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1 INTRODUCTION

Let us start by considering the computational complexity of a basic problem in probability the-
ory: characterizing the possible vectors of marginal probabilities in a probability space. Ques-
tions of this type have already been asked by George Boole in the 19th century (see [27]) un-
der the name “conditions of possible experience.” Here is a simple but very relevant special case
that we will focus on: For which vectors (p0,p1, . . . ,pn ) does there exist a probability space with
events E,X1, . . . ,Xn , with X1, . . . ,Xn independent with Pr[Xi ] = 1/2 for all i = 1, 2, . . . ,n, such
that p0 = Pr[E] and pi = Pr[E |Xi ] for all i = 1, 2, . . . ,n?
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The reader may pause for a second here and convince themselves that this is not a trivial ques-
tion: For example, Pr[E] = 1/2 and Pr[E |X1] = Pr[E |X2] = 0.7 is possible while Pr[E] = 1/2 and
Pr[E |X1] = Pr[E |X2] = 0.8 is not possible!

1.1 Relevance to Bayesian Mechanism Design

Why would anyone care about this problem? One motivation comes from mechanism design,
specifically the problem of characterizing the set of feasible interim allocation rules. To explain,
recall that, in a generic Bayesian mechanism design problem, a principal faces n strategic agents
or players, each holding some private information, termed its type, where the tuple of types is
distributed according to some known prior distribution. The mechanism must specify an (ex post)

allocation rule: for each possible profile of agent types, an outcome chosen from some family of
possible outcomes or, more generally, a probability distribution over outcomes. The description
of a mechanism is thus naturally exponential in the number of agents, even if there are only two
possible types per agent and two outcomes. This exponential description size is the first reason that
mechanism design problems are difficult both mathematically and computationally. In particular,
while it turns out that most mechanism design problems of interest are easily expressed as linear
programs, computational efficiency does not follow due to the exponential size of these linear
programs.

There is still hope, however. The goals and constraints of Bayesian mechanism design problems
typically depend only on the marginals of the allocation rule, also known as the interim allocations:
for each possible type of each agent, the average outcome over the types of the other players. This
reduces the numbers of variables and constraints to be linear in the number of players rather than
exponential. One would naturally hope that analysis in terms of the interim allocations helps the
mathematical understanding of the problem in addition to computational tractability.

This is almost the case. The only rub is the combinatorial issue of which interim allocation rules
are feasible: For which values of the interim allocation probabilities do there exist values of the (ex
post) allocation probabilities with these marginals? Checking feasibility of an interim allocation
rule is an instance of verifying the consistency of a collection of marginals, the problem described
above.

Maskin and Riley [19] were the first to highlight the importance of characterizing feasible in-
terim allocation rules; their motivation was to develop an analog of Myerson’s characterization
of optimal single-item auctions with risk-neutral bidders [22] for the case of risk-adverse bidders.
Matthews [20] proposed an intuitive necessary condition and conjectured that it is sufficient for
feasibility, and Border [2] proved this conjecture.1 For further applications and interpretations in
economics, see several other works [15, 17, 21].

Border’s theorem also has computational implications. As a linear characterization that uses
only “simple” linear inequalities, it implies that checking the feasibility of an interim allocation
rule of a single-item auction is a coNP problem (assuming finite type spaces and explicitly given
type distributions). In simultaneous and independent works, Alaei et al. [1] and Cai et al. [5] show
that the problem is in fact in P. Alaei et al. [1] also gave a polynomial-size extended formula-
tion of the feasible interim allocation rules (with polynomially many auxiliary variables and only
polynomially many constraints).

To what extent can Border’s theorem be generalized to other mechanism design problems? This
question has been the focus of much of the recent work in algorithmic mechanism design since,
as explained earlier, it lies at the heart of the efficient computational treatment of multiplayer

1For the finite version of Border’s theorem that we consider (see Section 2.3), there are also more combinatorial proofs [3,

7].
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mechanism design challenges. The current state of knowledge, discussed in detail in Section 1.4,
is that there are analogs of Border’s theorem in settings modestly more general than single-item
auctions, such as k-unit auctions with unit-demand bidders [1, 5], and that approximate versions
of Border’s theorem exist fairly generally [5, 6].

Can the state of the art be improved upon? Can we provide computationally useful exact exten-
sions of Border’s theorem?

1.2 Summary of Results: The Borders of Border’s Theorem

The first main take-away from this article is that, under widely believed complexity assumptions,
Border’s theorem cannot be extended significantly beyond the state of the art. For example, our
negative results imply the (conditional) impossibility of an exact Border’s theorem even for the
following extremely simple mechanism design setting.

Definition 1.1 (Boolean Public Project Problem). In the Boolean public project mechanism design
problem, there are only two possible social outcomes: “yes” and “no” (e.g., build a bridge or not).
Each of the n players has valuation 0 for “no.” Player i’s value for “yes” is either 0 or ai ; the ai ’s are
publicly known, but only player i knows which of 0 or ai is its true value for “yes.” The distribution
on the players’ types is uniform, with all 2n possibilities equally likely.

Key to our approach is the study of the computational complexity of the OptRev problem: Given
a description of a mechanism design problem—for each agent i and type ti , the probability that
i’s type is ti —compute the maximum expected revenue obtained by a mechanism that is Bayesian
incentive-compatible and interim individually rational. (See Section 2 for formal definitions.) We
prove in Theorem 4.1 that the OptRev problem is #P-hard2 for Boolean public project problems. A
similar result has been independently proved by Yang Cai (private communication). We note that
the OptRev problem is hard despite the setting’s status as “completely solved” from a revenue-
maximization perspective: Myerson’s optimal auction theory [22] tells us exactly what the optimal
auction is (always pick the outcome with the highest sum of “virtual values”), and this auction is
trivial to implement (since virtual values are trivial to compute). Thus, while we know what to
do (run Myerson’s optimal auction) and it is computationally efficient to do it, it’s intractable to
compute (exactly) what our expected revenue will be!3

But, so what? Isn’t identifying the optimal mechanism the problem we really care about? The
point is this (Theorem 3.3): A generalization of Border’s theorem (defined formally in Section 3.1)

would imply that the OptRev problem is relatively tractable, formally within the complexity class

PNP. Combining this result with our #P-hardness result for the OptRev problem for Boolean public
projects rules out an analog of Border’s theorem for that setting unless #P ⊆ PNP, which is widely
believed not to be the case.4

This impossibility result is not an artifact of the fact that Boolean public project settings are not
“downward-closed.” For example, we can rule out a generalized Border’s theorem (here and below,
assuming #P � PNP) for the setting of single-minded bidders with known bundles even when all
bundles have size 2 (Theorem 4.6). The same reduction rules out a Border’s-type theorem for multi-
item auctions with unit-demand bidders (Corollary 4.8). Analogous hardness results even apply
to the mathematically well-behaved class of matroid environments, including graphical matroids
(Theorem 4.9).

2In this article, all our hardness results are under general Turing reductions.
3Solving the OptRev problem is nontrivial even when you know what the optimal mechanism is because the expectation

is over the exponentially many type profiles.
4Recall that PNP denotes the problems that can be solved in polynomial time using an NP oracle. Toda’s theorem implies

that if #P ⊆ PNP, then the polynomial hierarchy collapses to PNP.
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Taken together, our negative results suggest that Border’s theorem cannot be extended signifi-
cantly beyond the cases already identified [1, 2, 5, 7] without resorting to approximation (as in Cai
et al. [5, 6]). In particular, computationally useful Border’s-type characterizations are apparently
far rarer than computationally efficient characterizations of optimal auctions (as in Myerson [22]).

