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Nonlinear Time Series Clustering

1. Introduction

Clustering is an unsupervised learning method aimed at classifying
objects under study into homogeneous groups so that the within-group dis-
tance is minimized and between-group distance is maximized. Objects de-
termined to be similar can then be further analyzed to understand the under-
lying common structure and gain insights.

Due to the recent advances of data collection tools and the need of
various applications, large panel of time series are observed more and more
frequently. Often, a common model is used for all the time series, especially
in the case of short time series when pooling is important to improve the ac-
curacy of model estimation and prediction. But such an approach fails if the
data-generating mechanism differs among the time series. For the purpose
of improving estimation and forecast performance, within a panel of time
series only those with similar dynamic properties should be pooled. Clus-
tering hence becomes a crucial step in the analysis. It has become an impor-
tant area of research, with applications in a wide variety of fields, including
economics, marketing, business, finance, medicine, biology, physics, psy-
chology, zoology, and many others. For example, Zhang (2013) developed a
consistent clustering method for time series data based on trend parallelism,
and applied it analyzing daily cellphone download activities to identify ho-
mogeneous subgroups for efficient advertising and marketing management.
Ma and Zhong (2008) proposed a clustering method for large-scale func-
tional data with multiple covariates, motivated by the need of clustering
temporal expression data. Frühwirth-Schnatter and Kaufmann (2008) ap-
plied a model-based clustering method on regional income series and indus-
trial production growth rates of some countries. An interesting overview on
time series clustering methods and applications can be found in Liao (2005).

In any clustering problem, the starting point is to define a distance or
dissimilarity measure and form a proximity matrix of the observed objects.
Then various clustering algorithms can be applied to form homogeneous
subgroups. However, clustering complex data type, such as a group of time
series, generally requires specially designed dissimilarity measures, instead
of using standard Euclidean distances of numerical vectors. The choice of
the distance measure should of course take into account of the objective of
the clustering procedure. Thus, the distance should be able to capture the
particular discrepancies between observations that are relevant to the final
objective. In this study, we focus on grouping time series according to their
underlying nonlinear serial dependence structure.

Time series clustering has received more and more attention. De-
spite its fast advancement, most of the existing clustering methods are orig-
inally designed for linear time series and dissimilarity measures are con-
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structed assuming that the underlying generating processes are linear and
Gaussian. For example, Piccolo (1990) and Corduas and Piccolo (2008)
developed a dissimilarity measure for autoregressive integrated moving av-
erage (ARIMA) model based on an AR representation and applied this mea-
sure to the identification of similarities between industrial production series.
Maharaj (2000) proposed a classification method using the p-value of a hy-
pothesis test of comparison of AR parameters of two stationary linear time
series as a measure of similarity. Kalpakis, Gada, and Puttagunta (2001) uti-
lized Euclidean distance between the Linear Predictive Coding (LPC) cep-
stra of two time series as the dissimilarity measure for clustering ARIMA
time series. Xiong and Yeung (2004) proposed a model-based approach us-
ing mixtures of ARMA models. Recently, a hypothesis test was proposed
by Liu and Maharaj (2013) for classifying stationary time series based on a
bias-adjusted estimator of the fitted AR models. Most of these model-based
measures are based on the linear assumption of the underlying process, and
can not be generalized to nonlinear time series directly. However, a linear
model is just a first and easy step in modeling an unknown dynamic rela-
tionship. The world is mostly nonlinear.

Since nonlinear relationship is often difficult to specify without strong
prior knowledge, clustering methods based on nonparametric distance be-
comes an attractive option. Bohte, Cepar, and Kosmelj (1980) introduced
several descriptive dissimilarity measures based on the comparison of auto-
correlation functions (ACF). Galeano and Peña (2000) considered the Ma-
halanobis distance between ACFs. Caiado, Crato, and Peña (2006) applied
the partial autocorrelation function (PACF) and inverse autocorrelation func-
tions (IACF) to classify whether time series is stationary or non-stationary.
D’Urso and Maharaj (2009) proposed a fuzzy clustering approach based on
ACF. Although ACF related statistics have been widely used as one of the
primary tools for exploring and testing times series, they only measure the
Pearson correlation between Xt and Xt+h, reflecting the strength of lin-
ear dependence. Granger, Maasoumi, and Racine (2004) found that the
usual correlation function measures are inadequate in recognizing nonlin-
ear dependence. Some nonlinear time series have ACF and PACF behav-
ing like white noise. In frequency domain, Caiado et al. (2006) proposed
three different dissimilarity measures based on periodograms. Dı́az and Vi-
lar (2010) proposed several nonparametric distance measures based on the
spectral densities of time series. Since ACF and spectral density are re-
lated by transformation, they carry the same information with respect to the
dependence of a process. Hence most of the nonparametric dissimilarities
mentioned above are all Pearson correlation related quantities, which can
only measure linear dependence. They are not expected to perform well on
nonlinear time series clustering.
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Nonlinear Time Series Clustering

There are very few studies of nonlinear time series clustering in the lit-
erature. Vilar, Alonso, and Vilar (2010) focused on grouping nonlinear time
series that have similar or equal predictions, assuming the underlying gener-
ating process follows a nonparametric autoregressive model. Harvill, Rav-
ishanker, and Ray (2013) proposed a procedure to distinguish among vari-
ous nonlinear time series based on a distance measure computed from the
square modulus of the estimated normalized bispectra. Lafuente-Rego and
Vilar (2016) proposed a metric based on quantile autocovariances, which is
shown to be able to cluster nonlinear and conditional heteroscedastic pro-
cesses.

