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Abstract

Multivariate survival trees require few statistical assumptions, are easy to interpret,
and provide meaningful diagnosis and prediction rules. Trees can handle a large number
of predictors with mixed types and do not require predictor variable transformation or
selection. These are useful features in many application fields and are often required in the
current era of big data. The aim of this article is to introduce the R package MST. This
package constructs multivariate survival trees using marginal model and frailty model
based approaches. It allows the user to control and see how the trees are constructed.
The package can also simulate high-dimensional, multivariate survival data from marginal
and frailty models.
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1. Introduction

Decision trees have gained popularity in many application fields because they can handle a
variety of data structures, require few statistical assumptions, and yield classification and
prediction rules that are easy to interpret. Generalizations of classification and regression
trees (CARTs) applied to survival analysis can provide meaningful prognosis rules in med-
ical research. Many authors have proposed tree-based methods to handle univariate (or
uncorrelated) survival data (see, e.g., Gordon and Olshen 1985; Davis and Anderson 1989;
Therneau, Grambsch, and Fleming 1990; LeBlanc and Crowley 1992). We have extended
the research to handle multivariate survival data (Su and Fan 2004; Fan, Su, Levine, Nunn,
and LeBlanc 2006; Fan, Nunn, and Su 2009). The goal of this paper is to discuss con-
structing multivariate survival trees in R (R Core Team 2017) using the MST package (Su,
Calhoun, and Fan 2018) available at the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=MST.

http://dx.doi.org/10.18637/jss.v083.i12
https://CRAN.R-project.org/package=MST
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The paper is organized as follows. In Section 2 we introduce multivariate survival trees
and their construction. This will help users decide which model is most appropriate for
their dataset. We discuss the MST package including its features in Section 3 and analyze a
simulated and a real multivariate survival dataset in Section 4. We conclude with a discussion
on possible future developments.

2. Background
Multivariate failure time arises when individuals or objects under study are naturally clustered
or when individuals experience multiple events of the same type (namely, recurrent times).
Examples include disease incidence times of family members, component failure times in
medical devices, and tooth loss times in dental studies. When not all subjects experience
the event of interest and failure times are not all independent, multivariate survival methods
must be used to account for the censoring and dependence. The details to analyze correlated
failure times and construct multivariate survival trees are discussed in our papers Su and Fan
(2004) and Fan et al. (2006, 2009); key aspects are summarized herein.
The construction of multivariate survival trees adopts a modified CART procedure to model
the correlated failure times. The procedure consists of three steps: (1) growing a large initial
tree, (2) pruning it back to obtain a sequence of subtrees, and (3) selecting the best tree size.
For the tree growing and pruning purposes, one needs a splitting statistic that handles the
dependence of failure times and a split-complexity measure to evaluate the performance of the
tree. There are two main approaches to analyzing correlated failure times and developing the
splitting statistic. One is the marginal approach where the correlation is modeled implicitly
using generalized estimating equations on the marginal distribution formulated by a Cox
(1972) proportional hazards model. The other approach is the frailty model approach where
the correlation is modeled explicitly by a multiplicative random effect called frailty. The
frailty term corresponds to some common unobserved characteristics shared by all correlated
failure times in a cluster. We have developed two frailty model based methods: one based
on the semiparametric gamma frailty model (Su and Fan 2004) and the other based on the
parametric exponential frailty model (Fan et al. 2009) to improve the computation speed.
The marginal method uses a robust log-rank statistic given in Appendix A in Equation S1.
Su and Fan (2004) used an integrated log-likelihood shown in Equation S2 in Appendix A for
the gamma frailty model; however, the MST package uses a Wald test statistic to improve
stability and computation time. The exponential frailty model uses a score test statistic given
in Equation S3 in Appendix A. The splitting statistic is calculated for each possible split and
the largest value corresponds to the best split.
The MST package uses the survival package (Therneau 2017) to fit marginal and frailty
models and the MASS package (Venables and Ripley 2002) to simulate from a multivariate
normal distribution. In R, we can calculate the splitting statistic with the following logic
where x is a numeric predictor variable and 0.5 is a candidate split:
The robust log-rank statistic is calculated by fitting the model

R> coxph(Surv(time, status) ~ I(x > 0.5) + cluster(id))$rscore

The Wald test statistic is calculated by fitting the model
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R> coxph(Surv(time, status) ~ I(x > 0.5) + frailty.gamma(id, method = "em"),
+ control = coxph.control(eps = 1e-04, iter.max = 10,
+ toler.inf = sqrt(1e-09), outer.max = 5))$wald.test

The gamma frailty model can be computationally intensive, so the coxph.control function
is utilized as shown above to speed up the convergence. The Wald test statistic should yield
similar splits to the integrated log-likelihood studied by Su and Fan (2004).
The score test statistic for the exponential frailty model is calculated by utilizing matrix
multiplication, simulated annealing with the optim(. . . , method = "SANN") function, and a
quasi-Newton method to estimate the parameters in the model. The default values are used
when optimizing parameters in the score test statistic, except that the maximum number of
iterations is increased from 100 to 800 and the initial value estimates are set to 1.
The best choice for the splitting statistic depends on many factors including the true hazard
function, the types of covariates in the model, the sample size, the cluster size, and the censor-
ing rates. While the true hazard function is typically unknown, prior simulation studies and
data analyses (Nunn, Fan, Su, Levine, Lee, and McGuire 2012) showed that the frailty model
based approaches often performed better than the marginal model based approach in dental
applications. However, the marginal and exponential frailty models are much less computa-
tionally intensive and often select the correct cutoff points even under model misspecification.
All three splitting statistics outperformed the naive log-rank statistic that ignores the depen-
dence. The MST package also allows users to grow a tree using a stratified or naive log-rank
statistic, but we do not suggest using these splitting statistics except in rare circumstances.
Interested readers are referred to our simulation studies (Su and Fan 2004; Fan et al. 2009).
Growing the initial tree is done by splitting nodes iteratively until either a small number of
observations or uncensored times remain at the terminal node. The final tree model can be,
theoretically, any subtree of the initial tree, and the number of subtrees can become massive.
Following the CART approach, the initial tree is pruned to reduce the number of subtrees
considered. Let T denote a binary tree, T i denote the set of internal nodes, and |T | denote
the number of nodes of a tree. Defining G(h) to represent the maximum splitting statistic on
a particular node h, the split-complexity measure is:

Gα(T ) = G(T )− α|T i|, (1)

where G(T ) = ∑
h∈T G(h) measures the overall goodness of splits of T , |T i| measures the

complexity of the tree, and α ≥ 0 acts as a penalty for each additional split. The goodness of
split measured at each split h is the robust log-rank statistic, the squared Wald test statistic,
and the score test statistic for the marginal, gamma frailty, and exponential frailty models,
respectively. Note that for a given split, each of these measures has an approximate χ2(1)
distribution when the sample size at h is large.
An efficient pruning algorithm is determined by comparing each branch Th to a possible trim
at node h and solving for α. Since the split complexity measure is 0 when Th is trimmed and
h becomes a terminal node, this equates to:

0 = G(Th)− α|T ih|,

which is equivalent to

α = G(Th)/|T ih|.
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Thus, for any internal node h of the initial tree, the value G(Th)/|T ih| is calculated where Th
denotes the branch with h as its root. The weakest link of the tree is the node such that
G(Th)/|T ih| is minimal. The subtree that prunes off the branch with the weakest link is taken
and this process is repeated until we have pruned back to the root node. This procedure
reduces the number of possible subtrees (which can be very massive) to a manageable value.
After pruning back the tree, we have to select the best-sized subtree. The best-sized subtree
is taken as the tree with the largest splitting complexity measure in Equation 1 with a pre-
specified α. LeBlanc and Crowley (1993) suggested α be fixed within the range of 2 ≤ α ≤ 4.
Our previous simulation study (Fan et al. 2009) showed α = 4 typically yielded the better
performance compared with α = 2 and α = 3 for most models. The number of uncensored
events, α = log(n0), can also be used to select the best-sized subtree. Since we have already
used the sample to grow and prune the tree, we need to use a validation method for tree
size selection. Two validation methods are implemented: the test sample approach and the
bootstrap method. When the sample size is large, one may use a subset of the data to grow
and prune the initial tree and the other subset to select the best-sized tree. When the sample
size is small or moderate, one may use bootstrapping techniques as described previously in
our papers.
There are alternative approaches to constructing survival trees, the most similar approach
to the one implemented in package MST is available in package rpart (Therneau, Atkinson,
and Ripley 2017). The two main differences are that rpart implements the CART procedure
assuming independence and prunes the tree using cross-validation. It should also be noted
that the rpart package uses an exponential scaling statistic to grow the tree, which differs from
the naive log-rank statistic provided by MST. The MST package is slightly more automated
where the user simply inputs the data and candidate variables and the MST function outputs
the final tree; whereas, the rpart package allows a bit more control when pruning the tree.
Both packages allow users to control how the tree is grown and automatically sort trees based
on survival rate.
Other methods for constructing survival trees include the ctree function in the partykit
package which constructs conditional inference trees with stopping rules (Hothorn, Hornik,
and Zeileis 2006) and the DStree package which builds a tree for discrete-time survival data
(Mayer, Larocque, and Schmid 2016). Nice features with the alternative approaches are
the faster computation time compared with package MST. Splitting statistics that handle
the dependence are typically more computationally intensive. Simulation studies specifically
comparing trees constructed using the rpart, ctree, and MST functions are warranted.

3. The MST package

3.1. Simulating multivariate survival data

While the main purpose of the MST package is to construct multivariate survival trees, the
package also includes the rmultime function to generate multivariate survival data. The
details of generating survival data are described in Su, Fan, Wang, and Johnson (2006); the
possible models that can be simulated are given in Table 1. The user specifies the coefficients
(β0 and ~β1), the cutoff values (c), the censoring rate, and the model with the respective
parameters. The arguments of the function are described in the R package documentation.
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gamma.frailty:
λij(t) = exp

(
β0 + ~β1 · I(xij ≤ c)

)
wi with wi ∼ Γ(1/ν, 1/ν).

log.normal.frailty:
λij(t) = exp

(
β0 + ~β1 · I(xij ≤ c) + wi

)
with wi ∼ N(0, ν).

marginal.multivariate.exponential:
λij(t) = exp

(
β0 + ~β1 · I(xij ≤ c)

)
absolutely continuous.

marginal.nonabsolutely.continuous:
λij(t) = exp

(
β0 + ~β1 · I(xij ≤ c)

)
not absolutely continuous.

nonPH.weibull:
λij(t) = λ0(t) exp

(
β0 + ~β1 · I(xij ≤ c)

)
wi with wi ∼ Γ(1/ν, 1/ν), λ0(t) = αλtα−1.

Table 1: Models that can be simulated in the MST R package.