1.3 Summary of Results: Applications to Boolean Function Analysis

The second main take-away of this article is orthogonal to the first: There is a surprisingly tight
connection between classical optimal auction theory, especially in the setting of Boolean public
projects, and the analysis of Boolean functions.

To see this, here is yet another formulation of the problem stated at the beginning of the article,
this time in the setting of the Fourier transform of Boolean functions. For a Boolean function
f : {0, 1}n → {0, 1}, we will consider its Chow parameters (a.k.a. level 0 and 1 Fourier coefficients),
which are defined as

f̂ (0) = Ex∼{0,1}n [f (x )];

f̂ (i ) = Ex∼{0,1}n [f (x ) (−1)1+xi ] for i ∈ [n].

We can convexify this set by considering all bounded functions f : {0, 1}n → [0, 1]. The space of
Chow parameters for such functions is a convex polytope which we denote by Cn .

We observe that the space of feasible interim allocation rules for the Boolean public project
setting (given by the conditional allocations) is essentially equivalent to the the space of feasible
Chow parameters for functions f : {0, 1}n → [0, 1]. This lets us reinterpret our hardness results for
the setting of Boolean Public Projects in the language of Chow parameters as well: We can view the

problem of maximizing revenue as maximizing a weighted sum of the form
∑n

i=0 ai f̂ (i ) over Cn .
Theorem 5.5 shows that this problem is #P-hard, and hence testing membership of a vector in Cn

is also #P-hard. At this point, we can also return to the problem regarding marginal probabilities
that this article started with and observe that this also implies its #P-hardness.

This equivalence is also useful in the converse direction and provides, in Lemma 5.4, a simple
alternative stand-alone analysis of the OptRev problem for the Boolean Public Project setting that
is based on a simple analysis of Boolean functions rather than relying on Myerson’s analysis of
optimal auctions.

1.4 Related Work

Three recent and independent papers ask to what extent Border’s theorem can be extended beyond
the original setting of single-item auctions [2] and provide some positive results. The results in
this article give senses in which their results are close to the best possible.

Alaei et al. [1] give an analog of Border’s theorem for every single-parameter matroid environ-
ment in the form of an exponential-size set of linear inequalities that characterizes the feasible
interim allocation rules. They illustrate some special cases, such as k-unit auctions, in which this
characterization can be used to test the feasibility of a rule—and more generally optimize over the
set of all feasible rules—in polynomial time. For general matroids, their linear characterization uses
inequalities for which the right-hand side is #P-hard to compute (this follows from the reductions
in the present work); thus, for general matroids, their characterization does not meet our notion
of a “generalized Border’s theorem” (Definition 3.1), and, indeed, by our Theorem 4.9 it cannot
(unless the polynomial hierarchy collapses).

The contributions of Che et al. [7] relevant to the present work are similar in spirit to but tech-
nically different from those of Alaei et al. [1]: They give an analog of Border’s theorem for a class
of multi-unit environments involving “paramodular” constraints on the number of units each bid-
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der can get.5 In general, this linear characterization uses inequalities that are computationally
intractable to compute, but it includes some tractable special cases, such as when the upper and
lower bounds of the different bidders are uncoupled.6

Cai et al. [5] also identify some computationally tractable extensions of Border’s theorem, for
example to the case of multi-item auctions with additive bidders (i.e., no feasibility constraints).7

Cai et al. [5, 6] also develop a theory of “approximate” Border’s-type theorems that encompasses
a much wider swath of mechanism design settings, including all of the concrete settings that we
consider in this article. Such approximate theorems identify a set of linear inequalities with the
property that every feasible solution is close (in �∞ norm, say) to a feasible interim allocation rule,
and, conversely. Cai et al. [5, 6] show that approximate versions of Border’s theorem are very use-
ful for algorithmic mechanism design: Roughly, for an arbitrary constant ϵ > 0, they enable the
polynomial-time computation of a mechanism that is approximately Bayesian incentive compat-
ible (up to an incentive of ϵ to misreport) and is approximately revenue-optimal (up to a loss of
ϵ). Our results in this article imply that the approximation approach taken in Cai et al. [5, 6] is
unavoidable in that no exact and computationally useful analog of Border’s theorem can exist for
most of the settings they consider (unless #P ⊆ PNP).

Our work shares some of the spirit of recent works that use complexity to identify barriers
in mechanism design. For example, Roughgarden [28] uses complexity assumptions to rule out
the existence of near-optimal Nash equilibria in simple auctions, while Roughgarden and Talgam-
Cohen [29] use them to show the nonexistence of Walrasian equilibria in certain classes of markets
with indivisible goods. For another example, Daskalakis et al. [10] consider a single-bidder multi-
item (and hence multi-parameter) setting and prove that it is #P-hard to compute a description of
the revenue-maximizing incentive-compatible mechanism.8 Note that this problem is not hard in
most of the (single-parameter) settings that we consider, where the optimal mechanism is simple to
compute and write down (it is just a “virtual welfare maximizer” with virtual values given by simple
explicit formulas, as per Myerson [22]). What is hard for us is computing the expected revenue
obtained by the (simple-to-describe) optimal mechanisms, not the mechanism design problem per
se. Still more distant from the present work are previous papers on the intractability of computing
optimal deterministic mechanisms in various settings [4, 8, 13, 26].

2 PRELIMINARIES

2.1 Mechanism Design Settings

We recall first the standard model of binary single-parameter mechanism design settings, with
players’ valuations drawn from a commonly known product distribution. Formally, a single-

parameter environment E consists of the following ingredients: (i) a player set U = {1, 2, . . . ,n};
(ii) for each player i , a finite set Vi of possible nonnegative valuations; (iii) for each i ∈ U and
vi ∈ Vi , a prior probability fi (vi ) that i’s valuation is vi ; and (iv) a non-empty collection F ⊆ 2U

of feasible sets. For example (see also Section 4):

5Che et al. [7] define paramodularity as the upper bounds being submodular, the lower bounds being supermodular, and

the two constraints being “compliant,” meaning irredundant in a certain sense.
6Of course, Border’s-type theorems like those in Alaei et al. and Che et al. [1, 7] are mathematically interesting even

when they are not immediately computationally useful, and they do provide significant structural information about the

constraints that define the set of feasible interim allocation rules.
7Both Alaei et al. [1] and Cai et al. [5] also give (different) compact formulations (i.e., polynomially many variables and

constraints) of the feasible interim allocation rules for single-item settings.
8Daskalakis et al. [10] assume an additive bidder, with the prior distribution over valuations encoded in the natural succinct

way.
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(1) A single-item auction (with n bidders) corresponds to an environment with F =
{∅, {1}, {2}, . . . , {n}}.

(2) In a k-unit auction with unit-demand bidders, F is all subsets of U with size at most k .
(3) In a public project environment, F = {∅,U }.
(4) In a single-minded environment, the set F is described implicitly as follows. There is a

set M of items and a subset Si ⊆ M desired by each bidder i . A set F ⊆ U belongs to F if
and only if no desired bundles conflict: Si ∩ S j = ∅ for all distinct i, j ∈ F . For example, if
|Si | = 2 for every i , then feasible sets correspond to the matchings in a graph with vertices
M and edges corresponding to the Si ’s.

