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ABSTRACT

Capital projects are critical to the world’s economy. Despite the advancement of prediction tech-
niques, capital projects still suffer from overly optimistic plans, i.e. tight budgets and schedules.
This article focuses on understanding this issue from the perspective of optimism bias, i.e. a psy-
chological bias toward the inclination to be overly optimistic about the chance of success. We
hypothesize that human communication network topologies are strong predictors of harmful
optimism bias at the group level in project planning. A human-subject experiment was per-
formed to test group optimism bias levels under different communication network topologies.
We recruited 103 subjects to estimate the cost of an artificial power plant project. The commu-
nication networks were manipulated to reflect different topologies. The subjects’ estimates were
compared to a Monte Carlo simulation result based on real historical data to quantify the level
of optimism bias at the group level. Preliminary results find that certain human communication
network topology leads to more realistic estimates, possibly due to a process of updating indi-
vidual judgement based on peers’ judgements. The findings of this study are expected to urge
further theoretical investigations into the development of simple yet effective decision support
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systems to reduce decision-making bias in capital project planning.

Introduction

Capital projects, such as roads, bridges and utility sys-
tems, are the foundation of the world's economy.
World spending on capital projects is tremendous:
with $22 trillion in projected investments by 2018 in
emerging economies alone, The Economist calls it “the
biggest investment boom in history” (The Economist
2008). However, it is almost axiomatic that capital
projects come in late and over budget, rarely living up
to expectations (Bordat et al. 2004, Ahiaga-Dagbui and
Smith, 2014a, Flyvbjerg 2006, 2017, Flyvbjerg et al.
2009, Karimi et al. 2017, Locatelli et al. 2017). Data
shows that more than 90% of these projects experi-
enced severe cost and time escalation; the average
cost overrun was 28% and most were at least 120
days behind schedule (Bordat et al. 2004). Another
study of a century of completed capital projects has
confirmed that the overrun issue has not improved
over the last century, or across different geographic
regions (Figure 1) (Flyvbjerg et al. 2003). Losing con-
trol over capital projects has led to misuse and ineffi-
cient management of scarce public resources. A recent

survey of more than 300 megaprojects indicates that
65% of industrial projects worldwide with budgets
larger than $1 billion USD failed to meet their busi-
ness objectives (Merrow 2011).

A number of explanations exist for the observed
capital project overruns (Lind and Brunes 2015). The
most common theory attributes overrun issues to
political and organizational pressures, such as compe-
tition for scarce funds or jockeying for position, and to
lack of incentive alignment (Flyvbjerg 2004). Flyvbjerg
and Wachs et al. described a phenomenon called
“strategic misinterpretation”, i.e. planners deliberately
and strategically overestimate benefits and underesti-
mate costs in order to increase the likelihood that it is
their projects, and not the competition’s that gain
approval and funding (Wachs 1989, Flyvbjerg et al.
2005). Lovallo and Kahneman (2003) found that organ-
izations tend to suppress pessimistic opinions and
reward optimistic ones, where pessimism can be inter-
preted as disloyalty. Researchers have also examined
the impact of technical difficulties in making predic-
tions in capital projects on over-aggressiveness
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Figure 1. A survey of 111 completed projects shows that cost overrun has been a consistent issue for at least a century. Adapted

from (Flyvbjerg et al. 2003).

(Flyvbjerg et al. 2005). Capital projects are inherently
risky due to the long planning horizon and complex
interfaces (Flyvbjerg et al. 2009). Decision-makers in
these projects often have imperfect information due
to unreliable or outdated data and the use of inappro-
priate statistical models (Vanston and Vanston 2004,
Salling and Leleur 2015). The project scope or ambi-
tion level can change significantly during project
development and implementation (Flyvbjerg et al.
2003, Al-Sabah et al. 2014, Alasad and Motawa 2015).
Each of these contributes to the difficulty of making
accurate predictions in capital projects (Khamooshi
and Cioffi 2012).

Recent empirical investigation into this issue has
revealed that optimism bias, i.e. a cognitive bias per-
taining to people’s inclination to be overly optimistic
about the chance of success, may also contribute to
overrun issues in capital projects (Flyvbjerg et al. 2003,
Ahsan and Gunawan 2010, Raisbeck et al. 2010, Atkin
2012, Jennings 2012, Ahiaga-Dagbui and Smith
2014b). Productivity is typically overestimated in the
planning phase of capital projects, causing insufficient
funding and unrealistic schedules; risks are often
underestimated, resulting in inadequate preparation
and contingencies for plausible risk scenarios
(Kahneman and Tversky 1979, Lovallo and Kahneman
2003, Jennings 2012, Flyvbjerg et al. 2009). Decision
makers for the nation’s most critical projects tend to
“make decisions based on delusional optimism rather
than on a rational weighting of gains, losses and proba-
bilities” (Lovallo and Kahneman 2003). In other words,
we are overrunning in capital projects because the ini-
tial plans are overly aggressive.

Optimism bias is a psychological phenomenon that
encapsulates the systematic tendency for decision

makers to be overly optimistic about the likelihood of
positive events (Flyvbjerg et al. 2003, Raisbeck et al.
2010). When political and organizational pressure is
well controlled, such as when a project has been
awarded, the optimism bias better accounts for the
biased plans in capital projects (Flyvbjerg 2008). The
optimism bias in capital project planning has been
seen as an impediment to prudent fiscal planning, for
the government as a whole and for individual depart-
ments within government. To address this tendency,
the UK government decided to systematically employ
the reference class forecasting method as part of pro-
ject appraisal for large transportation projects, i.e. bas-
ing adjustments on data from past projects or similar
projects elsewhere (Treasury 2003a, 2003b). The
American Planning Association (APA) in the US has
also endorsed and recommended the reference class
forecasting method (Flyvbjerg 2005, Flyvbjerg 2006).
Despite efforts to cure optimism bias with better pre-
dictive models and additional information for deci-
sion-makers, the problem persists. There is still a
pressing need to advance our understanding of the
mechanisms of optimism bias in capital projects.