Nonlinear time series models have been used extensively to model
complex dynamics not adequately represented by linear models (Tong, 1990;
Fan, 2003). Since nonlinear time series have infinite number of possible
forms, it is not easy to identify a proper time series dependence structure in
practice. In this paper we avoid the use of model-based clustering method,
but turn to a more flexible nonparametric approach. The intuition behind
our proposed dissimilarity measure is that, if two series follow the same
underlying model, their stationary marginal distribution and the joint dis-
tributions of lag variables should be the same. A classic nonparametric
statistics, the Kolmogorov-Smirnov (KS) statistics, is proposed as the dis-
similarity measure. Specifically, for two time series Xt and Yt, we use a
two dimensional KS statistics to measure the difference between the joint
distribution of (Xt,Xt+h) and (Yt, Yt+h). By summing up the statistics for
h = 1, . . . ,K, we obtain a measure of discrepancy of the serial dependence
structure.

The main aim of this paper is to introduce a new distance measure
for clustering nonlinear time series. It tries to overcome the limitation of
the existing distance measures designed for linear processes. The proposed
distance is based on a generalization of the KS statistic to two-dimensional
distributions. Simulation studies show that, compared to other dependence-
based distance, the proposedmetric has good performance, particularly in its
ability of classifying nonlinear models and discriminating between nonsta-
tionary and stationary models. Although the proposed distance measure is
designed for nonlinear time series, empirical study shows that it also works
for clustering linear processes. This is because the distance is defined in
terms of discrepancy of the serial dependence structure, which includes lin-
ear structures.

The remaining of the paper is organized as follows. In Section 2, we
briefly review the two dimensional KS statistic. In Section 3, we introduce
the proposed clustering method with a discussion of some relevant statistical
properties. Some simulation and real data results are shown in Section 4 and
Section 5.
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2. Two Dimensional Kolmogorov-Smirnov Test

The KS test is a nonparametric test of the equality of two probability
distributions. One sample KS test compares the underlying distribution of a
random sample with a reference probability distribution, while two sample
KS test compares two distributions using two random samples.

The one-dimensional and one-sample KS test uses the largest absolute
difference between the cumulative distributions of the reference population
and the empirical distribution of a sample, denoted as DKS . When two
distributions are the same, the asymptotic distribution of the test statistic
Zn =

√
nDKS , as the same sample n goes to infinity, follows

P (Zn ≤ x) = 1− 2

∞∑
k=1

(−1)k−1exp(−2k2x2).

Two-sample KS test is defined similarly (Conover, 1999, Ch. 6).
We here discuss a useful generalization of the KS test to 2-dimensional

distributions. This generalization is due to Fasano and Franceschini (1987),
a variant on an earlier idea due to Peacock (1983). In a 2-dimensional distri-
bution, each data point is characterized by a (x, y) pair of values. However,
cumulative probability distribution is not well-defined. Fasano and Frances-
chini (1987) made use of the total number of points in each of the four
quadrants anchored at a given point (xi, yi), namely, the fraction of data
points in the regions (x < xi, y < yi), (x < xi, y > yi), (x > xi, y <
yi), (x > xi, y > yi). Within each quadrant, the difference between the
observed and expected proportion of points is determined. The two dimen-
sional KS (2DKS) statistics D2DKS is defined as the maximum difference
between data fractions in any two matching quadrants of the sample and of
the parent population, ranging over all data points.

Specifically, given a point (c, d) we denote the probability of two ran-
dom variables (X,Y ) in the four natural quadrants around the point (c, d)
as pX,Y (c+, d+), pX,Y (c−, d+), pX,Y (c+, d−) and pX,Y (c−, d−). With a
set of samples of (X,Y ), we use the fraction of data points in each quadrant
as the estimate of the corresponding probabilities.

Let S1 = {(x1i, y1i), i = 1, . . . , n1} be the sample of (X1, Y1) and
S2 = {(x2j , y2j), j = 1, . . . , n2} be that of (X2, Y2). Let D2DKS be the
maximum difference of the corresponding quadrant probabilities of (X1, Y1)
and (X2, Y2) on the unit set of S1 and S2, i.e.

D2DKS = max
(c,d)∈S1∪S2

{|p̂X1,Y1
(c+, d+) − p̂X2,Y2

(c+, d+)|,
|p̂X1,Y1

(c−, d+)− p̂X2,Y2
(c−, d+)|,

|p̂X1,Y1
(c+, d−)− p̂X2,Y2

(c+, d−)|,
|p̂X1,Y1

(c−, d−)− p̂X2,Y2
(c−, d−)|}. (2.1)
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Similar to the one dimensional case, Z ≡ D2DKS

√
n1n2

n1+n2
can be

used as the test statistic. One would reject the null hypothesis of H0 :
FX1,Y1

(·, ·) = FX2,Y2
(·, ·), if Z is significantly large. Fasano and Frances-

chini (1987) tabulated Monte Carlo result for the distribution ofD2DKS and
Z under various setting. Lopes, Reid, and Hobson (2007) and Lopes, Hob-
son, and Reid (2008) surveyed and evaluated several algorithms version of
the 2DKS test. Note that these results are obtained under i.i.d observations.
For depended data, the testing problem is much more complicated. In this
paper, we directly useD2DKS as a distance measure, hence testing at a cer-
tain significant level is not our focus.

3. Time Series Clustering Method Based on 2DKS Distance Measure

Time series is mostly characterized by its serial dependency. For lin-
ear Gaussian process, the autocorrelation function completely determines
the process. To cluster nonlinear time series, we are also interested in the
similarity between their serial dependence structure. The existing literature
on testing and measuring nonlinear dependence (Diks, 2009; Granger, Maa-
soumi, and Racine, 2004; Dufour, Lepage, and Zeidan, 1982) are mainly
based on measuring the degree of deviation from independence, and do not
discern nonlinear dynamic structures.

