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Abstract

Measurements of response time (RT) have long been used to infer neural processes under-

lying various cognitive functions such as working memory, attention, and decision making.

However, it is currently unknown if RT is also informative about various stages of value-

based choice, particularly how reward values are constructed. To investigate these ques-

tions, we analyzed the pattern of RT during a set of multi-dimensional learning and decision-

making tasks that can prompt subjects to adopt different learning strategies. In our experi-

ments, subjects could use reward feedback to directly learn reward values associated with

possible choice options (object-based learning). Alternatively, they could learn reward val-

ues of options’ features (e.g. color, shape) and combine these values to estimate reward

values for individual options (feature-based learning). We found that RT was slower when

the difference between subjects’ estimates of reward probabilities for the two alternative

objects on a given trial was smaller. Moreover, RT was overall faster when the preceding

trial was rewarded or when the previously selected object was present. These effects, how-

ever, were mediated by an interaction between these factors such that subjects were faster

when the previously selected object was present rather than absent but only after unre-

warded trials. Finally, RT reflected the learning strategy (i.e. object-based or feature-based

approach) adopted by the subject on a trial-by-trial basis, indicating an overall faster con-

struction of reward value and/or value comparison during object-based learning. Altogether,

these results demonstrate that the pattern of RT can be informative about how reward val-

ues are learned and constructed during complex value-based learning and decision making.

Introduction

Investigations of response time (RT) have long been the focus of human psychophysics studies

in order to distinguish between alternative mechanisms underlying mental processes [1–3].

Similarly, psychologists and neuroscientists have used the pattern of RT in different experi-

mental conditions to infer neural processes underlying various cognitive functions. These
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include but are not limited to: visual processes [4–8], attention [7,9–12], memory [13,14], and

decision making [15–18]. Here we asked whether RT could also be used to infer how reward

values are learned and constructed in the brain.

In naturalistic settings, humans must use information about an object, such as its features

(i.e. color, taste, texture), to determine whether it is rewarding. This is because one cannot

learn the reward values for a large number of options that exist in the real world. For example,

the features of fruit in a school cafeteria line may allow students to choose between many types

of fruit available. A green, squishy pear may be compared to a red, crispy apple, based on what

one knows about these features. Individual features, however, are not always predictive of

reward; whereas a green apple may be tasty, a green banana may not. Therefore, in order for

learning to adapt to different situations, it must be adjusted to incorporate reward feedback

differently depending on the nature of the environment. Currently, extensive literature

addresses how humans exploit various heuristics to tackle real-world decision-making and

learning tasks [19–23]. We have recently shown that humans use a heuristic strategy to tackle

learning reward values in dynamic multi-dimensional environments [24]. More specifically,

rather than directly estimating the reward value of individual options based on reward feed-

back (object-based learning), subjects estimate average reward values of features and then

combine these values to estimate reward values for individual options (feature-based learning).

Importantly, these learning strategies not only require different representations of reward val-

ues and updates based on reward feedback but also involve distinct methods for construction

or comparison of reward values to make a decision.

We hypothesized that the way reward values are constructed and compared could influence

how quickly a choice between two alternative options can be made. To examine this influence,

we considered three stages involved in value-based decision making. First, objects and/or their

features need to be detected and identified in order to evoke the corresponding representations

of reward values. Second, in the case of feature-based learning, the individual values of relevant

features should be combined to construct the final value of an object. Third, the final values of

two alternative objects should be compared to make a decision [25–28].

Because the choice during a given trial depends primarily on the difference between the

reward values of the two options on that trial [25,29–33], decision making should be easier

and faster when this difference is larger. This predicts that RT should decrease with the abso-

lute value of the difference in reward values on a given trial. Moreover, if reward values of

objects are directly estimated/learned (object-based learning), retrieval of reward values only

requires identification of the two objects. In the case of feature-based learning, however, the

subject has to construct reward values of objects after retrieving their feature values and com-

bining them. This predicts longer RT when feature-based learning is adopted, indicating that

RT could reflect the dominant learning strategy on a trial-by-trial basis when both strategies

are present and compete with each other to determine choice.

To test the aforementioned predictions, here we analyzed choice and RT data during a set

of multi-dimensional learning and decision-making tasks that can promote different types of

learning strategies.

Materials and methods

Overview of experiments and approach

Human subjects performed a set of multi-dimensional learning and decision-making tasks.