To date, research has focused on understanding, or
even curing, harmful optimism bias at the individual
level (Johnson et al. 1981, Schweitzer and Cachon
2000), such as understanding the neural basis of opti-
mism bias (Sharot et al. 2011), or improving individual
judgement by providing additional information about
historical cases (American Planning Association 2005).
Thus far, little has been done to address the group
level optimism bias in capital projects, measured as
the delta between group judgement and statistically
realistic judgement based on historical data. The
organizational science literature offers  strong
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Figure 2. A decentralized communication network helps reduce errors when information is ambiguous or distributed among
team members; while when information is complete, a centralized communication network improves group decision quality

(Leavitt 1951, Shaw 1954, 1964, 1971).

theoretical and empirical evidence that human com-
munication networks may serve as a medium of the
individual-group optimism bias transition. Human
communication networks are patterns of contact cre-
ated by the flow of messages among communicated
human agents through time and space (Monge and
Contractor 2003). A fundamental discovery in this area
is that people’s decision-making is best predicted by
examining the web of communications in which they
are embedded (Katz et al. 2004). Numerous empirical
investigations have proven network topology to be a
significant predictor of the variance in group decision-
making (Bavelas 1950, Bavelas and Barrett 1951,
Leavitt 1951, Putnam et al. 1994, Sparrowe et al. 2001,
Cummings and Cross 2003, Hwang and Lin 2012,
Conaldi and Lomi 2013, Levine et al. 2013).
Nonetheless, it depends upon a variety of contextual
factors such as information completeness and timeli-
ness, task complexity, and time pressure, etc. (Leavitt
1951, Shaw 1954, 1964, 1971) (Figure 2). The findings
in human communication network studies imply the
possible existence of a causal relationship between
human communication network topology and collect-
ive optimism bias at the group level in cap-
ital projects.

This research aims to test the hypothesis that the
optimism bias at the group level in project planning is
significantly affected by the communication network
topologies. To this end, we investigate the influence of
human communication networks on the overly opti-
mistic group decisions prevailing in capital projects as
our study case.

Literature review
Optimism bias

Recent research efforts have begun to investigate the
fundamental optimism bias that may contribute to
unrealistic plans for capital projects. Optimism bias is

defined as the difference between expectations and
the outcome that follows; if expectations exceed real-
ity, the bias is optimistic (Sharot 2011a). Evidence has
confirmed the prevailing existence of optimism bias in
human beings (Flyvbjerg 2008, Jennings 2012, Love
et al. 2012, Flyvbjerg 2006). When people make judge-
ments about important personal affairs, such as med-
ical situations, financial investment and career
development, more than 80% of the population antici-
pate encountering more positive events than they end
up experiencing, regardless of gender, race, age and
other demographic factors (Sharot 2011a, Sharot et al.
2007). Optimism bias is considered to be a natural
result of evolution, because optimistic judgement
encourages the pursuit of scarce resources and pro-
motes the chance of success in competition (Sharot
et al. 2007). It is thought to be vital to mental and
physical health, and has been widely observed in rela-
tion to success in the professional domain as well
(Puri and Robinson 2007, Johnson and Fowler 2011,
Sharot 2011b).

However, optimism becomes harmful when
extended to collective group decisions (Sharot 2011b).
For instance, optimism bias has been identified as one
core cause of the financial crisis of 2008 (Soros 2008,
Duca et al. 2010, Roszkowski and Davey 2010, Miller
and Rosenfeld 2010). Unrealistic expectations of indi-
viduals, financial analysts and government officials
that the market would continue growing, despite evi-
dence to the contrary, likely contributed to the col-
lapse (Soros 2008, Duca et al. 2010, Miller and
Rosenfeld 2010, Roszkowski and Davey 2010, Sharot
2011a, 2011b). Optimism bias has also been recog-
nized as a major contributor to the unrealistic plans of
many public-funded capital projects (Flyvbjerg et al.
2003). Productivity is often overestimated and risks are
underestimated, causing insufficient funding, unrealis-
tic schedules and inadequate preparation for plausible
risk scenarios (Flyvbjerg et al. 2003, Ahsan and



Gunawan 2010). In the US, more than 90% of com-
pleted capital projects experience severe cost and
time overruns due to unrealistic plans; on average,
capital projects overran their budgets by 28% and
time by 120 days (Flyvbjerg et al. 2003, Bordat et al.
2004). Given the world’s tremendous spending on cap-
ital projects (The Economist 2008), unrealistic opti-
mism can cause a significant misuse of scarce
public resources.

To mitigate the potential damage introduced by
optimism bias, various public agencies have advocated
for methods or systems that provide additional infor-
mation about historical projects, or similar projects
elsewhere, to decision-makers, assuming that this will
improve realistic judgements (Flyvbjerg  2008).
However, evidence has presented a puzzle that under-
mines the rationale behind these efforts: optimism
bias can be maintained in the face of reality (Sharot
et al. 2011). People are known to maintain overly posi-
tive expectations despite a lifetime of experience with
reality. For instance, highlighting previously unknown
risk factors for disease is surprisingly ineffective at
altering optimistic perceptions of individuals’ medical
vulnerability (Sharot et al. 2007, 2011). It has been
found that optimism bias is maintained in the face of
disconfirming evidence because people update their
beliefs more in response to positive information about
the future than to negative information about the
future (Sharot 2011b). In a lab test (Sharot et al. 2011),
researchers found that when participants estimated
their probability of suffering from cancer as 10% and
then learned that the average probability was 30%,
they did not update their estimate much the second
time around. However, if a person initially estimated
the probability of suffering from cancer at 40% and
then learned that the average probability was 30%,
they substantially updated their estimate to more
closely match the average probability. The selectivity
of positive versus negative information has been
found to correlate with the neural basis of the human
brain (Sharot et al. 2007).