We also consider multi-parameter environments. Because our primary contributions are impos-
sibility results, we confine ourselves to the simplest such environments (negative results obviously
apply also to generalizations). A multi-item auction environment differs from a single-parameter
environment in the following respects. First, there is also a set M of items. Second, a valuation vi

of a bidder i is now a non-negative vector indexed by M . We restrict attention to additive bidders,
meaning that the value that a player i derives from a set S ⊆ M of items is just the sum

∑
j ∈S vi j .

Third, F is now a subset of 2U×M , indicating which allocations of items to bidders are possible.
For example, the standard setting of unit-demand bidders can be encoded by defining F to be the
subsets F ofU ×M in which, for every bidder i , there is at most one pair of the form (i, j ) in F (and
also at most one such pair for each j).

By a setting, we mean a family of mechanism design environments. For example, all single-item
auction environments (with any number n of players, any valuation sets, and any prior distribu-
tion), all public project environments, all multi-item unit-demand auction environments, and the
like.

2.2 Bayesian Incentive-Compatible Mechanisms

This section reviews the classical setup of Bayesian mechanism design problems, as in
Myerson [22]. Fix a binary single-parameter environment, as defined in Section 2.1. A (direct-
revelation) mechanism (x, p) comprises an allocation rule x : V→ {0, 1}n and a payment rule

p : V→ Rn
+, where V = V1 × · · · ×Vn . The former is a map (possibly randomized) from each bid

vector b —with one bid per player—to a characteristic vector of a feasible set in F ; the latter is
a map (possibly randomized) from each bid vector b to a payment vector p, with one payment
per player. For the questions we study, we can restrict attention to truthful mechanisms (via the
Revelation Principle, e.g. [23]), and we henceforth use the true valuations v in place of the bids b.

A mechanism (x, p) and prior distribution F over valuations together induce an interim allocation

rule

yi (vi ) = Ev−i∼F−i
[xi (vi , v−i )], (1)

which describes the probability (over the randomness in v−i and any randomness in x) that bidder i
is chosen when it reports the valuation vi . Similarly, the interim payment rule

qi (vi ) = Ev−i∼F−i
[pi (vi , v−i )] (2)

describes the expected payment made by i when it reports vi . The pair (y, q) is the reduced form

of the mechanism (x, p). We sometimes call x and p ex post rules for emphasis.
A mechanism (x, p) for an environment is Bayesian Incentive Compatible (BIC) if truthful bidding

is a Bayes-Nash equilibrium. We assume that bidders are risk-neutral and have quasi-linear utility
(value minus payment) and can therefore use linearity of expectation to write succinctly the BIC
condition in terms of the reduced form (y, q) of a mechanism:
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viyi (vi ) − qi (vi ) ≥ viyi (v ′i ) − qi (v ′i ) (3)

for every bidder i , true valuation vi , and reported valuation v ′i .
Similarly, we can express the Interim Individual Rationality (IIR) requirement, stating that truth-

ful bidding leads to non-negative expected utility, by

viyi (vi ) − qi (vi ) ≥ 0 (4)

for every bidder i and true valuation vi .
We can also write the seller’s expected revenue

n∑
i=1

∑
vi ∈Vi

fi (vi ) · qi (vi ) (5)

in terms of the reduced form of the mechanism. In the optimal (revenue-maximizing) mecha-

nism design problem, the goal is to identify the BIC and IIR mechanism (x, p) that maximizes
Equation (5).

Multi-item auction environments can be treated similarly, with an (ex post) allocation rule
choosing a feasible set of F for each valuation profile v and xi j (v) now denoting whether or
not bidder i receives the item j. (There is no need to keep track of a separate payment for each
item received.) For example, because we assume that bidders are additive, the BIC constraints for
a multi-item environment can phrased in terms of the reduced form (y, q) of a mechanism by∑

j ∈M

vi jyi j (vi ) − qi (vi ) ≥
∑
j ∈M

vi jyi j (vi
′) − qi (vi

′) (6)

for every bidder i , true valuation vi , and reported valuation vi
′.

2.3 Border’s Theorem for Single-Item Auction Environments

As discussed in the Introduction, there are several applications that rely on understanding when
an interim allocation rule y is induced by some ex post allocation rule x. Such interim rules are
said to be feasible.

Border’s Theorem [2] characterizes interim feasibility for single-item auction environments. To
review it, fix such an environment and assume without loss of generality that the valuation sets
V1, . . . ,Vn are disjoint.9 To derive an obvious necessary condition for feasibility, consider an ex post
allocation rule x with induced interim rule y. Fix for each bidder i a set Si ⊆ Vi of distinguished

valuations. Linearity of expectation implies that the probability, over the random valuation profile
v ∼ F and any coin flips of the allocation rule x, that the winner of the item has a distinguished
valuation is

n∑
i=1

∑
vi ∈Si

fi (vi )yi (vi ). (7)

The probability, over v ∼ F, that there is a bidder with a distinguished type is

1 −
n∏

i=1

���1 −
∑

vi ∈Si

fi (vi )��� . (8)

Since there can only be a winner with a distinguished type when there is a bidder with a distin-
guished type (and at most one winner, in any case), the quantity in Equation (7) can only be less
than that in Equation (8). Border’s theorem asserts that satisfying these linear (in y) constraints,

9We can enforce this by thinking of each vi ∈ Vi as the pair {vi , i }.
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ranging over all choices of S1 ⊆ V1, . . . , Sn ⊆ Vn , is also a sufficient condition for the feasibility of
an interim allocation rule y.

Theorem 2.1 (Border’s Theorem [2]). In a single-item environment, an interim allocation rule

y is feasible if and only if for every choice S1 ⊆ V1, . . . , Sn ⊆ Vn of distinguished types,

n∑
i=1

∑
vi ∈Si

fi (vi )yi (vi ) ≤ 1 −
n∏

i=1

���1 −
∑

vi ∈Si

fi (vi )��� . (9)

3 GENERALIZED BORDER’S THEOREMS AND COMPUTATIONAL COMPLEXITY

3.1 Generalizing Border’s Theorem

What do we actually mean by a “Border’s-type theorem?” Since we aim to prove impossibility re-
sults, we should adopt a definition that is as permissive as possible. Border’s theorem (Theorem 2.1)
gives a characterization of the feasible interim allocation rules of a single-item environment as the
solutions to a finite system of linear inequalities. This by itself is not interesting: Since the set is a
polytope,10 it is guaranteed to have such a characterization (see, e.g., Ziegler [32]). The appeal of
Border’s theorem is that the characterization uses only the “nice” linear inequalities in Chow (9).
Our “niceness” requirement is that the characterization uses only linear inequalities that can be
efficiently recognized and tested. This is a weak necessary condition for such a characterization
to be computationally useful.

Definition 3.1. A generalized Border’s theorem holds for the mechanism design setting Π if, for
every environment E ∈ Π, there is a linear inequality system L (E) such that the following prop-
erties hold.

(1) (Characterization) For every E ∈ Π, the feasible solutions of L (E) are precisely the feasi-
ble interim allocation rules of E.

