It is convenient to analyze−Φ(fn) and consider all graphs in which s and t are not connected. Let
SA,B be the subset of such graphs in which the connected component of s is A and the connected
component of t is B. By Lemma 5.2(a), −Φ(fn) is the sum of the Φ(SA,B)’s for all such A,B.

Fix A and B. Both are connected, and the remainder of the vertices of the graph can have an
arbitrary subset of edges within it. We can therefore think of SA,B as a product of the set of ways
to connect A, the set of ways to connect B, and, if there are at least two vertices outside A ∪ B,
the set of ways to pick edges in the remainder of the graph. By Lemma 5.2(b), we only need to
compute the parity differences of each of these sets and take their product.

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:18 T. Roughgarden et al.

First, we observe that ifV \ (A ∪ B) contains more than one vertex, then the parity difference of
the last set (all subsets of edges of V \ (A ∪ B)) is zero. For the rest of the proof, we focus on sets
A,B whose union includes all vertices, except possibly for one.

If A has a vertices and B has b vertices, then by (2) the parity difference for the set of ways to
connect A is (−1)a−1 (a − 1)! and the parity difference for the set of ways to connect B is (−1)b−1

(b − 1)!.
Since V \ (A ∪ B) has zero or one vertex, there are (n−2)!

(a−1)!(b−1)! ways to choose a set A of size a

and a set B of size b (in the latter case, there are n − 2 choices for the missing vertex and
(
n−3
a−1

)
ways

of selecting the vertices that join s in A). Thus, the total contribution to the parity difference of
sets A,B with sizes a,b is (−1)n−2 (n − 2)! (if a + b = n) or (−1)n−3 (n − 2)! (if a + b = n − 1). There
are n − 1 ways to choose a ≥ 1 and b ≥ 1 so that a + b = n, and n − 2 ways to choose a ≥ 1 and
b ≥ 1 so that a + b = n − 1. Our final parity difference (for −Φ) is

(n − 1) (−1)n−2 (n − 2)! + (n − 2) (−1)n−3 (n − 2)! = (−1)n−2 (n − 2)!.

This completes the proof. �

Corollary 5.6 (Lower Bound for Undirected st-Connectivity). Every s-Shuffle or s–
Shuffle(Σ) computation that computes the undirected st-Connectivity function uses at least

�logs

(
n
2

)
� ≈ 2 logs n − logs 2 rounds.

5.2.2 Directed Connectivity. We now consider the more complicated case of directed graphs,
where we ask whether the graph is strongly connected.

Theorem 5.7 (Directed Connectivity). The degree of the Boolean function for directed

Connectivity on graphs with n vertices is 2
(
n
2

)
.

Proof. The proof is similar but somewhat trickier than that for undirected Connectivity.
Letting fn denote the Boolean function for directed Connectivity on graphs with n vertices, we
show by induction on n that Φ(fn) = (n − 1)!. The base case of n = 1 is trivial, as the graph is
always connected and Φ(f1) = 1.

For the inductive step, fix n > 1 and consider the first vertex of a strongly connected graph on n
vertices. If we remove this vertex, then the remaining n − 1 vertices are partitioned into strongly
connected components. We can split the set S of all strongly connected graphs into sets SP that
yield the same partition P after the first vertex is removed. By Lemma 5.2(a), Φ(S) =

∑
P Φ(SP).

We claim that total parity difference contributions Φ(SP) of the partitions P of the last n − 1
vertices in which there is at least one edge between two classes is zero. To see this, order the edges
that span different classes arbitrarily, and bucket the strongly connected graphs that induce P
according to the first such edge (v,w) that it includes. Now fix (v,w), let v be in class A, w in
class B, and let u denote the first vertex of the graph. For each graphG in this bucket that includes
the edge (u,w), the graphG \ {(u,w)} is also in this bucket; since all graphs in the bucket include
edge (v,w) and contain a path from u to all vertices in A, G \ {(u,w)} is also strongly connected.
Thus, we can uniquely pair up the even and odd solutions of this bucket. Since the buckets are
disjoint, we can pair up the even and odd strongly connected graphs that include at least one edge
that spans two classes.