Another important question concerning optimism
bias is: How is individual optimism bias translated into
collective optimism bias at the group level? Literature
addressing group polarization provides a useful theory
for predicting the individual-collective optimism transi-
tion. Group polarization is a phenomenon in which
members’ initial preferences are amplified during a
group process (Lovallo and Kahneman 2003) and is
attributed to the inclination to develop shared mental
models for better social identification (Mohammed
et al. 2010). It also originates from situations in which
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people are reluctant to voice their concerns due to
psychological safety considerations (Edmondson 1999).
According to group polarization theory, if members
individually are generally optimistic, group discussion
makes them more optimistic and thus results in even
more overly aggressive plans. Nonetheless, it is still
unclear whether group polarization explains all the
variance in observation data about capital projects,
because evidence shows that group polarization can
also be shown as cautious shift (rather than risky shift),
which is rarely seen in capital projects (Myers and
Lamm 1976, Sunstein 2002). An explanation is needed
to account for the systematic shift of bias in cap-
ital projects.

Human communication network and group
optimism bias

We propose to study the optimism bias in capital proj-
ects from the human communication network per-
spective. Since the 1950s, cumulative evidence has
proven the critical role of communication network
topology in individual and group decision-making
(Leavitt 1951, Shaw 1954, 1964, 1971). One seminal
study was carried out by Bavelas et al at
Massachusett Institute of Technology (MIT) (Bavelas
and Barrett 1951). In a series of experiments, they
manipulated the communication patterns among
members of small groups by controlling who could
send messages to whom; they then measured the
impact of various patterns on group functioning and
performance (Bavelas 1950, Bavelas and Barrett 1951).
The researchers found that centralization - the extent
to which one person serves as a hub of communica-
tion - had a significant impact on individual and
group functioning (Bavelas 1950, Bavelas and Barrett
1951. The complexity of the task proved to be a crit-
ical moderating variable: centralization was beneficial
when the task was simple and detrimental for com-
plex tasks (Bavelas 1950). A decentralized structure
was also best when information was distributed
unevenly among group members, or when the infor-
mation was ambiguous (Leavitt 1951, Shaw 1971).
Following their work, a variety of disciplines (e.g.
psychology, organizational science, and economics)
have identified relationships between communication
network topology and decision-making quality from
different perspectives. Representative works include
(Lipman-Blumen and Leavitt 1999, Sparrowe et al.
2001, Cummings and Cross 2003). Recent work
addresses the mutual correlations between internal
and external links (Haas 2003), on network topology
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and problem-solving efficiency (Kearns et al. 2006),
and on using computer simulation to quantify the
influence of network topology on decision-making
quality (Fioretti 2013). Although targeting different
research questions, i.e. decision-making efficiency and
quality, human communication network topology may
be an important medium for the individual-group
optimism transition. We performed a preliminary study
to evaluate the feasibility of our conjecture.

Human subject experiment

We conducted a human subject experiment to gain a
preliminary understanding about how optimism bias
at the group level is affected by the topology of com-
munication networks in project planning. Preliminary
results indicate that a significant correlation exists
between network topology and collective optimism
bias measured as the delta between the labour hour
estimate given by human subjects and the Monte
Carlo simulation result based on the historical data of
38 completed capital projects. The following section
will introduce the experiment and findings.

Data preparation

Capital project planning is a multidisciplinary and
multi-organizational process that builds on judge-
ments made separately by different project functional
units (Kerzner 2009). A formal boundary between
responsibilities is established and leads to distributed

decision processes (Thomsen et al. 2005). Even in the
same functional unit, a project is often divided into
groups of work, called crafts, which are handled separ-
ately by different planners, such as concrete, mechan-
ical systems and steel (Globerson and Zwikael 2002).
Ultimately, judgements made by separate decision
makers will be aggregated by a third party, usually
chief estimator, who puts together a final budget
(Globerson and Zwikael 2002). In this process, one per-
son’s judgements may be affected by others’, either
formally or informally (Du and Bormann 2014). For
example, a steel estimator may adjust the steel prod-
uctivity prediction to accommodate the concrete pour-
ing productivity prediction made by a concrete
estimator, because there is a definite relationship
between the two crafts (Du and Bormann 2014).

In this study, we propose that the need for commu-
nication between any two planners depends on the
correlation between their respective crafts. Therefore,
we collected the productivity data from 38 finished
capital projects in the US, including the production
rates of 26 major crafts. The 38 capital projects, all
belonging to company “A,” were built between 2002
and 2011, and were the same type of power plant
project (gas turbine power plants). Since these proj-
ects were built by the same company and were of
similar magnitude, the characteristics of these projects
were similar. All projects were divided into 26 crafts,
as shown in Table 1. Table 1 lists the crafts and their
descriptions.

Table 1. Twenty six crafts used in the experiment.

ID Craft Description Productivity (UOM)
A01 Concrete pouring Concrete pouring, finishing and curing Cubic yard/hour
A02 Concrete formwork Installing concrete formwork Square foot/hour
A03 Concrete reinforcing Installing concrete rebar Cubic yard/hour
A04 Embedded steel Installing steels embedded in the structures Ton/hour

A05 Structural steel Erecting major steel structures Ton/hour

A06 Grating Installing grating Square foot/hour
A07 Pipe racks Installing pipe racks Ton/hour

A08 Piping Installing main system pipes Linear foot/hour
A09 Underground piping Installing underground pipes Linear foot/hour
A10 Small bore piping Installing small-bore pipes Linear foot/hour
Al Large bore piping Installing small-bore pipes Linear foot/hour
A12 Critical piping Installing critical pipes (machinery) Linear foot/hour
A13 Underground conduit Installing underground conduits Linear foot/hour
Al4 Ground conduit Installing above ground conduits Linear foot/hour
A15 Cable tray Installing cable tray Linear foot/hour
Al6 High voltage cable Installing cables for >600V applications Linear foot/hour
A17 Low voltage cable Installing cables for <600V applications Linear foot/hour
A18 Control cable Installing control cables Linear foot/hour
A19 Instrument cable Installing instrument cables Linear foot/hour
A20 Iso non seg bus Installing isolated-phase non-segregated bus Each/hour