During each trial, the subject selected between pairs of objects (colored shapes or patterned

shapes) that would yield reward with different probabilities (Fig 1). These probabilities could

stay the same (static environment) or unpredictably change over time (dynamic or volatile
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environment). Moreover, the relationship between reward probabilities of objects and their

features created generalizable or non-generalizable environments. In a generalizable environ-

ment, the reward probabilities assigned to different objects could be estimated from their fea-

tures based on a multiplicative rule. In contrast, in a non-generalizable environment, reward

probabilities assigned to different objects could not be accurately estimated using their fea-

tures. By fitting choice behavior with seven different models, we identified which of the two

classes of learning strategies (feature-based or object-based) was adopted by individual subjects

during each experiment. We then examined prediction of the best object-based and feature-

based models on a trial-by-trial basis in order to study how RT depended on the adopted learn-

ing strategy.

Subjects

Subjects were recruited from the student population at Dartmouth College. The exclusion crite-

rion was similar for all experiments and was defined as performance below chance level (0.5). In

total, 59 subjects were recruited (34 females) to perform one or both of Experiments 1 and 2 (33

subjects performed both experiments) in a pseudo-randomized order and on separate days. The

chance criterion for Experiments 1 and 2 was equal to performance threshold of 0.5406 (equal to

0.5 plus 2 times s.e.m., based on the average of 608 trials after excluding the first 10 trials of each

block). As a result, data from a few subjects (8 out of 51 subjects in Experiment 1 and 19 out of

Fig 1. The schematic of the multi-dimensional learning and decision-making task. (A) Timeline of a trial in

Experiments 1 and 2. On each trial, the subject chose between two objects (colored shapes) and was provided with

reward feedback (reward or no reward) on the chosen object. The insets show the set of all features (C, color; S, shape)

and objects used in Experiments 1 and 2. (B) Examples of the set of reward probabilities (indicated on each object)

assigned to the four objects in Experiments 1 and 2. The reward probabilities assigned to the four shapes changed after

every 48 trials without any cue to the subject. In the generalizable environment (Experiment 1) reward probabilities

assigned to objects were predicted by feature values. In the non-generalizable environment (Experiment 2), there was no

generalizable relationship between the reward values of individual objects and their features. (C)Reward probabilities

were assigned to nine or sixteen possible objects during Experiments 3 and 4, respectively. Objects were defined by

combinations of two features (S, shape; P, pattern), each of which could take any of three or four values in Experiments

3 and 4, respectively. The inset shows the set of shapes (top row) and patterns (bottom row) used to construct objects.

Reward probabilities were assigned such that no generalizable rule predicted the reward probabilities of all objects based

on feature values. In addition to choice trials similar to those in Experiments 1 and 2, Experiments 3 and 4 also included

estimation trials where the subject estimated the probability of reward for an individual object by pressing one of ten

keys on the keyboard.

https://doi.org/10.1371/journal.pone.0197263.g001
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41 in Experiment 2) whose performance fell below this threshold were excluded from the analy-

sis. An additional subject was excluded from Experiment 2 for submitting the same response

throughout the experiment. For Experiment 3, 36 additional subjects were recruited (20 females).

The exclusion criterion for this experiment was equal to performance threshold of 0.5447 (equal

to 0.5 plus 2 times s.e.m., based on the average of 500 trials after excluding the first 30 trials of

each session), resulting in exclusion of 9 subjects. For Experiment 4, 36 more subjects were

recruited (22 females). A similar exclusion criterion in this experiment resulted in removal of 11

subjects whose performance fell below 0.5404 (equal to 0.5 plus 2 times s.e.m., based on the aver-

age of 612 trials after excluding the first 30 trials of each session). No subject had a history of neu-

rological or psychiatric illness. Subjects were compensated with a combination of money and

“t-points,” which are extra-credit points for classes within the Dartmouth College Psychological

and Brain Sciences department. After a base rate of $10/hour or 1 t-point/hour, subjects were

additionally rewarded based on their performance (e.g., number of reward points), by up to

$10/hour.

Ethics statement

All experimental procedures were approved by the Dartmouth College Institutional Review

Board, and informed, written consent was obtained from all subjects before participating in

the experiment.

Experiments 1 and 2

In these experiments, subjects completed two sessions (each composed of 768 trials and lasting

approximately one hour) of a choice task during which they selected between a pair of objects

on each trial (Fig 1A). Subjects were asked to choose between objects that differed in color and

shape (red triangle, blue triangle, red square, blue square) and to select the object that was

more likely to provide a reward in order to maximize the total number of reward points.

