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COMPARING DIFFERENT ALGORITHMS is hard. For 
almost any pair of algorithms and measure of 
algorithm performance like running time or solution 
quality, each algorithm will perform better than the 
other on some inputs.a For example, the insertion sort 
algorithm is faster than merge sort on already-sorted 
arrays but slower on many other inputs. When two 
algorithms have incomparable performance, how can 
we deem one of them “better than” the other?

Worst-case analysis is a specific modeling choice 
in the analysis of algorithms, where the overall 
performance of an algorithm is summarized by its 
worst performance on any input of a given size. The 
“better” algorithm is then the one with superior worst-
case performance. Merge sort, with its worst-case 
asymptotic running time of Θ(n log n) for arrays of 
length n, is better in this sense than insertion sort, 
which has a worst-case running time of Θ(n2).

a	 In rare cases a problem admits an instance-optimal algorithm, which is as good as every other al-
gorithm on every input, up to a constant factor.23 For most problems, there is no instance-optimal 
algorithm, and there is no escaping the incomparability of different algorithms.

While crude, worst-case analysis 
can be tremendously useful, and it is 
the dominant paradigm for algorithm 
analysis in theoretical computer sci-
ence. A good worst-case guarantee 
is the best-case scenario for an algo-
rithm, certifying its general-purpose 
utility and absolving its users from un-
derstanding which inputs are relevant 
to their applications. Remarkably, for 
many fundamental computational 
problems, there are algorithms with 
excellent worst-case performance 
guarantees. The lion’s share of an un-
dergraduate algorithms course com-
prises algorithms that run in linear or 
near-linear time in the worst case.

For many problems a bit beyond 
the scope of an undergraduate course, 
however, the downside of worst-case 
analysis rears its ugly head. Here, I 
review three classical examples where 
worst-case analysis gives misleading 
or useless advice about how to solve a 
problem; further examples in modern 
machine learning are described later. 
These examples motivate the alterna-
tives to worst-case analysis described 
in the article.b

The simplex method for linear 
programming. Perhaps the most fa-
mous failure of worst-case analysis 
concerns linear programming, the 
problem of optimizing a linear func-

b	 For many more examples, analysis frame-
works, and applications, see the author’s lec-
ture notes.36
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tion subject to linear constraints 
(Figure 1). Dantzig’s simplex method 
is an algorithm from the 1940s that 
solves linear programs using greedy 
local search on the vertices on the 
solution set boundary, and variants 
of it remain in wide use to this day. 
The enduring appeal of the simplex 
method stems from its consistently 
superb performance in practice. Its 
running time typically scales modest-
ly with the input size, and it routinely 
solves linear programs with millions 
of decision variables and constraints. 

This robust empirical performance 
suggested the simplex method might 
well solve every linear program in a 
polynomial amount of time.

In 1972, Klee and Minty showed by 
example that there are contrived linear 
programs that force the simplex meth-
od to run in time exponential in the 
number of decision variables (for all of 
the common “pivot rules” for choosing 
the next vertex). This illustrates the first 
potential pitfall of worst-case analysis: 
overly pessimistic performance pre-
dictions that cannot be taken at face 

value. The running time of the simplex 
method is polynomial for all practical 
purposes, despite the exponential pre-
diction of worst-case analysis.

To add insult to injury, the first 
worst-case polynomial-time algo-
rithm for linear programming, the 
ellipsoid method, is not competitive 
with the simplex method in practice.c 

c	 Interior-point methods, developed five years 
later, lead to algorithms that both run in 
worst-case polynomial time and are competi-
tive with the simplex method in practice.
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ing that recently requested pages are 
likely to be requested again soon. The 
LRU policy uses the recent past as a 
prediction for the near future. Empiri-
cally, it typically suffers fewer cache 
misses than competing policies like 
first-in first-out (FIFO).

Sleator and Tarjan37 founded the 
area of online algorithms, which are 
algorithms that must process their in-
put as it arrives over time (like cache 
policies). One of their first observa-
tions was that worst-case analysis, 
straightforwardly applied, provides 
no useful insights about the perfor-
mance of different cache replace-
ment policies. For every determinis-
tic policy and cache size k, there is a 
pathological page request sequence 
that triggers a page fault rate of 100%, 
even though the optimal clairvoyant 
replacement policy (known as Bé-
lády’s algorithm) would have a page 
fault rate of at most (1/k)%. This ob-
servation is troublesome both for its 
absurdly pessimistic performance 
prediction and for its failure to differ-
entiate between competing replace-
ment policies (like LRU vs. FIFO). One 
solution, discussed next, is to choose 
an appropriately fine-grained param-
eterization of the input space and to 
assess and compare algorithms using 
parameterized guarantees.