A21 Lighting Installing light fixtures Each/hour

A22 Instrument handling Handing and moving instruments Each/hour

A23 Instrument test Testing instruments Each/hour

A24 Instrument install Installing instruments Each/hour

A25 Instrument calibration Calibrating instruments Each/hour

A26 Painting Painting all pipes and architecture Square foot/hour




We found that the production rates of these 26
crafts are interdependent, but at different levels.
Figure 3 provides a complete visualization of the cor-
relations among the 26 crafts in terms of productivity.
The correlation analysis suggests that there is a nat-
ural need for the craft planners to communicate and
cross-check their judgements. If two crafts are corre-
lated in productivity, the planners will likely revise
their original judgements based on updated informa-
tion from each other. A complex network, as illus-
trated in Figure 3, may lead to a complex process of
judgement updates. As a result, this study focused on
the inter-craft communication among planners; the
productivity dependency network was used as the
basis for evaluating inter-craft communication. Due to
the similarity of these projects, the generalizability of
the correlations should be sufficient. It is also worth
noting that the correlation network illustrated in
Figure 3 is an undirected network. It is based on a
neutral Pearson correlation analysis. The correlation
coefficients only show how one craft is affected by
another and vice versa, such as how the productivities
of concrete pouring and concrete formwork are
mutually dependent. It is possible to analyse the direc-
tion of dependency based on more in-depth data,
such as an analysis of detailed logs and schedules
of construction operations. Otherwise, it is beyond
the scope of this study and the available data.
Meanwhile, we found that at the craft level,
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A25 /
A17

A24

AO05

A08
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the dependency is often mutual. Therefore, an undir-
ected network should serve well in a craft-
level analysis.

Experiment design

A total of 103 student subjects were recruited to par-
ticipate in the human subject experiment. Among
them, 47 were graduate students (M.S. Construction
Management) and 56 were junior and senior level
undergraduate students (B.S. Construction
Management). All students had previously completed
construction cost estimating courses and had suffi-
cient knowledge about labour hour estimating, prod-
uctivity and the reference class forecasting method. In
addition, prior to the experiments, sessions were held
to introduce the procedures and the instruments
(Google sheets) of the experiments. As a result, the
students qualified for the experiments. The subjects
were asked to estimate the total labour hours of a
hypothetical power plant project. Since we identified
26 crafts for a power plant project, subjects were
assigned into three groups of 26, with each subject
estimating the labour hours of a single craft in each
round. The subjects were shuffled throughout the
experiment to make sure that each individual esti-
mated a new craft each time. The participation results
were translated into bonus points on final exams and
the subjects were not compensated.

A01 Concrete Pouring
A02 Concrete Formwork
A03 Concrete Reinforcing
A04 Embedded Steel
AD5 Structural Steel

AD6 Grating

AD7 Pipe Racks

AD8 Piping

A09 Underground Piping
A10 Small Bore Piping
A11 Large Bore Piping
A12 Critical Piping

A13 Underground Conduit
A14 Ground Conduit

A15 Cable Tray

A16 High Voltage Cable
A17 Low Voltage Cable
N A18 Control Cable

A11

A19 A19 Instrument Cable
N A20 Iso Non Seg Bus
A0D3 A21 Lighting
A09 A22 Instrument Handling

A23 Instrument Test

A24 Instrument Install
A25 Instrument Calibration
A26 Painting

Figure 3. A weighted network shows the productivity relationship of 26 major crafts in 38 capital projects. A thicker edge refers

to a stronger inter-craft correlation in productivity.
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Figure 4. User interface in the experiment. Zone A: Subjects were asked to enter their estimated production rate here. The quan-
tity of the designated craft was based on the estimated production rate; labour hours were calculated automatically. Zone B:
According to the network topology under test, subjects were able to see estimates made by certain peers in Zone B. Zone C:
Subjects were able to see the quantity and production rate information of all 26 crafts of 38 finished projects.

Each subject was provided with a unique
Google sheet to submit their estimates, as illustrated
in Figure 4. In each round of the experiment, the sub-
jects were asked to fill out the estimated production
rate of the designated craft, which was used as the
basis for the labour hour calculation:

labour hours quantity x estimated production rate

(M

In accordance with the reference class forecasting
method, Google sheets containing the quantity and
historical production rate information of all 26 crafts
based on the 38 finished power plant projects were
provided to the subjects (Figure 4). Each subject,
depending on the role he/she was playing, received a
Google sheet where the subject needed to enter his/
her estimated production rate. According to the pre-
determined communication network topology, sub-
jects could also see the estimates made by certain
other peers. All experiments were performed and com-
pleted during class time, which was about one hour.
Eventually, individual estimates were aggregated to
calculate the total estimate.

We created a real-time communication system with
the Google sheets. First, we used a Google Application
programming interface (API) to automatically generate
26 Google sheets (each represents a craft). Then, in
Zone B, we wused a Google sheet function
IMPORTRANGE to update cells in real time. If two sub-
jects were connected, both of them would be able to

see each other’s estimates in real time. This allowed
them to dynamically change their own estimate based
on information received from peers. We prepared a
short video about this process: https://www.youtube.
com/watch?v=z0eoDUWv4Pg.

In order to evaluate the degree of collective opti-
mism bias, we performed a Monte Carlo simulation to
establish the reference line (that was treated as the
realistic estimate). The craft production rates of the 38
finished power plant projects were used as random
number generators to determine the statistically
expected labour hours of the tested hypothetical pro-
ject. Monte Carlo simulation was used to generate the
most statistically sound estimate based on the distri-
butions of historical data. The simulated estimate was
then used to benchmark the estimates given by
human subjects. We did not use the simple calculation
of the median values to represent the expect values
because many of the production rate distributions
were not symmetric. In this case, cost $= quantity*
production rate cannot be obtained by using the
median values of the data. The following steps were
taken to perform the Monte Carlo simulation:

1. Collect the quantity data of 38 completed proj-
ects at the craft level (26 crafts);

2. Retrieve information about total labour hours for
each of the 26 crafts in every project;

3. Calculate the production rate as labour
hours/quantity;


https://www.youtube.com/watch?v=z0eoDUWv4Pg
https://www.youtube.com/watch?v=z0eoDUWv4Pg

4. Fit probability density functions (PDFs) for each
of the 26 crafts; in this study, we did not prede-
fine the PDFs of the craft production rates;
instead, we applied the Akaike Information
Criterion (AIC) test to evaluate the fitness of dif-
ferent PDFs and allowed the data to speak for
itself. The AIC is a statistical estimator of the rela-
tive quality of PDFs for a given set of data
(Bozdogan 1987). Given a collection of possible
PDFs for the data, AIC can estimate the quality
of each PDF, relative to each of the other PDFs,
and thus provides a means for PDF selection
(Bozdogan 1987). Compared to the predefined
PDFs, AIC can select the PDFs that best describe
the data. The AICs instead of predefined PDFs
were used because the AlC-fitted PDFs could
improve the accuracy of the following Monte
Carlo simulation.