During each trial, the selection of an object was rewarded independently of the reward

probability of the other object. This reward schedule was fixed for a block of trials (block

length, L = 48), after which it changed to another reward schedule without any signal to the

subject. Sixteen different reward schedules were used; eight schedules consisted of general-

izable rules for how combinations of features (color or shape) predicted objects’ reward

probabilities, and the other eight lacked generalizable rules for how combinations of fea-

tures predicted objects’ reward probabilities [24]. Therefore, the main difference between

Experiments 1 and 2 was that the environments in these experiments were composed of

reward schedules with generalizable and non-generalizable rules, respectively. Critically, as

the subjects moved between blocks of trials, reward probabilities were reversed in order to

induce volatility in reward information throughout the task. On each block of the generaliz-

able environment (Experiment 1), feature-based rules could be used to correctly predict

reward throughout the task. In the non-generalizable environment (Experiment 2), how-

ever, the reward probability assigned to each object could not be determined based on the

objects’ features (e.g. in a multiplicative fashion). More details about the reward schedules

in Experiments 1 and 2 are provided elsewhere [24].

Experiment 3

In this experiment, subjects completed two sessions, each of which included 280 choice trials

interleaved with five or eight short blocks of estimation trials (each estimation block with eight

trials). Subjects were asked to choose the more rewarding of two objects during each trial of the

choice task. These objects were drawn from a set of eight objects constructed using combinations
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of three distinct patterns and three distinct shapes (Fig 1C). The two objects presented during

each trial always differed in both pattern and shape. Other aspects of the choice task were similar

to those in Experiments 1 and 2, except that reward feedback was given for both objects rather

than just the chosen object in order to accelerate learning. Subjects then provided estimates of

each object’s reward during estimation trials. Possible values for these estimates ranged from 5%

to 95% in 10% increments. All subjects completed five blocks of estimation trials throughout the

task (after trials 42, 84, 140, 210, and 280 of the choice task), and some subjects had three addi-

tional blocks of estimation trials (after trials 21, 63, and 252) to better assess changes in estima-

tions over time. Each session of the experiment was approximately 45 minutes in length, with a

break between sessions. The second session was similar to the first, but with different sets of

shapes and patterns.

Selection of a given object was rewarded (independently of the other object on a given trial)

based on a reward schedule with a moderate level of generalizability such that only some

objects’ reward probabilities could be determined based on their feature values. In Experiment

3, one feature (shape or pattern) was informative about reward probability, while the other fea-

ture was not. Although the informative feature was predictive of reward on average, this pre-

diction was not generalizable to all individual objects. Additionally, the non-informative

feature did not follow any generalizable rule. That is, the average reward probability across

objects with a similar feature value was equal to 0.5 (e.g. shapes S1 to S3 in Fig 1C). This reward

schedule ensured that subjects could not use a generalizable feature-based rule to accurately

predict reward probability for all objects. Similarly to Experiments 1 and 2, the informative

feature was randomly assigned and counter-balanced across subjects to minimize the effects of

intrinsic pattern or shape biases. More details about the reward schedules are provided else-

where [24].

Experiment 4

This experiment was similar to Experiment 3, except that each feature could take on one of

four values for each feature dimension (i.e. there were four shapes and four patterns), resulting

in an environment with higher dimensionality. Each subject completed two sessions of 336

choice trials interleaved with five or eight short blocks of estimation trials (each block with

eight trials). The objects in this experiment were drawn from a set of twelve objects, which

were combinations of four distinct patterns and four distinct shapes. The probabilities of

reward for different objects (the reward matrix) were set such that there was one informative

feature and one non-informative feature, just as in Experiment 3 (Fig 1C). Minimum and max-

imum average reward values for features were similar for Experiments 3 and 4.

