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While crude, worst-case analysis

The need for deeply understanding can be tremendously useful, and it is
= the dominant paradigm for algorithm

when algorlthms work (or n°t) analysis in theoretical computer sci-
has never been greater. ence. A good worst-case guarantee
is the best-case scenario for an algo-

| BY TIM ROUGHGARDEN rithm, certifying its general-purpose

utility and absolving its users from un-
derstanding which inputs are relevant

to their applications. Remarkably, for
e o n many fundamental computational
problems, there are algorithms with

excellent worst-case performance

guarantees. The lion’s share of an un-
r [ dergraduate algorithms course com-
prises algorithms that run in linear or
near-linear time in the worst case.

- For many problems a bit beyond
the scope of an undergraduate course,
however, the downside of worst-case
analysis rears its ugly head. Here, I

review three classical examples where
worst-case analysis gives misleading
or useless advice about how to solve a

problem; further examples in modern
machine learning are described later.

COMPARING DIFFERENT ALGORITHMS is hard. For These examples motivate the alterna-

almost any pair of algorithms and measure of Five}Sl to W.Olfstb'case analysis described
. . . . . In the article.

alg01:1thm performance 11!<e running time or solution The simplex method for linear

quality, each algorithm will perform better than the programming. Perhaps the most fa-

other on some inputs.? For example, the insertion sort | mous failure of worst-case analysis
. . concerns linear programming, the

algorithm is faster than merge sort on already-sorted problem of optimizing a linear func-

arrays but slower on many other inputs. When two

: . b For many more examples, analysis frame-
algorithms have incomparable performance, how can works, sl applications. ses the sathor's Ioe
we deem one of them “better than” the other? ture notes.

Worst-case analysis is a specific modeling choice o
. . . key insights
in the analysis of algorithms, where the overall
PP . . . m Worse-case analysis takes a "Murphy's

performance of an algorithm is summarized by its Law" approach to algorithm analysls,

worst performance on any input of a given size. The which is too crude to give meaningful
. . B . algorithmic guidance for many
“better” algorithm is then the one with superior worst- important problems, including linear
. . programming, clustering, caching,
case performance. Merge sort, with its worst-case and neural network training.
asymptotic running time of O(n log n) for arrays of ® Research going "beyond worst-case
. . . . . analysis" articulates properties of
length n, is better in this sense than insertion sort, realistic inputs, and proves rigorous and
. . e 9 meaningful algorithmic guarantees for
which has a worst-case running time of ©(n?). inputs with these properties.
® Much of the present and future
a Inrare cases a problem admits an instance-optimal algorithm, which is as good as every other al- research in the area is motivated by
gorithm on every input, up to a constant factor.® For most problems, there is no instance-optimal the unreasonable effectiveness
algorithm, and there is no escaping the incomparability of different algorithms. of machine learning algorithms.
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tion subject to linear constraints
(Figure 1). Dantzig’s simplex method
is an algorithm from the 1940s that
solves linear programs using greedy
local search on the vertices on the
solution set boundary, and variants
of it remain in wide use to this day.
The enduring appeal of the simplex
method stems from its consistently
superb performance in practice. Its
running time typically scales modest-
ly with the input size, and it routinely
solves linear programs with millions
of decision variables and constraints.

This robust empirical performance
suggested the simplex method might
well solve every linear program in a
polynomial amount of time.

In 1972, Klee and Minty showed by
example that there are contrived linear
programs that force the simplex meth-
od to run in time exponential in the
number of decision variables (for all of
the common “pivot rules” for choosing
the nextvertex). This illustrates the first
potential pitfall of worst-case analysis:
overly pessimistic performance pre-
dictions that cannot be taken at face
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value. The running time of the simplex
method is polynomial for all practical
purposes, despite the exponential pre-
diction of worst-case analysis.

To add insult to injury, the first
worst-case  polynomial-time algo-
rithm for linear programming, the
ellipsoid method, is not competitive
with the simplex method in practice.©

¢ Interior-point methods, developed five years
later, lead to algorithms that both run in
worst-case polynomial time and are competi-
tive with the simplex method in practice.
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Figure 1. A two-dimensional linear

programming problem.
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Figure 2. One possible way to group data

points into three clusters.

Taken at face value, worst-case analy-
sis recommends the ellipsoid method
over the empirically superior simplex
method. One framework for narrow-
ing the gap between these theoretical
predictions and empirical observa-
tions is smoothed analysis, discussed
later in this article.