5. Obtain the craft level quantity data of the sam-
ple project for the experiment;

6. Use the fitted PDFs of the 26 crafts as random
number generators (RNGs) to sample production
rate in each simulation trial;

7. Simulate the expected labour hours for each of
the 26 crafts of the sample project as: simulated
production rate* craft quantity;

8. Simulate the total labour hours for each simula-
tion trial by summing up simulated labour hours
of all 26 crafts;

9. Repeat the simulation 2000 times;

Fit the distribution of total labour hours and use

the mean value as the simulated reference line.

Because the total cost is an aggregation of the

quantities and production rates of 26 crafts,

according to the Central Limit Theorem

(Rosenblatt 1956), the total cost estimate will
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ultimately follow a normal distribution, where
the mean value is equal to the median value.

The Monte Carlo simulation used in our experiment
only refers to a cost simulation instead of schedule
simulation. In other words, we were interested in
knowing the aggregated labour hours as a result of
varying production rates, rather than as a result of
construction processes. The result, 1,326,894 hours, was
deemed to be the reference line that reflected the
most realistic estimate (statistically). If the subjects
gave an estimate lower than this number, then they
were relatively optimistic about productivity (thus
requiring fewer labour hours); otherwise, they tended
to be relatively realistic or pessimistic about productiv-
ity (thus requiring more labour hours). To account for
the uncertainties, we used a range (80% x 1,326,894 -
120% x 1,326,894), instead of a deterministic line, to
differentiate optimism and pessimism. The subjects’
performance was eventually evaluated based on how
close their total estimate was to the reference line.
The ranked order of their performance was eventually
translated into bonus points on their final exam.

We examined the estimates given by the subjects
under four different communication network topolo-
gies, as illustrated in Figure 5. The first one, distrib-
uted, required the subjects to make their estimates
independently; in other words, they could not see the
estimates made by others. The opposite is the full
connection network, where subjects could see the
estimates made by all others. Based on the correlation
coefficients (p) among the 26 crafts, we also designed
two additional networks, namely “0.5Cord” (p > 0.5)
and “0.4 Chord” (p > 0.4). Data from the 38 finished
projects show correlations among the production rates
of the 26 crafts, but at different levels. For example,
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Figure 5. Different network topologies tested in the hypothetical project estimating game (node =26). Each node represents a
student in the experiment. p is the correlation coefficient between the production rates of two nodes based on historical data. w
is small-worldness indicator proposed by (Telesford et al. 2011). w =0 means that the network is a small-world network, a mixture

of local connectivity with long distance connectivity.
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the correlation coefficient between the production
rates of “A10 small bore piping” and “A15 cable tray”
is 0.787, while it is only 0.008 between “A04
embedded steel” and “A07 pipe racks”. We assume
that the correlation coefficient between two crafts cor-
responds to the communication needs of the two sub-
jects: if the correlation between two crafts is stronger,
their production rates are more interdependent. The
0.5 Chord network means that two students could see
each other's estimates only if the correlation coeffi-
cient between the two corresponding crafts was
greater than 0.5. Requirements were similar for the 0.4
Chord network. One of the limitations of this study is
the difficulty of testing all possible communication
networks, continuously ranging from no commutation
to full communication. We can only select the most
representative network topologies in this exploratory
study to answer the basic question: Can communica-
tion network topology affect the decision bias? We
selected 0.4 Chord and 0.5 Chord for two reasons: First,
literature (Rosenkrantz et al. 2013) suggests that
p=0.4-0.6 usually refers to a moderate correlation,
which is a focus in this study. Second, if we select 0.7
as the correlation coefficient threshold, there would
be only one connection existing between “Piping -
365 FF&E Small Bore Combined Cycle WHR” and
“Electrical — Cable Tray - Combined Cycle WHR”
(p=0.786). In order to test the representative net-
works, especially the ones that represent the moderate
level of communication need, we selected 0.4 Chord
and 0.5 Chord. Eventually, experiments under each
network topology were repeated 12 times for statis-
tical analysis.

It is worth noting that the communication needs in
the planning phase between two craft estimators does
not necessarily mean the dependency in construction
operations. For example, in our case, “A10 Small Bore
Piping” and “A15 Cable Tray” show a very strong
correlation in their production rates based on the his-
torical data, but in construction they are two inde-
pendent activities - done by two independent crafts/
subcontractors (piping craft and mechanical craft),
with no obvious dependency in construction opera-
tions (such as one relies on another). The main reason
of their correlation in production rate is because both
of them are affected by the overall complexity of the
power plant design — a plant with a more complex
design often means slower piping and cabling pro-
gress, because of the special installation requirements
and usually a more complex spatial configuration. As a
result, there is still a natural need for the estimators of
these two crafts to coordinate and cross check their

estimates in the planning phase, although these two
crafts seem to be independent in construction. We
found that compared to the construction dependency,
the production rate correlation shown in the historical
data is a better indicator of the communication need.
In other words, if the historical data shows a correl-
ation between two crafts, it may be natural for the
two estimators to cross check their numbers. In fact, it
is @ common practice in project planning. The need
for estimators of two correlated crafts to communicate
is more about a planning practice (i.e., the need for
cross-checking) than about dependency during
construction.