An example where multivariate failure times are simulated using this functionality and a tree
is constructed is presented in Section 4.
There are several packages that can simulate survival data; those include packages genSurv
(includes one time-dependent covariate; Araújo, Meira-Machado, and Faria 2015), PermAlgo
(generates independent survival data conditional on covariates; Sylvestre, Evans, MacKenzie,
and Abrahamowicz 2015), simMSM (simulates multistate models with possibly nonlinear
baseline hazards; Reulen 2015), survsim (simulates survival data with recurrent events or
competing risks; Moriña and Navarro 2014), and many others. However, to our knowledge,
the rmultime function is the only function available in R that can simulate high-dimensional,
multivariate survival data from marginal or frailty models.

3.2. Constructing multivariate survival trees

The MST function in the R package constructs the multivariate survival tree. The wrapper
function grows, prunes, and selects the best tree. The main arguments are described below:

• formula: A linear survival model with the survival response, the predictors, and the
cluster (or id) variable (e.g., Surv(time, status) ~ x1 + x2 | id).

• data: Data to grow and prune the tree.

• method: Indicates the method to handle correlation. Options include "marginal",
"gamma.frailty", "exp.frailty", "stratified", and "independence" models as de-
scribed in Section 2.

• selection.method: Indicates the method of selecting the best-sized tree. Options are
"test.sample" (for large datasets) or "bootstrap" (for small/moderate datasets).

• test: Test sample to select the best-sized tree if selection.method = "test.sample".

• B: Number of bootstrap samples if selection.method = "bootstrap". A rough guide-
line for the number of bootstrap samples is 25 ≤ B ≤ 100 following LeBlanc and Crowley
(1993).
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The MST function has some additional features to improve computational efficiency or allow
users to see more details about the construction of the multivariate survival tree for a given
dataset; these features are briefly described below:

• minsplit: Indicates minimum number of observations to continue splitting the branch.

• minevents: Indicates minimum number of uncensored events to continue splitting the
branch.

• minbucket: Indicates minimum number of observations in any terminal node.

• maxdepth: Indicates maximum depth of the tree if user wants to stop growing the tree
at a certain depth.

• mtry: Indicates number of variables randomly considered at each split.

• distinct: Indicates if all distinct cutpoints considered. If distinct = FALSE, then
only cutpoints from delta to 1 - delta with nCutPoints are considered.

• LeBlanc: Indicates if the entire sample or the out-of-bag sample is used while boot-
strapping. The interested reader can find more details in Fan et al. (2006).

• sortTrees: Indicates if trees should be sorted such that splits to the left have lower
risk of failure.

• plot.Ga: Indicates if a plot of the goodness of split vs. tree size is produced.

• details: Indicates if detailed information should be given about how the final tree was
constructed.

The plot.Ga and details parameters provide additional information regarding the construc-
tion of the tree for the given dataset, while the other additional features above can improve
computational efficiency. The default sortTrees = TRUE will sort the trees such that splits
to the left have higher rates of survival. However, it is possible that a terminal node on the
left has lower rate of survival than a terminal node on the right if they do not share the same
parent node.
The output of the MST function returns the initial tree, the trees pruned and considered in the
best tree selection, and the best-sized tree. The final multivariate survival tree depends on the
penalty (α) used, so four possible final trees are returned corresponding to α = 2, 3, 4, and
log(n0). All trees are objects of class ‘constparty’ with methods defined in package partykit
(Hothorn and Zeileis 2015). A ‘constparty’ tree requires observations that fall in the same
terminal node to have the same prediction (or constant fit). While this requirement may not be
met if two observations come from two different clusters, there are many benefits with treating
the tree as a ‘constparty’ object. One is the added functionality for print/plot/predict
methods. The plot method for ‘party’ objects produces Kaplan-Meier curves in each terminal
node, which gives the survival rate for an observation with an average cluster effect. The
predict method for ‘party’ objects returns the median survival time, but can easily be
modified to return any prediction and handle the dependence (see examples in Section 4).
Additionally, the ‘constparty’ object allows more compatibility with other R packages and
provides additional functions to extract elements from the tree.
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4. Illustrating examples

4.1. Simulation example

We illustrate the ability of the MST package to correctly construct multivariate survival trees
with the following simulation. Suppose we have 200 clusters each with 4 patients per cluster.
Suppose the failure times (e.g., time until illness) follow a marginal multivariate exponential
distribution described below:

λij(t) = exp
(
β0 + ~β1 · I(xij ≤ c)

)
with i = 1, . . . , 200, j = 1, . . . , 4,

β0 = −1, ~β1 = (0.8, 0.8, 0, 0)>.
(2)

Suppose failure times have a 0.65 correlation within the cluster and approximately half the
failure times are censored. Each patient has four covariates (x1, x2, x3, x4) with the first two
covariates having cutpoints at 0.5 and 0.3, respectively, with the same β coefficients at 0.8,
while the last two covariates have no effect on failure. The failure times can be simulated
using the following commands:

R> set.seed(186117)
R> data <- rmultime(N = 200, K = 4, beta = c(-1, 0.8, 0.8, 0, 0),
+ cutoff = c(0.5, 0.3, 0, 0), model = "marginal.multivariate.exponential",
+ rho = 0.65)$dat
R> test <- rmultime(N = 100, K = 4, beta = c(-1, 0.8, 0.8, 0, 0),
+ cutoff = c(0.5, 0.3, 0, 0), model = "marginal.multivariate.exponential",
+ rho = 0.65)$dat

The dataset can be analyzed with the following commands:

R> fit <- MST(formula = Surv(time, status) ~ x1 + x2 + x3 + x4 | id,
+ data, test, method = "marginal", minsplit = 100, minevents = 20,
+ selection.method = "test.sample")

The output of the final tree is a ‘constparty’ object:

R> (tree_final <- getTree(fit, "4"))

Model formula:
Surv(time, status) ~ x1 + x2 + x3 + x4 | id

Fitted party:
[1] root
| [2] x2 > 0.3
| | [3] x1 > 0.5: 1.694 (n = 208)
| | [4] x1 <= 0.5: 0.702 (n = 292)
| [5] x2 <= 0.3
| | [6] x1 > 0.5: 0.977 (n = 112)
| | [7] x1 <= 0.5: 0.334 (n = 188)



8 Constructing Multivariate Survival Trees: The MST Package for R

Number of inner nodes: 3
Number of terminal nodes: 4

Figure 1 illustrates the construction of the multivariate survival tree for the simulated data.
Panel A gives the large initial tree, Panel B gives the splitting statistic, Gα(T ), based on
the number of terminal nodes, and Panel C gives the final tree. In this case, the four split
penalties considered yield the same final tree. The final tree correctly identifies that patients
with x1 ≤ 0.5 and x2 ≤ 0.3 are at a higher risk of failure and it does not include x3 or x4 which
have no effect on failure. The marginal model is best in this situation because the simulated
data was generated without a frailty term; however, this is typically unknown. The gamma
and exponential frailty models often yield similar final trees. Panels A and C were produced
using the plot function and panel B was created with the plot.Ga = TRUE command in the
MST function with slight modifications to increase resolution and readability.
Users can go further by fitting a model using the terminal nodes of the tree as the predictors.
For example, the code below can fit a marginal model using the final tree. Each observation
is sent down the tree and assigned to a terminal node; the marginal model is then fit with the
terminal node as the predictor. Users can use a frailty term in coxph or use the frailtypack R
package (Rondeau, Mazroui, and Gonzalez 2016) to fit a frailty model. Note that, in practice,
it is highly recommended that a new dataset be used since the data was already used to grow
the tree and data reuse is known to result in inferences that are overoptimistic.

R> data$term_nodes <- as.factor(predict(tree_final, newdata = data,
+ type = "node"))
R> coxph(Surv(time, status) ~ term_nodes + cluster(id), data = data)

Call:
coxph(formula = Surv(time, status) ~ term_nodes + cluster(id),

data = data)

coef exp(coef) se(coef) robust se z p
term_nodes4 1.034 2.811 0.139 0.193 5.35 9.0e-08
term_nodes6 0.949 2.582 0.178 0.174 5.46 4.6e-08
term_nodes7 1.692 5.428 0.166 0.223 7.57 3.7e-14

Likelihood ratio test=115 on 3 df, p=0
n= 800, number of events= 410

4.2. Computational speed
A major limitation with constructing multivariate survival trees is the computational inten-
sity. There are several factors affecting computation speed: the model chosen to handle the
dependence, the number of categorical and continuous predictors, the number of cutpoints
considered, and the minimum node size to continue splitting the branch. To assess computa-
tion time, we simulated survival data with a marginal dependence structure setting ρ = 0.65
and varying the number of observations and predictors. Half of the predictors were cluster-
specific factors (constant within cluster) with either 75% or 25% being continuous. Each
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Dataset size # of variables Gamma Exponential
(N ×K) (# continuous vs. # nominal) Marginal frailty frailty
200 × 4 8 (6 vs. 2) 0.9 1.7 0.6
200 × 4 8 (2 vs. 6) 0.4 0.8 0.2
200 × 4 24 (18 vs. 6) 2.8 7.0 1.7
200 × 4 24 (6 vs. 18) 1.3 3.0 1.1
200 × 4 64 (48 vs. 16) 7.3 18.7 4.9
200 × 4 64 (6 vs. 48) 3.5 7.5 2.4
500 × 10 8 (6 vs. 2) 5.8 22.0 3.5
500 × 10 8 (2 vs. 6) 2.8 8.0 1.8
500 × 10 24 (18 vs. 6) 24.4 67.3 8.0
500 × 10 24 (6 vs. 18) 8.4 26.0 5.3
500 × 10 64 (48 vs. 16) 52.0 195.7 25.1
500 × 10 64 (16 vs. 48) 24.0 75.5 11.2

Table 2: Approximate number of minutes to grow and select the best-sized tree.

continuous variable had around 100 distinct cutpoints and each categorical variable had 8
unordered levels. We set one continuous and one nominal failure-specific factor (which may
vary within cluster) to be informative (β = 1). We used the default setting to grow the
multivariate survival tree. Table 2 gives the number of minutes it takes to grow and select
the best-sized tree using an Intel Core i7-4510U processor. While the MST package does not
utilize more efficient software programs such as C++ or Fortran, most of the computation
time was devoted to calculating the splitting statistic. Fitting thousands of Cox proportional
hazards models, while adjusting for dependence, can be very time consuming.
The exponential frailty model was the fastest method, the marginal model was the second
fastest, and the gamma frailty model was the slowest. Even for moderate sample sizes,
the gamma frailty model can be very time consuming. The exponential frailty model was
developed to improve computation time, while assuming a constant baseline hazard function.
The computational speed gained from using the marginal and exponential frailty models is
essential for analyzing large datasets or using many bootstrap samples. Increasing the number
of observations or predictors increases the computation time. Nominal categorical variables
are converted to ordered by replacing levels with the estimated beta coefficients from a Cox
proportional hazards model adjusting for the dependence. Thus, growing trees from datasets
with more categorical predictors were faster due to having less distinct cutpoints. Using per-
centiles can greatly improve computation time. Users are advised to carefully consider the
model dependence and input parameter settings to maximize accuracy and reduce computa-
tion time.