Model fitting

To capture subjects’ learning and choice behavior, we used seven different reinforcement

learning (RL) models based on object-based or feature-based learning, which rely on different

assumptions about how reward values are represented and updated (see below). These models

were fit to experimental data by minimizing the negative log likelihood of the predicted choice

probability given different model parameters using the ‘fminsearch’ function in MATLAB

(MathWorks, Inc., Natick, MA). Three measures of goodness-of-fit were used to determine

the best model to account for the behavior in each experiment: average negative log likelihood

(-LL), Akaike information criterion (AIC), and Bayesian information criterion (BIC).
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Object-based RL models

This group of models, based on standard RL, directly estimated reward value of each object

based on feedback from previous trials. The uncoupled object-based RL model updated only

the reward value of the chosen object using separate learning rates for rewarded and unre-

warded trials as follows:

VchoOðt þ 1Þ ¼ VchoOðtÞ þ ðdðrðtÞ � 1Þarew þ dðrðtÞÞaunrÞðrðtÞ � VchoOðtÞÞ ðEq1Þ

where t represents the trial number, VchoO is the estimated reward value of the chosen object,

rðtÞ is the trial outcome (1 for rewarded, 0 for unrewarded), and arew and aunr are the learning

rates for rewarded and unrewarded trials, respectively, and d is the Dirac delta function

(d xð Þ ¼ 1, if x ¼ 0, and 0 otherwise).

The coupled object-based RL model, on the other hand, updated reward values of both the

chosen and unchosen object on each trial in opposite directions. The value of the chosen object

was updated with Eq 1, whereas that of the unchosen object was updated as if the reward values

were anti-correlated:

VuncOðt þ 1Þ ¼ VuncOðtÞ þ ðdðrðtÞ � 1Þarew þ dðrðtÞÞaunrÞðrðtÞ � VuncOðtÞÞ ðEq2Þ

where VuncO represents the estimated reward value of the unchosen object.

Given the estimated value functions for each object, the probabilities of choosing one of the

objects (O1 and O2) were determined using the following equation:

logitPO1ðtÞ ¼ ðVO1ðtÞ � VO2ðtÞÞ=s þ bias ðEq3Þ

where PO1 is the probability of choosing object 1, VO1 and VO2 are the reward values of the

objects presented to the left and right, respectively, bias measures a response bias toward the

left option in order to capture the subject’s location bias, and s is a parameter measuring the

level of stochasticity in the decision process.

Feature-based RL models

The feature-based RL models utilized the combined reward values of an object’s features to

estimate the reward value of an object. Feature reward values were modeled with standard RL,

updated similarly to those for the object-based RL model, but where the reward value of the

chosen (unchosen) object was instead the chosen (unchosen) feature. For Experiments 1 and 2

in which the alternative objects could have a feature in common (e.g. both were squares), this

model resulted in the poorest fit when the reward values of both features of the chosen object

were updated. As a result, in the models presented here, we only updated the reward value of

the unique feature when there was a shared feature.

Similarly to the object-based RL models, the probability of choosing a shape was modeled

with a logistic function:

logitPO1ðtÞ ¼ wshapeðVshapeO1ðtÞ � VshapeO2ðtÞÞ þ wcolorðVcolorO1ðtÞ � VcolorO2ðtÞÞ þ bias ðEq4Þ

where VshapeO1ðVcolorO1Þ and VshapeO2ðVcolorO2Þ are the reward values associated with the shape

(color) of left and right objects, respectively, bias measures a response bias toward the left

option, and wshape and wcolor determine the influence of the two features on the final choice.

RL models with decay

We also modeled the ‘forgetting’ of reward values, when a given object or feature was not pre-

sented or chosen on a given trial, by decaying corresponding reward values in the uncoupled
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models. More specifically, we assumed that reward values of all objects or features that were

not presented or chosen decayed to 0.5 (chance or equal information about reward or no

reward) with a rate of d:

Vðt þ 1Þ ¼ VðtÞ � d � ðVðtÞ � 0:5Þ ðEq5Þ

where t is the trial number and V is estimated reward probability of an object or a feature. For-

getting of reward values was implemented through decaying toward 0.5 because forgetting

implies that information about an object or feature should go to zero (i.e. maximal entropy),

which corresponds to V = 0.5.

Analysis of response time

For most analyses, response time (RT) was normalized (z-scored) by first subtracting the mean

RT of a given subject from their RT values and then dividing the outcome by the standard

deviation of RT for that subject. This normalization allowed us to directly compare data from

all subjects. In addition to RT, we also z-scored all independent variables in order to obtain the

standardized regression coefficients directly. Standardized regression coefficients quantify the

relative influence of predictors measured on different scales. Unlike z-scoring, a constant term

in the generalized linear model (GLM) cannot address different ranges of RT for different sub-

jects (variability relative to mean RT), which could result in subjects with more variable RT

influencing the results more strongly. Because RTs were z-scored for individual subjects, we

did not include an intercept in the GLM. We removed trials with RT less than 50 msec and

more than 5 sec since they correspond to choices with no deliberation and when the subject

was distracted, respectively.

