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Article history: In finance, economics and many other fields, observations in a matrix form are often
Available online xxxx observed over time. For example, many economic indicators are obtained in different

countries over time. Various financial characteristics of many companies are reported over
time. Although it is natural to turn a matrix observation into a long vector then use standard
vector time series models or factor analysis, it is often the case that the columns and
rows of a matrix represent different sets of information that are closely interrelated in
a very structural way. We propose a novel factor model that maintains and utilizes the
matrix structure to achieve greater dimensional reduction as well as finding clearer and
more interpretable factor structures. Estimation procedure and its theoretical properties
are investigated and demonstrated with simulated and real examples.
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1. Introduction

Time series analysis is widely used in many applications. Univariate time series, when one observes one variable through
time, is well studied, with linear models (e.g. Box and Jenkins, 1976; Brockwell and Davis, 1991; Tsay, 2005), nonlinear
models (e.g. Engle, 1982; Bollerslev, 1986; Tong, 1990), and nonparametric models (e.g. Fan and Yao, 2003). Multivariate
time series and panel time series, when one observes a vector or a panel of variables through time, is also a long studied but
still active field (e.g. Tiao and Box, 1981; Tiao and Tsay, 1989; Engle and Kroner, 1995; Stock and Watson, 2004; Liitkepohl,
2005; Tsay, 2014, and others). Such analysis not only reveals the temporal dynamics of the time series, but also explores
the relationship among a group of time series, using the available information more fully. Often, the investigation of the
relationship among the time series is the objective of the study.

Matrix-valued time series, when one observes a group of variables structured in a well defined matrix form over time,
has not been studied. Such a time series is encountered in many applications. For example, in economics, countries routinely
report a set of economic indicators (e.g. GDP growth, unemployment rate, inflation index and others) every quarter. Table 1
depicts such a matrix-valued time series. One can concentrate on one cell in Table 1, say US Unemployment rate series
{Xt21, t = 1,2...} and build a univariate time series model. Or one can concentrate on one column in Table 1, say, all
economic indicators of US {(X; 11, . . ., X;.41)'} and study it as a vector time series. Similarly, if one is interested in modeling
GDP growth of the group of countries, a panel time series model can be built for the first row {(X; 11, ..., X¢,1p)} in Table 1.
However, there are certainly relationships among all variables in the table and the matrix structure is extremely important.
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Table 1
Illustration of a matrix-valued time series.
us Japan e China
GDP Xe Xe12 e Xe1p
Unemployment Xt .21 X2 cee Xt.2p
Inflation Xe.31 Xi.32 e Xe.3p
Payout Ratio X 41 Xt 42 .- Xe.4p

For example, the variables in the same column (same country) would have stronger inter-relationship. Same for the variables
in the same row (same indicator). Hence it is important to analyze the entire group of variables while fully preserve and
utilize its matrix structure.

There are many other examples. Investors may be interested in the time series of a group of financials (e.g. asset/equity
ratio, dividend per share, and revenue) for a group of companies, the import-export volume among a group of countries,
pollution and environmental variables (e.g. PM2.5, ozone level, temperature, moisture, wind speed, etc.) observed at a group
of stations. In this article we study such a matrix-valued time series.

Matrix-valued data has been studied (e.g. Gupta and Nagar, 2000; Kollo and von Rosen, 2006; Werner et al., 2008; Leng
and Tang, 2012; Yin and Li, 2012; Zhao and Leng, 2014; Zhou, 2014; Zhou and Li, 2014). Their study mainly focuses on
independent observations. The concept of matrix-valued time series was introduced by Walden and Serroukh (2002), applied
in signal and image processing. Still, the temporal dependence of the time series was not fully exploited for model building.

In this article, we focus on high-dimensional matrix-valued time series data. In cases, we may allow the dimensions of
the matrix to be as large as, or even larger than the length of the observations. A well-known issue often accompanying
with high-dimensional data is the curse of dimensionality. We adopt a factor model approach. Factor analysis can effectively
reduce the number of parameters involved, and is a powerful statistical approach to extracting hidden driving processes, or
latent factor processes, from an observed stochastic process. In the past decades, factor models for high-dimensional time
series data have drawn great attention from both econometricians and statisticians (e.g. Chamberlain and Rothschild, 1983;
Forni et al., 2000; Bai and Ng, 2002; Hallin and LiSka, 2007; Pan and Yao, 2008; Lam et al,, 2011; Fan et al., 2011; Lam and
Yao, 2012; Fan et al., 2013; Chang et al., 2015; Liu and Chen, 2016).

With the above observations and motivations, in this article, we aim to develop factor models for matrix-valued time
series, which fully explore the matrix structure. The rest of this article is organized as follows. In Section 2, detailed
model settings are introduced and interpretations are discussed in detail. Section 3 presents an estimation procedure. The
theoretical properties of the estimators are also studied. Simulation results are shown in Section 4 and two real data examples
are given in Sections 5 and 6. Section 7 provides a brief summary. All proofs are in the Appendix.

2. Matrix factor models

Let X, (t = 1, ..., T)be a matrix-valued time series, where each X, is a matrix of size p; x p,,
X oo Xep,
X, = . . .
Xf-ml e Xt’mpz

We propose the following factor model for matrix-valued time series,
X[:RF[C,+Et, t:],z,...,T. (1)

Here, F; is a k1 x k, unobserved matrix-valued time series of common fundamental factors, R is a p; x k; front loading
matrix, C is a p, x k; back loading matrix, and E; is a p; x p, error matrix. In model (1), the common fundamental factors
F.’s drive all dynamics and co-movement of X;. R and C reflect the importance of common factors and their interactions.

Similar to multivariate factor models, we assume that the matrix-valued time series is driven by a few latent factors.
Unlike the classical factor model, the factors F,’s in model (1) are assumed to be organized in a matrix form. Correspondingly,
we adopt two loading matrices R and C to capture the dependency between each individual time series in the matrix
observations and the matrix factors. In the following we provide two interpretations of the loading matrices. We first
introduce some notation. For a matrix A, we use @;. and a; to represent the ith row and the jth column of A, respectively,
and A; to denote the ij-th element of A.

Interpretation I: To isolate effects, assume k; = p; and R = I, , then X; = F.C' + E;. In this case, each column of X; is
a linear combination of the columns of F;. Take the example shown in Table 1 and consider the first column of X; (the US
economic indicators),

us Fe Fi,

GDP F-GDP F-GDP

Unem F-Unem F-Unem | +€:us-
mf | = Fmf | Tt Gk | Enf

PayR F-PayR /| F-PayR /,

t
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It is seen that the US GDP only depends on the first row of F;. Similarly, other countries’ GDP also only depends on the
first row of F;. Hence we can view the first row of F, as the GDP factors. Similarly, the second row of F; can be considered
as the unemployment factors. There is no interaction between the indicators in this setting (when R = I). The loading
matrix C reflects how each country (column of X;) depends on the columns of F,, hence reflects column interactions, or the
interactions between the countries. Because of this, we will call C the column loading matrix.