We now consider only strongly connected graphs with no edges between the classes of the
partition P . Fixing P , we can view these graphs as a product of the set of directed edges between
the first vertex and the first class, the set of ways to choose how the first class is strongly connected,
the set of directed edges between the first vertex and the second class, the set of ways to choose
how the second class is strongly connected, and so on. By Lemma 5.2(b), we can compute the parity
difference of each of these sets separately and take their product.

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:19

First, we consider the number of ways to connect the first vertex to a class with k vertices. There
arek possible edges to the class andk possible edges from the class. We count the parity differences
separately and invoke Lemma 5.2(b) to compute the total parity difference by multiplying. For the
k edges to the class, the only forbidden choice is the empty set. Hence there are 2k−1 odd choices
but only 2k−1 − 1 even choices. The parity difference here is −1. But the same reasoning applies to
the k edges from the class, so the total parity difference is 1.

By induction, the parity difference of the number of ways to choose how a class of size k is
strongly connected is (k − 1)!. If we include the number of ways that the first vertex can be con-
nected to the class, the net contribution to the partition from a class of size k is (k − 1)!.

Finally, we need to sum the parity difference over all partitions, which we claim is (n − 1)!. As
in the proof of Theorem 5.3, partitions with classes weighted by (k − 1)! correspond to permuta-
tions of n − 1 items, and the total parity difference is (n − 1)!. This proves the inductive step and
completes the proof. �

Corollary 5.8 (Lower Bound for Directed Connectivity). Every s-Shuffle or s–
Shuffle(Σ) computation that computes the directed Connectivity function uses at least

�logs 2
(

n
2

)
� ≈ 2 logs n rounds.

Finally, we consider the directed st-Connectivity problem. In contrast to the other three cases,
the degree of the corresponding Boolean function is only half of the maximum possible. The proof
is correspondingly more intricate as we cannot simply prove that the parity difference of the func-
tion is non-zero.

Theorem 5.9 (Directed s-t Connectivity). The degree of the Boolean function for directed st-

Connectivity on graphs with n vertices is
(
n
2

)
.

Proof. Let fn denote the Boolean function for directed st-Connectivity on graphs with
n vertices. First, we show that deд(fn) ≥

(
n
2

)
. Suppose that the polynomial for directed st-

Connectivity is p (x) and index x by possible edges in our graph; that is, x (i, j) denotes whether
edge (i, j) is in the graph. Suppose we plug in both x (i, j) = y(i, j) for all i < j and x (j,i) = y(i, j)

for all i < j and simplify. In other words, we replace variables for each pair of directed edges
with a single variable for an undirected edge. The polynomial now computes undirected st-
Connectivity. Its degree can only be lower than that of the original polynomial for directed
st-Connectivity because simplifying consists only of applying the rule x2 = x and combining
like terms. By Theorem 5.5, the degree for undirected st-Connectivity is

(
n
2

)
, so the degree for

directed st-Connectivity is at least that.
In the rest of the proof, we show that deд(fn) ≤

(
n
2

)
. We continue to use p (x) to represent the

polynomial for directed st-Connectivity. We use E to denote the set of all possible edge sets
over V . Then, written as a sum of monomials, p (x) looks like:

p (x) =
∑
E∈E

αE

∏
e ∈E

xe , (3)

where the αE ’s are constant coefficients.
We will want to evaluate p (x) for particular choices of x . We write xE for the vector where

xe = 1 if and only if e ∈ E. Evaluating p (xE) then yields whether there is an s-t path using only
edges in E. Notice that the only non-zero terms in Equation (3) correspond to edge sets E ′ with
E ′ ⊆ E, and so

p (xE) =
∑

E′ ⊆E

αE′ .

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:20 T. Roughgarden et al.

Our first claim is thatαE = 0 for any edge set E ∈ E that contains an edge e ∈ E which is not used
by any simple s-t path that only goes through edges in E. We will prove this claim by induction
on the size of E.

The base case of our induction, when |E | = 0, is trivially true because E does not have any edges.
For the inductive step, consider an edge set E with such an edge e . Let Ē = E \ e . Because e is not
used in any simple s-t paths, removing it does not change whether there is an s-t path. In other
words, p (xE) = p (xĒ). We can then expand the expression for p (xE), treating subsets E ′ of E that
contain e and those that do not separately:

p (xE) =
∑

E′ ⊆E :e ∈E′
αE′ +

∑
E′ ⊆E :e�E′

αE′

=
∑

E′ ⊆E :e ∈E′
αE′ + p (xĒ)

and
∑

E′ ⊆E :e ∈E′ αE′ = 0. Our inductive hypothesis states that, for every edge set E ′with fewer edges
than E and which contains an edge e ∈ E ′ which is not used in any simple s-t path, we have that
αE′ = 0. Since e was not used in any simple s-t path containing only edges from E, e is also not
used in any simple s-t path containing only edges from any E ′. Hence αE′ = 0 for every term in
this summation with E ′ � E, which in turn implies that αE = 0 as well. This completes the proof
of our first claim.