Models of Typical Instances
Maybe we shouldn’t be surprised that 
worst-case analysis fails to advocate 
LRU over FIFO. The empirical supe-
riority of LRU is due to the special 
structure in real-world page request 
sequences—locality of reference—and 
traditional worst-case analysis pro-
vides no vocabulary to speak about this 
structure.e This is what work on “be-
yond worst-case analysis” is all about: 
articulating properties of “real-world” 
inputs, and proving rigorous and mean-
ingful algorithmic guarantees for inputs 
with these properties.

Research in the area has both a 
scientific dimension, where the goal 
is to develop transparent mathemati-

e	 If worst-case analysis has an implicit model of 
data, then it’s the “Murphy’s Law” data model, 
where the instance to be solved is an adversari-
ally selected function of the chosen algorithm. 
Outside of cryptographic applications, this is 
a rather paranoid and incoherent way to think 
about a computational problem.

Taken at face value, worst-case analy-
sis recommends the ellipsoid method 
over the empirically superior simplex 
method. One framework for narrow-
ing the gap between these theoretical 
predictions and empirical observa-
tions is smoothed analysis, discussed 
later in this article.

Clustering and NP-hard optimiza-
tion problems. Clustering is a form 
of unsupervised learning (finding pat-
terns in unlabeled data), where the 
informal goal is to partition a set of 
points into “coherent groups” (Figure 
2). One popular way to coax this goal 
into a well-defined computational 
problem is to posit a numerical objec-
tive function over clusterings of the 
point set, and then seek the clustering 
with the best objective function value. 
For example, the goal could be to 
choose k cluster centers to minimize 
the sum of the distances between 
points and their nearest centers (the 
k-median objective) or the sum of the 
squared such distances (the k-means 
objective). Almost all natural optimi-

zation problems that are defined over 
clusterings are NP-hard.

In practice, clustering is not viewed 
as a particularly difficult problem. 
Lightweight clustering algorithms, like 
Lloyd’s algorithm for k-means and its 
variants, regularly return the intuitive-
ly “correct” clusterings of real-world 
point sets. How can we reconcile the 
worst-case intractability of clustering 
problems with the empirical success of 
relatively simple algorithms?d

One possible explanation is that 
clustering is hard only when it doesn’t 
matter.18 For example, if the difficult 
instances of an NP-hard clustering 
problem look like a bunch of random 
unstructured points, who cares? The 
common use case for a clustering al-
gorithm is for points that represent 
images, or documents, or proteins, 
or some other objects where a “mean-
ingful clustering” is likely to exist. 
Could instances with a meaningful 
clustering be easier than worst-case 
instances? This article surveys recent 
theoretical developments that sup-
port an affirmative answer.

Cache replacement policies. Con-
sider a system with a small fast mem-
ory (the cache) and a big slow memory. 
Data is organized into blocks called 
pages, with up to k different pages 
fitting in the cache at once. A page 
request results in either a cache hit 
(if the page is already in the cache) 
or a cache miss (if not). On a cache 
miss, the requested page must be 
brought into the cache. If the cache 
is already full, then some page in it 
must be evicted. A cache policy is 
an algorithm for making these evic-
tion decisions. Any systems textbook 
will recommend aspiring to the least 
recently used (LRU) policy, which 
evicts the page whose most recent 
reference is furthest in the past. The 
same textbook will explain why: real-
world page request sequences tend 
to exhibit locality of reference, mean-

d	 More generally, optimization problems are 
more likely to be NP-hard than not. In many 
cases, even computing an approximately op-
timal solution is an NP-hard problem (see 
Trevisan36 for example). Whenever an efficient 
algorithm for such a problem performs bet-
ter on real-world instances than (worst-case) 
complexity theory would suggest, there’s an 
opportunity for a refined and more accurate 
theoretical analysis.

Figure 1. A two-dimensional linear
programming problem.
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Figure 2. One possible way to group data 
points into three clusters.
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cal models that explain empirically 
observed phenomena about algo-
rithm performance, and an engineer-
ing dimension, where the goals are 
to provide accurate guidance about 
which algorithm to use for a problem 
and to design new algorithms that 
perform particularly well on the rel-
evant inputs.