4.3. Analysis of tooth loss

We now construct multivariate survival trees to predict tooth loss from patients treated at
the Creighton University School of Dentistry from August 2007 until March 2013. The data is
available in the MST R package as object Teeth. Risk factors associated with tooth loss were
grouped into four categories: demographic; health status; clinical variables at the patient
level; and clinical variables at the tooth level. For many variables, a severity score for each
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Variable Name Description
Tooth-level factors

x1 mobil Mobility score (0–5)
x2 bleed Bleeding on probing (percentage)
x3 plaque Plaque score (percentage)
x4 pocket_mean Periodontal probing depth (tooth-level mean)
x5 pocket_max Periodontal probing depth (tooth-level max)
x6 cal_mean Clinical attachment level (tooth-level mean)
x7 cal_max Clinical attachment level (tooth-level max)
x8 fgm_mean Free gingival margin (tooth-level mean)
x9 fgm_max Free gingival margin (tooth-level max)
x10 mg Mucogingival defect
x11 filled Filled surfaces
x12 decay_new Decayed surfaces – new
x13 decay_recur Decayed surfaces – recurrent
x14 dfs Decayed and filled surfaces
x15 crown Crown (indicator)
x16 endo Endodontic therapy (indicator)
x17 implant Tooth implant (indicator)
x18 pontic Bridge pontic (indicator)
x19 missing_tooth Missing tooth (indicator)
x20 filled_tooth Filled tooth (indicator)
x21 decayed_tooth Decayed tooth (indicator)
x22 furc_max Furcation involvement (for molars only)

Table 3: Factors assessed that could potentially affect tooth loss – Part I.

tooth (tooth-level factor) and the average severity score over the entire mouth for each subject
(patient-level factor) were included. Tables 3 and 4 give the fifty-one factors assessed that
could potentially affect tooth loss. Factors were analyzed separately for molar and non-molar
teeth.
The data consisted of 5,336 patients with periodontal disease with 25,694 molar teeth and
40,196 non-molar teeth. The average age was 56 years, with 49% men, 9% had Diabetes
Mellitus, and 23% were smokers. For molars, 1,870 (7.3%) teeth were lost with the median
tooth loss time of 0.53 years and the maximum tooth loss time of 5.58 years. For non-molars,
2,723 (6.8%) teeth were lost with the median tooth loss time of 0.54 years and the maximum
tooth loss time of 5.59 years.
Due to the large sample size, a test sample was used to select the best-sized tree with one
third of patients randomly assigned to the test sample. For the molar tooth analysis, data is
partitioned with the following commands:

R> data("Teeth", package = "MST")
R> molar <- subset(Teeth, molar == 1)
R> set.seed(482046)
R> id.train <- sample(x = unique(molar$id), size = floor(nPatients * 2/3),
+ replace = FALSE)
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Variable Name Description
Subject-level factors
x23 bleed_ave Bleeding on probing (mean percentage)
x24 plaque_ave Plaque index (mean percentage)
x25 pocket_mean_ave Periodontal probing depth (mean of tooth mean)
x26 pocket_max_ave Periodontal probing depth (mean of tooth max)
x27 cal_mean_ave Clinical attachment level (mean of tooth mean)
x28 cal_max_ave Clinical attachment level (mean of tooth max)
x29 fgm_mean_ave Free gingival margin (mean of tooth mean)
x30 fgm_max_ave Free gingival margin (mean of tooth max)
x31 mg_ave Mucogingival defect (mean)
x32 filled_sum Filled surfaces (total)
x33 filled_ave Filled surfaces (mean)
x34 decay_new_sum New decayed surfaces (total)
x35 decay_new_ave New decayed surfaces (mean)
x36 decay_recur_sum Recurrent decayed surfaces (total)
x37 decay_recur_ave Recurrent decayed surfaces (mean)
x38 dfs_sum Decayed and filled surfaces (total)
x39 dfs_ave Decayed and filled surfaces (mean)
x40 filled_tooth_sum # of filled teeth
x41 filled_tooth_ave % of filled teeth
x42 decayed_tooth_sum # of decayed teeth
x43 decayed_tooth_ave % of decayed teeth
x44 missing_tooth_sum # of missing teeth
x45 missing_tooth_ave % of missing teeth
x46 total_tooth # of teeth
x47 dft # of decayed and filled teeth

Demographic factors
x48 baseline_age Patient age at baseline (in years)
x49 gender Gender

Health status factors
x50 diabetes Diabetes mellitus (indicator)
x51 tobacco_ever Tobacco use (indicator)

Table 4: Factors assessed that could potentially affect tooth loss – Part II.

R> molar_training <- molar[molar$id %in% id.train, ]
R> molar_test <- molar[!(molar$id %in% id.train), ]

To improve computational speed, only 50 equally spread out cutoff points from the 5th to the
95th percentiles were used as candidates for continuous variables with over 50 distinct cutoff
points; this was specified via the option distinct = FALSE, together with delta = 0.05
and nCutPoints = 50. A large number of observations was required in each terminal node,
minbucket = 100, to ensure more accurate survival estimates. The exponential frailty model
was used to handle the correlation and α = 4 was used as the split penalty when selecting the
best-sized tree. The multivariate survival trees are constructed with the following command:



J o ur n al of St ati sti c al S oft w ar e 1 3

x
6

≤
3.

6
1

x
3
5

≤
0.

1
4

x
2
1

x
1
4

>
0

x
4
7

>
4

x
1
6

x
4
8

≤
4
3.

4

1
4
1
3

(
1.

0
0)

x
5

≤
3.

5

3
3
0
3

(
0.