Our second claim is that, for every edge set E ∈ E which contains both an edge e = (i, j) and its
reverse edge e ′ = (j, i), we have αE = 0. This second claim is enough to complete the proof since it
implies that every edge set E ∈ E with a non-zero αE has at most

(
n
2

)
edges, and hence the degree

of the polynomial is at most
(
n
2

)
. We also prove our second claim by induction on the size of E.

The base case |E | = 0 is again trivial. For the inductive step, consider an edge set E with such a
pair of edges e = (i, j) and e ′ = (j, i).

Due to our first claim, αE is zero if either of e or e ′ is not used in a simple s-t path. Hence we need
only consider the case where there are simple s-t paths using both of these edges. This implies that
theremust be s-i , s-j, i-t , and j-t paths, none ofwhich uses e or e ′. Let E1 = E \ {e}, E2 = E \ {e ′}, and
E3 = E \ {e, e ′}. We know that all of E, E1, E2, and E3 still have s-t paths; that is, p (xE) = p (xE1) =
p (xE2) = p (xE3) = 1. Similar to the proof of our first claim, we can manipulate the expression for
p (xE) by considering the four different types of subsets E ′ ⊆ E separately (depending on whether
or not E ′ contains e , and whether or not it contains e ′):

p (xE) =
∑

E′ ⊆ E :
e ∈ E′,
e ′ ∈ E′

αE′ +
∑

E′ ⊆ E :
e ∈ E′,
e ′ � E′

αE′ +
∑

E′ ⊆ E :
e � E′,
e ′ ∈ E′

αE′ +
∑

E′ ⊆ E :
e � E′,
e ′ � E′

αE′

=
∑

E′ ⊆ E :
e ∈ E′

e ′ ∈ E′

αE′ + [p (xE2) − p (xE3)] + [p (xE1) − p (xE3)] + [p (xE3)]

and so

1 =
∑

E′ ⊆ E :
e ∈ E′

e ′ ∈ E′

αE′ + [1 − 1] + [1 − 1] + [1]

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:21

and ∑
E′ ⊆ E :
e ∈ E′

e ′ ∈ E′

αE′ = 0.

Our inductive hypothesis states that, for every edge set E ′ with fewer edges than E and which
contains edges e = (i, j) and e ′ = (j, i), αE′ = 0. Again, this implies that every term in the summa-
tion other than αE must be zero, and hence αE = 0 as well. This completes the proof of the second
claim and the theorem. �

Corollary 5.10 (Lower Bound for Directed st-Connectivity). Every s-Shuffle or s–
Shuffle(Σ) computation that computes the directed st-Connectivity function uses at least

�logs

(
n
2

)
� ≈ 2 logs n − logs 2 rounds.

Remark 5.11 (Graphs Represented with Adjacency Lists). Similar ideas can be used to prove degree
lower bounds for connectivity problems where the input graph is represented using adjacency lists
rather than an adjacency matrix. For example, consider the undirected st-Connectivity problem
for graphs with n vertices and m edges. The input is an m-vector, with each component drawn
from an alphabet of size

(
n
2

)
(the possible edges). The problem is trivial ifm is sufficiently close to

n2 (every graph will be connected), so assume that 1 ≤ m ≤ n2/8.
We prove the lower bound using only a family of 2m different graphs. Assume that s and t

are the vertices 0 and 1. The first edge is either (0, 1) or (0, 2), the second either (1, 2) or (1, 3),
the third either (0, 3) or (0, 4), the fourth either (2, 3) or (2, 4), and so on. In general, each edge
is drawn from a pair of the form {(a,b), (a,b + 1)}, where a < b and a,b have opposite parities,
and pairs are considered in nondecreasing order of b, with ties broken in favor of smaller values
of a. There are at least n2/8 pairs of this form. Since m ≤ n2/8, we can consider the first m such
pairs and the corresponding 2m different inputs. The key observation is that such an input fails to
contain an s-t path if and only if, for each edge, the second option is chosen. As long as the second
option is chosen, the graph has two connected components, one spanning the even-parity vertices
considered so far (including 0) and the other the odd-parity vertices considered so far (including 1).
If the first option is ever chosen, this edge connects the two components, and in particular 0 and 1.
Restricted to these 2m inputs, the st-Connectivity function computes the ORm function. Since
there is no smaller-than-degree-m polynomial representation of theORm function (Corollary 4.1),
there is no such representation of the st-Connectivity function.