One exemplary result in beyond 
worst-case analysis is due to Albers 
et al.,2 for the online paging problem 
described in the introduction. The key 
idea is to parameterize page request 
sequences according to how much 
locality of reference they exhibit, and 
then prove parameterized worst-case 
guarantees. Refining worst-case anal-
ysis in this way leads to dramatically 
more informative results.f

Locality of reference is quantified 
via the size of the working set of a page 
request sequence. Formally, for a func-
tion f : N → N, we say that a request 
sequence conforms to f if, in every win-
dow of w consecutive page requests, at 
most f (w) distinct pages are requested. 
For example, the identity function f (w)= w 
imposes no restrictions on the page re-
quest sequence. A sequence can only 
conform to a sublinear function like 
f (w) = [√w] or f (w) = [1 + log2 w] if it ex-
hibits locality of reference.g

The following worst-case guarantee 
is parameterized by a number αf (k), be-
tween 0 and 1, that we discuss shortly; 
recall that k denotes the cache size. It 
assumes that the function f is “con-
cave” in the sense that the number 
of inputs with value x under f (that is,  
|f -1(x)|) is nondecreasing in x.

Theorem 1 (Albers et al.2)
(a) For every f and k and every determinis-
tic cache replacement policy, the worst-
case page fault rate (over sequences that 
conform to f) is at least αf (k).

(a)	 For every f and k and every 
sequence that conforms to f, the page 

f	 Parameterized guarantees are common in the 
analysis of algorithms. For example, the field of 
parameterized algorithms and complexity has 
developed a rich theory around parameterized 
running time bounds (see the book by Cygan 
et al.16). Theorem 1 employs an unusually fine-
grained and problem-specific parameteriza-
tion, and in exchange obtains unusually accu-
rate and meaningful results.

g	 The notation [x] means the number x, round-
ed up to the nearest integer.

fault rate of the LRU policy is at most 
αf (k).

(b)	 There exists a choice of f and 
k, and a page request sequence that 
conforms to f, such that the page fault 
rate of the FIFO policy is strictly larger 
than αf (k).

Parts (a) and (b) prove the worst-case 
optimality of the LRU policy in a strong 
sense, f-by-f and k-by-k. Part (c) differ-
entiates LRU from FIFO, as the latter 
is suboptimal for some (in fact, many) 
choices of f and k.

The guarantees in Theorem 1 are so 
good that they are meaningful even 
when taken at face value—for sub-
linear f’s, αf (k) goes to 0 reasonably 
quickly with k. For example, if f (w) 
= [√w], then αf (k) scales with 1/√k. 
Thus, with a cache size of 10,000, the 
page fault rate is always at most 1%. If 
f (w) = [1 + log2 w], then αf (k) goes to 0 
even faster with k, roughly as k/2k.h

Stable Instances
Are point sets with meaningful cluster-
ings easier to cluster than worst-case 
point sets? Here, we describe one way 
to define a “meaningful clustering,” 
due to Bilu and Linial;12 for others, see 
Ackerman and Ben-David,1 Balcan et 
al.,9 Daniely et al.,18 Kumar and Kan-
nan,29 and Ostrovsky et al.34

The maximum cut problem. Sup-
pose you have a bunch of data points 
representing images of cats and im-
ages of dogs, and you would like to au-
tomatically discover these two groups. 
One approach is to reduce this task to 
the maximum cut problem, where the 

h	 See Albers et al.2 for the precise closed-form 
formula for αf (k) in general.

goal is to partition the vertices V of a 
graph G with edges E and nonnega-
tive edge weights into two groups, 
while maximizing the total weight of 
the edges that have one endpoint in 
each group. The reduction forms a 
complete graph G, with vertices cor-
responding to the data points, and 
assigns a weight we to each edge e in-
dicating how dissimilar its endpoints 
are. The maximum cut of G is a 2-clus-
tering that tends to put dissimilar pairs 
of points in different clusters.

There are many ways to quantify 
“dissimilarity” between images, and 
different definitions might give differ-
ent optimal 2-clusterings of the data 
points. One would hope that, for a 
range of reasonable measures of dis-
similarity, the maximum cut in the 
example above would have all cats on 
one side and all dogs on the other. In 
other words, the maximum cut should 
be invariant under minor changes to 
the specification of the edge weights 
(Figure 3).

Definition 2 (Bilu and Linial12). An 
instance G = (V, E, w) of the maximum 
cut problem is γ-perturbation stable if, 
for all ways of multiplying the weight we 
of each edge e by a factor ae ∈ [1, γ], the 
optimal solution remains the same. 