(2) (Efficient recognition) There is a polynomial-time algorithm that, given as input a descrip-
tion of an environment E ∈ Π and a linear inequality, decides whether or not it belongs
to L (E).11 Note that the description length of E is polynomial in n, the |Vi |’s, and the
maximum number of bits needed to describe a valuation or a prior probability.

(3) (Efficient testing) There is a polynomial p (·) such that, for every E ∈ Π, the natural encod-
ing length of every inequality of L (E) is at most p (�), where � is the description length of
E. (The number |L (E) | of inequalities can still be exponential.) Thus, deciding whether
or not a given point x ∈ Rn satisfies a given inequality of L (E) can be done in time poly-
nomial in the descriptions of E and x, just by computing and comparing the two sides of
the inequality.

For example, consider the original Border’s theorem, for single-item auction environments (The-
orem 2.1). The recognition problem is straightforward: The left-side of (9) encodes the Si ’s, from
which the right-hand side can be computed and checked in time polynomial in the description of
E. It is also evident that every inequality in Equation (9) has a polynomial-length description.

The characterization in Theorem 2.1 and the extensions in other works [1, 5, 7] have additional
features not required or implied by Definition 3.1, such as polynomial-time separation oracles (and
even a compact extended formulation in the single-item case [1]).12 All of our impossibility results

10The set of ex post allocation rules is a polytope, and the feasible rules are the image of this polytope under a linear map

(and hence also a polytope).
11Note that this is a weaker assumption than requiring the efficient recognition of an arbitrary valid inequality.
12Separation can be hard even when recognition and testing are easy (see, e.g., Grotschel et al. [16] for some examples in

combinatorial optimization).
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rule out analogs of Border’s theorem that merely satisfy Definition 3.1, let alone these stronger
properties.

A generalized Border’s theorem implies that the problem of testing the feasibility of an interim
allocation rule is in coNP. To prove that such a rule for an environment E is not feasible, one simply
exhibits an inequality of L (E) that the rule fails to satisfy: There is always such an inequality by
Definition 3.1 (i), and verifying this failure reduces to the recognition and testing problems for
L (E), which by Definition 3.1 (ii, iii) are polynomial-time solvable.

Formally, we define the Membership problem for a setting Π as: Given as input a description of
an environment E and an interim allocation rule y for it, decide whether or not y is feasible.

Proposition 3.2. If a generalized Border’s theorem holds for the mechanism design setting Π, then

the Membership problem for Π belongs to coNP.

A generalized Border’s theorem does not necessarily imply a separation oracle with analogous
complexity since it does not provide a way to efficiently verify that a feasible interim allocation
rule satisfies all of the (possibly exponentially many) inequalities of L (E).

3.2 Impossibility Results from Computational Intractability

We now forge a connection between the existence of generalized Border’s theorems and the com-
putational complexity of natural optimization problems. For a setting Π, the OptRev(Π) problem
is: Given a description of an environment E ∈ Π, compute the expected revenue earned by the
optimal BIC and IIR mechanism. The main result of this section shows that a generalized Border’s
theorem exists for a setting only when it is relatively tractable to solve exactly the OptRev problem.

Theorem 3.3. If a mechanism design setting Π admits a generalized Border’s theorem, then the

OptRev(Π) problem belongs to PNP.13

We later apply Theorem 3.3 in the form of the following corollary.

Corollary 3.4. If the OptRev(Π) problem is #P-hard, then there is no generalized Border’s theo-

rem for Π (unless the polynomial hierarchy collapses).

In the next section, we prove that the OptRev problem is #P-hard for many simple settings,
ruling out the possibility of generalized Border’s theorems for them (conditioned on #P � PNP).

Proof of Theorem 3.3. Consider a setting Π in which a generalized Border’s theorem holds
and an instance of the OptRev(Π) problem (a description of an environment E ∈ Π). We compute
the optimal expected revenue of a BIC and IIR mechanism via linear programming as follows.

The decision variables of our linear program correspond to the components of an interim allo-
cation rule y and payment rule q. The number of variables is polynomial in n and maxi |Vi | and
hence in the description of E. The (linear) objective function is to maximize the expected seller
revenue, as in Equation (5). The BIC and IIR constraints can be expressed as a polynomial number
of linear inequalities, as in Equations (3) and (4), respectively. By assumption, the interim feasi-
bility constraint can be expressed by a linear inequality system L (E) that satisfies the properties
of Definition 3.1. Thus, the optimal objective function value of the linear program (LP) that maxi-
mizes Equation (5) subject to Equations (3), (4), and L (E) is the solution to the given instance of
OptRev(Π).

To solve (LP), we turn to the ellipsoid method [18], which reduces the solution of a linear pro-
gram to a polynomial number of instances of a simpler problem (plus polynomial additional com-
putation). The relevant simpler problem for us is a membership oracle: Given an alleged reduced

13Recall that PNP denotes the problems that can be solved in polynomial time using an NP oracle (or, equivalently, a coNP

oracle).
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form (y, q), decide whether or not (y, q) is feasible for (LP). Using Proposition 3.2 and the fact that
there are only polynomially many constraints of the form seen in Equations (3) and (4), we have
a coNP membership oracle. (The most common way to apply the ellipsoid method, on the other
hand, involves a separation oracle: Given an alleged reduced form (y, q), either verify that (y, q) is
feasible for (LP) or, if not, produce a constraint of (LP) that it violates. Our assumption of a gen-
eralized Border’s theorem for Π does not include also a separation oracle of the same complexity;
hence, we use the version of Ellipsoid that is based on a membership oracle.)

For optimization over polytopes described by linear inequalities of bounded size, assuming that
one knows a priori a feasible point (y0, q0), the ellipsoid method can also be used to reduce the
solution of a linear program to a polynomial number of invocations of a membership oracle (see
Schrivjer [30, P. 189]). The size bound on the defining linear inequalities is implied by the Efficient
Testing condition in Definition 3.1. Computing a feasible point is trivial in our context: We can just
consider a mechanism that outputs some constant outcome irrespective of players’ types (with
payments that are always zero) and the induced constant interim allocation rule.

We conclude that the linear program (LP) and hence the OptRev problem can be solved using
a polynomial number of invocations of a membership oracle and polynomial additional compu-
tation. Since the membership problem for (LP) belongs to coNP, the OptRev problem belongs to
PNP. �

What we have actually shown is a general Turing reduction from the OptRev(Π) problem to
the Membership problem for Π.

Corollary 3.5. If the OptRev(Π) problem is #P-hard, then so is the Membership problem for Π.

More generally, the proof of Theorem 3.3 shows that a generalized Border’s theorem allows
an arbitrary linear function of the interim allocation and payment rules to be optimized over the
space of BIC and IIR mechanisms in PNP. For example, let OptWel(Π) be the problem of (given
an environment E ∈ Π) computing the maximum expected welfare achieved by a BIC and IIR
mechanism.14 Since the expected welfare obtained by a mechanism can be written as

∑n
i=1

∑
vi ∈Vi

fi (vi )viyi (vi ) for a single-parameter environment or as
∑n

i=1

∑
vi ∈Vi

fi (vi )
∑

j ∈M vi jyi j (vi ) for a
multi-item environment, we have the following corollary.

Corollary 3.6. If the OptWel(Π) problem is #P-hard, then there is no generalized Border’s the-

orem for Π (unless the polynomial hierarchy collapses).