6 PROSPECTS FOR STRONGER LOWER BOUNDS

Our lower bounds in Section 3–4 apply to general unbounded-width s-Shuffle computations,
and by Proposition 3.4 such lower bounds cannot be larger than �logs n�. Realizable MapReduce-
type computations translate to s-Shuffle computations with a reasonable number of machines,
so a natural question is whether or not stronger lower bounds hold for a polynomial number of
machines. For example, can we prove that there is noO (1)-round s-Shuffle computation for graph
connectivity problemswith s =

√
n and a polynomial number ofmachines? In this section, we show

that proving such stronger impossibility results requires proving new circuit lower bounds.
The following result, while not difficult to prove, has significant implications for the prospects

of strong lower bounds for parallel computation.

Theorem 6.1 (Circuit Complexity Barrier to Stronger Lower Bounds). Consider any

model of parallel computation with the following properties:

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:22 T. Roughgarden et al.

Fig. 2. A depth-four circuit and its corresponding s-Shuffle with s = 4 that runs in two rounds. The number

on a machine matches the number of the gate it computes.

(1) The number of machines is polynomial in the input size n.

(2) Computation proceeds in time steps. In each time step, a machine can read s (n) ≥ 2 bits from

the input or from previously completed computations.

(3) Each machine has enough power to evaluate a Boolean circuit with size at most s (n) and

depth at most log2 s (n) in one time step.

If some problem in P cannot be solved in O (logs (n) n) time steps in such a model, then NC1 � P .

Property (1) states that an arbitrarily large polynomial number of machines is allowed. Prop-
erty (2) asks for a complete communication graph and concurrent reads, and property (3) only
requires fairly weak computing power per machine. s-Shuffle computations with a polynomial
number of machines are certainly one example of a model that satisfies these assumptions. The
point of Theorem 6.1 is that, more generally, the only possible way of proving lower bounds stronger
than Θ(logs n) for any model of parallel computation is to either (i) prove a notoriously difficult cir-
cuit lower bound or (ii) restrict the model so much that one of the hypotheses in the theorem is not
satisfied. In particular, Theorem 6.1 leaves open the possibility of proving strong lower bounds for
restricted classes of algorithms (where the third property may not hold), and some of the previous
work reviewed in Section 1.2 is of this type.

Proof of Theorem 6.1. We simply need to show that every model with these three properties
can efficiently simulateNC1 circuits. Fix some such model of parallel computation. Recall thatNC1

is the family of problems that can be computed by a logspace-uniform circuit familyCn of fan-in 2
with poly (n) gates andO (logn) depth (where n denotes the number of inputs). We will transform
each circuit into a parallel computation that uses only O (logs (n) n) time steps (see Figure 2 for

an example). This will show that no NC1 family computes our hypothesized problem, and hence
NC1 � P , as desired.

By the first assumed property, we can associate each gate of the circuit with a machine, whose
sole responsibility is to compute the output of the gate. Each time step of the parallel computation
will correspond to log2 s (n) layers of the circuit. For example, in the first time step, we will have
a machine for every gate at depth at most log2 s (n). Since the circuit has fan-in 2, computing
the output of this gate requires reading at most s (n) input bits and evaluating a Boolean circuit
with depth at most log2 s (n) and size at most s (n). By the second and third assumed properties,