Similarly, the rows of F; can be viewed as common factors of all rows of X;, and the front loading matrix R as row loading
matrix. Again, assume k; = p, and C = I,,, it follows that X; = RF; + E.. Then each row of X, is a linear combination of
the rows of F,. Consider the first row of X,

US Japan...China US Japan ... China
(GDP,GDP, ...,GDP), = Ry;(F-US, F-Japan, ..., F-China), f, .
+ Ry2(F-US, F-Japan, ..., F-China); f,,.

+ R, (F-US, F-Japan, . .., F-China); f, ..
=+ € cpp.-

It is seen that all economic movements (of each country) are driven by k; (row) common factors. For example, every US’s
indicator depends on only the first column of F;. Hence the first column of F; can be viewed as the US factor. And the second
column of F; can be viewed as Japan factor. The loading matrix R reflects how each indicator depends on the rows of F,. It
reflects row interactions, the interactions between the indicators within each country. Because of this, we will call R the row
loading matrix.

Obviously column and row interaction would be of interests and of importance. One way to introduce interaction is to
assume an additive structure, by combining the column and row factor models

X;=RFy +FyC +E;, t=1,2,...,T.

However, the number of factors in this model is large (ki x p, 4+ p1 X ky). A more parsimonious model would be a direct
interaction as in model (1). In this case the number of factors is only k1 x kj.

Interpretation II: We can view the model (1) as a two-step hierarchical model.

Step 1: For each fixed rowi = 1,2, ..., py, using data {x;;, t = 1,2, ..., T}, we can find a p, x k; dimensional loading
matrix C? and k, dimensional factors {&:i. = (Gtin, ..., Griky), £ = 1,2,...,T} under a standard vector factor model
setting. That is,

Keits - > Xeipy) = (Geits - s Geitg )Y 4 (Hein, oo Heipy), t=1,2,...,T.

Let G, be the p; x k, matrix formed with p; rows of g, ;.. Also denote H, as the p; x p, error matrix formed with the rows
of {hyj =(Heii..., Hri,ipz)}-

Step 2: Suppose each columnj = 1,2, ..., k; of the assembled factor matrix G, obtained in Step 1 also assumes the factor
structure, with a p; x k; loading matrix RY and a k; dimensional factor f, ;. That is,

Ge 1 Fy 4 Hf 4
: — RV : + : , t=1,2,...,T.
Ge.pyj Fekyj Hep,j

This step reveals the common factors that drive the co-moments in G;. Let F; be the k; x k, matrix formed with the columns

ftj-And let H be the py x k, error matrix formed with columns {h;; = (Hfy;, .. .. Hf, )
Step 3: Assembly: With the above two-step factor analysis and notation, assume R = ... = R®) = RandcV = ... =

¢ = ¢, we have

X: =GC'+H; and G, =RF;+H;.
Hence

X; =RF.C' + H;C'+ H; = RF.C' + Eq,
where E; = H;C' + H;. It is identical to (1).

Here we provide some additional remarks of model (1).

Remark 1. Let vec(-) be the vectorization operator, i.e., vec(-) converts a matrix to a vector by stacking columns of the matrix
on top of each other. The classical factor analysis treats vec(X;) as the observations, and a factor model is in the form of

vec(X;)= &of, +e, t=1,2,...,T, (2)
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where & is a p;p, x k loading matrix, f; of length k is the latent factor, e; is the error term, and k is the total number of
factors. On the other hand, note that model (1) can be re-written as

vec(X;) = (C ® R)vec(F;) + vec(E;). (3)

Assume k = kqk,. Then model (3) is a special case of model (2), with a Kronecker product structured loading matrix. Hence
model (1) is arestricted version of model (2), assuming a special structure for the loading spaces. The number of parameters
for the loading matrix € in model (2)is (p1kq) x (p2k2) whereas it is p1k; + p2k; for the loading matrices R and C in model
(1). Therefore, model (1) significantly reduces the dimension of the problem.

Remark 2. Interpretation II also reveals the reduction in the number of factors comparing to using factor models for each
column panel or row panel. Note that, if one ignores the interconnection between the rows and obtain individual factor
models for each row, as in Step 1, the total number of factors is p; x k;. These factors may have connections across rows.
Step 2 exploits such correlations and uses another factor model to reduce the number of factors from p; x ky to k; x kj.

Remark 3. We also observed that in practice, the total number of factors used in our model may be larger than the number
of factors needed in the vectorized factor model (2). This is possible since the vectorized model simultaneously exploits
common driving features in all series, while the matrix factor model does it by working on the row vectors separately
first (Step 1), then condensing them by the columns (Step 2). Such a two-step approach may result in redundancy (highly
correlated factors) which may be further simplified. Because we are forcing the factors to assume a neat matrix structure,
it is difficult to have simplifications such as having one or several elements in the factor matrix F; be constant zero. Since
kq and k; are usually small, we will tolerate such redundancy. One extension is to assume that the factor matrix F;, after a
certain rotation, has a block diagonal structure, resulting in a multi-term factor model

S
Xc=) RFC+E. t=12...T, (4)

i=1

where Fj; is a kj; x ki factor matrix, and ZLl ki1 = kq and Zle kin = ky. This will reduce the number of factors from k; x k;
to Zf:] ki1kiz, with corresponding dimension reduction in the loading matrices as well. We are currently investigating the
properties and estimation procedures of such a multi-term factor model.

Remark 4. As in all factor model setting, the properties or assumptions on the observed process X; are inferred from the
assumptions on the factors and the noise processes, since the observed series are assumed to be linear combinations of the
factor processes plus the noise process. Indirectly, we assume that all autocovariance matrices of lag h > 1 of all series lie
in a structured kqk, x kqk, space, but no assumption on the contemporary covariance matrix, as we do not assume any
contemporary covariance structure on the error E;.

Remark 5. Similar models as model (1) have been proposed and studied when conducting principal component analysis
on matrix-valued data (e.g. Paatero and Tapper, 1994; Yang et al., 2004; Ye, 2005; Ding and Ye, 2005; Zhang and Zhou,
2005; Crainiceanu et al.,, 2011; Wang et al., 2016). In those studies, the matrix-valued observations X, are assumed to be
independent, and they primarily focused on principal component analysis. To the best of our knowledge, our paper is the
first one considering factor models for matrix-valued time series data.

In this article, we extend the methods described in Lam et al. (2011); Lam and Yao (2012) for vector-valued factor model
(2) to matrix-valued factor model (1). We propose estimators for the loading spaces and the numbers of row and column
factors, investigate their theoretical properties, and establish their convergence rates. Simulated and real examples are
presented to illustrate the performance of the proposed estimators, to compare the asymptotics under different conditions
with different factor strengths, and to explore interactions between row and column factors.