We used several GLMs with the following regressors (all z-scored) to predict the normal-

ized RT on each trial: 1) the difference between the actual or estimated (using the model that

provides the best fit of choice data) reward probabilities of the two objects presented on a

given trial; 2) the trial number within a block; 3) reward outcome on the preceding trial; and

4) a ‘model-adoption’ index comparing the prediction of the best feature-based and object-

based models on a given trial. The model-adoption index was defined as the difference

between the goodness-of-fit by the best feature-based and object-based models using BIC per

trial (BICp) defined as:

BICp ¼ � 2 � Log likelihood þ 2k � logðNtrialsÞ=Ntrials ðEq6Þ

where k indicates the number of parameters in a given model. The best object-based and

feature-based models were determined based on the BIC for each subject in a given experi-

ment. We note that even though we used BIC for these analyses, similar results were obtained

with AIC. Thus the model-adoption index determines the degree to which feature-based or

object-based models predicted choice behavior in a given trial more accurately for an individ-

ual subject (positive values correspond to a better prediction by the object-based model).

To further investigate the relationship between RT and the adopted model on a given trial,

we grouped trials into object-based, feature-based, and equivocal trials depending on which

model provided a better fit (based on BICp) and whether the absolute value of model-adoption

index was larger than a threshold. More specifically, equivocal trials were defined as trials in

which the absolute value of the model-adoption index was less than 0.1. This resulted in

assigning approximately 39, 39, and 22 percent of trials as object-based, feature-based, and

equivocal, respectively (over all experiments). The percentages of trials assigned to these three

types in a given experiment were compatible with the overall learning strategy used in that

experiment (S1 Table).
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We also calculated the relationship between RT and the adopted model in BIC-matched tri-

als. More specifically, for each subject we first picked object-based and feature-based trials for

which BICs were between the largest minimum and smallest maximum BIC of object-based

and feature-based trials. We then sorted these trials based on their BIC values and computed

the mean BIC for each set of trials, and then one by one removed the largest BIC trials from

the group with the larger mean BIC, and the smallest BIC trials from the group with the

smaller mean BIC. This procedure was repeated until the two means of the BIC values from

the two sets of trials were as close to each other as possible. We then calculated the average nor-

malized RT for these two sets of trials.

To test whether there was any effect of previous participation on RT for subjects who per-

formed both Experiments 1 and 2, we also added ‘previous participation’ as a regressor (equal

to 0 and 1 if the current experiment was the first and second experiment, respectively) to our

GLMs for fitting RT during these experiments.

Results

To examine how RT depends on the construction and comparison of reward values, we used

various reinforcement learning models to determine whether object-based or feature-based

learning was adopted by individual subjects in a given experiment. For each model, we com-

puted Bayesian information criterion (BIC) as the measure of goodness-of-fit in order to deter-

mine the best overall model to account for the behavior in each experiment (Table 1). Other

measures of goodness of fit such as -log likelihood (-LL), and Akaike information criterion

(AIC) also revealed similar results as shown in S1 Fig. The smaller value for each measure indi-

cates a better fit of choice behavior.

This analysis showed that in Experiment 1 (dynamic generalizable environment), the fea-

ture-based models provided better fits than the object-based models, indicating that subjects

adopted feature-based learning more often in this experiment. In contrast, subjects more fre-

quently adopted object-based learning in Experiment 2 (dynamic non-generalizable environ-

ment). In Experiment 3 (static and non-generalizable environment), subjects more frequently

adopted object-based learning. An examination of fits and the pattern of estimations over time

revealed that in this experiment, subjects adopted feature-based learning first before slowly

switching to object-based learning [24]. In contrast, in Experiment 4 (static non-generalizable

environment), which involved a larger number of objects and slightly larger generalizability

than Experiment 3, subjects more frequently adopted feature-based learning and did not

switch to object-based learning.