In this paper, we focus on serial dependence by examining the joint
distribution ofXt andXt+h. The lagged joint distribution provide abundant
information on the dynamic of the underlying process. When two time series
follow different models, they often have very different lagged joint distribu-
tion. For example Figure 1 displays two lagged scatterplots (Xt−1,Xt),
where the series are simulated from a Bilinear model and an exponential
autoregressive (EXPAR) model respectively. Numerically, 2DKS statistics
can be used to test the difference between two 2-dimensional distributions.

Let {xt, t = 1, 2, . . . , n1} and {yt, t = 1, 2, . . . , n2} be the observed
series of two stationary process {Xt} and {Yt} respectively. We define
dh(xt, yt) the dissimilarity between {xt} and {yt} at lag h, as the 2DKS
statistics of (Xt,Xt+h) and (Yt, Yt+h) defined in (2.1). This dissimilarity
measure has the usual properties of a metric distance as follows:

(1) (non-negativity) 0 ≤ dh(xt, yt) ≤ 1. If {xt} = {yt} then dh(xt, yt) = 0.
(2) (symmetry) dh(xt, yt) = dh(yt, xt).
(3) (triangle inequality) dh(xt, yt) ≤ dh(xt, zt)+dh(yt, zt), where xt, yt, zt
are three stationary processes.

It is straightforward to show that the distance dh(xt, yt) satisfies the
non-negativity and symmetry conditions. To prove the triangle inequality,
we define three two-dimensional sets: Sx = {(xt, xt+h), t = 1, 2, . . . , n1 −
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Figure 1. The lagged scatterplot (Xt−1, Xt) of time series

h}, Sy = {(yt, yt+h), t = 1, 2, . . . , n2 − h}, and Sz = {(zt, zt+h), t =
1, 2, . . . , n3 − h}. Let (c, d) be any point in Sx ∪ Sy ∪ Sz . Since

|p̂Xt,Xt+h
(c+, d+) − p̂Yt,Yt+h

(c+, d+)|
≤ |p̂Xt,Xt+h

(c+, d+)− p̂Zt,Zt+h
(c+, d+)|

+ |p̂Zt,Zt+h
(c+, d+) − p̂Yt,Yt+h

(c+, d+)|,
we have

max
(c,d)∈Sx∪Sy∪Sz

{|p̂Xt,Xt+h
(c+, d+)− p̂Yt,Yt+h

(c+, d+)|}
≤ max

(c,d)∈Sx∪Sy∪Sz

{|p̂Xt,Xt+h
(c+, d+) − p̂Zt,Zt+h

(c+, d+)|}
+ max

(c,d)∈Sx∪Sy∪Sz

{|p̂Zt,Zt+h
(c+, d+)− p̂Yt,Yt+h

(c+, d+)|}. (3.1)

Note that the empirical estimator p̂Xt,Xt+h
(·, ·) only depends on the set Sx,

and p̂Yt,Yt+h
(·, ·) only on the set Sy. Hence, the maximum ranging over

Sx ∪ Sy ∪ Sz on the left hand side of (3.1) is equivalent to ranging over
Sx∪Sy. The two terms on the right hand side also have the similar property.
Hence

max
(c,d)∈Sx∪Sy

{|p̂Xt,Xt+h
(c+, d+) − p̂Yt,Yt+h

(c+, d+)|}
≤ max

(c,d)∈Sx∪Sz

{|p̂Xt,Xt+h
(c+, d+) − p̂Zt,Zt+h

(c+, d+)|}
+ max

(c,d)∈∪Sy∪Sz

{|p̂Zt,Zt+h
(c+, d+)− p̂Yt,Yt+h

(c+, d+)|}.

Combine with similar inequalities for the other three quadrants, we
have the triangle inequality

-10 -5 0 5 -4 -2 0 2
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dh(xt, yt) ≤ dh(xt, zt) + dh(yt, zt).

To combine the impact of different lag value h, we define the distance
between the two series xt and yt by combining dh(xt, yt) with different h
(h = 1, 2, . . . ,K),

d2DKS(xt, yt) =

K∑
h=1

whdh(xt, yt), (3.2)

where K is a suitable maximum lag order. The weight wh ≥ 0 can be used
to assign different importance of different lag h. The linear combination
remains to be a valid distance metric. Caiado et al. (2006) used the similar
combining way for their ACF based clustering method. In our empirical
studies we use equal weight wh.

To cluster L time series, we obtain the pairwise dissimilarity matrix
using the distance measure d2DKS in (3.2), then based on this dissimi-
larity matrix, we do clustering using the commonly used clustering algo-
rithms, such as the hierarchical clustering algorithm (Hastie, Tibshirani, and
Friedman, 2009, p. 520) and Partitioning Around Medoids (PAM) algorithm
(Kaufman and Rousseeuw, 2009, p. 68). Note that the clustering algorithms
based on Euclidean distances such as k-mean algorithm and the standard
Ward’s linkage algorithm can not be used here as the proposed distancemea-
sure is not a Euclidean distance.

Remark 1: The distance measure d2DKS in (3.2) depends on the param-
eter K. The most effective K depends on the unknown underlying serial
dependence structure of the time series. Intuitively, a larger K enables the
dissimilarity measure to detect a broader range of dependence structures, but
it also tends to include more noises. Our simulation results (e.g. Table 3 in
Section 4) show that in certain cases, a larger sample size seems to benefit
more from using a large K, an indirect indication of the trade-off between
signal and noise. Since differentK yields different distance measures, com-
paring different K falls into the broader problem of how to evaluate and
compare different dissimilarity measures in clustering, a challenging prob-
lem. Many criteria can be used, including the average Silhouette coefficient.
In this paper, we choose to use the leave-one-out cross-validation criterion.
In the time series setting, it is often the case that the strongest serial de-
pendency occurs in small lags hence the ’optimal’ K is often small and the
result is often not too sensitive.