3. Estimation and modeling procedures

Because of the latent nature of the factors, various assumptions are imposed to ‘define’ a factor. Two common assumptions
are used. One assumes that the factors must have impact on most of the series, and weak serial dependence is allowed for
the idiosyncratic noise process, see Chamberlain and Rothschild (1983); Forni et al. (2000); Bai and Ng (2002); Hallin and
Liska (2007), among others. Another assumes that the factors should capture all dynamics of the observed process, hence
the idiosyncratic noise process has no serial dependence (but may have strong cross-sectional dependence), see Pan and
Yao (2008); Lam et al. (2011); Lam and Yao (2012); Chang et al. (2015); Liu and Chen (2016). Here we adopt the second
assumption and assume that the vectorized error vec(E,) is a white noise process with mean 0 and covariance matrix X,
and is independent of the factor process vec(F). For ease of presentation, we will assume that the process F; has mean 0,
and the observations X;'s are centered and standardized through out this paper.

For the vector-valued factor model (2), it is well-known that there exists an identifiable issue among the factors f; and
the loading matrix @. Similar problem also arises in the proposed matrix-valued factor model (1). Let U; and U, be two
invertible matrices of sizes k1 x ky and k; x k;. Then the triplets (R, F;, C)and (RU{, Ul’lFth, CU}) are equivalent under
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model (1), and hence model (1) is not identifiable. However, with a similar argument as in Lam et al. (2011); Lam and Yao
(2012), the column spaces of the loading matrices R and C are uniquely determined. Hence, in the following, we will focus
on the estimation of the column spaces of R and C, denoted by M(R) and M(C), and referred to as row factor loading space
and column factor loading space, respectively.

We can further decompose R and C as follows,

R=Q W, and C = Q,W;,

where Q; is a p; X k; matrix with orthonormal columns and W; is a k; x k; non-singular matrix, for i = 1,2. Let M(Q;) denote
the column space of Q;. Then we have M(Q ;) = M(R) and M(Q,) = M(C). Hence, the estimation of column spaces of R
and C is equivalent to the estimation of column spaces of Q ; and Q ,.

Write

Z,=WF W), t=1,2,...,T
as a transformed latent factor process. Then, model (1) can be re-expressed as
Xt=Q1ZtQ/2+Er, t=12,...,T. (5)

Eq. (5) can be viewed as another formulation of the matrix-valued factor model with orthonormal loading matrices. Since
M(R) = M(Q,) and M(C) = M(Q,), we will perform analysis on model (1) and (5) interchangeably whenever one is more
convenient than the other.

3.1. Estimation

To estimate the matrix-valued factor model (1), we follow closely the idea of Lam et al. (2011); Lam and Yao (2012) in
estimating vector-valued factor models. The key idea is to calculate auto-cross-covariances of the time series then construct
a Box-Ljung type of statistics in matrix. Under the matrix factor model and white idiosyncratic noise assumption, the space
spanned by such a matrix is directly linked with the loading matrices. In what follows, we will illustrate the method to obtain
an estimate of M(R). The column space of C can be estimated in a similar way using the transposes of X;’s.

Let the jth column of X, R, C, Q; and E; be x, ;, r;, ¢;, q;; and €, ;, respectively. Let ry., ¢. and g; . be the row vectors that
denote the kth row of R, C and Q;, respectively. Then it follows from (1) and (5) that

Xej= RFtCJ,: + €= letq/z,]x +ej, j=1,2,...,p. (6)

From the zero mean assumptions of both F; and E;, we have E(x; ;) = 0
Let h be a positive integer. Define

T—h

Rag ) = —— hZCovzfqzwthqz]) )
1 T—h

02,(h) = T_n Cov(X¢ i, Xeyhj), (8)

t=1

fori,j=1,2,..., p,. By plugging (6) into (8) and by the assumption that E; is white, it follows that
2,(h) = Q1 022,5(N)Q, 9)
for h > 1. For a pre-determined integer hg, define

ho p2 p2

=2 2D i) (). (10)

h=1 i=1 j=1
By (9) and (10), it follows that

ho p2 p2

Mi=Q; > 3> 2,4h2, h ] Q. (11)

h=1 i=1 j=1

Suppose the matrix M has rank k; (Condition 5 in Section 3.2). From (11), we can see that each column of M is a linear
combination of columns of Q ;, and thus the matrices M; and Q ; have the same column spaces, that is, M(M;) = M(Q ).
It follows that the eigen-space of M is the same as M(Q ). Hence, M(Q ;) can be estimated by the space spanned by the
eigenvectors of the sample version of M;. Assume that M has k; distinct nonzero eigenvalues, and let g, ; be the unit
eigenvector corresponding to the jth largest eigenvalue. As there are two unit eigenvectors corresponding to each eigenvalue,
we use the one with positive 1/q1,]-. We can now uniquely define Q ; by

Qi =(q1,1: 912 - Guky )

Please cite this article in press as: Wang D., et al., Factor models for matrix-valued high-dimensional time series. Journal of Econometrics (2018),
https://doi.org/10.1016/j.jeconom.2018.09.013.




6 D. Wang et al. / Journal of Econometrics 1 (1111) IIE-111

Now we construct the sample versions of these quantities and introduce the estimation procedure as follows. For any
positive integer h and a pre-scribed positive integer hy, let

T—h
~ 1
Dilh) = o D X, (12)
t=1
ho p2 p2

Mi= 3" 2,4(082 (h). (13)

h=1 i=1 j=1

Then, M(Q;) can be estimated by M(Q,), where Q; = {@1.---.Gix ) and qy 1, ... Gy, are the eigenvectors of M,
corresponding to its k; largest eigenvalues.
In practice, the number of row factors k; is usually unknown. This quantity can be estimated through a similar eigenvalue

ratio estimator as described in Lam and Yao (2012). Let XH > A2 = -+ = A1p, = 0be the ordered eigenvalues of M.
Then

-~ . 3»\1,‘ 1

ki = arg min, ;=

1,i

__ For Q; and k;, they can be estimated by performing the same procedure on the transposes of X;’s to construct M, and
M. Once Q, and Q, are obtained, the estimate of Z, can be found via a general linear regression analysis, since

vec(X;) = (Q; ® Qq)vec(Z;) + vec(Ey).

Together with the orthonormal properties of both (E] and (52 and the properties of Kronecker product, it follows that

2[ = a,lxtaz-
Let S, be the dynamic signal part of X,, that is, S; = RF.C’ = QZ.Q). Then a natural estimator of S; is given by,

5. =Q,Q,X.Q,Q,. (14)

Remark 6. Theoretically any hy can be used to estimate the loading spaces, as long as one of the £2, ;(h) is of full rank
fori,j = 1,...,ppand h = 1,..., hy. Although they converge at the same rate, the estimate from the lag where the
autocorrelation maximizes is most efficient. We demonstrate the impact of hg in the matrix factor model setting in Section
4. As the autocorrelation is often at its strongest at small time lags, a relatively small hq is usually adopted (Lam et al., 2011;
Chang et al., 2015; Liu and Chen, 2016). Larger hq strengthens the signal, but also adds more noises in the estimation of M;.