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) 41:23

the corresponding machine can perform this computation in the first time step of the parallel
computation. In general, in the i-th time step, we have a machine for every gate at depth between
(i − 1) log2 s (n) and i log2 s (n). Again, the output of each of these gates can be computed by reading
at most s (n) bits (from the input or the outputs of gates corresponding to machines in previous time
steps) and evaluating a depth-log2 s (n) and size-s (n) Boolean circuit. We reach the output gates

and complete the computation in O (
log n

log s (n)) = O (logs (n) n) time steps of parallel computation, as
desired. �

The simulation argument in the proof of Theorem 6.1 is quite versatile. For example, an anal-
ogous statement holds in the uniform setting. Since NC1 is defined to be logspace-uniform, the
lower bound barrier holds even if the model of parallel computation is restricted to logspace-
uniform computations at each machine. Also, the simulation in the proof of Theorem 6.1 only
blows up the width by a factor of log2 s (n) from the circuit to parallel computation. Hence, given
a round lower bound on a width-restricted model of parallel computation, we would get a depth
lower bound on a width-restricted (less so by a factor log2 s (n)) version of NC , which would still
be a significant result in circuit complexity. Similarly, the simulation results in the same number of
machines as there were gates, so a round lower bound for a machine-restricted model of parallel
computation would give a depth lower bound for a size-restricted version of NC .

ACKNOWLEDGMENTS

We thank Noam Nisan for pointing us to several relevant references, and the SPAA and JACM
referees for several helpful comments.

REFERENCES

[1] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. 2013. Upper and lower bounds on the cost of a map-reduce
computation. Proceedings of the VLDB Enfowment (PVLDB) 6, 4 (2013), 277–288.

[2] N. Alon, Y. Matias, and M. Szegedy. 1999. The space complexity of approximating the frequency moments. Journal of

Computer and System Sciences 58, 1 (1999), 137–147.
[3] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. 2014. Parallel algorithms for geometric graph problems. In

Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC). 574–583.
[4] M. Bateni, A. Bhaskara, S. Lattanzi, and V. S. Mirrokni. 2014. Distributed balanced clustering via mapping coresets.

In Proceedings of the 27th Annual Conference on Neural Information Processing Systems (NIPS). 2591–2599.
[5] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. 2001. Quantum lower bounds by polynomials. Journal of

the ACM 48, 4 (2001), 778–797.
[6] P. Beame, P. Koutris, and D. Suciu. 2013. Communication steps for parallel query processing. In Proceedings of the

32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS). 273–284.
[7] G. Bilardi, M. Scquizzato, and F. Silvestri. 2012. A lower bound technique for communication on BSP with application

to the FFT. In Proceedings of the European Conference on Parallel Processing. 676–687.
[8] H. Buhrman and R. De Wolf. 2002. Complexity measures and decision tree complexity: A survey. Theoretical Computer

Science 288, 1 (2002), 21–43.
[9] S. Cook, C. Dwork, and R. Reischuk. 1986. Upper and lower time bounds for parallel random access machines without

simultaneous writes. SIAM Journal on Computing 15, 1 (1986), 87–97.
[10] J. Dean and S. Ghemawat. 2004. MapReduce: Simplified data processing on large clusters. In Proceedings of the 6th

Symposium on Operating System Design and Implementation (OSDI). 137–150.
[11] M. Dietzfelbinger, M. Kutyłowski, and R. Reischuk. 1994. Exact lower time bounds for computing Boolean functions

on CREW PRAMs. Journal of Computer and System Sciences 48, 2 (1994), 231–254.
[12] R. O. Donnell. 2014. Analysis of Boolean Functions. Cambridge University Press.
[13] A. Drucker, F. Kuhn, and R. Oshman. 2014. On the power of the congested clique model. In Proceedings of the 33rd

Annual ACM Symposium on Principles of Distributed Computing (PODC). 367–376.
[14] A. Ene, S. Im, and B. Moseley. 2011. Fast clustering using MapReduce. In Proceedings of the 17th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining. 681–689.
[15] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitkina. 2008. On distributing symmetric streaming

computations. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 710–719.

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

41:24 T. Roughgarden et al.

[16] B. Fish, J. Kun, Á. D. Lelkes, L. Reyzin, and G. Turán. 2015. On the computational complexity of MapReduce. In
Proceedings of the 29th International Symposium on Disributed Computing (DISC). 1–15.

[17] A. Goel and K. Munagala. 2012. Complexity measures for Map-Reduce, and comparison to parallel computing.
arXiv:1211.6526.

[18] M. T. Goodrich. 1996. Communication-efficient parallel sorting. In Proceedings of the 28th Annual ACM Symposium

on Theory of Computing (STOC). 247–256.
[19] M. T. Goodrich, N. Sitchinava, and Q. Zhang. 2011. Sorting, searching, and simulation in the MapReduce framework.