Clustering and NP-hard optimiza-
tion problems. Clustering is a form
of unsupervised learning (finding pat-
terns in unlabeled data), where the
informal goal is to partition a set of
points into “coherent groups” (Figure
2). One popular way to coax this goal
into a well-defined computational
problem is to posit a numerical objec-
tive function over clusterings of the
point set, and then seek the clustering
with the best objective function value.
For example, the goal could be to
choose k cluster centers to minimize
the sum of the distances between
points and their nearest centers (the
k-median objective) or the sum of the
squared such distances (the k-means
objective). Almost all natural optimi-
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zation problems that are defined over
clusterings are NP-hard.

In practice, clustering is not viewed
as a particularly difficult problem.
Lightweight clustering algorithms, like
Lloyd’s algorithm for k-means and its
variants, regularly return the intuitive-
ly “correct” clusterings of real-world
point sets. How can we reconcile the
worst-case intractability of clustering
problems with the empirical success of
relatively simple algorithms?¢

One possible explanation is that
clustering is hard only when it doesn’t
matter.'® For example, if the difficult
instances of an NP-hard clustering
problem look like a bunch of random
unstructured points, who cares? The
common use case for a clustering al-
gorithm is for points that represent
images, or documents, or proteins,
or some other objects where a “mean-
ingful clustering” is likely to exist.
Could instances with a meaningful
clustering be easier than worst-case
instances? This article surveys recent
theoretical developments that sup-
port an affirmative answer.

Cache replacement policies. Con-
sider a system with a small fast mem-
ory (the cache) and a big slow memory.
Data is organized into blocks called
pages, with up to k different pages
fitting in the cache at once. A page
request results in either a cache hit
(if the page is already in the cache)
or a cache miss (if not). On a cache
miss, the requested page must be
brought into the cache. If the cache
is already full, then some page in it
must be evicted. A cache policy is
an algorithm for making these evic-
tion decisions. Any systems textbook
will recommend aspiring to the least
recently used (LRU) policy, which
evicts the page whose most recent
reference is furthest in the past. The
same textbook will explain why: real-
world page request sequences tend
to exhibit locality of reference, mean-

d More generally, optimization problems are
more likely to be NP-hard than not. In many
cases, even computing an approximately op-
timal solution is an NP-hard problem (see
Trevisan®® for example). Whenever an efficient
algorithm for such a problem performs bet-
ter on real-world instances than (worst-case)
complexity theory would suggest, there’s an
opportunity for a refined and more accurate
theoretical analysis.
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ing that recently requested pages are
likely to be requested again soon. The
LRU policy uses the recent past as a
prediction for the near future. Empiri-
cally, it typically suffers fewer cache
misses than competing policies like
first-in first-out (FIFO).

Sleator and Tarjan* founded the
area of online algorithms, which are
algorithms that must process their in-
put as it arrives over time (like cache
policies). One of their first observa-
tions was that worst-case analysis,
straightforwardly applied, provides
no useful insights about the perfor-
mance of different cache replace-
ment policies. For every determinis-
tic policy and cache size k, there is a
pathological page request sequence
that triggers a page fault rate of 100%,
even though the optimal clairvoyant
replacement policy (known as Bé-
lady’s algorithm) would have a page
fault rate of at most (1/k)%. This ob-
servation is troublesome both for its
absurdly pessimistic performance
prediction and for its failure to differ-
entiate between competing replace-
ment policies (like LRU vs. FIFO). One
solution, discussed next, is to choose
an appropriately fine-grained param-
eterization of the input space and to
assess and compare algorithms using
parameterized guarantees.

Models of Typical Instances
Maybe we shouldn’t be surprised that
worst-case analysis fails to advocate
LRU over FIFO. The empirical supe-
riority of LRU is due to the special
structure in real-world page request
sequences—locality of reference—and
traditional worst-case analysis pro-
vides no vocabulary to speak about this
structure.® This is what work on “be-
yond worst-case analysis” is all about:
articulating properties of “real-world”
inputs, and proving rigorous and mean-
ingful algorithmic guarantees for inputs
with these properties.