Remark 7. K-fold cross-validation procedures can be adopted for model selection between matrix-valued factor models in
(1) and vector-valued factor models in (2), and among the models with different number of factors. Specifically, we first
partition the data D into k subsets D1, ..., Dy, and fit a factor model with each of the D\D,, sets. Then we use the estimated
loading spaces, together with the data in Dy to obtain the dynamic signal process S; for D, and obtain out-of-sample residuals.
Residual sum of squares (RSS) of the K folds is then adopted for model comparison. Rolling-validation which uses only the
data before the block for estimation can be used as well.

3.2. Theoretical properties of the estimators

In this section, we study the asymptotic properties of the estimators under the setting that all T, p; and p, grow to infinity
while k; and k; are being fixed. In the following, for any matrix Y, we use rank(Y), [|Y |l2, [¥ Iz, Y lmin, and o;(Y) to denote
the rank, the spectral norm, the Frobenius norm, the smallest nonzero singular value and the jth largest singular value of Y.
When Y is a square matrix, we denote by tr(Y), Amax(Y) and Anin(Y) the trace, maximum and minimum eigenvalues of Y,
respectively. We write a < b when a = O(b) and b = O(a). Define

T—h
Z Cov (vec(F;), vec(F¢yp)), and X, = Var(vec(E,)).

t=1

Sf(h) = m

The following regularity conditions are imposed before we derive the asymptotics of the estimators.
Condition 1. The vector-valued process vec(F;) is «-mixing. Specifically, for some y > 2, the mixing coefficients satisfy the
condition Y p° , a(h)'=2/7 < oo, where

a(h) = sup sup |P(A N B) — P(A)P(B)|,

I aerl  BeF,

and }‘{ is the o-field generated by {vec(F;):i <t <j}.
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Condition 2. Let F; ; be the ij-th entry of F;. Foranyi = 1,...,k,j = 1,...,k,and t = 1,...,T, we assume that
E(|Ft,,-j|21’) < C, where C is a positive constant, and y is given in Condition 1. In addition, there exists a 1 < h < hg such that
rank(X's(h)) > k,and || X¢(h)]> < O(1) < ak(Z’g(h)), where k = max{ky, k»}, as p; and p, go to infinity and k; and k, are
fixed. Fori=1,....kiandj=1,..., kp, 75 S o1 CoV(F oo froni) # 0, 75 1=y CoV(f ., feyny) # O

The latent process does not have to be stationary, but needs to satisfy the mixing condition (Condition 1) and boundedness
condition (Condition 2). They are weaker than stationarity. For example, when a process has a deterministic seasonal variance
component or with a deterministic regime switching mechanism, it is not stationary but mixing. We do not need to assume
any specific model for the latent process {F} since we only use the eigen-analysis based on autocovariances of the observed
process at nonzero lags.

Under Condition 2, X'¢(h) may not be of full rank, which indicates that it is allowed to involve some extent of redundancy
in the factors. Condition 2 also guarantees that there is no redundant row or column in F;, and in each row or column there
is at least one factor which has serial dependence at lag h. The greater dimension reduction can be achieved by a multi-term
factor model in (4). We are currently investigating the properties and estimation procedures of such a multi-term factor
model.

Condition 3. Each element of X', remains bounded as p; and p, increase to infinity.

In model (1), RF,C’ can be viewed as the signal part of the observation X, and E; as the noise. The signal strength, or
the strength of the factors, can be measured by the L,-norm of the loading matrices which are assumed to grow with the
dimensions.

Condition 4. There exist constants §; and &, € [0, 1] such that ||R||3 =< p}_al =< |IR||2;, and ||C|13 < p;_‘sz =< |IC|1%;, as P1
and p, go to infinity and k; and k; are fixed.

The rates §; and §, are called the strength for row factors and the strength for column factors, respectively. They measure
the relative growth rate of the amount of information carried by the observed process X; on the common factors as the
dimensions increase, with respect to the growth rate of the amount of noise. When §; = 0, the factors are strong; when
8; > 0, the factors are weak, which means the information contained in X, on the factors grows more slowly than the noises
introduced as p; increases. For detailed discussion of factor strength, see Lam and Yao (2012).

Condition 5. M; has k; distinct positive eigenvalues for i = 1,2.

As stated in Section 3, only M(Q;) and M(Q,) are uniquely determined, while Q; and Q, are not. However, when
the eigenvalues of M; are distinct, we can uniquely define Q; as Q; = {q; 1, -- ., q;,}, where q; 1, ..., q;, are the unit
eigenvectors of M; corresponding to its k; largest eigenvalues {A;1 > A;2 ... > Ay} which make 1'q; ;, l’qi,z, ...,and I,qi.k,-
all positive, fori = 1,2.

The following theorems show the rate of convergence for estimators of loading spaces and the eigenvalues.

Theorem 1. Under Conditions 1-5 and p ' p)2T~"/2 = o(1), it holds that

N 81 .60 p— .
1Q; — Qill2 = Op(py'P2T?), fori=1,2.

Concerning the impact of §;’s, it is not surprising that the stronger the factors are, the more useful information the
observed process carries and the faster the estimators converge. More interestingly, the strengths of row factors and column
factors §; and &, determine the rates together. An increase in the strength of row factors is able to improve the estimation
of the column factors loading space and vice versa.

When p; and p, are fixed, the convergence rate for estimating the loading matrices are +/T. If the loadings are strong
(8; = 0), the rate is also +/T, since the signal is as strong as the noise, and the increase in dimensions will not affect the
estimation of the loading spaces. When §;’s are not 0, the noise increases faster than useful information. In this case, increases
in dimension will dilute the information, resulting in less efficient estimators.

Theorem 2. With Conditions 1-5 and p‘ilpng‘l/z = 0o(1), the eigenvalues {X,-,l, ... ,/):,-,pl.} ofﬁi which are sorted in descending
order satisfy
e _ 2—81,2—682 -1/2 L
[Aij — Aijl = Op(py "'py “T777), forj=1,2,....k,
and Al = Op(pip3T™ "), forj=ki+1,....p;,
where A1 > Ai3 ... > Ajy, are eigenvalues of M, fori = 1,2.

Theorem 2 shows that the estimators for nonzero eigenvalues of M; converge more slowly than those for the zero
eigenvalues. It provides the theoretical support for the ratio estimator proposed in Section 3.1.
The following theorem demonstrates the theoretical properties of the estimator S; in (14).
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Theorem 3. If Conditions 1-5 hold, pilpng‘l/2 = 0o(1), and || X.||, is bounded, we have

py 20 1S: = Selly = 0p(a111Q; — Q4 ll2) + 0p(a211Q5 — Q,12) + 0p(p; *p; V%)
— Op(pil/ngZ/zT’]/z +p;1/2p;1/2),

where a; < a; =< O(pl_al/zpz_EZ/zT‘]/z).

The theorem shows that, in order to estimate the signal S; consistently, dimensions p; and p, must go to infinity, in order
to have sufficient information on S, at each time point t.

Since Q; is not identifiable in model (1), another measure to quantify the accuracy of factor loading matrices estimation
is the distance between M(Q;) and M(Q;). For two orthogonal matrices 0; and 0, of sizes p x q; and p X g, define

12
D(Ol, 02) = <] tl'(010,1020,2)> .

~ max(qi, g2)
Then D(0,, 0,) is a quantity between 0 and 1. It is equal to O if the column spaces of 0; and O, are the same and 1 if they
are orthogonal.