A perturbation-stable instance 
has a “clearly optimal” solution—
a uniqueness assumption on ste-
roids—thus formalizing the idea of a 
“meaningful clustering.” In machine 
learning parlance, perturbation sta-
bility can be viewed as a type of “large 
margin” assumption.

The maximum cut problem is NP-
hard in general. But what about the 
special case of γ-perturbation-stable in-

Figure 3. In a perturbation-stable maximum cut instance, the optimal solution is invariant 
under small perturbations to the edges’ weights.
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instances, these results give a precise 
sense in which clustering is hard only 
when it doesn’t matter.k

Overcoming NP-hardness. Polynomial- 
time algorithms for γ-perturbation-
stable instances continue the age-old 
tradition of identifying “islands of 
tractability,” meaning polynomial-
time solvable special cases of NP-hard 
problems. Two aspects of these re-
sults diverge from a majority of 20th 
century research on tractable special 
cases. First, perturbation-stability is 
not an easy condition to check, in con-
trast to a restriction like graph planar-
ity or Horn-satisfiability. Instead, the 
assumption is justified with a plausi-
ble narrative about why “real-world 
instances” might satisfy it, at least 
approximately. Second, in most work 
going beyond worst-case analysis, the 
goal is to study general-purpose algo-
rithms, which are well defined on all 
inputs, and use the assumed instance 
structure only in the algorithm analy-
sis (and not explicitly in its design). 
The hope is the algorithm continues 
to perform well on many instances 
not covered by its formal guarantee. 
The results here for mathematical 
programming relaxations and single-
linkage-based algorithms are good ex-
amples of this paradigm.

Analogy with sparse recovery. There 
are compelling parallels between the 
recent research on clustering in stable 
instances and slightly older results in 
a field of applied mathematics known 
as sparse recovery, where the goal is 
to reverse engineer a “sparse” object 
from a small number of clues about 
it. A common theme in both areas is 
identifying relatively weak conditions 
under which a tractable mathemati-
cal programming relaxation of an 
NP-hard problem is guaranteed to be 
exact, meaning the original problem 
and its relaxation have the same opti-
mal solution.

For example, a canonical prob-
lem in sparse recovery is compressive 
sensing, where the goal is to recover 

k	 A relaxed and more realistic version of pertur-
bation-stability allows small perturbations to 
make small changes to the optimal solution. 
Many of the results mentioned in this section 
can be extended to instances meeting this 
relaxed condition, with a polynomial-time al-
gorithm guaranteed to recover a solution that 
closely resembles the optimal one.5,9,30

stances? As γ increases, fewer and few-
er instances qualify as γ-perturbation 
stable. Is there a sharp stability thresh-
old—a value of γ where the maximum 
cut problem switches from NP-hard to 
polynomial-time solvable?

Makarychev et al.30 largely resolved 
this question. On the positive side, 
they showed that if γ is at least a slowly 
growing function of the number of ver-
tices n, then the maximum cut prob-
lem can be solved in polynomial time 
for all γ-perturbation stable instances.i 
Makarychev et al. use techniques from 
the field of metric embeddings to show 
that, in such instances, the unique op-
timal solution of a certain semidefinite 
programming relaxation corresponds 
precisely to the maximum cut.j Semi-
definite programs are convex pro-
grams, and can be solved to arbitrary 
precision in polynomial time. There is 
also evidence that the maximum cut 
cannot be recovered in polynomial 
time in γ-perturbation-stable instances 
for much smaller values of γ.30

Other clustering problems. Bilu 
and Linial12 defined γ-perturbation-
stable instances specifically for the 
maximum cut problem, but the defi-
nition makes sense more generally 
for any optimization problem with a 
linear objective function. The study 
of γ-perturbation-stable instances has 
been particularly fruitful for NP-hard 
clustering problems in metric spaces, 
where interpoint distances are re-
quired to satisfy the triangle inequal-
ity. Many such problems, including 
the k-means, k-median, and k-center 
problems, are polynomial-time solv-
able already in 2-perturbation-stable 
instances.5,10 The algorithm in An-
gelidakis et al.,5 like its precursor in 
Awasthi et al.,8 is inspired by the well 
known single-linkage clustering algo-
rithm. It computes a minimum span-
ning tree (where edge weights are the 
interpoint distances) and uses dynam-
ic programming to optimally remove 
k - 1 edges to define k clusters. To the 
extent that we are comfortable iden-
tifying “instances with a meaningful 
clustering” with 2-perturbation-stable 

i	 Specifically, γ = Ω (√(log n log log n).
j	 In general, the optimal solution of a linear or 

semidefinite programming relaxation of an 
NP-hard problem is a “fractional solution” 
that does not correspond to a feasible solution 
to the original problem.