Research in the area has both a
scientific dimension, where the goal
is to develop transparent mathemati-

e If worst-case analysis has an implicit model of
data, then it’s the “Murphy’s Law” data model,
where the instance to be solved is an adversari-
ally selected function of the chosen algorithm.
Outside of cryptographic applications, this is
arather paranoid and incoherent way to think
about a computational problem.



cal models that explain empirically
observed phenomena about algo-
rithm performance, and an engineer-
ing dimension, where the goals are
to provide accurate guidance about
which algorithm to use for a problem
and to design new algorithms that
perform particularly well on the rel-
evant inputs.

One exemplary result in beyond
worst-case analysis is due to Albers
et al.,” for the online paging problem
described in the introduction. The key
idea is to parameterize page request
sequences according to how much
locality of reference they exhibit, and
then prove parameterized worst-case
guarantees. Refining worst-case anal-
ysis in this way leads to dramatically
more informative results.f

Locality of reference is quantified
via the size of the working set of a page
request sequence. Formally, for a func-
tion f: N — N, we say that a request
sequence conforms to fif, in every win-
dow of w consecutive page requests, at
most f(w) distinct pages are requested.
For example, the identity function f (w)=w
imposes no restrictions on the page re-
quest sequence. A sequence can only
conform to a sublinear function like
fw)=[vw]orf(w) =[1 + log, w] if it ex-
hibits locality of reference.®

The following worst-case guarantee
is parameterized by a number oy (k), be-
tween 0 and 1, that we discuss shortly;
recall that k denotes the cache size. It
assumes that the function f is “con-
cave” in the sense that the number
of inputs with value x under f (that is,
|f*(x)|) is nondecreasing in x.

Theorem 1 (Albers et al.?)
(a) For every fand k and every determinis-
tic cache replacement policy, the worst-
case page fault rate (over sequences that
conform tof) is at least oy (k).

(a) For every f and k and every
sequence that conforms to f, the page

f Parameterized guarantees are common in the
analysis of algorithms. For example, the field of
parameterized algorithms and complexity has
developed a rich theory around parameterized
running time bounds (see the book by Cygan
et al.'®). Theorem 1 employs an unusually fine-
grained and problem-specific parameteriza-
tion, and in exchange obtains unusually accu-
rate and meaningful results.

¢ The notation [x] means the number x, round-
ed up to the nearest integer.

fault rate of the LRU policy is at most
oy (k).

(b) There exists a choice of fand
k, and a page request sequence that
conforms to f, such that the page fault
rate of the FIFO policy is strictly larger
than oy (k).

Parts (a) and (b) prove the worst-case
optimality of the LRU policy in a strong
sense, f-by-f and k-by-k. Part (c) differ-
entiates LRU from FIFO, as the latter
is suboptimal for some (in fact, many)
choices of fand k.

The guarantees in Theorem 1 are so
good that they are meaningful even
when taken at face value—for sub-
linear fs, oy (k) goes to 0 reasonably
quickly with k. For example, if f (w)
= [Vw], then o (k) scales with 1/VE.
Thus, with a cache size of 10,000, the
page fault rate is always at most 1%. If
fw)=[1 +log, w], then oy (k) goes to 0
even faster with k, roughly as k/2%."

Stable Instances

Are point sets with meaningful cluster-
ings easier to cluster than worst-case
point sets? Here, we describe one way
to define a “meaningful clustering,”
due to Bilu and Linial;*? for others, see
Ackerman and Ben-David,! Balcan et
al.,’ Daniely et al.,'® Kumar and Kan-
nan,* and Ostrovsky et al.**

The maximum cut problem. Sup-
pose you have a bunch of data points
representing images of cats and im-
ages of dogs, and you would like to au-
tomatically discover these two groups.
One approach is to reduce this task to
the maximum cut problem, where the

h See Albers et al.? for the precise closed-form
formula for of (k) in general.
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goal is to partition the vertices V of a
graph G with edges E and nonnega-
tive edge weights into two groups,
while maximizing the total weight of
the edges that have one endpoint in
each group. The reduction forms a
complete graph G, with vertices cor-
responding to the data points, and
assigns a weight w, to each edge e in-
dicating how dissimilar its endpoints
are. The maximum cut of G is a 2-clus-
tering that tends to put dissimilar pairs
of points in different clusters.

There are many ways to quantify
“dissimilarity” between images, and
different definitions might give differ-
ent optimal 2-clusterings of the data
points. One would hope that, for a
range of reasonable measures of dis-
similarity, the maximum cut in the
example above would have all cats on
one side and all dogs on the other. In
other words, the maximum cut should
be invariant under minor changes to
the specification of the edge weights
(Figure 3).