Theorem 4. If Conditions 1-5 hold and p}' p?>T~'/2 = o(1), we have

D(Q;, Q) = 0p(p) p2T~Y2), fori=1,2.

Theorem 4 shows that the error to estimate loading spaces is on the same order as that for the estimated Q;’s.
4. Simulation

In this section, we study the numerical performance of the proposed matrix-valued approach. In all simulations, the
observed data X,'s are simulated according to model (1),

Xt:RFtC,+Et, t:1,2,...,T.

We choose the dimensions of the latent factor process F; to be k; = 3 and k, = 2. The entries of F, are simulated as
k1k, independent processes with noise N(0, 1) where the types and coefficients of the processes will be specified later. The
entries of R and C are independently sampled from the uniform distribution U(—p; i/ 2, p; &/ 2) fori = 1,2, respectively. The
error process E; is a white noise process with mean 0 and a Kronecker product covariance structure, that is, Cov(vec(E;)) =
I'y ® I'y, where I'| and I', are of sizes p; x p; and p, X p,, respectively. Both I'; and I'; have values 1 on the diagonal
entries and 0.2 on the off-diagonal entries. For all simulations, the reported results are based on 200 simulation runs.

We first study the performance of our proposed approach on estimating the loading spaces. In this part, the kik, = 6
latent factors are independent AR(1) processes with the AR coefficients [—0.5 0.6; 0.8 — 0.4; 0.7 0.3]. We consider three
pairs of (81, §,) combinations: (0.5, 0.5), (0.5, 0) and (0, 0). For each pair of §; and §,, the two dimensions (p, p,) are chosen
to be (20, 20), (20, 50) and (50, 50). The sample size T is selected as 0.5p1p,, p1p2, and 2p1p,. We take hy = 1 since it is
sufficient for AR(1) model as will be shown later. R

Table 2 shows the results for estimating the loading spaces M(Q ;) and M(Q, ). The accuracies are measured by D(Q ¢, Q)
and D(Q,, Q,) using the correct k; and k,, respectively. The results show that with stronger signals and more data sample
points, the approach increases the estimation accuracies. Moreover, increasing the strength of one loading matrix can
improve the estimation accuracies for both loading spaces.

With the same simulated data, we compare the proposed matrix-valued approach and the vector-valued approach in Lam
and Yao (2012) through the estimation accuracy of the total loading matrix Q = Q, ® Q. In what follows, the subscripts
mat and vec denote our approach and Lam and Yao (2012)'s method, respectively. The loading space Q ¢ is computed as
Q. = @, ® Q; once we obtain estimates of Q; and Q, through our approach. For the vector-valued approach, we apply
Lam and Yao (2012)’s method to the observations {vec(X;),t = 1,2, ..., T} to obtain Q.. Table 3 presents the results
for the estimation accuracies of Q measured by Dy..(Q, Q) and Dnat(Q, Q). It shows that the matrix approach efficiently
improves the estimation accuracy over the vector-valued approach.

We next demonstrate the performance of the matrix-valued approach on estimating the number of factors, k; and k.
The data are the same as the data in Table 2 with §; = §; = 0 and hence the true rank pair is (3, 2). Table 4 shows the
relative frequencies of estimated rank pairs over 200 simulation runs. The four pairs (2, 1), (2, 2), (3, 1) and (3, 2) have high
appearances in all of the combinations of py, p, and T. The row for the true rank pair (3, 2) is highlighted. It shows that
the relative frequency of correctly estimating the true rank pair improves with increasing sample size T. Table 5 shows a
comparison between the matrix and vector-valued approaches on estimating the total number of latent factors k = kik.
The column with the true rank k = 6 is highlighted. The results show that the two approaches have similar performance
when the sample size T is large. For smaller T, the probability of the matrix-valued approach to select the rank pair (3, 1) is
high and hence the frequency of estimating the true rank k decreases.

We now study the effects of the lag parameter hg. The k1k, factors are assumed to be independent and follow the same
model which is either an AR(1) or an MA(2) model. For the AR(1) model, the coefficients of all the factors are 0.9, 0.6 or
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Table 2
Means and standard deviations (in parentheses) of ’D(ai, Q;), i = 1,2, over 200 simulation runs. For ease of
presentation, all numbers in this table are the true numbers multiplied by 10.
T=.5%p;*p; T =pi*p2 T =2%pi*p;
8 82 D1 D2 D(Q1,Q,) D(QQ;) 7DQ1,Q:) 7DQ;Q;) DQ;,Q;) D(Qy Q)
05 05 20 20 5.96(0.19) 7.12(0.03) 5.80(0.07) 7.09(0.01) 5.73(0.04) 7.08(0.01)
20 50 5.87(0.15) 7.07(0.02) 5.77(0.04) 7.05(0.01) 5.74(0.02) 7.04(0.01)
50 50 6.26(0.56) 7.05(0.01)  5.73(0.13)  7.04(0.00)  5.61(0.03)  7.03(0.00)
05 0 20 20 5.36(0.41) 5.42(2.22) 427(1.13) 1.66(1.70) 1.52(0.75) 0.54(0.17)
20 50 5.02(0.67) 5.15(1.61) 1.82(0.77) 1.32(0.60) 0.54(0.18) 0.53(0.17)
50 50 3.68(0.48)  3.44(123)  131(0.20)  0.65(0.19)  0.51(0.07)  0.28(0.08)
0 0 20 20 0.55(0.16) 0.44(0.10) 0.36(0.08) 0.31(0.06) 0.24(0.04) 0.22(0.04)
20 50 0.25(0.06) 0.36(0.07) 0.16(0.03) 0.26(0.05) 0.10(0.02) 0.18(0.03)
50 50 0.13(0.02) 0.12(0.02) 0.09(0.01) 0.08(0.01) 0.06(0.01) 0.06(0.01)
Table 3

Means and standard deviations (in parentheses) ofD(@, Q) over 200 replicates. For ease of presentation, all numbers are
the true numbers multiplied by 10.