Altogether, the analysis of subjects’ choice behavior demonstrates that subjects adopted dif-

ferent learning strategies depending on the structure of reward in each environment. As men-

tioned above, each of these learning strategies requires a different method for the construction

and/or comparison of reward value. Object-based learning relies on directly representing and

Table 1. The average values of the Bayesian information criterion (BIC) based on three feature-based RLs and their object-based counterparts, separately for each

of four experiments. Reported are the average values of BIC over all subjects (mean±s.e.m.) and p-values for comparisons of BIC values between each model and its

object-based or feature-based counterparts (two-sided Wilcoxon signed-rank test). The overall best model (feature-based or object-based with decay) and its object-based

or feature-based counterpart are highlighted in cyan and brown, respectively.

Model Coupled feature-based Uncoupled feature-based Feature-based with decay Coupled object-based Uncoupled object-based Object-based with decay

# pars. 5 5 6 4 4 5

Exp. 1 903.7±23.1 (p = 0.002) 950.3±17.8 (p = 10−16) 908.8±21.9 (p = 5�10−4) 930.1±17.9 974.7±14.8 934.6±17.4

Exp. 2 989.7±15.4 1019.7±10.6 994.3±15.2 959.3±15.7 (p = 0.054) 1016.1±10.9 (p = 0.64) 957.9±15.6 (p = 0.013)

Exp. 3 687.9±9.6 705.6±10.9 684.6±11.2 685.3±13.9 (p = 0.81) 688.5±11.3 (p = 0.26) 613.3±15.7 (p = 10−16)

Exp. 4 787.8±13.1 (p = 10−16) 789.6±13.7 (p = 2�10−4) 712.3±18.1 (p = 0.017) 844.6±8.3 845.3±7.8 734.4±13.7

https://doi.org/10.1371/journal.pone.0197263.t001
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updating the rewards of individual options. In contrast, feature-based learning requires repre-

senting and updating the average reward values of all features, and then combining these val-

ues to estimate the reward values for individual options. To test whether the learning strategy

influenced RT, we next examined the pattern of RT in our four experiments.

The average RTs across all subjects (using median RT of all trials for each subject) were

equal to 0.78±0.04s, 0.85±0.05s, 1.04±0.05s, and 1.01±0.03s for Experiments 1 to 4, respec-

tively. A longer RT for Experiments 3 and 4 could be attributed to a larger number of objects

in those experiments (8 and 12, respectively, in Experiments 3 and 4, rather than 4 in Experi-

ments 1 and 2). Experiments 1 and 2 were identical except for the way in which reward proba-

bilities were assigned to the four objects, resulting in generalizable and non-generalizable

environments. Because of the non-generalizable reward schedules in Experiment 2, this exper-

iment was more difficult to perform than Experiment 1. This was reflected in lower average

performance (harvested reward) (Wilcoxon rank-sum test, p< 0.001; the average performance

for Experiments 1 and 2 were equal to 0.564±0.004 and 0.544±0.003, respectively) and a larger

number of subjects whose performance did not differ from chance in Experiment 2 relative to

Experiment 1 (Pearson’s chi-square test, P = .0014; 8 of 51 in Experiment 1, and 19 of 41 in

Experiment 2).

Despite the fact that Experiment 2 was more difficult, the average RT across all subjects in

Experiment 2 was not statistically different from that in Experiment 1 (Wilcoxon rank-sum

test, P = 0.2). This observation can be explained by noting that subjects adopted object-based

learning in Experiment 2 more often than in Experiment 1 (74% vs. 38% in Experiments 2 and

1, respectively), and the average RT for subjects who adopted object-based learning was

smaller than that for subjects who adopted feature-based learning in both experiments (two-

sided Wilcoxon rank-sum test, Experiment 1: P = 0.01, Experiment 2: P = 0.04). More specifi-

cally, the average median RTs for subjects who adopted object-based and feature-based learn-

ing in Experiment 1 were equal to 0.71±0.06s and 0.85±0.05s, respectively. The average

median RTs for subjects who adopted object-based and feature-based learning in Experiment

2 were equal to 0.79±0.07s and 0.88±0.07s, respectively. These results provide preliminary evi-

dence supporting our hypothesis that construction and comparison of reward value is faster

when the object-based strategy is adopted.

Given these results, we next utilized generalized linear models (GLMs) to examine the influ-

ence of several factors on the pattern of RT in each experiment. These included the absolute

value of the difference in the actual or estimated probability of reward on the two objects pre-

sented on a given trial (absolute difference in reward probability), the trial number within a

given experiment, reward outcome on the preceding trial, and the model-adoption index

(equal to BICp (Ft)–BICp (Obj); see Methods). We used normalized RT (z-scored for each sub-

ject) in order to analyze data from all subjects together.