Remark 2: From our simulation studies shown in Section 4, it seems
that the agglomerative hierarchical clustering algorithm using the Gener-
alized Ward’s linkage of Batagelj (1988) is particularly effective for the
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proposed distance measure. The Generalized Ward’s linkage extends the
classical Ward’s linkage, with a generalized notion of ‘cluster center’. It
has been shown that the Generalized Ward’s linkage method satisfies the
Lance-Williams formula (Lance and Williams, 1967) and shares the same
parameters in the formula with the original Ward’s linkage method. The
use of the GeneralizedWard’s linkage with user-defined time series distance
has been used in practice (e.g. Harvill et al., 2013; An, 2008; Kosmelj and
Batagelj, 1990).

Remark 3: Computationally, the proposed clustering algorithm is efficient.
For each pair of time series, the computational complexity of their 2DKS
distance in (3.2) is of the order of O(KTlog(T )) (Xiao, 2017; Lopes et al.,
2007), where K is the number of lag terms used in the measure. In com-
parison, dACF , dPACF , and dPIC all have complexity of O(KT ) (roughly),
where K is the number of maximum lag considered and K << T . Vilar
(2014) showed that dM has computing times O(T ). In frequency domain,
the periodogram-based distances requireO(T log(T )) operations. The spec-
tral dissimilarity measures involves integration of the differences between
the spectral densities, with complexity O(NTlog(T )) where N is the num-
ber of subintervals for numerical integration. Hence, overall the proposed
clustering algorithm has a similar computational complexity as most of the
existing methods. All these distances included here will be described briefly
in Section 4.

Remark 4: Since we are mainly interested in the difference in dynamic
structure, we often normalize the time series first to remove location and
scalar differences.

Remark 5: Our experiments show that d2DKS is more sensitive to model
differences than the differences on parameter values of the same model. It
is in line with our objective to cluster the series according to their dynamic
difference.

4. Simulation Studies

Dı́az and Vilar (2010) reported the results of an extensive simulation
study of comparing several parametric and nonparametric dissimilarity mea-
sures in different time series clustering setup. They considered three cluster-
ing settings: (i) to cluster non-linear time series models, (ii) to distinguish
between stationary and non-stationary time series, and (iii) to classify dif-
ferent linear ARMA models. The setups are quite general and have a broad
scope in many applications. For comparison, we adopt the same settings
to demonstrate the finite sample behavior of the proposed 2DKS distance.
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In each selection, the series were clustered via the hierarchical clustering
algorithm using the Generalized Ward’s linkage.

For comparison, in each simulation scenario we also performed clus-
tering using some representative distance measures proposed in the exist-
ing literature, including ARIMA model-based measures, dPIC of Piccolo
(1990) and dM of Maharaj (1996). We also make comparisons with model-
free dissimilarity measures. In time domain, distance dACF and dPACF

are defined by Euclidean distance between estimated ACF and PACF, using
a number of significant lags, while dACFG and dPACFG include geomet-
ric weights decaying with the lag, wi = p(1 − p)i, 0 < p < 1. In our
study, we considered different lag, and p = 0.05 are used. In the frequency
domain, the dissimilarity measures are aimed to assess the discrepancy be-
tween the corresponding spectral densities. Caiado et al. (2006) proposed
the distance measures based on the periodogram, specifically Euclidean
distances between periodograms (dP ), log-periodograms (dLP ), normalized
periodograms (dNP ), and log-normalized periodograms(dLNP ). The other
nonparametric dissimilarity measures in frequency domain, dW (DLS),
dW (LK), dGLK and dISD are proposed by Dı́az and Vilar (2010). They
are different version of nonparametric spectral dissimilarity measures. The
differences among them are that they applied different estimation method
of spectral density and different discrepancy function. More details about
these methods can be found in Vilar (2014).

In the simulation experiments, the ground truth is known in advance.
Two clustering evaluation criteria based on known ground truth are used.
One evaluates the clustering methods by comparing the cluster solutions
with the true cluster partition, using the cluster similarity index of Gavrilov
et al., (2000), defined as

Sim(G,A) =
1

M

M∑
i=1

max
1≤j≤M

Sim(Gi, Aj),

where G = {G1, G2, · · · , GM} are the set of the M true clusters, A =
{A1, A2, · · · , AM} is the cluster solution by a clustering method under eval-
uation, and

Sim(Gi, Aj) =
2|Gi ∩Aj |
|Gi|+ |Aj | ,

where | · | denotes the cardinality of the elements in each set. The similarity
index has values ranging from 0 to 1, with 1 corresponding to the case when
G and A are identical.

The other evaluation method uses a one-nearest-neighbour (1-NN)
classifier evaluated by leave-one-out cross-validation (loo1NN). The 1-NN
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classifier assigns each series to one cluster ofG containing the nearest series
according to the dissimilarity matrix, and then the proportion of correctly
assigned series are calculated to evaluate the performance of the distance
measure. The merit of loo1NN is that it is an intuitive and parameter-free
evaluation procedure, which directly measures the efficiency of the distance
regardless of the considered clustering algorithm (Manso and Vilar, 2013).
For both of the criteria, the closer the index to 1, the better the cluster quality
of the proposed distance.

4.1 Clustering of Non-linear Time Series

The first experiment is to access the performance of different mea-
sures in non-linear process clustering. These models were used in Tong and
Yeung (1991) for linearity test and in the simulation study in Dı́az and Vilar
(2010). Specifically, each trial involved four different underlying models,
with four series of length T=200 generated from each model. The models
were: (1) Threshold autoregressive (TAR) model Xt = 0.5Xt−1I(Xt−1 ≤
0) − 2Xt−1I(Xt−1 > 0) + εt; (2) Exponential autoregressive (EXPAR)
model Xt = (0.3 − 10exp{−X2

t−1})Xt−1 + εt; (3) Linear moving aver-
age (MA) model Xt = εt − 0.4εt−1; and (4) Non-linear moving average
(NLMA) modelXt = εt − 0.5εt−1 + 0.8ε2t−1.