9
8)

x
3
5

≤
0.

0
7

1
2
7
5

(
0.

9
8)

x
2
6

>
2.

9
7

2
3
4

(
0.

9
6)

1
0
8

(
0.

9
2)

4
5
0

(
0.

9
4)

1
8
5

(
0.

8
9)

3
2
3

(
0.

8
7)

x
3
7

≤
0.

1
7

4
0
6

(
0.

9
2)

2
2
1

(
0.

8
2)

x
1
2

≤
2

x
1
4

>
0

x
2
1

x
4
8

≤
4
2.

1

1
0
5
1

(
0.

9
9)

x
4
1

>
0.

5
8

x
1
6

1
4
8
5

(
0.

9
6)

1
3
7

(
0.

8
5)

3
7
7

(
0.

8
6)

x
3
5

≤
1.

2
4

x
4
8

≤
6
0.

5

x
4

≤
2.

6
7

1
0
8
6

(
0.

9
5)

7
9
0

(
0.

8
8)

5
3
8

(
0.

8
1)

2
7
8

(
0.

7
3)

3
2
8

(
0.

7
4)

1
9
3

(
0.

4
2)

x
6

≤
5.

7
9

x
4
3

≤
0.

1
9

x
2
8

≤
4.

8
3

x
2
9

>
0

6
9
3

(
0.

9
7)

x
4
3

≤
0.

0
9

1
9
1

(
0.

9
4)

1
5
6

(
0.

7
9)

2
2
4

(
0.

7
9)

x
3
4

≤
1
7

x
2
7

≤
4.

2
9

x
2
4

>
1
0.

3

6
4
3

(
0.

8
5)

3
5
9

(
0.

6
9)

1
2
8

(
0.

6
2)

1
5
1

(
0.

4
3)

x
1 ≤
0

2
5
1

(
0.

5
7)

1
0
0

(
0.

2
1)

∈
{

N
ot

D
ec

ay
e
d}

∈
{

N
ot

D
ec

ay
e
d}

∈
{

N
o 

E
n
d
o

T
h
er

a
py

}

∈
{

N
o 

E
n
d
o

T
h
er

a
py

}

Fi
g
ur

e
2:

M
ul

ti
v

ar
ia

te
s
ur

vi
va

l
tr

ee
fo

r
mo

la
r

to
ot

h
lo

ss
.

Tr
ue

st
at

e
me

nt
s

mo
ve

to
t
he

le
ft

;
t
he

n
u

m
be

r
of

te
et

h
a
n
d

es
ti

ma
te

d
pr

o
ba

bi
li

ty
of

s
ur

vi
va

l
at

3
ye

ar
s

is
re

p
or

te
d

i
n

ea
c
h

te
r

mi
na

l
no

de
.



1 4 C o n str u cti n g M ulti v ari at e S ur vi v al Tr e e s: T h e M S T P a c k a g e f or R

x
4
0

>
1
1

x
4
3

≤
0.

3

x
5 ≤
5

x
1
6

x
1
1

≤
2

x
2
5

≤
2.

2
5

3
4
6
2

(
1.

0
0)

x
1
4

>
0

2
8
9
0

(
0.

9
9)

x
3
0

>
0.

5
1

1
8
1

(
1.

0
0)

x
4
7

≤
2
1

5
5
4

(
0.

9
8)

1
3
1

(
0.

9
3)

x
2
1

3
7
4
5

(
0.

9
8)

2
4
8

(
0.

9
2)

7
4
6

(
0.

9
4)

2
1
9

(
0.

8
4)

x
2
7

≤
2.

7
3

x
1
4

≤
4

x
1
4

>
0

x
6

≤
2.

6
7

x
4
3

≤
0.

3
5

3
5
4

(
1.

0
0)

x
3
5

≤
0.

6
6

1
1
4
8

(
0.

9
8)

x
3
4

>
2
5

1
1
2

(
1.

0
0)

1
9
9

(
0.

9
2)

1
2
4

(
0.

9
1)

x
3
7

≤
0.

2
6

1
3
0

(
0.

9
1)

1
0
3

(
0.

8
9)

4
2
3

(
0.

8
8)

x
2
5

≤
3.

0
2

x
4
0

≤
1
2

1
0
0

(
1.

0
0)

x
4
8

≤
6
1

1
9
4

(
0.

9
8)

x
4
3

≤
0.

3
8

1
1
9

(
0.

9
0)

1
0
7

(
0.

5
5)

x
2
6

≤
4.

3
3

1
2
3

(
0.

7
9)

1
5
9

(
0.

4
3)

x
4
8

≤
3
4.

6

x
3
8

≤
2
5.

5

1
3
2
6

(
0.

9
9)

x
2
6

≤
3.

0
8

2
7
8

(
0.

9
9)

3
2
9

(
0.

8
7)

x
2
8

≤
4.

1
1

x
1
2

≤
2

x
4
1

>
0.

6
9

2
2
2
9

(
0.

9
3)

x
2
4

>
4.

4
4

x
2
4

≤
2
1.

1

x
4
8

≤
5
3.

2

4
3
8

(
1.

0
0)

x
2
7

≤
2.

1
2

2
4
5

(
0.

9
9)

3
4
8

(
0.

9
3)

x
4
3

≤
0.

2
5

6
3
3

(
0.

9
6)
1
3
0
8

(
0.

8
4)

x
4
8

≤
4
9.

6

4
0
0

(
0.

9
3)
1
3
1
5

(
0.

7
8)

2
7
9

(
0.

3
6)

x
6

≤
4.

8
1

x
2
5

≤
2.