The results of the GLM fits revealed several important aspects of RT in our experiments

(Table 2). First, subjects became faster over time in all experiments by an average of 300-

400ms at the end relative to the beginning of the experiments (Fig 2). Moreover, in Experi-

ments 1 and 2, in which there was a reversal in reward probabilities after every block of 48 tri-

als (dynamic environments), RT increased at the beginning of each block and then decreased

as subjects learned the reward probabilities associated with the four objects in each block (Fig

3). This resulted in average of 20ms and 40ms decrease in RT over the course of each block in

Experiments 1 and 2, respectively.

Second, we found that the absolute difference in the actual or estimated reward probabili-

ties negatively affected RT such that RT was maximal when this difference was close to zero

(Table 2; Figs 4 and 5). Importantly, the absolute difference in estimated reward probabilities

(based on the fit of choice behavior of each subject) was a better predictor than the absolute
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difference in the actual reward probabilities (compare R2 based on the GLMs in panels A and

B of Table 2). The absolute difference in the estimated reward probabilities resulted in about

120ms change in RT (Fig 5). Third, the reward outcome on the previous trial also led to shorter

RT after rewarded trials compared to after unrewarded trials. Overall, RT on trials following

rewarded trials was shorter than RT following unrewarded trials by 33±12ms, 50±24ms, 50

±11ms, and 16±13ms in Experiments 1 to 4, respectively, indicating that subjects spent more

time making a choice following unrewarded trials.

Previously, it has been shown that the modulation of RT by reward on the preceding trial

depends on whether or not the rewarding feature of the target stayed the same between the

two trials [34]. Therefore, we also examined whether the effect of reward on the following trial

depends on the presence of the previously selected object. To do so, we fit RT data with a new

Table 2. Factors influencing RT. We used two sets of GLMs to predict the normalized RT as a function of the absolute difference in the actual (A) or estimated (B) proba-

bility of reward on the two objects presented on a given trial (absolute difference in actual/subjective reward probability), the trial number within a block of the experiment,

the difference between BIC per trial (BICp) based on the best feature-based and object-based models (i.e., model-adoption index) for a given subject, and the reward out-

come on the preceding trial. Reported values are the normalized regression coefficients (±s.e.m.), p-values for each coefficient (two-sided t-test), and adjusted R-squared

for each experiment. No interaction term was statistically significant and thus, interactions terms are not reported here.

A

Regressor Abs. difference in actual reward prob. Trial number BICp (Ft)–BICp (Obj) Reward outcome on prev. trial R2

Exp. 1 -0.05±0.005 (p = 10−16) -0.15±0.006 (p = 10−16) -0.02±0.005 (p = 4.7�10−6) -0.03±0.006 (p = 1.9�10−6) 0.027

Exp. 2 -0.07±0.008 (p = 10−16) -0.11±0.008 (p = 10−16) -0.02±0.008 (p = 0.003) -0.04±0.008(p = 10−16) 0.020

Exp. 3 -0.06±-0.008 (p = 10−12) -0.16±0.008 (p = 10−16) -0.03±0.008 (p = 0.004) -0.05±0.008 (p = 1.9�10−7) 0.031

Exp. 4 -0.04±-0.007 (p = 10−16) -0.23±0.007 (p = 10−16) -0.01±0.007 (p = 0.01) -0.03±0.007 (p = 7.8�10−4) 0.057

B

Regressor Abs. difference in subjective reward prob. Trial number BICp (Ft)–BICp (Obj) Reward outcome on prev. trial R2

Exp. 1 -0.13±0.006 (p = 10−16) -0.16±0.005 (p = 10−16) -0.02±0.005 (p = 4.4�10−4) -0.05±0.006 (p = 10−16) 0.041

Exp. 2 -0.13±0.008 (p = 10−16) -0.12±0.008 (p = 10−16) -0.03±0.008 (p = 4.6�10−5) -0.07±0.008 (p = 10−16) 0.031

Exp. 3 -0.21±-0.008 (p = 10−16) -0.14±0.008 (p = 10−16) -0.06±0.008 (p = 0.005) -0.04±0.008 (p = 1.4�10−9) 0.073