In all cases, the error process εt ∼ N(0, 1) and white. Model (3) is
linear and models (1), (2) and (4) are nonlinear in conditional mean. The ex-
periment was repeated 100 times for each distance metric. Table 1 provides
the clustering results under the two evaluation criteria.

We note that the clustering results based on 2DKS distance are gen-
erally better than the other distance measures. In particular, d2DKS with
K = 1 can distinguish almost perfectly among the nonlinear process, be-
cause all the models considered are order 1 autoregressive models. Figure
2 shows the scatterplots of (Xt,Xt+1) of a typical series of these models.
Figure 3 shows the details of one clustering result using 2DKS distance and
the Generalized Ward’s linkage. If the dendrogram is divided into two clus-
ters, TAR and EXPAR series are clustered in one group while NLMA and
MA series are put into the second group. This result makes sense since the
series from TAR and EXPAR models have an autoregressive structure while
MA and NLMA process are composed of the error process. If we divide the
dendrogram at the true number of the clusters (4 groups), the perfect cluster
structure are formed. Even though the other value of K (up to 15) produce
acceptable results, the clustering performance decreases as K increases.

Figure 4 is the multidimensional scaling (MDS) plot (Borg and Groe-
nen, 2005) for visualizing, in two dimensions, the similarity among the time
series based on the 2DKS distance. With the dissimilarity measures obtained
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Table 1. Clustering of nonlinear processes. Series length T = 200. Number of trials N =
100. Generalized Ward’s linkage.

Measure Numbers of lags Similarity Index loo1NN Measure Similarity Index loo1NN

dACFG

L = 10 0.723 0.601 (Model-based)

L = 25 0.679 0.565 dPIC 0.793 0.741

L = 50 0.692 0.574 dM 0.755 0.702

dPACF

L = 10 0.722 0.645 (Periodograms)

L = 25 0.697 0.535 dP 0.545 0.389

L = 50 0.664 0.489 dLP 0.786 0.678

dPACFG

L = 10 0.766 0.645 dNP 0.571 0.332

L = 25 0.736 0.616 dLNP 0.577 0.348

L = 50 0.742 0.614 (Non-parametric)

d2DKS

K = 1 0.988 0.990 dW (DLS) 0.939 0.933
K = 2 0.977 0.974 dW (LK) 0.936 0.913

K = 3 0.936 0.952 dGLK 0.910 0.888

K = 4 0.915 0.923 dISD 0.933 0.920

K = 5 0.885 0.900

K = 10 0.791 0.823

K = 15 0.725 0.752

L is the number of lags used to compute ACF and PACF distance measure.
K is the number of lags used for 2DKS distance.

from data, MDS plot seeks a lower-dimensional representation of the data
that preserves the pairwise distances as closely as possible. Figure 4 shows
a clear separation of the clusters, which can also be seen in the dendrogram
in Figure 3.

We also use other existing distance measures to cluster the same set
of time series. Both dPIC and dM are typical linear model-based method.
In the nonlinear setting we consider here, the results are affected by the mis-
specification of the data generating process. Likewise dACF and dPACF

do not perform well. It suggests that ACF and PACF based distance mea-
sures are not appropriate for nonlinear process. For example, the first or-
der autocorrelation coefficient of the TAR and EXPAR processes may not
be significant even though the series have significant autoregressive depen-
dency of order one. Therefore Pearson’s correlation related quantities are
not suitable to detect various nonlinear serial dependence structure. In the
frequency domain, Euclidean distance between the periodograms, dP , dLP ,
dNP and dLNP yielded the worst result in this setting. Similar to autocor-
relation function, periodogram mainly deals with linear correlation, so it
has difficulties in distinguishing nonlinear structures. The distances based
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Figure 2. Lagged scatterplot (Xt, Xt+1) of nonlinear time series

on spectral density perform well in this scenario and led to similarity index
around 0.9, comparable to that using 2DKS distance.

We also considered the performance of 2DKS distance using differ-
ent clustering algorithms including PAM algorithm, single linkage algorithm
(Gower and Ross, 1969), complete linkage algorithm (Defays, 1977), group
average algorithm (Murtagh, 1984), and the agglomerative hierarchical clus-
tering algorithm using the Generalized Ward’s linkage. Figure 5 shows the
results. It seems that the Generalized Ward’s linkage and PAM method out-
performed the other algorithm significantly. In general, the Generalized
Ward’s linkage always performs the best with equal cluster size. All of
the five clustering algorithms attain their own best clustering result using
K = 1, the true autoregressive order. The clustering similarity index de-
creases gradually asK increases.

To gain further insights into the 2DKS distance, a more difficult clus-
tering task is conducted by increasing the differences between series within
the same group. Specifically we generate 30 series from each model with
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Figure 3. Generalized Ward’s linkage dendrogram based on 2DKS distance
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varying coefficients, drawn from a given uniform distribution. The generat-
ing models are:
(1) Threshold autoregressive (TAR) model Xt = a1Xt−1I(Xt−1 ≤ 0) −
b1Xt−1I(Xt−1 > 0) + εt, a1 ∼ U(0.3, 0.7), b1 ∼ U(1, 3);
(2) Exponential autoregressive (EXPAR)modelXt = (a2−b2exp{−X2

t−1})
Xt−1 + εt, a2 ∼ U(0.2, 0.6), b2 ∼ U(6, 12);
(3) Linear moving average (MA) modelXt = εt−a3εt−1, a3 ∼ U(0.2, 0.8);
and
(4) Non-linear moving average (NLMA) modelXt = εt− a4εt−1 + b4ε

2
t−1,

a4 ∼ U(0.3, 0.7), b4 ∼ U(0.2, 0.9).
The results are shown in Table 2. We found that the proposed 2DKS

distance continues to produce the best performance among all distance mea-
sures.