Remark 3.7. By the same reasoning as in the proof of Theorem 3.3, and under the same complex-
ity assumption, #P-hardness of the OptRev(Π) problem rules out any PH algorithm that recognizes
the set of interim allocation rules for the setting Π, not just via a generalized Border’s theorem.

4 COMPLEXITY OF COMPUTING THE OPTIMAL EXPECTED
REVENUE AND WELFARE

This section shows that, in several simple settings, the OptRev or the OptWel problem is #P-hard.
Together with Corollaries 3.4 and 3.6, these results effectively rule out, conditioned on #P � PNP,
significant generalizations of Border’s theorem beyond those that are already known.

4.1 Preliminaries and Examples

Recall the definition of the OptRev problem for a setting Π: Given a description of an environment
E ∈ Π, compute the maximum expected revenue obtained by any BIC and IIR mechanism. Even if

14The welfare-maximizing mechanism is, of course, the VCG mechanism (e.g., Nisan [23]), but, even knowing this, it is not

generally trivial to compute its expected welfare.
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one is handed the optimal mechanism on a silver platter, and this mechanism runs in polynomial
time for every valuation profile, naive computation of its expected revenue requires running over
the exponentially many valuation profiles. The question is whether or not there are more efficient
methods for computing this expected value.

To develop context and intuition for the problem, we review the argument that the OptRev
problem for single-item auctions can be solved in polynomial time (see also Alaei et al. and Cai
et al. [1, 5]).15

(1) For each bidder i and possible valuation vi ∈ Vi , compute the corresponding (ironed) vir-

tual valuation φi (vi ), as in Myerson [22].16 This can be done straightforwardly in time
polynomial in the size of E.

(2) By Elkind and Myerson [14, 22], the (ex post) allocation rule x∗ of the optimal mechanism
awards the good to the bidder with the highest positive virtual valuation (breaking ties
lexicographically, say), if any, and to no one otherwise. The second step of the algorithm
is to compute the interim allocation rule y∗ induced by x∗. This can be done in polynomial
time via a simple computation.17

(3) By Elkind and Myerson [14, 22], the solution to the OptRev problem equals∑n
i=1 Evi∼Fi

[φi (vi )y∗i (vi )]; given the virtual valuations and the interim allocation rule, this
quantity is trivial to compute in polynomial time.

4.2 Public Projects

Recall that, in a public project environment, there are only two outcomes: choose all players (“build
the bridge”) or no player (“not”). We now show that the OptRev problem is hard in such environ-
ments, even in the extremely simple case when each player is equally likely to have a zero valuation
or a known positive valuation for the “yes” outcome.18

Theorem 4.1. The OptRev problem is #P-hard for the public project setting, even when every

player has only two possible valuations, and the valuation distribution is uniform.

Theorem 4.1 follows immediately from Lemmas 4.4 and 4.5, given below. Section 5 shows how
Theorem 4.1 can be usefully reinterpreted in the context of Boolean function analysis.

Theorems 3.3 and 4.1 immediately imply the following.

Corollary 4.2. Unless the polynomial hierarchy collapses, there is no generalized Border’s theo-

rem for the public project setting.

To prove Theorem 4.1, we first reformulate the OptRev problem in the special case of an en-
vironment E in which each bidder i is equally likely to have the valuation 0 or the valuation ai .
We show it is equivalent to the #P-complete problem of computing the Khintchine constant of a
vector, which is defined as follows (cf., [12]).

Definition 4.3. For a vector a ∈ Rn , define

K (a) = Ex∼{±1}n [|x · a |]

to be the Khintchine constant for a.

15This is not surprising in light of Theorems 2.1 and 3.3.
16There is an analogous simple formula for the case of a discrete set of bidder valuations [14].
17For a bidder i and valuation vi , y∗

i
(vi ) is 0 if φi (vi ) ≤ 0, and otherwise is

∏
j�i Prvj

[φ j (vj ) < φi (vi )].
18Note that the OptWel problem is trivial to solve in the public project setting.
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It is known that
‖a‖2√

2
≤ K (a) ≤ ‖a‖2,

where the upper bound follows from Cauchy-Schwarz and the lower bound is the classical Khint-
chine inequality. We use the following #P-hardness result, which we prove in the appendix for
completeness.

Lemma 4.4. Given a vector a ∈ Rn , the problem of computing K (a) is #P-complete, even for a ∈ Zn

with bit-length polynomial in n.

Combining this with the next lemma, the proof of Theorem 4.1 is immediate.

Lemma 4.5. The optimal revenue of a BIC and IIR mechanism for the public projects problem is

K (a)/2.

We present two proofs of Lemma 4.5. Our first proof invokes Myerson’s characterization of
optimal auctions [22]. Our second proof is self-contained and uses an argument from the analysis
of Boolean functions [24] and will be presented in Section 5.

Proof of Lemma 4.5 (First Version). The standard virtual valuations for our setting
(see Elkind and Myerson [14, 22]) are φi (0) = −ai and φi (ai ) = ai for each bidder i . In a binary
single-parameter environment, the revenue-maximizing auction always selects the outcome that
maximizes the sum of the virtual valuations of the chosen players—the “virtual welfare”—and the
expected revenue of this auction equals its expected virtual welfare [14, 22]. Translated to the
current special case, the solution to the OptRev problem is precisely

Ev∼F

⎡⎢⎢⎢⎢⎣max
⎧⎪⎨⎪⎩0,

n∑
i=1

φi (vi )
⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎥⎦ = Ex∼{±1}n [max{0,x · a}], (10)

where x ∈ {±1}n is chosen uniformly at random and a = (a1, . . . ,an ).
Since (−x ) · a = −(x · a), we have

Ex∼{±1}n [max{0,x · a}] = 1

2
Ex∼{±1}n [|x · a |] = K (a)

2
,

completing the proof. �

4.3 Single-Minded Environments

This section presents an impossibility result for a downward-closed setting (where, unlike in public
project environments, every subset of a feasible set is again feasible). Recall that in a single-minded
environment, each bidder i wants a publicly known subset Si of goods, and the feasible outcomes
are subsets of bidders with mutually disjoint bundles.

In the special case where each bundle Si has size 2, we can view each player’s bundle as an edge in
a graph with t vertices. Denote the resulting graph by H . We allow parallel edges (i.e., players that
desire the same bundle). The prior distribution is uniform over {0, 1}p . Given a string x ∈ {0, 1}p ,
we define a subgraph Hx of H by keeping edge i if xi = 1. Having xi = 0 indicates that player i has
0 valuation; xi = 1 means her valuation is 1 for her bundle. A feasible allocation corresponds to a
matching in Hx , and the maximum welfare is the size of a maximum matching. Thus, the OptWel
problem in this setting amounts to computing the expected size of the maximum matching in a
random edge subgraph of H .

Theorem 4.6. The OptWel problem is #P-hard for the single-minded bidder setting even when

every player’s bundle contains two items, every player has only two possible valuations, and the val-

uation distribution is uniform.
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Proof. The proof is by reduction from the s-t connectivity problem in directed graphs. For-
mally, #stConnectivity is the following problem: Given a directed graph H with two distinguished
vertices s, t , what is the probability that there is an s-t path in a random edge subgraph of H?
Valiant shows this problem is #P-complete [31].