Definition 2 (Bilu and Linial'?). An
instance G = (V, E, w) of the maximum
cut problem is ~-perturbation stable if,
for all ways of multiplying the weight w,
of each edge e by a factor a. € [1, ~], the
optimal solution remains the same.

A perturbation-stable instance
has a “clearly optimal” solution—
a uniqueness assumption on ste-
roids—thus formalizing the idea of a
“meaningful clustering.” In machine
learning parlance, perturbation sta-
bility can be viewed as a type of “large
margin” assumption.

The maximum cut problem is NP-
hard in general. But what about the
special case of y-perturbation-stable in-

Figure 3. In a perturbation-stable maximum cut instance, the optimal solution is invariant
under small perturbations to the edges’ weights.

MARCH 2019 | VOL.62 | NO.3 | COMMUNICATIONS OF THE AcM 91



review articles

stances? As ~ increases, fewer and few-
er instances qualify as ~-perturbation
stable. Is there a sharp stability thresh-
old—a value of ~ where the maximum
cut problem switches from NP-hard to
polynomial-time solvable?

Makarychev et al.*® largely resolved
this question. On the positive side,
they showed that if ~ is at least a slowly
growing function of the number of ver-
tices n, then the maximum cut prob-
lem can be solved in polynomial time
for all ~-perturbation stable instances.!
Makarychev et al. use techniques from
the field of metric embeddings to show
that, in such instances, the unique op-
timal solution of a certain semidefinite
programming relaxation corresponds
precisely to the maximum cutJ Semi-
definite programs are convex pro-
grams, and can be solved to arbitrary
precision in polynomial time. There is
also evidence that the maximum cut
cannot be recovered in polynomial
time in ~-perturbation-stable instances
for much smaller values of ~.*°

Other clustering problems. Bilu
and Linial** defined ~-perturbation-
stable instances specifically for the
maximum cut problem, but the defi-
nition makes sense more generally
for any optimization problem with a
linear objective function. The study
of y-perturbation-stable instances has
been particularly fruitful for NP-hard
clustering problems in metric spaces,
where interpoint distances are re-
quired to satisfy the triangle inequal-
ity. Many such problems, including
the k-means, k-median, and k-center
problems, are polynomial-time solv-
able already in 2-perturbation-stable
instances.>® The algorithm in An-
gelidakis et al., like its precursor in
Awasthi et al.,? is inspired by the well
known single-linkage clustering algo-
rithm. It computes a minimum span-
ning tree (where edge weights are the
interpoint distances) and uses dynam-
ic programming to optimally remove
k - 1 edges to define k clusters. To the
extent that we are comfortable iden-
tifying “instances with a meaningful
clustering” with 2-perturbation-stable

i Specifically, v=Q (V(log n log log n).

j In general, the optimal solution of a linear or
semidefinite programming relaxation of an
NP-hard problem is a “fractional solution”
that does not correspond to a feasible solution
to the original problem.
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The unreasonable
effectiveness of
modern machine
learning algorithms
has thrown down
the gauntlet

to algorithms
researchers,

and thereis
perhaps no other
problem domain
with a more
urgent need

for the beyond
worst-case
approach.
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instances, these results give a precise
sense in which clustering is hard only
when it doesn’t matter.*

Overcoming NP-hardness. Polynomial-
time algorithms for ~-perturbation-
stable instances continue the age-old
tradition of identifying “islands of
tractability,” meaning polynomial-
time solvable special cases of NP-hard
problems. Two aspects of these re-
sults diverge from a majority of 20™
century research on tractable special
cases. First, perturbation-stability is
not an easy condition to check, in con-
trast to a restriction like graph planar-
ity or Horn-satisfiability. Instead, the
assumption is justified with a plausi-
ble narrative about why “real-world
instances” might satisfy it, at least
approximately. Second, in most work
going beyond worst-case analysis, the
goal is to study general-purpose algo-
rithms, which are well defined on all
inputs, and use the assumed instance
structure only in the algorithm analy-
sis (and not explicitly in its design).
The hope is the algorithm continues
to perform well on many instances
not covered by its formal guarantee.
The results here for mathematical
programming relaxations and single-
linkage-based algorithms are good ex-
amples of this paradigm.