T=.5%pi*p2 T =pi*p> T=2xp1*p;
81 5 D1 D2 Dvec(aa Q) 'Dmat(as Q) Dvec(aﬁ Q) Dmat(aa Q) ’Dvec(aﬁ Q) Dmat(aﬂ Q)
05 05 20 20 8.75(0.17) 8.26(0.07) 8.24(0.18) 8.19(0.03) 7.62(0.17) 8.16(0.02)
20 50 8.72(0.10) 8.20(0.06) 8.40(0.09) 8.15(0.01) 7.92(0.16) 8.13(0.01)
50 50 8.51(0.14) 8.34(0.22) 7.62(0.14) 8.13(0.05) 6.81(0.06) 8.09(0.01)
05 0 20 20 6.40(0.29) 7.19(1.13) 5.50(0.31) 4.66(1.45) 4.37(0.45) 1.64(0.72)
20 50 5.64(0.24) 6.75(1.13) 4.75(0.35) 2.30(0.80) 3.37(0.45) 0.78(0.20)
50 50 5.07(0.10) 4.92(0.94) 4.46(0.29) 1.47(0.23) 2.73(0.46) 0.59(0.08)
0 0 20 20 3.64(0.23) 0.71(0.16) 2.77(0.16) 0.48(0.08) 2.07(0.13) 0.33(0.04)
20 50 2.84(0.18)  0.44(0.07)  2.13(0.10)  0.30(0.05) 1.56(0.07)  0.21(0.03)
50 50 1.85(0.10) 0.18(0.02) 1.34(0.06) 0.12(0.01) 0.97(0.04) 0.09(0.01)
Table 4 o
Relative frequency of estimated rank pair (kq, ko) over 200 runs. The row with the true rank pair (3, 2) is highlighted. Here
D = pi1p>.
p1 =20, po =20 p1 = 20, p2 = 50 p1 =50, p2 = 50
(k1,ko) | T=5p T=p T=2 |T=5p T=p T=2|T=5p T=p T=2
(2,1) 0.2 0.055 0 0.32 0.005 0 0 0 0
(2,2) 0.055 0.04 0 0.025 0.005 0 0 0 0
(3,1) 0.19 0.215 0.01 0.47 0.325 0.005 0.005 0 0
(3,2) 0.365 0.66 0.985 0.17 0.665 0.995 0.995 1 1
Others 0.19 0.03 0.005 0.015 0 0 0 0 0
Table 5

Relative frequency of estimated total rank k over 200 replicates for both the vector and matrix-valued approaches. The
column with the true rank k = 6 is highlighted. Here p = p;p,.

k=1 k=2 k=3 k k=6 Others
P11 P2 T vec mat vec mat vec mat vec mat vec mat vec mat
20 20| 5p | 025 0.125 | 0.33 0.22 | 0.035 0.19 | 0.015 0.07 | 0.345 0.365 | 0.025 0.03
p | 0.055 0.02 | 0.105 0.06 0 0.215 0 0.045 | 0.83  0.66 0.01 0
2p 0 0 0.005 0 0 0.01 0 0.005 | 0.995 0.985 0 0
20 50 | .5p | 0.03 0.015 | 0.62 0.32 0 0.47 0 0.025 | 0.34  0.17 0.01 0
P 0 0 0.14  0.005 0 0.325 0 0.005 | 0.86 0.665 0 0
2p 0 0 0 0 0 0.005 0 0 1 0.995 0 0
50 50 | .5p | 0.07 0 0 0 0 0.005 0 0 0.93  0.995 0 0
P 0 0 0 0 0 0 0 0 1 1 0 0
2p 0 0 0 0 0 0 0 0 1 1 0 0

0.3. For the MA(2) model, we consider the case f; = e; + 0.9¢;_». We take §; = 6, = 0, T = pyp, and compare the
estimation accuracies of the two loading spaces for four lag choices, hy = 1, 2, 3, 4. Table 6 shows the results of D(Q ;, Q ;)
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Table 6
Means and standard deviations (in parentheses) of ’D(Q,, Q,)and D(@z, Q,) for different lag parameter hy. All numbers are the true numbers
multiplied by 10.

hy = hy =2 ho =3 hy =4

AR(1) p1 p2 | D(Qy,Q1) D(Qy,Qy) | D(Q1,Q1) DRy, Q) | PR1,Q) DRy Q) | P(Q1,Q) D(Q,, Q)

0.9 20 20 | 0.13(0.02) ) 0.13(0.02) 0.10(0.02) 0.14(0.02) 0.10(0.02) 0.14(0.02) 0.11(0.02)
( ) ( ) 0.05(0.01) 0.07(0.01) 0.05(0.01) 0.07(0.01) 0.06(0.01) 0.08(0.01)
( ) ( ) 0.03(0.00) 0.03(0.00) 0.03(0.00) 0.03(0.00) 0.03(0.00) 0.03(0.00)
( ) ( ) 0.41(0.08) 0.27(0.05) 0.47(0.10) 0.28(0.05) 0.53(0.12) 0.29(0.05)
( ) ( ) 0.18(0.04) 0.20(0.03) 0.21(0.05) 0.21(0.03) 0.24(0.06) 0.21(0.03)
(0.01) (0.01) 0.10(0.01) 0.08(0.01) 0.11(0.02) 0.08(0.01) 0.12(0.02) 0.08(0.01)

0.3 20 20 1.56(0.72) 0.57(0.13) 2.31(0.99) 0.60(0.16) 2.82(1.04) 0.63(0.18) 3.12(1.05) 0.67(0.18)
(0.21) (0.10) (0.13) )
(0.05) (0.03) (0.03) )
(1.11) (0.28) (0.05) )
(1.16) (0.56) (0.03) )
(1.15) (0.23) (0.01) )

0.6 20 20 | 0.36(0.07

1.14(0.49)  0.49(0.13) | 1.66(0.68)  0.55(0.19) | 2.13(0.82)  0.63(0.24)
0.39(0.08)  0.18(0.03) | 056(0.11)  0.20(0.04) | 0.74(0.14)  0.21(0.04)
048(0.12)  0.27(0.05) | 0.59(0.15)  0.28(0.05) | 0.68(0.17)  0.28(0.06)
021(0.04)  021(0.03) | 0.27(0.06) 0.22(0.04) | 0.32(0.07)  0.22(0.04)
0.11(0.02)  0.08(0.01) | 0.13(0.02)  0.08(0.01) | 0.15(0.02)  0.08(0.01)

MA(2) 20 20 | 2.60(1.11

Table 7
Means and standard deviations (in parentheses) of estimation accuracies of Q and S. All
numbers are the true numbers multiplied by 10.

b1 =D2 T Dvec(av Q) Dmat(as Q) DVeC(S\’ S) Dmat(gs S)
10 50 6.26(0.38) 3.66(0.92) 4.05(0.28) 3.41(0.39)
200 4.11(0.33) 1.42(0.42) 3.02(0.19) 2.62(0.15)

1000 2.12(0.13)  050(0.09)  2.48(0.05)  2.40(0.04)

5000 0.99(0.05) 0.21(0.03) 2.38(0.02) 2.36(0.01)

20 50 5.65(0.39) 2.36(1.26) 3.07(0.27) 1.86(0.61)
200 364(023)  0.71(0.16) 1.96(0.16) 1.11(0.05)

1000 1.88(0.11) 0.29(0.04) 1.25(0.05) 1.02(0.01)

5000 0.87(0.03) 0.13(0.01) 1.04(0.01) 1.00(0.00)

50 50 5.81(0.35) 3.17(1.47) 2.64(0.26) 1.95(0.79)
200 3.78(0.24) 0.62(0.19) 1.57(0.16) 0.56(0.09)

1000 2.04(0.10) 0.21(0.03) 0.82(0.06) 0.42(0.01)

5000 097(0.04)  0.09(0.01)  0.49(0.02)  0.40(0.00)

and D(az, Q,).Itis seen that, for the AR(1) processes, taking ho = 1 is sufficient. Larger h, in fact decreases the performance,
especially for small AR coefficient cases. Note that larger ho increases the signal strength in the matrix M, but also increases
the noise level in its sample version M. For an AR(1) model with small AR coefficient, the autocorrelation in higher lags
is relatively small hence the additional signal strength is limited. For the MA(2) process, one must use hy > 2 since lag 1
autocovariance matrix is zero and does not provide any information. hy = 2 performs the best, since all higher lags carry no
additional information, but add significant amount of noise.