Assume that G has vertex set [n] ∪ {s, t } and m edges. We construct a bipartite graph H where
the vertex set is L ∪ R, where L = {s} ∪ [n] and R = [n] ∪ {t }. When we speak of an edge (i, j ) in H ,
we always mean with i ∈ L and j ∈ R. If there is a directed edge (i, j ) inG, we add an edge between
i on the left and j on the right in H . We call these red edges. For every i ∈ {1, . . . ,n}, we add k
parallel edges between the two copies of i (k will be a large polynomial inm,n). We call these blue

edges.
Consider picking a random subgraph H ′ of H . Except with probability m/2k (over the choice

of blue edges), at least one blue edge of the form (i, i ) survives for every i ∈ [n]. Conditioned on
this event, the maximum matching in H ′ has size at least n. Furthermore, a matching of size n + 1
exists if and only if the subgraph of G that corresponds to the surviving red edges has an s-t path
P —the red edges corresponding to P match s ∈ L, t ∈ R and both copies of all vertices internal to
P (vertices not on P are matched with blue edges).

Letp denote the probability that a random subgraphG ′ ofG contains an s-t path. Let the random
variableM denote the size of the maximum matching inH ′. The preceding observations imply that

EH ′[M] ≤ p (n + 1) + (1 − p)n = n + p

EH ′[M] ≥
(
p − m

2k

)
(n + 1) + (1 − p)n = n + p − mn

2k
.

Note thatp is always an integer multiple of 1/2m . Therefore, if we choosek sufficiently large (bigger
thanmn), then we can recover p by subtracting n from EH ′[M] and rounding up the remainder to
the form c/2m for some integer c . �

Combining Corollary 3.6 and Theorem 4.6 gives the following.

Corollary 4.7. Unless the polynomial hierarchy collapses, there is no generalized Border’s theo-

rem for the single-minded bidder setting even when every player’s bundle contains two items, every

player has only two possible valuations, and the valuation distribution is uniform.

4.4 Multi-Item Auctions with Unit-Demand Bidders

Recall that, in a multi-item auctions setting, there is a set M of goods and each bidder i has a
valuation vi j for each item j ∈ M . The set F ⊆ 2U×M describes the feasible allocations of items
to bidders. In a multi-item auction with unit-demand bidders, the feasible sets F correspond to
the matchings of a complete bipartite graph G with vertex sets U and M . Given valuations v,
the welfare-maximizing allocation corresponds to the maximum-weight matching inG (with each
edge weight wi j equal to the valuation vi j ). Since the reduction in the proof of Theorem 4.6 pro-
duces a bipartite graph, the reduction also implies that the OptWel problem is #P-hard for the
setting of multi-item auctions with unit-demand bidders. Corollary 3.6 then implies the following.

Corollary 4.8. Unless the polynomial hierarchy collapses, there is no generalized Border’s theo-

rem for the setting of multi-item auctions with unit-demand bidders.

4.5 Matroid Environments

Our final example shows that there are even simple matroid settings which do not admit general-
ized Border’s theorems (unless #P ⊆ PNP). In a graphical matroid environment, bidders correspond
to the edges of an undirected graph G = (V ,E). The feasible sets correspond to the acyclic sub-
graphs of G, so the welfare-maximizing outcome corresponds to a maximum-weight spanning
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forest. Using the same valuation distributions as in Section 4.3, the OptWel problem becomes
that of computing the expected size of a spanning forest—or, equivalently, the expected number
of connected components—of a random subgraph G ′ of G.

Theorem 4.9. The OptWel problem is #P-hard for the graphical matroid setting even when every

player has only two possible valuations and the valuation distribution is uniform.

Proof. We reduce from the #stConnectivity problem in undirected graphs, which is also #P-
complete [31]. Given an instanceG of #stConnectivity, letC1 denote the expected number of con-
nected components in a random subgraph ofG. DeriveH fromG by adding the edge (s, t ) (a second
copy if it is already in G ) and let C2 denote the expected number of connected components in a
random subgraph of H . Since

C1 −C2 =
1 − p

2
,

where p is the probability that s and t are connected in a random subgraph ofG, we conclude that
the #stConnectivity problem reduces to the OptWel problem in the graphical matroid setting. �

Corollary 4.10. Unless the polynomial hierarchy collapses, there is no generalized Border’s the-

orem for the graphical matroid setting even when every player has only two possible valuations and

the valuation distribution is uniform.

5 CONNECTIONS TO BOOLEAN FUNCTION ANALYSIS

In this section, we reinterpret our results on the public projects problem in terms of Boolean func-
tion analysis and, conversely, provide a stand-alone analysis of the optimal-revenue Boolean public
project mechanism based on Boolean function analysis.

5.1 From Boolean Public Projects to Boolean Functions

Let us go back to the revenue maximization problem, OptRev, for the Boolean public project
problem addressed in Section 4.2 and rederive the characterization of the optimal revenue from
first principles. Recall that each of our n players has either value 0 or value ai for the “positive
outcome,” with both possibilities equally likely and independent of the others’ values. To convert
this setting to a Boolean functions setting , let us indicate by xi = 0 the case that the value of player
i is 0 and by xi = 1 the case that the value of player i is ai . Our prior distribution of values for
the Boolean public project setting is now translated to the uniform distribution over the Boolean
hypercube {0, 1}n .

Let us denote by f (x1, . . . ,xn ) ∈ [0, 1] the probability of a positive outcome that our mechanism
gives when the players’ values are according to indicators xi . Let us further denote by

f i (xi ) = Ex−i ∈{0,1}n−1 [f (xi ,x−i )] = Ex ∈{0,1}n [f (x ) |xi ].

the interim allocation of player i with value indicated by xi . Now let us denote bypi (xi ) the interim
payment of player i with value xi . Our incentive constraints and individual rationality constraints
imply bounds on pi in terms of the f i and allow us to characterize exactly the maximum payments
that are possible for a given interim allocation rule.

Lemma 5.1. The maximum possible interim payments for a BIC and IIR Mechanism for the Boolean

Public Projects problem with interim allocations given by f i with f i (1) ≥ f i (0) are preciselypi (0) = 0
andpi (1) = ai · ( f i (1) − f i (0)). In particular, the optimal revenue among such mechanisms is exactly∑

i (ai/2) · ( f i (1) − f i (0)).

Proof. The individual rationality constraint for xi = 0 immediately implies pi (0) ≤ 0 since, in
that case, the player gets no utility from “the bridge.” Now let us focus on the incentive constraint
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for the case xi = 1: Reporting the truth will result in the bridge being built with probability f i (1)
while lying, and reporting 0 will give a probability f i (0). Player i’s value for telling the truth is
thus ai · ( f i (1) − f i (0)) larger than his value from lying, and this difference is the maximum that
the payment pi (1) can be larger than the payment pi (0) without his utility becoming lower, which
would violate the incentive constraints.

We now only need to observe that indeed setting pi (0) = 0 and pi (1) = ai · ( f i (1) − f i (0)) does
yield an incentive-compatible and individually rational mechanism. Individual rationality means
that, for x0 = 0, the value and payment and thus also utility are 0; for xi = 1, the value is ai f

i (1)
and the payment pi (1) is lower, and thus the utility is positive. Incentives mean that, for xi = 0,
lying would not increase player i’s value, which is 0, but may only increase his payment; for xi = 1,
the payment pi (1) was chosen exactly so his utility for the truth will exactly match his utility from
lying, ai · f i (0). �

The constraint that f i (1) ≥ f i (0) for each i must be satisfied by every incentive-compatible
mechanism since otherwise the incentive constraints for xi = 0 would dictate pi (1) ≥ pi (0) while
the incentive constraints for xi = 1 would dictate pi (1) < pi (0), a contradiction. We may, however,
without loss of generality, optimize over all functions f , since one can always switch the roles of
0 and 1 by flipping an input bit. We thus have reduced the revenue maximization problem to the
following problem on functions f : {0, 1}n → [0, 1].