Analogywith sparse recovery. There
are compelling parallels between the
recentresearch on clustering in stable
instances and slightly older results in
a field of applied mathematics known
as sparse recovery, where the goal is
to reverse engineer a “sparse” object
from a small number of clues about
it. A common theme in both areas is
identifying relatively weak conditions
under which a tractable mathemati-
cal programming relaxation of an
NP-hard problem is guaranteed to be
exact, meaning the original problem
and its relaxation have the same opti-
mal solution.

For example, a canonical prob-
lem in sparse recovery is compressive
sensing, where the goal is to recover

k A relaxed and more realistic version of pertur-
bation-stability allows small perturbations to
make small changes to the optimal solution.
Many of the results mentioned in this section
can be extended to instances meeting this
relaxed condition, with a polynomial-time al-
gorithm guaranteed to recover a solution that
closely resembles the optimal one.>*3°



an unknown sparse signal (a vector
of length n) from a small number m
of linear measurements of it. Equiva-
lently, given an m x n measurement
matrix 4 with m < n and the mea-
surement results b = Az, the prob-
lem is to figure out the signal z.
This problem has several important
applications, for example in medi-
cal imaging. If z can be arbitrary, then
the problem is hopeless: since m < n,
the linear system Ax = b is underde-
termined and has an infinite number
of solutions (of which z is only one).
But many real-world signals are (ap-
proximately) k-sparse in a suitable
basis for small k, meaning that (al-
most) all of the mass is concentrated
on k coordinates.! The main results in
compressive sensing show that, un-
der appropriate assumptions on A,
the problem can be solved efficiently
even when m is only modestly bigger
than k (and much smaller than n).'%2°
One way to prove these results is to
formulate a linear programming re-
laxation of the (NP-hard) problem of
computing the sparsest solution to
Ax = b, and then show this relaxation
is exact.

Planted and Semi-Random Models
Our next genre of models is also in-
spired by the idea that interesting
instances of a problem should have
“clearly optimal” solutions, but dif-
fers from the stability conditions in as-
suming a generative model—a specific
distribution over inputs. The goal is
to design an algorithm that, with high
probability over the assumed input dis-
tribution, computes an optimal solu-
tion in polynomial time.

The planted clique problem. In the
maximum clique problem, the input
is an undirected graph G = (V, E), and
the goal is to identify the largest subset
of vertices that are mutually adjacent.
This problem is NP-hard, even to ap-
proximate by any reasonable factor.
Is it easy when there is a particularly
prominent clique to be found?

Jerrum?* suggested the following
generative model: There is a fixed set V
of n vertices. First, each possible edge
(u, v) is included independently with

1 For example, audio signals are typically ap-
proximately sparse in the Fourier basis, im-
ages in the wavelet basis.

50% probability. This is also known
as an Erdos-Renyi random graph with
edge density %. Second, for a param-
eterk € {1,2,...,n},asubsetQ CV
of k vertices is chosen uniformly at
random, and all remaining edges with
both endpoints in Q are added to the
graph (thus making Q a k-clique).

How big does k need to be before
Q becomes visible to a polynomial-
time algorithm? The state of the art
is a spectral algorithm of Alon et al.,’?
which recovers the planted clique Q
with high probability provided k is at
least a constant times vi. Recent work
suggests that efficient algorithms can-
not recover Q for significantly smaller
values of k."!

An unsatisfying algorithm. The al-
gorithm of Alon et al.’ is theoretically
interesting and plausibly useful. But if
we take k to be just a bit bigger, at least
a constant times vnlogn, then there is
an uninteresting and useless algo-
rithm that recovers the planted clique
with high probability: return the & ver-
tices with the largest degrees. To see
why this algorithm works, think first
about the sampled Erdos-Renyi ran-
dom graph, before the clique Q is
planted. The expected degree of each
vertex is = n/2, with standard deviation
=vn/2. Textbook large deviation in-
equalities show that, with high proba-
bility, the degree of every vertex is with-
in *VInn standard deviations of its
expectation (Figure 4). Planting a
clique Q of size avnlogn, for a suffi-
ciently large constant a, then boosts
the degrees of all of the clique vertices
enough that they catapult past the de-
grees of all of the non-clique vertices.