It is also worth noting that we did not use ran-
domly generated networks as most similar studies
have done (Kearns et al. 2006). Modelling the commu-
nication network should build on the fact that there is
a need for communication between two estimators.
The most reasonable base for this study is the correl-
ation of productivity. The existence of a correlation
between two crafts in productivity, in spite of the
causes, often encourages cross-checking behaviours of
the two estimators in the planning phase. As a result,
we used the craft productivity correlation network as
the base for modelling different communication net-
works, but we also recognize that the driving factors
for communications in real projects can be more com-
plex, and thus the approach we used is not intended
to make any practical recommendations.

Experiment results

Our results show that more than 79% of the total esti-
mates given by the subjects were lower than the ref-
erence line, 1,326,894 hours. Table 2 lists the estimates
given by the subjects in 12 trials of the experiment.
Table 3 lists the descriptive statistics of the estimating
results of different communication network groups.
The results indicate that the subjects demonstrated
a collective optimism bias most of the time (lower

Table 2. Estimates (labour hours) given by the subjects
(simulation result =1,326,894).

Trials Distributed 0.5 Chord 0.4 Chord Full connection
1 1,115,186.94 1,447,240.88 915,772.19 1,497,979.71
2 909,839.71 1,057,314.25 1,428,797.92 1,134,947.17
3 1,113,320.86 1,431,261.52 1,072,366.35 989,669.99
4 1,210,862.90 1,196,769.93 847,965.25 754,409.00
5 1,019,745.31 1,302,079.08 778,266.12 1,006,907.69
6 1,198,846.17 1,328,249.82 1,131,722.64 882,303.94
7 1,064,940.79 1,537,441.54 1,384,848.64 625,415.55
8 1,030,145.10 1,289,586.32 1,370,900.20 892,478.03
9 1,042,580.53 1,244,483.58  1,290,359.98 829,261.22
10 1,024,334.11 1,228,804.75 1,396,622.71 884,949.56
11 969,195.66 1,196,919.71 1,292,354.61 774,212.07
12 1,020,526.41 1,326,912.23 1,290,449.54 828,365.87




than 80% x 1,326,894). This systematic tendency of
optimism supports empirical data in prior studies
(Flyvbjerg et al. 2003).

We then examined whether the degree of collective
optimism bias varies under different communication
network topologies. As illustrated in Figure 6, the sub-
jects tended to give more conservative estimates (i.e.
greater than the reference line - realistic estimate)
under the 0.5 Chord communication network, and
seemed to be more optimistic (i.e. lower than the ref-
erence line - realistic estimate) under the Full
Connection network.

Then, we performed a pairwise Wilcoxon signed-
rank test (Woolson 2008) to evaluate whether the lev-
els of optimism bias were different under different
tested communication network topologies. The
Wilcoxon signed-rank test is a non-parametric statis-
tical hypothesis test used to compare whether the
population mean ranks differ across two groups (i.e. it
is a paired difference test) (Woolson 2008). It is an
alterative method for the Analysis of Variance
(ANOVA) when the samples do not follow the normal-
ity assumption. Table 4 lists differences between cer-
tain pairs of topologies. The results indicate significant

Table 3. Descriptive statistics of the estimating results of dif-
ferent communication network groups.

Group N  Mean Median ~ Std Dev Lower CL Upper CL
Distributed 12 1059960.4 1036362.8 87588.8 1004309 1115612
0.5 Chord 12 1298922 1295832.7 129768 1216471 1381373
0.4 Chord 12 1183368.8 1290404.7 229519 1037540 1329198

Full connection 12 925074.9 883626.7 223170  783279.6 1066870
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differences on the optimism bias level between certain
groups (p<0.05), including 05 Chord versus
Distributed, 0.5 Chord versus Full Connection, Full
Connection versus Distributed, and 0.4 Chord versus
Full Connection. We also performed a Kruskal-Wallis
test (Kruskal and Wallis 1952), a non-parametric
method for testing whether samples originate
from the same distribution. It is often used for com-
paring two or more independent samples of equal or
different sample sizes when the samples do not
follow the normality assumption. The result shows
that the estimating results of all four commnucation
network groups are from different distributions
(p=0.0002 < 0.05). It also supports that human
communication topolgy can affect the group level
optimism bias. Therefore, the central hypothesis
is supported.

We were also interested in quantifying the influ-
ence of network topology on optimism bias. Figure 7
indicates a nonlinear relationship between the small-
worldness of the network and optimism bias (meas-
ured by the percent difference between the estimates
given by the students and the reference line - realistic
estimates). In other words, too much or no communi-
cation may both lead to biased estimates. It suggests
that there is certain under explored communication
mechanism that affects the group decision in capital
project planning. The possible interpretation of the
result is: over-communication and insufficient commu-
nication both lead to biased group decisions. There
shall be an optimal level of communication in practice.
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Figure 6. Communication network topology significantly affected the collective optimism bias in the human-subject experiment.

Table 4. Pairwise Wilcoxon test results, cross group difference.

Group A Group B Score mean difference Std Err Dif p-Value Lower CL Upper CL
0.5 Chord Distributed 10.4167 2.887 0.0003* 131979 332054
0.5 Chord Full connection 9.9167 2.887 0.0006* 282679 546312
Full connection Distributed —7.5833 2.887 0.0086* —284060 —35673
0.4 Chord Full connection 6.75 2.887 0.0194* 30823 502545
0.4 Chord Distributed 5.0833 2.887 0.0783 —67124 319908
0.5 Chord 0.4 Chord 2.5833 2.887 0.3708 —82770 299539

*p < 0.05.
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Figure 7. Relationship between small-worldness (measured by w) and level of optimism bias (measured by delta%). Result shows
there is a two order relationship between w and delta% - it suggests a nonlinear relationship between small-worldness (meas-

ured by w) and optimism bias.

Similar phenomenon has been discovered by a study
published in Science. In a map coloring experiment,
Kearns et al. (2006) found that increasing communica-
tions among teammates improved the group decisions
at the very beginning, but soon negatively affected
the group decision beyond certain point. They con-
cluded that “providing more information can have
opposite effects on performance, depending on network
structure” (Kearns et al. 2006). Our study tests this phe-
nomenoln in the context of optimism bias in capital
project planning. It is unclear why, in our experiment,
something in the middle led to a relatively realistic
estimate, clearly deserving further investigation.