Lemma 5.2. The optimal revenue of the Boolean public project problem is given by

OPT = max
f :{0,1}n→[0,1]

n∑
i=1

ai

2
(Ex∼{0,1}n [f (x ) |xi = 1] − Ex∼{0,1}n [f (x ) |xi = 0]). (11)

It turns out that characterizing the function f that maximizes this weighted sum of differences
is not difficult using the basic tools of Boolean function analysis (and, of course, yields the same
mechanism as Myerson’s theorem implies). The rest of this section will continue coming up with
this derivation in a leisurely way within the Boolean function context. As expected, this analysis
will identify the optimal f to be threshold function (halfspace) f (x ) = sign+ (

∑
ai · (−1)xi+1) where

sign+ (z) = 1 if z ≥ 0 and sign+ (z) = 0 otherwise. The fact that this is a Boolean function (rather
than taking fractional values) translates to the optimal mechanism being deterministic and the
fact that it is a monotone function can be translated to an optimal mechanism that is truthful in
dominant strategies (obtained, as usual, by setting critical payments).

5.2 The Chow Parameters of a Boolean Function

We refer to functions f : {0, 1}n → [0, 1] as bounded functions and the subset of functions f :
{0, 1}n → {0, 1} as Boolean functions. Every bounded function can be viewed as a convex combi-
nation of Boolean functions. Given f : {0, 1}n → [0, 1], we define its Chow parameters or degree-0
and degree-1 Fourier coefficients as19

f̂ (0) = Ex∼{0,1}n [f (x )];

f̂ (i ) = Ex∼{0,1}n [f (x ) (−1)1+xi ] for i ∈ [n].

We refer to ( f̂ (0), . . . , f̂ (n)) as the Chow vector of f . Let us define the set

Cn = {(c0, . . . , cn ) |∃f : {0, 1}n → [0, 1] s .t . ci = f̂ (i ) for 0 ≤ i ≤ n}.

19The reason we use (−1)1+xi instead of the more common (−1)xi is that f̂ (i ) being positive implies positive correlation

between xi and f by Equation (13).
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Note that the space of feasible Chow vectors is a polytope, since it is convex, and has finitely many
vertices corresponding to the Chow vectors of Boolean functions. Let us denote this polytope by
Cn . While this polytope is natural in the context of Fourier analysis, we are not aware of prior
work that studies it explicitly.

Note that

f̂ (0) = Ex∼{0,1}n [f (x )]

=
1

2
Ex∼{0,1}n [f (x ) |xi = 1] +

1

2
Ex∼{0,1}n [f (x ) |xi = 0]. (12)

f̂ (i ) = Ex∼{0,1}n [f (x ) (−1)1+xi ]

=
1

2
Ex∼{0,1}n [f (x ) |xi = 1] − 1

2
Ex∼{0,1}n [f (x ) |xi = 0]. (13)

This lets us reinterpret our results regarding revenue maximization for the public projects
problem in the language of Chow parameters. By comparing Equation (11) in the statement of
Lemma 5.2 and Equation (13), we see that the problem of maximizing revenue is equivalent to
maximizing the weighted sum of the Chow parameters of a function.

OPT = max
f :{0,1}n→[0,1]

n∑
i=1

ai f̂ (i ). (14)

We briefly explain why these parameters are of interest in the analysis of Boolean functions.
Recall that sign+ (z) = 1 if z ≥ 0 and sign+ (z) = 0 otherwise. We say that a function h : {0, 1}n →
{0, 1} is a halfspace if there exist real numbers a0, . . . ,an such that

h(x ) = sign+ ��a0 +

n∑
i=1

ai (−1)1+xi �� .
We may assume that a0 +

∑n
i=1 ai (−1)1+xi never vanishes on {0, 1}n . An elegant result of Chow [9]

implies that the the Chow parameters of a halfspace identify it uniquely in the set of all Boolean
functions and, in fact, all bounded functions.

Theorem 5.3 (Chow’s Theorem [9]). Leth : {0, 1}n → {0, 1} be a halfspace. If f : {0, 1}n → [0, 1]

satisfies f̂ (i ) = ĥ(i ) for 0 ≤ i ≤ n, then f (x ) = h(x ) for all x ∈ {0, 1}n .

Chow’s theorem is usually stated assuming that f is Boolean, but the proof [24, Theorem 5.1]
also applies to the bounded case. Chow’s argument does not give an algorithm to reconstruct a
halfspace from its Chow parameters; this problem is known as the Chow parameters problem. It
was solved recently by O’Donnell and Servedio [25] and subsequently improved in De et al. [11].
Both results start from approximations to the Chow parameters and return a halfspace that is close
in Hamming distance to the target halfspace (with exactly the right Chow parameters).

Further motivation comes from the fact that, for monotone functions, 2 f̂ (i ) equals the influence

of variable xi , and hence 2
∑

i f̂ (i ) equals the average sensitivity of the function f . For n odd,
let Maj : {0, 1}n → {0, 1} denote the Majority function. It is known [24, Theorem 2.33] that for all
Boolean functions,

n∑
i=1

f̂ (i ) ≤
n∑

i=1

M̂aj(i ) = ��
√

2

π
+ o(1)��√n, (15)
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which implies that the Majority function has the highest average sensitivity among all monotone
functions.20 For more on Chow parameters and their significance, we refer the reader to O’Donnell
[24, Chapter 5].

5.3 Optimization over Cn

At this point, we proceed with our analysis in the setting of Chow parameters which, on one hand,
applies our hardness results to the problems of membership and optimization over the polytope
Cn (Theorem 5.5) and, on the other hand, completes the promised stand-alone alternative proof
of Lemma 4.5. By now, using Lemma 5.2 and the formulation in Equation (14), we have shown
the equivalence of the revenue optimization problem for the Boolean public project setting to that
of maximizing the weighted sum of the Chow parameters of a bounded function, equivalently
maximizing a linear function over the polytope Cn .

Given a = (a0, . . . ,an ) ∈ Rn+1, it defines a linear objective function over Cn given by a · c . To
analyze the linear function corresponding to a vectora ∈ Rn+1, we define the affine functiona(x ) =
a0 +
∑n

i=1 ai (−1)1+xi mapping {0, 1}n to R. When a0 = 0, the first part of Lemma 5.4 is essentially
a restatement of Lemma 4.5, whereas the second part replaces the role of Myerson’s theorem for
identifying the optimal function in Section 4.5.

Lemma 5.4. Given a ∈ Rn+1, we have

max
c ∈Cn

a · c = Ex∼{0,1}n [sign+ (a(x ))a(x )] =
1

2
(K (a) + a0). (16)

Equality is attained at the Chow vectors corresponding to functions f : {0, 1}n → [0, 1] such that

f (x ) = sign+ (a(x )) whenever a(x ) � 0.