What went wrong? The same thing
that often goes wrong with pure av-
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erage-case analysis—the solution is
brittle and overly tailored to a specific
distributional assumption. How can
we change the input model to encour-
age the design of algorithms with more
robust guarantees? Can we find a sweet
spot between average-case and worst-
case analysis?

Semi-random models. Blum and
Spencer®® proposed studying semi-
random models, where nature and
an adversary collaborate to produce
an input. In many such models, na-
ture first samples an input from a
specific distribution (like the proba-
bilistic planted clique model noted
here), which is then modified by the
adversary before being presented as
an input to an algorithm. It is impor-
tant to restrict the adversary’s power,
so that it cannot simply throw out
nature’s starting point and replace it
with a worst-case instance. Feige and
Killian** suggested studying monotone
adversaries, which can only modify
the input by making the optimal so-
lution “more obviously optimal.” For
example, in the semi-random ver-
sion of the planted clique problem, a
monotone adversary is only allowed
to remove edges that are not in the
planted clique Q—it cannot remove
edges from Q or add edges outside Q.

Semi-random models with a mono-
tone adversary may initially seem no
harder than the planted models that
they generalize. But let’s return to the
planted clique model with k = Q(Vnlogn
), where the “top-k degrees” algorithm
succeeds with high probability when
there is no adversary. A monotone ad-
versary can easily foil this algorithm in
the semi-random planted clique mod-
el, by removing edges between clique

Figure 4. Degree distribution of an Erdds—Rényi graph with edge density Y, before planting
the k-clique Q. If k= Q (v/(n lg n ), then the planted clique will consist of the k vertices with
the highest degrees.
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and non-clique vertices to decrease
the degrees of the former back down
to # n/2. Thus the semi-random model
forces us to develop smarter, more ro-
bust algorithms.™

For the semi-random planted
clique model, Feige and Krauth-
gamer® gave a polynomial-time al-
gorithm that recovers the clique with
high probability provided k = Q(vn ).
The spectral algorithm by Alon et al.?
achieved this guarantee only in the
standard planted clique model, and
it does not provide any strong guaran-
tees for the semi-random model. The
algorithm of Feige and Krauthgamer*
instead uses a semidefinite program-
ming relaxation of the problem. Their
analysis shows that this relaxation is
exact with high probability in the stan-
dard planted clique model (provided &
= Q(vn)), and uses the monotonicity
properties of optimal mathematical
programming solutions to argue this
exactness cannot be sabotaged by any
monotone adversary.

Smoothed Analysis

Smoothed analysis is another example
of a semi-random model, now with
the order of operations reversed: an
adversary goes first and chooses an ar-
bitrary input, which is then perturbed
slightly by nature. Smoothed analysis
can be applied to any problem where
“small perturbations” make sense,
including most problems with real-
valued inputs. It can be applied to any
measure of algorithm performance,
but has proven most effective for run-
ning time analyses.

Like other semi-random models,
smoothed analysis has the benefit of
potentially escaping worst-case in-
puts (especially if they are “isolated”),
while avoiding overfitting a solution
to a specific distributional assump-
tion. There is also a plausible narra-
tive about why real-world inputs are

m The extensively studied “stochastic block
model” generalizes the planted clique model
(for example, see Moore®), and is another
fruitful playground for semi-random models.
Here, the vertices of a graph are partitioned
into groups, and the probability that an edge
is present is a function of the groups that con-
tain its endpoints. The responsibility of an
algorithm in this model is to recover the (un-
known) vertex partition. This goal becomes
provably strictly harder in the presence of a
monotone adversary.*'
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captured by this framework: whatever
problem you would like to solve, there
are inevitable inaccuracies in its for-
mulation (from measurement error,
uncertainty, and so on).

The simplex method. Spielman
and Teng*® developed the smoothed
analysis framework with the specific
goal of proving that bad inputs for the
simplex method are exceedingly rare.
Average case analyses of the simplex
method from the 1980s (for example,
Borgwardt') provide evidence for this
thesis, but smoothed analysis provides
more robust support for it.

The perturbation model in Spiel-
man and Teng® is: independently for
each entry of the constraint matrix and
right-hand side of the linear program,
add a Gaussian (that is, normal) ran-
dom variable with mean 0 and stan-
dard deviation o.” The parameter o
interpolates between worst-case analy-
sis (when o = 0) and pure average-case
analysis (as 0 — oo, the perturbation
drowns out the original linear pro-
gram). The main result states that the
expected running time of the simplex
method is polynomial as long as typical
perturbations have magnitude at least
an inverse polynomial function of the
input size (which is small!).