In most cases, with a proper maximum order K, 2DKS distance is
able to identify the genuine cluster structure. This simulation shows that
2DKS distance is robust to model coefficients, but more sensitive to the
dynamic structure of the process, which allows us to group the same models
in one cluster.

4.2 Classification of Time Series as Stationary or Non-Stationary

Although 2DKS distance measure was designed for nonlinear time
series, it can be used to classify stationary and nonstationary time series
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Table 2. Clustering of nonlinear processes with varying coefficients. 30 series in each group.
Series length T = 200. Number of trialsN = 100. Generalized Ward’s linkage algorithm.

Measure Numbers of lags Similarity Index loo1NN Measure Similarity Index loo1NN

dACFG

L = 10 0.710 0.763 (Model-based)

L = 25 0.693 0.724 dPIC 0.833 0.841

L = 50 0.694 0.719 dM 0.842 0.844

dPACF

L = 10 0.797 0.800 (Periodograms)

L = 25 0.745 0.724 dP 0.573 0.569

L = 50 0.694 0.669 dLP 0.790 0.758

dPACFG

L = 10 0.818 0.814 dNP 0.576 0.507

L = 25 0.806 0.777 dLNP 0.584 0.529

L = 50 0.799 0.768 (Non-parametric)

d2DKS

K = 1 0.992 0.992 dW (DLS) 0.929 0.941
K = 2 0.983 0.986 dW (LK) 0.926 0.928

K = 3 0.973 0.980 dGLK 0.900 0.873

K = 4 0.959 0.972 dISD 0.930 0.932

K = 5 0.936 0.966

K = 10 0.827 0.933

K = 15 0.743 0.894

L is the number of lags used to compute ACF and PACF distance measure.
K is the number of lags used for 2DKS distance.

as well. This experiment is conducted by Caiado et al. (2006) and then
extended by Dı́az and Vilar (2010). It is done here to test the performance
of 2DKS measure in distinguishing stationary or non-stationary series.

Consider a general ARIMA(p,d,q) process defined by

φ(B)(1 −B)dxt = θ(B)ωt, t = 0,±1, . . . ,

where B is the back-shift operator such that Brxt = xt−r, φ(B) = 1 −
φ1(B) − . . . − φp(B

p) is the p-order autoregressive operator, θ(B) = 1 −
θ1(B) − . . . − θq(B

q) is the q-order moving average operator, d is the or-
der of differentiating (so that d = 0 for a stationary process, d ≥ 1 for
non-stationary processes) and wt is white noise. All differenced processes
yt = (1 − B)dxt are causal and invertible. As in Caiado et al. (2006), one
realization from each of the following 12 ARIMAmodels (6 stationary mod-
els and 6 non-stationary models), were generated.

(i) AR(1) φ1 = 0.9
(ii) AR(2) φ1 = 0.95, φ2 = −0.1
(iii) ARMA(1,1) φ1 = 0.95, θ1 = 0.1
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(iv) ARMA(1,1) φ1 = −0.1, θ1 = −0.95
(v) MA(1) θ1 = −0.9
(vi) MA(2) θ1 = −0.95, θ2 = −0.1
(vii) ARIMA(1,1,0) φ1 = −0.1
(viii) ARIMA(0,1,0)
(ix) ARIMA(0,1,1) θ1 = 0.1
(x) ARIMA(0,1,1) θ1 = −0.1
(xi) ARIMA(1,1,1) φ1 = 0.1, θ1 = −0.1
(xii) ARIMA(1,1,1) φ1 = 0.05, θ1 = −0.05

In all cases the error was Gaussian white noise with zero mean and unit vari-
ance. The experiment was performed with different lengths T = 50, 200,
500. As our objective here is the discrimination between stationary and non-
stationary time series, we only focus on the last step of the agglomerative
hierarchical clustering algorithm, where only two groups are formed. The
clustering evaluation criterion consisted in computing the percentage of suc-
cesses in the classification, namely, the percentage of time series that were
classified in the correct cluster in accordance with their stationary or non-
stationary behavior. The procedure was repeated N = 300 times and the
percentage of success was averaged. Table 3 shows the result.

It can be seen that most of the time the 2DKS distance performs the
best given an appropriate order. The result of 2DKS distance is comparable
to Augmented Dickey-Fuller test (ADF test) and slightly inferior to Phillips-
Perron test (PP test) of Perron (1987), both of which are designed specifi-
cally to test unit root type of nonstationary time series. However, 2DKS
distance performs better than ARIMA model-based methods, most of the
correlation based methods, periodograms based distances and nonparamet-
ric distances. In this example it seems that the choice of maximum lag K
for 2DKS distance is important. A larger sample size seems to benefit more
from a largerK.

The performance of 2DKS distance can be seen from Figure 6, which
shows the MDS plot of one typical data set using 2DKS distance with N =
500 andK = 10. Figure 7 shows the lagged scatterplot of (Xt,Xt+1) of the
12 series, the difference of which can be recognized by 2DKS distance.

4.3 Clustering of ARMA Time Series

In this section, we will explore the performance of 2DKS distance in
clustering stationary ARMA time series. The following generating models
were used:

(i) AR(1): Xt = 0.5Xt−1 + εt
(ii) MA(1): Xt = εt + 0.7εt−1

(iii) AR(2): Xt = 0.6Xt−1 + 0.2Xt−2 + εt
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Table 3. Percentage of success in the classification of 6 stationary and 6 non-stationary series
withN = 300 iterations. Generalized Ward’s linkage algorithm.