The unreasonable 
effectiveness of 
modern machine 
learning algorithms 
has thrown down 
the gauntlet 
to algorithms 
researchers,  
and there is  
perhaps no other 
problem domain 
with a more  
urgent need  
for the beyond 
worst-case 
approach.
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an unknown sparse signal (a vector 
of length n) from a small number m 
of linear measurements of it. Equiva-
lently, given an m x n measurement 
matrix A with m << n and the mea-
surement results b = Az, the prob-
lem is to figure out the signal z. 
This problem has several important 
applications, for example in medi-
cal imaging. If z can be arbitrary, then 
the problem is hopeless: since m < n, 
the linear system Ax = b is underde-
termined and has an infinite number 
of solutions (of which z is only one). 
But many real-world signals are (ap-
proximately) k-sparse in a suitable 
basis for small k, meaning that (al-
most) all of the mass is concentrated 
on k coordinates.l The main results in 
compressive sensing show that, un-
der appropriate assumptions on A, 
the problem can be solved efficiently 
even when m is only modestly bigger 
than k (and much smaller than n).15,20 
One way to prove these results is to 
formulate a linear programming re-
laxation of the (NP-hard) problem of 
computing the sparsest solution to 
Ax = b, and then show this relaxation 
is exact.

Planted and Semi-Random Models
Our next genre of models is also in-
spired by the idea that interesting 
instances of a problem should have 
“clearly optimal” solutions, but dif-
fers from the stability conditions in as-
suming a generative model—a specific 
distribution over inputs. The goal is 
to design an algorithm that, with high 
probability over the assumed input dis-
tribution, computes an optimal solu-
tion in polynomial time.

The planted clique problem. In the 
maximum clique problem, the input 
is an undirected graph G = (V, E), and 
the goal is to identify the largest subset 
of vertices that are mutually adjacent. 
This problem is NP-hard, even to ap-
proximate by any reasonable factor. 
Is it easy when there is a particularly 
prominent clique to be found?

Jerrum27 suggested the following 
generative model: There is a fixed set V 
of n vertices. First, each possible edge 
(u, v) is included independently with 

l	 For example, audio signals are typically ap-
proximately sparse in the Fourier basis, im-
ages in the wavelet basis.

50% probability. This is also known 
as an Erdös-Renyi random graph with 
edge density ½. Second, for a param-
eter k ∈ {1, 2, . . . , n}, a subset Q ⊆ V 
of k vertices is chosen uniformly at 
random, and all remaining edges with 
both endpoints in Q are added to the 
graph (thus making Q a k-clique).

How big does k need to be before 
Q becomes visible to a polynomial-
time algorithm? The state of the art 
is a spectral algorithm of Alon et al.,3 

which recovers the planted clique Q 
with high probability provided k is at 
least a constant times √n. Recent work 
suggests that efficient algorithms can-
not recover Q for significantly smaller 
values of k.11

An unsatisfying algorithm. The al-
gorithm of Alon et al.3 is theoretically 
interesting and plausibly useful. But if 
we take k to be just a bit bigger, at least 
a constant times √n log n, then there is 
an uninteresting and useless algo-
rithm that recovers the planted clique 
with high probability: return the k ver-
tices with the largest degrees. To see 
why this algorithm works, think first 
about the sampled Erdös-Renyi ran-
dom graph, before the clique Q is 
planted. The expected degree of each 
vertex is ≈ n/2, with standard deviation 
≈√n/2. Textbook large deviation in-
equalities show that, with high proba-
bility, the degree of every vertex is with-
in ≈√ln n  standard deviations of its 
expectation (Figure 4). Planting a 
clique Q of size a√n log n, for a suffi-
ciently large constant a, then boosts 
the degrees of all of the clique vertices 
enough that they catapult past the de-
grees of all of the non-clique vertices.

What went wrong? The same thing 
that often goes wrong with pure av-

erage-case analysis—the solution is 
brittle and overly tailored to a specific 
distributional assumption. How can 
we change the input model to encour-
age the design of algorithms with more 
robust guarantees? Can we find a sweet 
spot between average-case and worst-
case analysis?