9
4

x
2
9

≤
0.

3
9

1
3
8

(
0.

9
2)

x
3
9

≤
1.

9
6

x
4
2

≤
1

1
1
2

(
1.

0
0)

2
8
5

(
0.

8
7)

1
2
2

(
0.

5
9)

x
4
0

>
8

x
3
0

>
0.

1
2

1
4
5

(
0.

9
7)

1
7
6

(
0.

7
6)

6
8
8

(
0.

5
7)

4
0
6

(
0.

4
1)

∈
{

N
o 

E
n
d
o

T
h
er

a
py

}

∈
{

N
ot

D
ec

ay
e
d}

Fi
g
ur

e
3:

M
ul

ti
v

ar
ia

te
s
ur

vi
va

l
tr

ee
fo

r
no

n-
mo

la
r

to
ot

h
lo

ss
.

Tr
ue

st
at

e
me

nt
s

mo
ve

to
t
he

le
ft

;
t
he

n
u

m
be

r
of

te
et

h
a
n
d

es
ti

ma
te

d
pr

o
ba

bi
li

ty
of

s
ur

vi
va

l
at

3
ye

ar
s

is
re

p
or

te
d

i
n

ea
c
h

te
r

mi
na

l
no

de
.



Journal of Statistical Software 15

R> form <- as.formula(paste0("Surv(time, event) ~ ",
+ paste0("x", 1:51, collapse = " + "), " | id"))
R> fit_molar <- MST(form, data = molar_training, test = molar_test,
+ method = "exp.frailty", selection.method = "test.sample",
+ distinct = FALSE, delta = 0.05, nCutPoints = 50, minevents = 10,
+ minbucket = 100)

Figures 2 and 3 give the multivariate survival trees for molar and non-molar teeth, respec-
tively. Molar teeth are categorized into thirty possible terminal nodes. The risk of molar
tooth loss is dependent on 20 factors (8 tooth-level factors and 12 subject-level factors). The
tree for non-molar teeth is constructed with the same commands, except for using molar == 0
and removing x22 from the formula. Non-molar teeth are categorized into forty-three possible
terminal nodes. Twenty-five factors (7 tooth-level factors and 18 subject-level factors) im-
pacted the risk of non-molar tooth loss. Factors listed in the tree do not necessarily represent
variable importance. It is possible that informative variables are not included in the final tree
due to a masking effect. A detailed tooth analysis using multivariate survival random forests
to assess variable importance will be studied in a subsequent paper.
The current dental prognosis is often based on clinical opinion where the clinician weighs
several factors. However, an accurate prognosis is crucial to the development of an appropriate
treatment plan (Mordohai, Reshad, Jivraj, and Chee 2007). There are many ways multivariate
survival trees can be used to help clinicians make better decisions and improve patient care.
One approach is to estimate the survival curves for each possible terminal node by fitting a
marginal model that handles the correlation within subjects. The multivariate survival trees
on tooth loss give the estimated survival rate for each terminal node. Each split to the left
has higher rates of survival. The probability of survival at 3 years ranged from 0.999 to 0.211
for molar teeth and 1 to 0.358 for non-molar teeth. A combination of the survival curves and
clinical experience can help prescribe better treatment.

5. Conclusions
To our knowledge, package MST is the only available package in R to construct multivariate
survival trees. The MST package is easy-to-use and allows users to see and control how the
survival trees are constructed. Tree based analysis automatically groups observations with
differing outcomes and hence renders it an excellent research tool in medical prognosis or
diagnosis. In addition, trees can handle data with a large number of predictors with mixed
types (continuous, ordinal, and categorical with two or more levels) without the need for
variable transformation, dummy variable creation, or variable selection. These off-the-shelf
features of a data analysis tool are often required in the current era of big data. Over the
years, we have received many requests from researchers in various fields to share our R codes.
We hope that our newly developed R package, MST, will help facilitate the utilization of
multivariate survival trees in many application fields.
Many factors must be considered when determining the appropriate model. The gamma frailty
model performs well even when the underlying model is misspecified. However, the gamma
frailty model takes much longer to fit than the marginal and exponential frailty models.
The computational speed gained from using the marginal and exponential frailty models is
essential for analyzing large datasets or using many bootstrap samples. Using percentiles as
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the candidate splits, instead of all distinct cutpoints, can improve computation speed at the
expense of slightly less accuracy.
Future work will be devoted to improving computational efficiency and providing additional
features and flexibility. Possible additions include allowing positive stable frailty models,
providing more control when pruning a tree, and handling missing observations. The MST
function also provides the framework to construct multivariate survival random forests. How-
ever, random forests are very computationally intensive, so methods and parameter settings
that improve speed as assessed in Section 4.2 should be considered. Other faster ensemble
methods, such as extremely randomized trees (Geurts, Ernst, and Wehenkel 2006), could also
be implemented. While the main components to construct multivariate survival trees are
available, we hope to continue improving computational speed and functionality in future
versions of the MST package.
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A. Splitting statistics formulas
Suppose that there are n units with Ki correlated failure times in the i-th unit, i = 1, . . . , n.
Let Fik and Cik be the failure time and censoring time corresponding to the k-th failure
in the i-th unit, respectively. The observed data consist of {(Yik,∆ik,Xik) : i = 1, . . . , n;
k = 1, . . . ,Ki}, where Yik = min(Fik, Cik) is the observed failure time; ∆ik = I(Fik ≤ Cik)
is the failure indicator, which is 1 if Fik ≤ Cik and 0 otherwise; and Xik = (xik1, . . . , xikp)
denotes the pq-dimensional covariate vector associated with the k-th observation of the i-th
unit. We consider only time-independent covariates. To ensure identifiability, it is assumed
that the failure time vector Fi = (Fi1, . . . , FiKi)> is independent of the censoring time vector
Ci = (Ci1, . . . , CiKi)> conditional on the covariate vector Xi = (X>i1, . . . ,X>iKi