Measure
Numbers percentage of success

Measure
percentage of success

of lags T = 50 T = 200 T = 500 T = 50 T = 200 T = 500

dACFG

L = 10 0.767 0.805 0.812 (Model-based)

L = 25 0.762 0.867 0.943 dPIC 0.702 0.747 0.750

L = 50 — 0.874 0.952 dM 0.746 0.750 0.750

dPACF

L = 10 0.748 0.750 0.750 (Periodograms)

L = 25 0.741 0.750 0.750 dP 0.646 0.731 0.748

L = 50 — 0.750 0.750 dLP 0.688 0.752 0.750

dPACFG

L = 10 0.743 0.750 0.750 dNP 0.627 0.650 0.716

L = 25 0.750 0.750 0.750 dLNP 0.758 0.884 0.973

L = 50 — 0.750 0.750 (Non-parametric)

d2DKS

K = 1 0.708 0.796 0.820 dW (DLS) 0.732 0.750 0.750

K = 2 0.713 0.778 0.780 dW (LK) 0.746 0.750 0.750

K = 5 0.705 0.802 0.848 dGLK 0.740 0.750 0.750

K = 10 0.683 0.850 0.917 dISD 0.740 0.750 0.750

K = 15 0.669 0.846 0.935 (Unit-root tests)

K = 50 — 0.752 0.903 ADF 0.642 0.834 0.949

PP 0.726 0.894 0.966

L is the number of lags used to compute ACF and PACF distance measure.
K is the number of lags used for 2DKS distance.
T is the length of the series.

(iv) MA(2): Xt = εt + 0.8εt−1 − 0.6εt−2

(v) ARMA(1,1): Xt = 0.8Xt−1 + εt + 0.2εt−1

This set of models was used by Maharaj (1996) to investigate the perfor-
mance of dM measure in clustering ARMA processes. Four series of length
T = 200 were generated from each process. Then the agglomerative hierar-
chical clustering algorithm with the Generalized Ward’s linkage was run on
the collection of the 20 series with various distance measures. One hundred
trials (N = 100) of this scheme were carried out, and Table 4 provides the
results under the average cluster similarity indexes and average loo1NN.

Even though 2DKS distance is a kind of general dependence structure
distance, 2DKS distance based clustering method performed worst except
some periodograms based methods. It is especially difficulty in distinguish-
ing AR(2) and ARMA(1,1) models under specific parameter values. Due
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Table 4. Clustering of ARMA process. Series length T = 200. Number of trials N = 100.
Generalized Ward’s linkage.

Measure Numbers of lags Similarity Index loo1NN Measure Similarity Index loo1NN

dACFG

L = 10 0.750 0.724 (Model-based)

L = 25 0.736 0.674 dPIC 0.855 0.916

L = 50 0.721 0.655 dM 0.965 0.961

dPACF

L = 10 0.966 0.940 (Periodograms)

L = 25 0.911 0.856 dP 0.524 0.444

L = 50 0.884 0.784 dLP 0.746 0.616

dPACFG

L = 10 0.975 0.951 dNP 0.586 0.437

L = 25 0.960 0.932 dLNP 0.752 0.637

L = 50 0.960 0.930 (Non-parametric)

d2DKS

K = 1 0.692 0.574 dW (DLS) 0.919 0.940
K = 2 0.719 0.610 dW (LK) 0.965 0.942

K = 3 0.686 0.643 dGLK 0.916 0.884

K = 4 0.664 0.634 dISD 0.952 0.944

K = 5 0.644 0.593

L is the number of lags used to compute ACF and PACF distance measure.
K is the number of lags used for 2DKS distance.

to the fact that the two processes have very similar dependence structure
(Figure 8), their joint Gaussian distributions of (Xt,Xt+h) can not be dis-
criminated by 2DKS distance. When we change the parameters in AR(2)
model to Xt = −0.6Xt−1 + 0.2Xt−2 + εt, the performance of 2DKS dis-
tance was improved significantly. The average similarity index can reach
0.940 for most maximum lagK. In this case the lag 1 autocorrelation coef-
ficients are of the opposite sign for the AR(2) and ARMA(1,1) models used
here. Therefore the two types of models differ more significantly in the joint
distribution of (Xt,Xt−1).

5. Applications

We further illustrate the use of 2DKS distance for time series cluster-
ing with two real examples. The first application considers the annual pop-
ulation series of 20 US states and is aimed at identifying similarities among
the population growth trend. The second example concerns the comparison
of GDP growth in order to identify similar pattern of economic development
of developed countries.
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Figure 8. ACF for AR(2) and ARMA(1,1) Model

5.1 Case 1: Population Growth

This example is used in Kalpakis et al. (2001). The data is updated
to 2010 here. It is a collection of time series of the population estimates
from 1991 to 2010 in 20 states of the US. This data is obtained from the U.S
Census Bureau, Population Distribution Division. In Kalpakis et al. (2001),
two different groups of time series in the dataset were identified. Group 1
consisting of CA, CO, FL, GA, MD, NC, SC, TN, TX, VA, and WA had
an exponentially growth trend while Group 2 consisting of IL, MA, MI,
NJ, NY, OK, PA, ND, and SD had a stable trend. In this case, we assume
the above finding is the ground truth. The performance of the clustering
methods is evaluated with both the similarity index and loo1NN. We plotted
two representative series from each group in Figure 9. The trend difference
between the two groups are obvious.