Theorem 3 (Spielman and Teng®®)
For every initial linear program, in ex-
pectation over the perturbation to the
program, the running time of the sim-
plex method is polynomial in the input
size and in 1/o.

The running time blow-up aso — 01is
necessary because the worst-case run-
ning time of the simplex method is
exponential. Several researchers have
devised simpler analyses and better
polynomial running times, most re-
cently Dadush and Huiberts.'” All of
these analyses are for a specific pivot
rule, the “shadow pivot rule.” The idea
is to project the high-dimensional fea-
sible region of a linear program onto
a plane (the “shadow”) and run the
simplex method there. The hard part
of proving Theorem 3 is showing that,
with high probability over nature’s

n This perturbation results in a dense constraint
matrix even if the original one was sparse, and
for this reason Theorem 3 is not fully satisfactory.
Extending this result to sparsity-preserving
perturbations is an important open question.
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perturbations, the perturbed instance
is well-conditioned in the sense that
each step of the simplex method
makes significant progress traversing
the boundary of the shadow.

Local search. A local search algo-
rithm for an optimization problem
maintains a feasible solution, and
iteratively improves that solution via
“local moves” for as long as possible,
terminating with a locally optimal
solution. Local search heuristics are
ubiquitous in practice, in many differ-
ent application domains. Many such
heuristics have an exponential worst-
case running time, despite always ter-
minating quickly in practice (typically
within a sub-quadratic number of it-
erations). Resolving this disparity is
right in the wheelhouse of smoothed
analysis. For example, Lloyd’s algo-
rithm for the k-means problem can
require an exponential number of
iterations to converge in the worst
case, but needs only an expected poly-
nomial number of iterations in the
smoothed case (see Arthur et al.” and
the references therein).°

Much remains to be done, how-
ever. For a concrete challenge prob-
lem, let’s revisit the maximum cut
problem. The input is an undirected
graph G = (V, E) with edge weights,
and the goal is to partition V into two
groups to maximize the total weight
of the edges with one endpoint in
each group. Consider a local search
algorithm that modifies the current
solution by moving a single vertex
from one side to the other (known
as the “flip neighborhood”), and per-
forms such moves as long as they in-
crease the sum of the weights of the
edges crossing the cut. In the worst
case, this local search algorithm can
require an exponential number of it-
erations to converge. What about in
the smoothed analysis model, where
a small random perturbation is added

o An orthogonal issue with local search heuris-
tics is the possibility of outputting a locally
optimal solution that is much worse than a
globally optimal one. Here, the gap between
theory and practice is not as embarrassing—
for many problems, local search algorithms
really can produce pretty lousy solutions.
For this reason, one generally invokes a local
search algorithm many times with different
starting points and returns the best of all of
the locally optimal solutions found.



to each edge’s weight? The natural
conjecture is that local search should
terminate in a polynomial number of
iterations, with high probability over
the perturbation. This conjecture has
been proved for graphs with maxi-
mum degree O(log n)* and for the
complete graph;* for general graphs,
the state-of-the-art is a quasi-polyno-
mial-time guarantee (meaning n°Uos"”
iterations).??

More ambitiously, it is tempting
to speculate that for every natural lo-
cal search problem, local search ter-
minates in a polynomial number of
iterations in the smoothed analysis
model (with high probability). Such a
result would be a huge success story for
smoothed analysis and beyond worst-
case analysis more generally.

On Machine Learning

Much of the present and future of
research going beyond worst-case
analysis is motivated by advances in
machine learning.? The unreason-
able effectiveness of modern machine
learning algorithms has thrown down
the gauntlet to algorithms researchers,
and there is perhaps no other problem
domain with a more urgent need for
the beyond worst-case approach.