In Proceedings of the 22nd International Symposium on Algorithms and Computation (ISAAC). 374–383.
[20] J. W. Hegeman and S. V. Pemmaraju. 2015. Lessons from the congested clique applied to MapReduce. Theoretical

Computer Science 608 (2015), 268–281.
[21] P. Hrubes and A. Rao. 2015. Circuits with medium fan-in. In Proceedings of the 30th Computational Complexity Con-

ference (CCC). 381–391.
[22] R. Jacob, T. Lieber, and N. Sitchinava. 2014. On the complexity of list ranking in the parallel external memory model.

In Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science (MFCS). 384–395.
[23] J. Kahn, M. Saks, and D. Sturtevant. 1984. A topological approach to evasiveness. Combinatorica 4, 4 (1984), 297–306.
[24] H. J. Karloff, S. Suri, and S. Vassilvitskii. 2010. A model of computation for MapReduce. In Proceedings of the 21st

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 938–948.
[25] H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robinson. 2015. Distributed computation of large-scale graph

problems. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 391–410.
[26] D. J. Kleitman and D. J. Kwiatkowski. 1980. Further results on the Aanderaa-Rosenberg conjecture. Journal of Com-

binatorial Theory, Series B 28, 1 (1980), 85–95.
[27] T. Korneffel and E. Triesch. 2010. An asymptotic bound for the complexity of monotone graph properties. Combina-

torica 30, 6 (2010), 735–743.
[28] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. 2013. Fast greedy algorithms in MapReduce and streaming. In

Proceedings of the 25th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 1–10.
[29] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. 2011. Filtering: A method for solving graph problems in MapRe-

duce. In Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 85–94.
[30] J. Leskovec, A. Rajaraman, and J. D. Ullman. 2014. Mining of Massive Datasets. Cambridge University Press. Second

Edition.
[31] P. D. MacKenzie and V. Ramachandran. 1998. Computational bounds for fundamental problems on general-purpose

parallel models. In Proceedings of the 10th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
152–163.

[32] V. Mirrokni and M. Zadimoghaddam. 2015. Randomized composable core-sets for distributed submodular maximiza-
tion. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC). 153–162.

[33] N. Nisan. 1991. CREW PRAMs and decision trees. SIAM Journal on Computing 20, 6 (1991), 999–1007.
[34] N. Nisan and M. Szegedy. 1994. On the degree of Boolean functions as real polynomials. Computational Complexity

4, 4 (1994), 301–313.
[35] D. Peleg. 2000. Distributed Computing. SIAM.
[36] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, and E. Upfal. 2012. Space-round tradeoffs for MapReduce com-

putations. In Proceedings of the International Conference on Supercomputing. 235–244.
[37] A. A. Razborov. 1987. Lower bounds on the size of bounded depth circuits over a complete basis with logical addition.

Mathematical Notes of the Academy of Sciences of the USSR 41, 4 (1987), 333–338.
[38] R. L. Rivest and J. Vuillemin. 1975. A generalization and proof of the Aanderaa-Rosenberg conjecture. In Proceedings

of the 7th Annual ACM Symposium on Theory of Computing (STOC). 6–11.
[39] A. L. Rosenberg. 1973. On the time required to recognize properties of graphs: A problem. SIGACT News 5, 4 (1973),

15–16.
[40] R. Scheidweiler and E. Triesch. 2013. A lower bound for the complexity of monotone graph properties. SIAM Journal

on Discrete Mathematics 27, 1 (2013), 257–265.
[41] R. Smolensky. 1987. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings

of the 19th Annual ACM Symposium on Theory of Computing (STOC). 77–82.
[42] L. G. Valiant. 1990. A bridging model for parallel computation. Communications of the ACM 33, 8 (1990), 103–111.
[43] H. Vollmer. 1999. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag.
[44] D. P. Woodruff and Q. Zhang. 2013. When distributed computation is communication expensive. In Proceedings of the

27th International Symposium on Disributed Computing (DISC). 16–30.
[45] A. C. Yao. 1981. Should tables be sorted? Journal of the ACM 28, 3 (1981), 615–628.

Received September 2016; revised June 2018; accepted July 2018

Journal of the ACM, Vol. 65, No. 6, Article 41. Publication date: November 2018.