)>, i = 1, . . . , n.
We will use the following notations to write the splitting statistic. Let λ0(t) represent an
unspecified baseline hazard function, β is an unknown regression parameter, and I(·) is the
indicator function. For a constant change point c, xikj induces a binary partition of the data
according to a continuous covariate Xj . If Xj is discrete, then the form xikj ∈ A is considered
where A can be any subset of its categories.
The marginal model develops the splitting statistic by formulating the hazard function of the
k-th failure in the i-th unit as follows:

λik(t) = λ0(t) exp(β · I(xikj ≤ c)).

Fan et al. (2006) showed that the splitting statistic, called the robust log-rank statistic, is:

GM (c) =

[∑n
i=1

∑Ki
k=1 ∆ik

{
I(xikj ≤ c)− S(1)(Yik)/S(0)(Yik)

}]2
∑n
i=1

∑Ki
k=1

∑Ki
l=1WikWil

, (S1)

where

Wik = ∆ik

{
I(xikj ≤ c)−

S(1)(Yik)
S(0)(Yik)

}
−

n∑
i′=1

Ki∑
l=1

∆i′lI(Yik > Yi′l)
S(0)(Yi′l)

{
I(xi′kj ≤ c)−

S(1)(Yi′l)
S(0)(Yi′l)

}
,

S(0)(t) =
n∑
i=1

Ki∑
k=1

I(Yik ≥ t), S(1)(t) =
n∑
i=1

Ki∑
k=1

I(Yik ≥ t)I(xikj ≤ c).

While Equation S1 looks formidable, the calculation of GM (c) is computationally inexpensive
because it is available in closed form and depends primarily on the evaluation of indicator
functions.
The gamma frailty model develops the splitting statistic by formulating the hazard function
as follows:

λik(t) = λ0(t) exp(β · I(xikj ≤ c))wi,
where wi denotes the frailty term for the i-th unit. The frailty term wi is assumed to
follow some known positive distribution; the MST package uses the common choice that
wi ∼ Γ(1/ν, 1/ν) where ν represents an unknown variance.
Su and Fan (2004) showed that the integrated log likelihood splitting statistic is:
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GG(c) = −n ln Γ( 1
ν

)− n

ν
ln ν+

n∑
i=1

ln Γ(ai)− ai ln bi +
Ki∑
k=1

∆ik {ln λ0(Yik) + I(xikj ≤ c)β}

 , (S2)

where

ai = 1
ν

+
Ki∑
k=1

∆ik, bi = 1
ν

+
Ki∑
k=1

Λ0(Yik) exp(β · I(xikj ≤ c)),

and Λ0(·) is the cumulative baseline hazard function.
The exponential frailty model develops the splitting statistic by formulating the hazard func-
tion of the k-th failure in the i-th unit as follows:

λik(t) = exp(λ0 + β · I(xikj ≤ c))wi,

where exp(λ0) is an unknown constant baseline hazard and wi denotes the frailty term for
the i-th unit, typically wi ∼ Γ(1/ν, 1/ν). Note the exponential frailty model replaces λ0(t) in
the gamma frailty model with exp(λ0) for computational efficiency. We define θ = (λ0, ν)>
and mi = ∑Ki

k=1 YikI(xikj ≤ c). Fan et al. (2009) showed that the splitting statistic, called
the score test statistic, is:

GE(c) = U2

iββ − i>βθI
−1
0 iβθ

∣∣∣∣
(λ0,ν)=(λ̂0,ν̂)

, (S3)

where

Ai = 1
ν

+
Ki∑
k=1

∆ik,

Bi = 1
ν

+ exp(λ0)
Ki∑
k=1

Yik,

U =
n∑
i=1

Ki∑
k=1

∆ik − exp(λ0)
n∑
i=1

miAi
Bi

,

iββ = exp(λ0)
n∑
i=1

miAiBi − exp(λ0)m2
iAi

B2
i

,

iβθ = (iβλ0 , iβν)>,

iβλ0 = exp(λ0)
n∑
i=1

miAi
B2
i

Bi − exp(λ0)
Ki∑
k=1

Yik

 ,
iβν = exp(λ0)

ν2

n∑
i=1

mi

B2
i

(Ai −Bi),

I0 =
(
iλ0λ0 iλ0ν

iνλ0 iνν

)
,

iλ0λ0 = exp(λ0)
ν

n∑
i=1

Ai
B2
i

Ki∑
k=1

Yik,
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iλ0ν = iνλ0 = exp(λ0)
ν2

n∑
i=1

Ai −Bi
B2
i

Ki∑
k=1

Yik,

iνν = 2n
ν3

Γ′( 1
ν )

Γ( 1
ν )
− 3n
ν3 + 2n ln(ν)

ν3 + n

ν4
Γ′′( 1

ν )
Γ′( 1

ν )
− n

ν4

(
Γ′( 1

ν )
Γ( 1

ν )

)2

+

n∑
i=1

[
2Γ′(Ai)
ν3Γ(Ai)

− 2 ln(Bi)
ν3 − 2Ai

ν3Bi
+ 1
ν4

Γ′′(Ai)
Γ(Ai)

− 1
ν4

{Γ′(Ai)
Γ(Ai)

}2
− 2
ν4Bi

+ Ai
ν4B2

i

]
.
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