In the following analysis, we use the growth series by taking log dif-
ference of the original series. Table 5 summarizes the results of clustering
the time series with the agglomerative hierarchical clustering algorithm us-
ing the Generalized Ward’s linkage. We observe that the 2DKS distance
gives the most accurate clustering among all these dependence-based clus-
tering method. The CEP method from Kalpakis et al. (2001) and ARMA
mixture method from Xiong and Yeung (2004), have the similarity index
0.84 and 0.9 respectively. Apparently 2DKS method performs better than
both of them. It is worth mentioning that 2DKS distance seems to have a
significant advantage when loo1NN index is considered. This is because
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Table 5. Clustering of population dataset. Number of cluster: 2. Generalized Ward’s linkage
clustering algorithm.

Measure Numbers of lags Similarity Index loo1NN Measure Similarity Index loo1NN

dACFG

L = 10 0.542 0.75 (Model-based)

L = 25 0.581 0.6 dPIC 0.649 0.6

L = 50 0.583 0.7 dM 0.642 0.7

dPACF

L = 10 0.627 0.55 (Periodograms)

L = 25 0.584 0.6 dP 0.596 0.9

L = 50 0.688 0.75 dLP 0.596 0.7

dPACFG

L = 10 0.749 0.6 dNP 0.613 0.55

L = 25 0.7 0.6 dLNP 0.688 0.7

L = 50 0.749 0.8 (Non-parametric)

d2DKS

K = 1 1 1 dW (DLS) 0.596 0.85
K = 2 0.688 1 dW (LK) 0.581 0.55

K = 3 1 1 dGLK 0.581 0.55

K = 4 1 1 dISD 0.581 0.55

K = 5 0.688 1

L is the number of lags used to compute ACF and PACF distance measure.
K is the number of lags used for 2DKS distance.

this criterion directly evaluates the efficiency of the dissimilarity distance,
and pays less attention to the clustering algorithm. Comparing with similar-
ity index, clustering of series is more robust to the choice of K under the
criterion of loo1NN index. On the other hand, to learn the impact of the
linkage algorithm, we also cluster the series with other linkage algorithms
including single, complete and average linkage methods. The three methods
show similar results, with similarity index all less than 0.7. It seems that the
Generalized Ward’s linkage algorithm works well in this case.

The dendrogram clustered by 2DKS distance with the Generalized
Ward’s linkage method are shown in Figure 10. By sectioning the den-
drogram at the highest level we can obtain two groups, which are exactly
consistent with the ones Kalpakis et al. (2001) identified. The main discrim-
inating feature is the nonstationary trend of the time series for this dataset.
Even though we remove the nonstationarity before clustering, the difference
between exponentially increasing trend and stabilizing trend can still be cap-
tured by 2DKS distance.

In practice, one does not know how many groups generate these time
series. In general, the optimal number of clusters could be chosen accord-
ing to some objective criterion, such as the average Silhouette coefficient
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(a) CA population estimate
(from group 1)

(b) CO population estimate
(from group 1)

(c) ND population estimate
(from group 2)

(d) SD population estimate
(from group 2)

Figure 9. Original time series from group 1 and group 2

(Kaufman and Rousseeuw, 2009, p. 120). In this application, the optimal
number of clusters is 3, by maximizing the average Silhouette coefficient.
The three clusters consist of the stabilizing trend group and two exponential
increasing trend group. From Figure 10, the 3-group solution divides the
group of exponentially increasing trend into two subgroups: C1={WA, CO,
TX, FL, CA}, and C2={VA, MD, TN, SC, NC, GA}. The state members in
each subgroup are quite homogeneous. Specifically, the majorities of sub-
group C1 are located in the western area except FL, while the states in the
subgroup C2 are all located in the eastern area and geographically adjacent
to each other. It is interesting that this grouping has a clear geographical
component.

5.2 Case 2: Annual Real GDP dataset

Here we consider the total real Gross Domestic Product (GDP) data
obtained from http://www.conference-board.org/data/economydatabase/
index.cfm?id=2346. It contains the annual real GDP of the 23 most devel-
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group2

group1

Figure 10. Dendrogram based on 2DKS distance with K = 1. The Generalized Ward’s
linkage algorithm.

oped countries from 1950 to 2011: Austria, Belgium, Denmark, Finland,
France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherland,
Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, Canada,
United States, Australia, New Zealand, and Japan. We consider the data
normalized by EKS method (Atkinson and Bourguignon, 2000, p. 949).

We use the annual GDP growth rate log(GDPt) − log(GDPt−1) in
the clustering procedures rather than the actual annual GDP. These series
are clustered via the Generalized Ward’s linkage based on 2DKS distance.
The result is relatively insensitive to the maximum lag K used, with similar
clustering result from K ranging from 2 to 9. The dendrogram is shown in
Figure 11. The average Silhouette coefficients were examined for different
number of clusters, and it seems that three clusters yields a compact solution
(Figure 12). Figure 13 shows the grouping of three clusters.

It is interesting to note that the countries are mostly grouped by their
geographical locations. The first cluster is formed by 9 countries, including
Switzerland, Denmark, United Kingdom, Sweden, Belgium, France, Ger-
many, Italy, and New Zealand. In this group, most of them are core EU
members, including the original EU member states joined in 1979, except
Switzerland, Sweden, and New Zealand. The second one includes Portu-
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Figure 11. GDP clustering dendrogram based on 2DKS distance with K = 3. Generalized
Ward’s linkage algorithm.

gal, Spain, Greece, Ireland, Island, and Japan. This group does not change
with different K. They are all located in the outmost reaches of Europe ex-
cept Japan. Portugal, Spain, Greece are at the most southern part of Europe,
while Ireland and Island are at the westernmost peninsula of Eurasia. Por-
tugal and Spain have similar history and politic background, therefore their
economics behavior are similar, both less developed than the other countries
in Europe. The third cluster, includes most of the non-Europe developed
large countries, such as United States, Canada and Australia. The economies
of Canada and United States would behavior similarly to each other because
of their geographical locations and trade agreement.
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