Proof. Let c = ( f̂ (0), . . . , f̂ (n)). We have

a · c = a0 f̂ (0) +
n∑

i=1

ai f̂ (i )

= a0Ex∼{0,1}n [f (x )] +
n∑

i=1

ai Ex∼{0,1}n [f (x ) (−1)1+xi ]

= Ex∼{0,1}n
⎡⎢⎢⎢⎢⎣f (x ) ��a0 +

n∑
i=1

aixi
��
⎤⎥⎥⎥⎥⎦

= Ex∼{0,1}n [f (x )a(x )].

Since 0 ≤ f (x ) ≤ 1,

f (x )a(x ) ≤ sign+ (a(x ))a(x ).

If a(x ) � 0, this holds with equality if and only if f (x ) = sign+ (a(x )), whereas if a(x ) = 0, f (x )
can take an arbitrary value in [0, 1]. This gives us

max
c ∈Cn

a · c = Ex∼{0,1}n [sign+ (a(x ))a(x )]

and characterizes the functions that achieve equality. To complete the proof, we just compute this
expectation. This is a routine calculation which we defer to Appendix B. �

Theorem 5.5. The problems of linear optimization over Cn and deciding membership in Cn are

#P-hard.

20Going back the the Boolean public projects problem, this would be an estimate of the optimal revenue for the case where

all ai = 1.
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Proof. The hardness of linear optimization follows from Lemmas 5.4 and 4.4: If we can solve
linear optimization efficiently, we can compute K (a).

The hardness of membership is proved using a similar argument to Theorem 3.3. 0n+1 is a fea-
sible point in Cn . Hence, the ellipsoid method can also be used to reduce linear optimization to a
polynomial number of invocations of a membership oracle (see Schrijver [30, P. 189]). Hence, if we
can decide membership in the polytope Cn , then we can solve linear optimization over Cn using
the Ellipsoid algorithm, which we just showed is #P-hard. �

This hardness result rules out a nice characterization of the polytope Cn , in the spirit of Def-
inition 3.1. We believe this negative result is interesting in the context of the Chow parameters
problem and sheds light on why the exact version of the problem (where the goal is to find a
function whose Chow vector equals the input) is hard.

O’Donnell and Servedio [25] observe that the inverse problem of computing f̂ (0) for a given
halfspace is #P-complete, which implies that, given a target Chow vector, it is hard to verify if an
input halfspace has exactly these Chow parameters. This can be viewed as evidence that the exact
version of the Chow parameters problem is intractable.

Assume that we drop the requirement that the output be a halfspace and are willing to settle
for any bounded Boolean function that has some compact representation, which lets us evaluate
its Chow vector exactly. Can we now hope to solve the Chow problem exactly? Theorem 5.5 says
this is unlikely since such an algorithm with allow us to test membership in Cn , run the algorithm,
and check the function output by it.

Let us return to the question that we started this article with: For which vectors (p0,p1, . . . ,pn )
does there exist a probability space with events E,X1, . . . ,Xn , with X1, . . . ,Xn independent and
Pr[Xi ] = 1/2 for all i =∈ [n], such that p0 = Pr[E] and pi = Pr[E |Xi ] for all i ∈ [n]? Let xi be the
indicator of the event Xi . Define f : {0, 1}n → [0, 1] by setting f (x ) to be the probability of E
given x . This problem reduces to testing whether a vector of Chow parameters is feasible, which
is #P-hard by Theorem 5.5.

APPENDIXES

A HARDNESS OF COMPUTING THE KHINTCHINE CONSTANT

Proof of Lemma 4.4. Partition is a well-known NP-complete problem whose input consists of
n integersw1, . . . ,wn and the goal is to split the numbers into two parts so that their sum is equal.
This is equivalent to asking if there exists x ∈ {±1}n such that w · x = 0 where w = (w1, . . . ,wn ).
The counting version, which we denote #Partition, is the problem of computing

Prx ∈{±1}n [w · x = 0].

It is complete for #P. We show that this problem reduces to computing the Khintchine constant.
Given w , define the vectors

a0 = (2w1, . . . , 2wn , 0), a1 = (2w1, . . . , 2wn , 1).

For x ∈ {±1}n , define x+ = (x , 1) and x− = (x ,−1). We observe that

|a0 · x+ | + |a0 · x−| = 4|w · x |; (17)

|a1 · x+ | + |a1 · x−| = |2w · x + 1| + |2w · x − 1|. (18)

When w · x = 0, the right-hand side equals of Equation (17) equals 0, while that of Equation (18)
equals 2.

If w · x � 0, then |2w · x | ≥ 2. We then use

|a + b | + |a − b | = 2 max( |a |, |b |)
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to conclude that

|a1 · x+ | + |a1 · x−| = 4|w · x | = |a0 · x+ | + |a0 · x−|.

Finally, observe that we can write

K (ai ) = Ex∼{±1}n

[
|ai · x+ | + |ai · x−|

2

]
.

It follows that

Prx ∈{±1}n [w · x = 0] = K (a1) − K (a0). �

B COMPLETING THE PROOF OF LEMMA 5.4

Consider the affine function a(x ) = a0 +
∑n

i=1 ai (−1)1+xi mapping {0, 1}n to R. Our goal is to show

that Ex∼{0,1}n [sign+ (a(x ))a(x )] = 1
2 (K (a) + a0). Observe that

(2sign+ (a(x )) − 1)a(x ) = |a(x ) |.

Hence,

Ex ∈{0,1}n [|a(x ) |] = 2Ex ∈{0,1}n [sign+ (a(x ))a(x )] − Ex ∈{0,1}n [a(x )]

= 2Ex ∈{0,1}n [sign+ (a(x ))a(x )] − a0.

We will now show that

Ex ∈{0,1}n [|a(x ) |] = K (a),

which implies the claim. Observe that

K (a) = Ey∈{±1}n+1 [|a · y |]

=
1

2
Ey∈{±1}n

⎡⎢⎢⎢⎢⎣
������a0 +

n∑
i=1

aiyi

������
⎤⎥⎥⎥⎥⎦ + 1

2
Ex ∈{±1}n

⎡⎢⎢⎢⎢⎣
������−a0 +

n∑
i=1

aiyi

������
⎤⎥⎥⎥⎥⎦ .

We claim that the two expectations on the right-hand side are in fact equal to each other, since

Ey∈{±1}n
⎡⎢⎢⎢⎢⎣
������−a0 +

n∑
i=1

aiyi

������
⎤⎥⎥⎥⎥⎦ = Ey∈{±1}n

⎡⎢⎢⎢⎢⎣
������a0 −

n∑
i=1

aiyi

������
⎤⎥⎥⎥⎥⎦ = Ey∈{±1}n

⎡⎢⎢⎢⎢⎣
������a0 +

n∑
i=1

aiyi

������
⎤⎥⎥⎥⎥⎦ ,

using that
∑

i aiyi is an even random variable. Hence, we get

K (a) = Ey∈{±1}n
⎡⎢⎢⎢⎢⎣
������a0 +

n∑
i=1

aiyi

������
⎤⎥⎥⎥⎥⎦

= Ex ∈{0,1}n
⎡⎢⎢⎢⎢⎣
������a0 +

n∑
i=1

ai (−1)1+xi

������
⎤⎥⎥⎥⎥⎦

= Ex ∈{0,1}n [|a(x ) |].
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