Semi-random models. Blum and 
Spencer13 proposed studying semi-
random models, where nature and 
an adversary collaborate to produce 
an input. In many such models, na-
ture first samples an input from a 
specific distribution (like the proba-
bilistic planted clique model noted 
here), which is then modified by the 
adversary before being presented as 
an input to an algorithm. It is impor-
tant to restrict the adversary’s power, 
so that it cannot simply throw out 
nature’s starting point and replace it 
with a worst-case instance. Feige and 
Killian24 suggested studying monotone 
adversaries, which can only modify 
the input by making the optimal so-
lution “more obviously optimal.” For 
example, in the semi-random ver-
sion of the planted clique problem, a 
monotone adversary is only allowed 
to remove edges that are not in the 
planted clique Q—it cannot remove 
edges from Q or add edges outside Q.

Semi-random models with a mono-
tone adversary may initially seem no 
harder than the planted models that 
they generalize. But let’s return to the 
planted clique model with k = Ω(√n log n
), where the “top-k degrees” algorithm 
succeeds with high probability when 
there is no adversary. A monotone ad-
versary can easily foil this algorithm in 
the semi-random planted clique mod-
el, by removing edges between clique 

Figure 4. Degree distribution of an Erdo″s–Rényi graph with edge density ½, before planting 
the k-clique Q. If k = Ω (√(n lg n ), then the planted clique will consist of the k vertices with 
the highest degrees.

degrees
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perturbations, the perturbed instance 
is well-conditioned in the sense that 
each step of the simplex method 
makes significant progress traversing 
the boundary of the shadow.

Local search. A local search algo-
rithm for an optimization problem 
maintains a feasible solution, and 
iteratively improves that solution via 
“local moves” for as long as possible, 
terminating with a locally optimal 
solution. Local search heuristics are 
ubiquitous in practice, in many differ-
ent application domains. Many such 
heuristics have an exponential worst-
case running time, despite always ter-
minating quickly in practice (typically 
within a sub-quadratic number of it-
erations). Resolving this disparity is 
right in the wheelhouse of smoothed 
analysis. For example, Lloyd’s algo-
rithm for the k-means problem can 
require an exponential number of 
iterations to converge in the worst 
case, but needs only an expected poly-
nomial number of iterations in the 
smoothed case (see Arthur et al.7 and 
the references therein).o

Much remains to be done, how-
ever. For a concrete challenge prob-
lem, let’s revisit the maximum cut 
problem. The input is an undirected 
graph G = (V, E) with edge weights, 
and the goal is to partition V into two 
groups to maximize the total weight 
of the edges with one endpoint in 
each group. Consider a local search 
algorithm that modifies the current 
solution by moving a single vertex 
from one side to the other (known 
as the “flip neighborhood”), and per-
forms such moves as long as they in-
crease the sum of the weights of the 
edges crossing the cut. In the worst 
case, this local search algorithm can 
require an exponential number of it-
erations to converge. What about in 
the smoothed analysis model, where 
a small random perturbation is added 

o	 An orthogonal issue with local search heuris-
tics is the possibility of outputting a locally 
optimal solution that is much worse than a 
globally optimal one. Here, the gap between 
theory and practice is not as embarrassing— 
for many problems, local search algorithms 
really can produce pretty lousy solutions. 
For this reason, one generally invokes a local 
search algorithm many times with different 
starting points and returns the best of all of 
the locally optimal solutions found.

and non-clique vertices to decrease 
the degrees of the former back down 
to ≈ n/2. Thus the semi-random model 
forces us to develop smarter, more ro-
bust algorithms.m

For the semi-random planted 
clique model, Feige and Krauth-
gamer24 gave a polynomial-time al-
gorithm that recovers the clique with 
high probability provided k = Ω(√n ). 
The spectral algorithm by Alon et al.3 
achieved this guarantee only in the 
standard planted clique model, and 
it does not provide any strong guaran-
tees for the semi-random model. The 
algorithm of Feige and Krauthgamer24 
instead uses a semidefinite program-
ming relaxation of the problem. Their 
analysis shows that this relaxation is 
exact with high probability in the stan-
dard planted clique model (provided k 
= Ω(√n)), and uses the monotonicity 
properties of optimal mathematical 
programming solutions to argue this 
exactness cannot be sabotaged by any 
monotone adversary.

Smoothed Analysis
Smoothed analysis is another example 
of a semi-random model, now with 
the order of operations reversed: an 
adversary goes first and chooses an ar-
bitrary input, which is then perturbed 
slightly by nature. Smoothed analysis 
can be applied to any problem where 
“small perturbations” make sense, 
including most problems with real-
valued inputs. It can be applied to any 
measure of algorithm performance, 
but has proven most effective for run-
ning time analyses.