Next we study the performance of recovering the signal S;. The latent factors are simulated in the same way as the data
in Table 2. We take §; = 8, = 0,p1 = p» = 10,20,50,and T = 50, 200, 1000, 5000. The recovery accuracy of S;,
denoted by D(S, S), is estimated by the average of ||S; — S|l fort = 1,2, ..., T further normalized by ,/pip,, that is,
D(?, S) = p]_l/zpz_l/2 (Zfﬂ ||§t - St||2/T). Table 7 presents the results of D(?, S)and D(a, Q) for the two approaches. It
shows that, when T is relatively large (hence the Q is estimated relatively accurately), increasing p improves the estimation
of S. For the same p and relatively large T, further increasing T has a limited benefit in improving the estimation of §.
The estimation accuracies of S of the proposed matrix-valued approach are better than that of the vector-valued approach,
though the relative improvement decreases as T increases, even the improvement of estimating Q is significant.

Next, we conduct a 10-fold cross-validation study. The data are generated in the same way as the data in Table 2 with
81 =6, =0,p; = p, = 20and T = 1000. We vary the estimated number of factors k; and k, from all combinations of
ki = 1,2,3,4and k; = 1, 2, 3. The means of the out-of-sample RSS/SST are reported in Table 8. For the matrix-valued
approach, the RSS/SST decreases rapidly when k; and k, increase, before they reach the true rank pair (3, 2) (highlighted
in the table). Then the RSS/SST value remain roughly the same with increasing estimated ranks when k; > 3 and k, > 2.
For the vector-valued approach, k = kyk,, hence the values in the table are the same for the same k 1k, value (e.g. (2, 3)
and (3, 2) are equivalent). Its performance improves quickly as k increases until k = 6, the true number of factors. Then the
performance remains relatively the same for k > 6.

5. Real example: fama-french 10 by 10 series

In this section we illustrate the matrix factor model using the Fama-French 10 by 10 return series. A universe of stocks is
grouped into 100 portfolios, according to ten levels of market capital (size) and ten levels of book to equity ratio (BE). Their
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Table 8
Means of out-of-sample RSS/SST for 10-fold cross-validation over 200 simulation runs. The cell corresponding to the true
order (3, 2) is highlighted.

ko =1 ko =2 ko =3
1271 vec mat vec mat vec mat
11083 083 072 0.75 |0.63 0.75
21072 071] 058 0.56 | 0.49 0.55
31063 0.67| 049 0.47 | 046 0.46
4 1058 066 | 046 047 | 044 043
Table 9

Fama-French series: Size loading matrix after rotation and scaling.

Factor | S S2 83 S4 S5 S6 ST S8 S9 SI0

1 -13 -14 -13 -13 -10 -5 -2 1 6 7
2 0 0 -2 3 5 12 12 18 15 5
Table 10

Fama-French series: BtoE loading matrix after rotation and scaling.
Factor ‘ BE1 BE2 BE3 BE4 BE5 BE6 BE7 BE8 BE9 BEI10

1 91 14 -11 -9 -4 -1 -1 -4 1 3

2 -9 2 3 7 9 10 10 10 13 14

monthly returns from January 1964 to December, 2015 for total 624 months and overall 62,400 observations are used in this
analysis. For more detailed information, see http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

All the 100 series are clearly related to the overall market condition. In this analysis we simply subtract the corresponding
monthly excess market return from each of the series, resulting in 100 market-adjusted return series. We chose not to fit a
standard CAPM model to each of the series to remove the market effect, as it will involve estimating 100 different betas. The
market return data are obtained from the same website above.

Fig. 1 shows the time series plot of the 100 series (standardized), and Figs. 2 and 3 show the logarithms and ratios
of eigenvalues of M, and M, for the row (size) and column (BE) loading matrices. Since the series shows very small
autocorrelation beyond h = 1, in this example we use hy = 1. The results by using hg = 2 are similar. Although the
eigenvalue ratio estimate presented in Section 3.1 indicates k; = k, = 1, we use k; = k, = 2 here for illustration. Tables 9
and 10 show the estimated loading matrices after a varimax rotation that maximizes the variance of the squared factor
loadings, scaled by 30 for a cleaner view. For size, it is seen that there are possibly two or three groups. The 1-st to 5-th
smallest size portfolios load heavily (with roughly equal weights) on the first row of the factor matrix, while the 6-th to 9-th
smallest size portfolios load heavily (with roughly equal weights) on the second row of the factor matrix. The largest (10-th)
size portfolio behaves similar to the other larger size portfolios, but with some differences. We note that the Fama-French
size factor proposed in Fama and French (1993) is constructed using the return differences of the largest 30% of the companies
(combining the 8-th to 10-th size portfolio) and the smallest 30% of the companies (combining our 1st to 3rd size portfolio).

Turning to the book to equity ratio, Table 10 shows a different pattern in the column loading matrix. There seem to have
three groups. The smallest 2-nd to 4-th BE portfolios load heavily on the first column of the factor matrix; the 5th to 10th
BE portfolios load heavily on the second columns of the factor matrix. The smaller (1st) BE portfolios load heavily on both
columns of the factor matrix, with different loading coefficients.

Fig. 4 shows the estimated factor matrices over time. It can be potentially used to replace the Fama-French size factor
(SMB) and book to equity factor (HML) in a Fama-French factor model for asset pricing, factor trading and other usage, though
further analysis is needed to assess their effectiveness. Cross-correlation study shows that there are not many significant
cross-correlation of lag larger than 0 among the factors, though the factors show some strong contemporary correlation.
Note that the factor matrices are subject to rotation — in our case we performed rotation to reveal the group structure in
the loading matrices. A principle component analysis of the four factor series reveals that three principle components can
explain 98% of the variation in the four factors, hence there may still be some redundancy in the factors and the model may
be further simplified. R

Fig. 5 shows the logarithms and ratios of eigenvalues of M in Lam et al. (2011) for a vectorized factor model (2). Models
with various number of factors were estimated and a comparison is shown in Table 11 using a version of rolling-validation.
Specifically, for each year between 1996 to 2015, we use all data available before the year to fit a matrix (or vector) factor
model and estimate the corresponding loading matrices. Using these estimated loading matrices and the observed 12 months
of the data in the year, we estimate the factors and the corresponding residuals. Total sum of squares of the 12 residuals of
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Fig. 1. Time series plot of Fama-French 10 by 10 series.
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Fig. 2. Fama-French series: Logarithms and ratios of eigenvalues of M 1 for the row (size) loading matrix.
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Fig. 3. Fama-French series: Logarithms and ratios of eigenvalues oflﬁz for the column (BE) loading matrix.