To illustrate some of the challeng-
es, consider a canonical supervised
learning problem, where a learning
algorithm is given a dataset of object-
label pairs and the goal is to produce
a classifier that accurately predicts
the label of as-yet-unseen objects (for
example, whether or not an image
contains a cat). Over the past decade,
aided by massive datasets and compu-
tational power, deep neural networks
have achieved impressive levels of
performance across a range of predic-
tion tasks.” Their empirical success
flies in the face of conventional wis-
dom in multiple ways. First, most neu-
ral network training algorithms use
first-order methods (that is, variants
of gradient descent) to solve noncon-
vex optimization problems that had
been written off as computationally
intractable. Why do these algorithms

p Arguably, even the overarchinggoal of research
in beyond worst-case analysis—determining
the best algorithm for an application-specific
special case of a problem—is fundamentally a
machine learning problem.>

There are
compelling
parallels between
the recent research
on clustering in
stable instances
and slightly

older results in

a field of applied
mathematics
known as sparse
recovery, where
the goalis to
reverse engineer
a “sparse” object
from a small
number of clues
around it.

review articles

so often converge quickly to alocal op-
timum, or even to a global optimum?4
Second, modern neural networks are
typically over-parameterized, mean-
ing that the number of free param-
eters (weights and biases) is consider-
ably larger than the size of the training
dataset. Over-parameterized models
are vulnerable to large generalization
error (that is, overfitting), but state-
of- the-art neural networks generalize
shockingly well.** How can we explain
this? The answer likely hinges on
special properties of both real-world
datasets and the optimization algo-
rithms used for neural network train-
ing (principally stochastic gradient
descent).

Another interesting case study,
this time in unsupervised learning,
concerns topic modeling. The goal
here is to process a large unlabeled
corpus of documents and produce a
list of meaningful topics and an as-
signment of each document to a mix-
ture of topics. One computationally
efficient approach to the problem is
to use a singular value decomposition
subroutine to factor the term-docu-
ment matrix into two matrices, one
that describes which words belong to
which topics, and one indicating the
topic mixture of each document.®
This approach can lead to negative
entries in the matrix factors, which
hinders interpretability. Restricting
the matrix factors to be nonnegative
yields a problem that is NP-hard in
the worst case, but Arora et al.® gave
a practical factorization algorithm
for topic modeling that runs in poly-
nomial time under a reasonable as-
sumption about the data. Their as-
sumption states that each topic has
at least one “anchor word,” the pres-
ence of which strongly indicates that
the document is at least partly about
that topic (such as the word “Durant”
for the topic “basketball”). Formally
articulating this property of data was
an essential step in the development
of their algorithm.

The beyond worst-case viewpoint
can also contribute to machine learning by
“stress-testing” the existing theory

q See Jin et al.”® and the references therein for
recent progress on this question.

r See Neyshabur® and the references therein for
recent developments in this direction.
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and providing a road map for more
robust guarantees. While work in be-
yond worst-case analysis makes strong
assumptions relative to the norm in
theoretical computer science, these
assumptions are usually weaker than
the norm in statistical machine learn-
ing. Research in the latter field often
resembles average-case analysis, for
example when data points are mod-
eled as independent and identically
distributed samples from some (possi-
bly parametric) distribution. The semi-
random models described earlier in
this article are role models in blending
adversarial and average-case modeling
to encourage the design of algorithms
with robustly good performance. Re-
cent progress in computationally effi-
cient robust statistics shares much of
the same spirit.*

Conclusion
With algorithmes, silver bullets are few
and far between. No one design tech-
nique leads to good algorithms for all
computational problems. Nor is any
single analysis framework—worst-
case analysis or otherwise—suitable
for all occasions. A typical algorithms
course teaches several paradigms for
algorithm design, along with guidance
about when to use each of them; the
field of beyond worst-case analysis
holds the promise of a comparably di-
verse toolbox for algorithm analysis.
Even at the level of a specific prob-
lem, there is generally no magical,
always-optimal algorithm—the best
algorithm for the job depends on the
instances of the problem most rel-
evant to the specific application. Re-
search in beyond worst-case analysis
acknowledges this fact while retaining
the emphasis on robust guarantees
that is central to worst-case analysis.
The goal of work in this area is to de-
velop novel methods for articulating
the relevant instances of a problem,
thereby enabling rigorous explana-
tions of the empirical performance
of known algorithms, and also guid-
ing the design of new algorithms op-
timized for the instances that matter.
With algorithms increasingly dom-
inating our world, the need to under-
stand when and why they work has
never been greater. The field of be-
yond worst-case analysis has already
produced several striking results, but
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there remain many unexplained gaps
between the theoretical and empiri-
cal performance of widely used algo-
rithms. With so many opportunities
for consequential research, I suspect
the bestworkin the area isyet to come.
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