Like other semi-random models, 
smoothed analysis has the benefit of 
potentially escaping worst-case in-
puts (especially if they are “isolated”), 
while avoiding overfitting a solution 
to a specific distributional assump-
tion. There is also a plausible narra-
tive about why real-world inputs are 

m	 The extensively studied “stochastic block 
model” generalizes the planted clique model 
(for example, see Moore32), and is another 
fruitful playground for semi-random models. 
Here, the vertices of a graph are partitioned 
into groups, and the probability that an edge 
is present is a function of the groups that con-
tain its endpoints. The responsibility of an 
algorithm in this model is to recover the (un-
known) vertex partition. This goal becomes 
provably strictly harder in the presence of a 
monotone adversary.31

captured by this framework: whatever 
problem you would like to solve, there 
are inevitable inaccuracies in its for-
mulation (from measurement error, 
uncertainty, and so on).

The simplex method. Spielman 
and Teng38 developed the smoothed 
analysis framework with the specific 
goal of proving that bad inputs for the 
simplex method are exceedingly rare. 
Average case analyses of the simplex 
method from the 1980s (for example, 
Borgwardt14) provide evidence for this 
thesis, but smoothed analysis provides 
more robust support for it.

The perturbation model in Spiel-
man and Teng38 is: independently for 
each entry of the constraint matrix and 
right-hand side of the linear program, 
add a Gaussian (that is, normal) ran-
dom variable with mean 0 and stan-
dard deviation σ.n The parameter σ 
interpolates between worst-case analy-
sis (when σ = 0) and pure average-case 
analysis (as σ → ∞, the perturbation 
drowns out the original linear pro-
gram). The main result states that the 
expected running time of the simplex 
method is polynomial as long as typical 
perturbations have magnitude at least 
an inverse polynomial function of the 
input size (which is small!).

Theorem 3 (Spielman and Teng38) 
For every initial linear program, in ex-
pectation over the perturbation to the 
program, the running time of the sim-
plex method is polynomial in the input 
size and in 1/σ. 

The running time blow-up as σ → 0 is 
necessary because the worst-case run-
ning time of the simplex method is 
exponential. Several researchers have 
devised simpler analyses and better 
polynomial running times, most re-
cently Dadush and Huiberts.17 All of 
these analyses are for a specific pivot 
rule, the “shadow pivot rule.” The idea 
is to project the high-dimensional fea-
sible region of a linear program onto 
a plane (the “shadow”) and run the 
simplex method there. The hard part 
of proving Theorem 3 is showing that, 
with high probability over nature’s 

n	 This perturbation results in a dense constraint 
matrix even if the original one was sparse, and 
for this reason Theorem 3 is not fully satisfactory. 
Extending this result to sparsity-preserving 
perturbations is an important open question.
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to each edge’s weight? The natural 
conjecture is that local search should 
terminate in a polynomial number of 
iterations, with high probability over 
the perturbation. This conjecture has 
been proved for graphs with maxi-
mum degree O(log n)21 and for the 
complete graph;4 for general graphs, 
the state-of-the-art is a quasi-polyno-
mial-time guarantee (meaning nO(log n) 
iterations).22

More ambitiously, it is tempting 
to speculate that for every natural lo-
cal search problem, local search ter-
minates in a polynomial number of 
iterations in the smoothed analysis 
model (with high probability). Such a 
result would be a huge success story for 
smoothed analysis and beyond worst-
case analysis more generally.

On Machine Learning
Much of the present and future of 
research going beyond worst-case 
analysis is motivated by advances in 
machine learning.p The unreason-
able effectiveness of modern machine 
learning algorithms has thrown down 
the gauntlet to algorithms researchers, 
and there is perhaps no other problem 
domain with a more urgent need for 
the beyond worst-case approach.