Table 11
Comparison of different models for Fama-French series.
Factor RSS # factors # parameters

Matrix model (0,0) 29,193 0 0
Matrix model (2,2) 14,973 4 40
Matrix model (2,3) 14,514 6 50
Matrix model (3,2) 14,166 6 50
Matrix model (3,3) 13,530 9 60
Vector model 3 16,262 3 300
Vector model 4 15,365 4 400
Vector model 5 14,565 5 500
Vector model 6 14,149 6 600

the 100 series of the 20 years are reported. The RSS corresponding to model (0, 0) is the total sum of squares of the observed
100 series of the 20 years being studied. It is seen that the matrix factor model with (2, 2) factor matrices performs better
than the vectorized factor model with equal number of factors and many more parameters in the loading matrices. The (3, 2)
matrix factor model performs similarly as the 6-factor vectorized factor model, but the number of parameters used is much
smaller.

6. Real example: series of company financials

In this example we analyze the series of financial data reported by a group of 200 companies. We constructed 16 financial
characteristics based on company quarterly financial reports. The list of variables and their definitions is given in Appendix
2. The period is from the first quarter of 2006 to the fourth quarter of 2015 for 10 years with total 40 observations. The total
number of time series is 3,200. R =N

Figs. 6 and 7 show the eigenvalues and their ratios of My and M, for row factors and column factors. The estimated
dimensions k; and k; are both 3, though we use k; = 5 and k, = 20 for this illustration, with interesting results. Estimation
is done using hg = 2.

The estimated row loading matrix is rotated to maximize its variance, with potential grouping shown by the shaded areas
in Table 12. It shows the loading of each financial on the five rows of the factor matrix, after proper scaling (30 times) and
reordering for easy visualization. The two financials in Group 1 load almost exclusively on Row 1 of the factor matrix, with
almost the same weights. The six financials in Group 2 load heavily on Row 2, again with almost the same weights. The three
financials in Group 3 load on Rows 3 and 4, with somewhat different weights. Finally, the five financials in Group 4 mainly
load on Row 5 of the factor matrix, with Payout. Ratio having opposite weights from the others.

The detailed grouping is shown in Table 13. Group 1 consists of asset to equity ratio and liability to equity ratio. They
are two very closely related measures. Group 2 consists of six measures on earnings and returns. Group 3 consists of cash
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Fig. 4. Fama-French series: Estimated factors.

Table 12
Financial series: Loading matrix after a varimax rotation and scaling.

Row Factor | F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Fl11 F12 F13 F14 F15 F16
1 21 21 -1 -1 -1 -1 -1 4 -2 2 1 0 1 0 0 -1
2 1 1 -13 -9 -11 -11 -13 -12 7 -6 -1 3 -1 1 0 1
3 0 0 0 -10 O -1 0 -1 -11 9 -24 -4 -1 2 -2 0
4 0 0 -3 2 5 4 -2 -2 19 21 -2 4 1 3 0 -1
5 0 -1 1 2 0 -2 -2 -4 2 1 9 -8 -13 -14 -18
Table 13
Financial series: Grouping of company financials.
Group 1 AssetE.R LiabilityE.R
Group 2 Earnings.R EPS Oper.M Profit.Margin ROA ROE
Group 3 Cash.PS Gross.Margin Revenue.PS
Group 4 Payout.R Profit.G.Q Profit.G.Y Revenue.G.Q Revenue.G.Y

and revenue per share, and gross margin. Group 4 consists of profit growth and revenue growth comparing to the previous
quarter and the same quarter last year. The Payout Ratio variable is also included in the group. Such groupings are relatively
expected.
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Fig. 6. Financial series: Eigenvalues and their ratios 0flVI1.

Based on the 200 rows of the estimated columns loading matrix (corresponding to the companies), after rotation to
maximize the variance, the companies are grouped into 6 groups. Table 14 shows the grouping corresponding to the
industry classification index. The pattern is not as clear as the clustering of the row loading matrix but we still make some
interesting discoveries. Industrial companies are mainly clustered in Groups 1 to 3; Health Care companies in Groups 2 and 3;
Information Technology companies in Groups 1, 3 and 5; and Materials companies in Group 3. Looking from the other angle,
we find that Group 4 mainly contains Energy companies; Group 5 mainly contains Consumer Discretionary, Financials and
Information Technology companies; Group 6 mainly contains Utility companies.

Fig. 8 shows the total 100 factor series in the 5 by 20 factor matrix. Interpretation of the factors is difficult. There
are significant redundancy and correlation among the factors, since we have 100 factors but the time series length is
only 40. Clearly the model tends to overfit. This example is for illustration purpose only, though we do find interesting
features.

Table 15 shows a simple comparison between the matrix factor models and vectorized factor models of various size and
number of factors. Since the time series is short, the table shows in-sample residual sum of squares. Again, it is seen that
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Fig. 8. Financial series: Plot of the 100 series in the factor matrix.

the matrix factor models use much fewer parameters in loading matrices to achieve similar estimation performance. The
number of parameters involved is large as we are jointly modeling 3,200 time series.
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Table 14
Financial series: Matching the companies and the industry.

Group 1 2 3 4 5 6

Consumer discretionary 2 3 4 1 5 4

Consumer staples 3 4 6 1 0 1

Energy 2 3 4 9 0 4

Financials 0 5 2 0 4 0

Health care 0 5 17 0 1 2

Industrials 12 7 17 0 1 2

Information technology 4 0 12 0 5 0

Materials 2 5 8 1 1 1

Telecommunications services 0 2 1 0 0 0

Utilities 0 6 5 1 0o 13

Table 15
Financial series: Comparison of different models for company financials series.
Factor RSS RSS/SST # factors # parameters

Matrix model (4,10) 86,739 0.701 40 2,064
Matrix model (4,20) 74,848 0.610 80 4,064
Matrix model (5,10) 84.517 0.688 50 2,080
Matrix model (5,20) 71,535 0.582 100 4,080
Matrix model (5,30) 65,037 0.530 150 6,080
Vector model 3 79,704 0.650 3 9,600
Vector model 4 73,457 0.598 4 12,800
Vector model 5 68,428 0.557 5 16,000
Vector model 6 63,031 0514 6 19,200

7. Summary

In this paper we propose a matrix factor model for high-dimensional matrix-valued time series, along with an estimation
procedure. Theoretical analysis shows the asymptotic properties of the estimators. Simulation and real examples are used to
illustrate the model and finite sample properties of the estimators. The real examples show the usefulness of the model
and its ability to reveal interesting features of high-dimensional time series. Significant amount of effort is needed to
investigate model validation and model comparison procedures for the proposed model. Extensions to multi-term model
and approaches to simply reducing factor redundancy are important research topics. Extending the model to dynamic factor
model with an imposed dynamic structure on the factor matrix will be useful in terms of prediction and better understanding
the dynamic nature of the matrix-valued time series.
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Appendix A. Supplementary data
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