We used a small-world measure w to quantify the
tested topologies (Telesford et al. 2011). Small-world
networks are networks where most nodes are not
neighbours, but can be reached from every other node
by a small number of hops (Watts and Strogatz 1998).
It is an emergent property of many natural networks
such as social networks (Amaral et al. 2000). In the lit-
erature (Telesford et al. 2011), small-worldness of a net-
work can be measured by the following equation:

w = (Lrand/l-) - (C/Clatt) (2)

where L is the path length of the network, a meas-
ure of the distance between nodes in the network,
calculated as the mean of the shortest geodesic dis-
tances between all possible node pairs:

1
L= N D i )

where dj is the shortest geodesic distance between
nodes i and j. C is the modularity or clustering coeffi-
cient, i.e. the proportion of edges e; that exists
between the neighbours of a particular node (i) rela-
tive to the total number of possible edges between
neighbours (Bullmore and Sporns 2009). The equation
for C at an individual node of degree k; is:

2¢;

G = ki(ki—1)

(4)

The small-world measurement, w, is defined by
comparing the modularity of the network to that of
an equivalent lattice network, Cja, and comparing
path length to that of an equivalent random network,
L,ang- Values close to zero are considered small world,
because a small-world network should reflect L =
Liang and € < Cju. Positive values indicate a graph
with more random characteristics, while negative val-
ues indicate a graph with more regular or lattice-like
characteristics.

Discussion

Our study aims to investigate the group-level opti-
mism bias, instead of individual-level optimism bias,
observed in capital project planning. Evidence shows
that even each individual estimator could have given
realistic estimates to the best knowledge, when a
group of estimators work together, the final estimate
at the group level can still be overly optimistic. There
is an under explored mechanism that translates indi-
vidual decisions to deviated group decisions, which is
potentially more complex than the instructions or
decisions given by the top managers. The social
psychology literature has investigated this individual-
group transition and proposed certain theories to
explain the gap. One explanation is the shared mental
models, i.e. the tendency of a person to be influenced
by others and change his/her original judgement in
interactive group discussion (Mohammed et al. 2010).
Another theory pertains to the psychological safety
(Edmondson 1999), i.e. the phenomenon that a person
feels more comfortable when he/she is echoing the
opinions of other team members. Under the wrong
conditions, group discussion can have negative effects
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Figure 8. Projects with similar complete piping work still show a wide distribution of production rate. For example, when a pro-
ject requires 100,000 LF (linear foot) piping, its production rate could range from 1.1 hour/LF to 4.0 hour/LF, based on our data-

base of 38 finished projects. Optimism bias still applies.

on decision quality. Group interaction can accentuate
common misconceptions (Hinsz et al. 1997). It may
also result in group polarization, a phenomenon in
which members’ initial preferences are amplified. For
example, if members individually are generally opti-
mistic (Lovallo and Kahneman (2003) suggested),
group discussion would make them more optimistic
and thus result in even more overly aggres-
sive estimates.

Two interesting observations in our experiment
deserve further exploration. First, our findings high-
light the importance of showing the assumptions and
considerations previous estimators held when making
estimating decisions in the reference class forecasting
process, in addition to the historical information of
previous projects. The reference class forecasting
method requires decision-makers to identify a similar
project and use the estimates of the similar project as
the baseline for new estimates. Literature suggests
that providing information about similar projects will
help control optimism bias when making predictions
on the present project (Flyvbjerg 2007, 2008).
However, it should be noted that due to the technical
uncertainty of capital projects, it may be difficult for
decision-makers to evaluate the similarity between
two projects. For example, as illustrated in Figure 8,
for complete piping, even when projects are of similar
magnitude (LF - linear footage), the production rate
could vary by more than 300%. In our experiment, this
means that even though the students could find a
similar historical project from the historical database
(Figure 4, Zone C), they still need to pick a number
from a wide distribution (Figure 8). Moreover, our pre-
vious work also found that even when more parame-
ters were introduced (e.g. job site configuration), the

similarity between two projects was still extremely dif-
ficult to measure, probably due to the vast search
space (Du and Bormann 2014). As a result, the main
assumptions and considerations pertaining the selec-
tion of similar projects should be incorporated in the
reference class forecasting process as they indicate the
dimensions of similarity measurement
(Flyvbjerg 2008).

The second observation is that we need to rethink
about the role of communication in controlling the
quality of cost estimating. Our experiment showed
that moderate communication (p > 0.5 communication
network) led to more realistic estimates than intensive
communication (Full Connection network, i.e. every-
body can see everybody else’s selection) (Figure 6),
and Full Connection network was always leading to
more aggressive estimates. This contradicts many
studies advocating a linear relationship between deci-
sion quality and level of communication in construc-
tion (Ballard and Howell 1994). We further propose
that it is due to certain inherent cognitive processes
pertaining to optimism bias. A recent study has shown
that people update their beliefs more in response to
information that is better than expected compared to
information that is worse (Sharot et al. 2011). In other
words, in a communication between a relatively opti-
mistic individual and a relatively pessimistic individual,
the latter tends to substantially change his/her judge-
ment based on the optimistic information received
from the other, while the optimistic individual may
insist on his/her original judgement. Compared to pes-
simism, optimism is easier to spread in communication
networks, like a virus (Figure 9). Neural science litera-
ture reveals the neural basis for this phenomenon: dis-
tinct regions of the prefrontal cortex track estimation
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Figure 9. People are more sensitive to information that is better than expected (Sharot et al. 2011). As a result, optimism (like a

virus) spreads easier than pessimism in a communication network.

errors when they call for a positive update, both in
highly optimistic and less optimistic individuals.
However, highly optimistic individuals exhibit reduced
tracking of estimation errors that call for negative
updates within right inferior prefrontal gyrus (Sharot
et al. 2007). Our experiment further revealed that a
network closer to small-world status may help control
the collective optimism basis, but the mechanism is
unclear. This deserves further investigation because
understanding the reason why network topologies,
such as small-worldness, lead to controlled optimism
bias will set a stepping stone for optimizing communi-
cation networks.