To illustrate some of the challeng-
es, consider a canonical supervised 
learning problem, where a learning 
algorithm is given a dataset of object-
label pairs and the goal is to produce 
a classifier that accurately predicts 
the label of as-yet-unseen objects (for 
example, whether or not an image 
contains a cat). Over the past decade, 
aided by massive datasets and compu-
tational power, deep neural networks 
have achieved impressive levels of 
performance across a range of predic-
tion tasks.25 Their empirical success 
flies in the face of conventional wis-
dom in multiple ways. First, most neu-
ral network training algorithms use 
first-order methods (that is, variants 
of gradient descent) to solve noncon-
vex optimization problems that had 
been written off as computationally 
intractable. Why do these algorithms 

p	 Arguably, even the overarching goal of research 
in beyond worst-case analysis—determining 
the best algorithm for an application-specific 
special case of a problem—is fundamentally a 
machine learning problem.26

so often converge quickly to a local op-
timum, or even to a global optimum?q 
Second, modern neural networks are 
typically over-parameterized, mean-
ing that the number of free param-
eters (weights and biases) is consider-
ably larger than the size of the training 
dataset. Over-parameterized models 
are vulnerable to large generalization 
error (that is, overfitting), but state-
of- the-art neural networks generalize 
shockingly well.40 How can we explain 
this? The answer likely hinges on 
special properties of both real-world 
datasets and the optimization algo-
rithms used for neural network train-
ing (principally stochastic gradient 
descent).r

Another interesting case study, 
this time in unsupervised learning, 
concerns topic modeling. The goal 
here is to process a large unlabeled 
corpus of documents and produce a 
list of meaningful topics and an as-
signment of each document to a mix-
ture of topics. One computationally 
efficient approach to the problem is 
to use a singular value decomposition 
subroutine to factor the term-docu-
ment matrix into two matrices, one 
that describes which words belong to 
which topics, and one indicating the 
topic mixture of each document.35 
This approach can lead to negative 
entries in the matrix factors, which 
hinders interpretability. Restricting 
the matrix factors to be nonnegative 
yields a problem that is NP-hard in 
the worst case, but Arora et al.6 gave 
a practical factorization algorithm 
for topic modeling that runs in poly-
nomial time under a reasonable as-
sumption about the data. Their as-
sumption states that each topic has 
at least one “anchor word,” the pres-
ence of which strongly indicates that 
the document is at least partly about 
that topic (such as the word “Durant” 
for the topic “basketball”). Formally 
articulating this property of data was 
an essential step in the development 
of their algorithm.

The beyond worst-case viewpoint 
can also contribute to machine learning by 
“stress-testing” the existing theory 

q	 See Jin et al.28 and the references therein for 
recent progress on this question.

r	 See Neyshabur33 and the references therein for 
recent developments in this direction.

There are 
compelling 
parallels between 
the recent research 
on clustering in 
stable instances 
and slightly 
older results in 
a field of applied 
mathematics 
known as sparse 
recovery, where  
the goal is to 
reverse engineer 
a “sparse” object 
from a small 
number of clues 
around it. 
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and providing a road map for more 
robust guarantees. While work in be-
yond worst-case analysis makes strong 
assumptions relative to the norm in 
theoretical computer science, these 
assumptions are usually weaker than 
the norm in statistical machine learn-
ing. Research in the latter field often 
resembles average-case analysis, for 
example when data points are mod-
eled as independent and identically 
distributed samples from some (possi-
bly parametric) distribution. The semi-
random models described earlier in 
this article are role models in blending 
adversarial and average-case modeling 
to encourage the design of algorithms 
with robustly good performance. Re-
cent progress in computationally effi-
cient robust statistics shares much of 
the same spirit.19

Conclusion
With algorithms, silver bullets are few 
and far between. No one design tech-
nique leads to good algorithms for all 
computational problems. Nor is any 
single analysis framework—worst-
case analysis or otherwise—suitable 
for all occasions. A typical algorithms 
course teaches several paradigms for 
algorithm design, along with guidance 
about when to use each of them; the 
field of beyond worst-case analysis 
holds the promise of a comparably di-
verse toolbox for algorithm analysis.

Even at the level of a specific prob-
lem, there is generally no magical, 
always-optimal algorithm—the best 
algorithm for the job depends on the 
instances of the problem most rel-
evant to the specific application. Re-
search in beyond worst-case analysis 
acknowledges this fact while retaining 
the emphasis on robust guarantees 
that is central to worst-case analysis. 
The goal of work in this area is to de-
velop novel methods for articulating 
the relevant instances of a problem, 
thereby enabling rigorous explana-
tions of the empirical performance 
of known algorithms, and also guid-
ing the design of new algorithms op-
timized for the instances that matter.

With algorithms increasingly dom-
inating our world, the need to under-
stand when and why they work has 
never been greater. The field of be-
yond worst-case analysis has already 
produced several striking results, but 

there remain many unexplained gaps 
between the theoretical and empiri-
cal performance of widely used algo-
rithms. With so many opportunities 
for consequential research, I suspect 
the best work in the area is yet to come.
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