It is worth noting that the test subjects in this
experiment were students, who may not have a simi-
lar level of experience and knowledge as that of pro-
fessional estimators. Therefore, we made certain
arrangements so that students would make estimates
based on good reasoning. During the experiments,
the students were provided with the complete dataset
of all 38 projects, and were asked to make their esti-
mates based on the historical data. It was found that
the students did not just give random estimates.
Instead, they carefully checked the historical data and
tried to make sound estimates since they were told
that their performance in the experiments would be
translated into bonus points on their final exams. The
performance of the participants was evaluated based
on the absolute difference between their estimates
and the simulated (statistically reasonable) expected
cost. According to Buehler et al. (1994), when the test
subjects were motived to make accurate forecasts,
they tended to “adopt an external approach to predic-
tion, incorporating relevant distributional information”,
while when the test subjects were incentivized to

finish task promptly, the test subjects tended to give
optimistic time estimate. That is why the test subjects
in our experiments were incentivized to give the most
accurate estimates instead of the shortest time esti-
mates. In addition, prior to each experiment, the
rationale and procedure of reference class forecasting
were introduced. We used these experiment setups to
ensure that the student subjects were working with
their best knowledge and data. We admit that profes-
sional estimators would be able to give better judge-
ments. Otherwise, our objective was to understand
the fundamentals about the impacts of communica-
tion network topologies on estimating bias. If we can
reveal that the variance of estimates can be attributed
to the variance of communication networks, then our
study would be a contribution to the discipline and it
deserves further investigation, especially with profes-
sional estimators.

There are many secondary factors affecting the
group optimism bias. In our experiment, we managed
to control the secondary factors and only focused on
the communication network topology. All the subjects
were randomly assigned to each group. For each
experiment trial, the subjects were randomly shuffled
and asked to estimate the cost of a different craft.
Each subject was only asked to review 38 data points
in each trail. The tasks were also made very clear: esti-
mate the cost of the assigned craft by reviewing the
historical data points and others’ estimates (if avail-
able). Other background information was limited to
reduce the influence on their judgements. The random
assignment and relatively simple judgement task will
help reduce the impacts of optimism-related decision
heuristics such as anchoring, availability and represen-
tativeness. Even if the subjects held individually



different decision heuristics, because they were
shuffled in different experiment trails and the results
were aggregated to study the overall pattern, the dif-
ference should have been cancelled out.

Conclusions

Capital projects are critical to our economy. However,
evidence shows that the efficiency of these projects
are affected by inaccurate, mainly optimistic, planning
decisions. The optimism bias, i.e. people’s inclination
to be overly optimistic about the chance of success,
has been found to be a major contributor of aggres-
sive budgets and plans in many capital projects, which
has led to inefficient allocation of scarce public resour-
ces and common time and cost overruns. The litera-
ture has attempted to understand and mitigate
optimism bias of key decision makers from the individ-
ual and psychological perspective, yet how individual
optimism is aggregated and translated into optimistic
plans at the group level is poorly understood.

This article hypothesizes that human communica-
tion network topology, i.e. patterns of contact created
by the flow of messages among decision-makers, can
significantly affect the level of optimism bias at the
group level. Using a series of human subject experi-
ments, this study tested the group estimates under
four different communication network topologies,
namely Distributed, 0.4 Chord, 0.5 Chord and Full
Connection. The experiments, using real project data,
supported our central hypothesis.

The findings of this study are expected to advance
our knowledge about the role of human communica-
tion networks in controlling optimism bias at the
group level in project related decision-making. The
empirical data collected in this research will add to
the literature’s direct evidence of correlations between
human communication network topologies and
degree of collective optimism bias. The exploratory
simulation experiments will help unveil the transition
mechanism from a well-understood individual cogni-
tive bias to harmful collective optimism via a poorly
understood group process, observed in most capital
project organizations. This study aims to extend the
horizon of decision bias literature from a focus on
controlling bias at the individual level to a more holis-
tic structure-driven theory. Beyond communication
and optimism bias, this research is expected to pro-
vide a theoretical foundation for exploring the role of
other intra- or inter-organizational networks in trans-
forming a variety of individual decision biases into an
unexpected group decision.
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This study also contributes to group polarization the-
ory in project related decision-making, i.e. tendency for
a group to make decisions that are more extreme than
the initial inclination of its members. The findings add
evidence about conditions and processes leading to a
systematic shift to one extreme end, rather than
another. It heeds the call to explore new directions in
risk analysis and management of capital projects, but it
also has the potential to improve decision-making qual-
ity in other areas challenged by uncertainties. The find-
ings of this research will provide a usable theoretical
basis and methodology to facilitate the development of
simple, yet effective, decision support systems to reduce
bias that occurs during decision-making in capital pro-
ject planning. It may also assist policy makers in reason-
ably allocating public resources and reducing waste.

Proving the impacts of human communication net-
work topology on group decision bias is also of
importance to the industry practices. In real world, the
team structure of a capital project is usually driven by
the contractual requirements or the customs. Little has
been done to examine a scientific process of organiz-
ing the organization, in terms of improving group
decision quality. Evidence in organizational science lit-
erature has shown the relevance of organizational
structure in group decision quality, efficiency and
effectiveness, such as (Kearns et al. 2006), but the find-
ings should be interpreted in the construction context
to have real impacts in the industry. Although still in
its infancy, this study constitutes the stepping stone
for future investigation into the group decision mech-
anism driven organizational design for capital projects.

One of the limitations of this study is the limited
sample size. To draw any sound statistical conclusion,
the sample size should be sufficient to satisfy certain
assumptions. As a result, one of the future agenda
items is to expand the experiments to include more
subjects. We expect to generate enough data points
to better understand the nonlinear relationship
between communication network topology and group
level optimism bias in capital project planning. In add-
ition, we expect to test the influence of secondary fac-
tors, such like different decision heuristics and
demographic factors, in the formation of optimism
bias in our future work. The ultimate goal of this
research is to develop a model that helps predict
group decision bias and guides the organizational
design in capital project management.
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