Exp. 4 -0.18±-0.007 (p = 10−16) -0.21±0.007 (p = 10−16) -0.01±0.007 (p = 0.03) -0.03±0.007 (p = 1.6�10−5) 0.089

https://doi.org/10.1371/journal.pone.0197263.t002

Fig 2. Subjects made decisions more quickly as they progressed through the experiments and during trials when

they used the object-based rather than the feature-based model. (A-D) Plotted is the average z-scored RT (across all

subjects) as a function of the trial number within a session of an experiment separately for trials in which the object-

based or feature-based model was used. Panels (A-D) correspond to Experiments 1 to 4, respectively, and shaded areas

indicate s.e.m. The gray dotted line shows the time point during a session (in terms of trial number) at which the

experiment was paused for a short rest. In Experiments 3 and 4, a different set of objects was introduced at this point.

(E-H) The same as in (A-D) but showing the average actual RT across all subjects. Overall, subjects made decisions

300-400ms faster at the end relative to the beginning of the experiments. Nevertheless, they were consistently faster on

trials when they adopted an object-based rather than feature-based strategy.

https://doi.org/10.1371/journal.pone.0197263.g002
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GLM with additional terms: 1) whether the object selected on the previous trial was present or

not (previously selected present), and 2) the interactions between reward outcome on the pre-

vious trial and previously selected object being present/absent. The results of this GLM not

only revealed that presentation of an object selected on the previous trial reduced RT but also

Fig 3. Subjects made decisions more quickly as they progressed through the trials within each block of

Experiments 1 and 2. Plotted is the average z-scored RT (across all subjects) as a function of the trial number within a

session of Experiment 1 (A) and Experiment 2 (B). Shaded areas indicate s.e.m. (C-D) The same as in (A-B) but

showing the average actual RT over all subjects after removing the median RT from each individuals’ RT distribution.

https://doi.org/10.1371/journal.pone.0197263.g003

Fig 4. Subjects were faster on trials in which the difference between the actual reward probabilities of the

competing objects deviated more from zero. (A-D) Panels A-D correspond to Experiments 1 to 4, respectively, and

the error bars indicate s.e.m. (E-H) The same as in A-D but showing the average actual RT (median removed) over all

subjects. Overall, the difference in actual reward probabilities of the two alternative objects resulted in up to ~100 ms

increase in RT when reward probabilities were close to each other relative to when they were very different.

https://doi.org/10.1371/journal.pone.0197263.g004
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showed a strong interaction between this effect and reward outcome on the previous trial

(Table 3). Therefore, we next computed the average RT in four sets of trials depending on

whether the preceding trial was rewarded or not and whether the option selected on the previ-

ous trial was present or absent.

Interestingly, we found that subjects were faster following rewarded than unrewarded trials

when the object presented on the preceding trial was not present, and this was true for all

experiments (Fig 6). In contrast, when the previously selected object was present, subjects were

faster following unrewarded trials (see S2 Table for detailed statistics). Overall, there was a

larger proportion of trials in which the previously selected object was absent rather than pres-

ent, resulting in an overall faster RT for rewarded than unrewarded trials. However, subjects

were faster when the previously selected object was present rather than absent, but only after

unrewarded trials. Therefore, we also found differential effects of previous reward on RT

depending on the presence or absence of the object selected on the preceding trial, similarly to

previous experiments.

Finally, we found that the model-adoption index (equal to BICp (Ft)–BICp (Obj), measuring

the degree to which the object-based model provides a better fit than the feature-based model

on a given trial) had a negative effect on RT (Table 2). This illustrates that subjects were faster

Fig 5. Subjects were faster on trials in which the difference between the estimated reward probabilities of the

competing objects deviated more from zero. (A-D) Panels A-D correspond to Experiments 1 to 4, respectively, and

the error bars indicate s.e.m. (E-H) The same as in A-D but showing the average actual RT (median removed) over all

subjects. Overall, the difference in estimated reward probabilities of the two alternative objects resulted in up to ~150

ms increase in RT when reward probabilities were close to each other relative to when they were very different.

https://doi.org/10.1371/journal.pone.0197263.g005

Table 3. Predicting RT with a GLM that also includes whether the object selected on the preceding trial was present or absent. We used a GLM to predict the normal-

ized RT as a function of the absolute difference in the estimated (subjective) probability of reward of the two objects presented on a given trial, the trial number within a

block of the experiment, the difference between BIC per trial (BICp) based on the best feature-based and object-based models for a given subject, the reward outcome on

the previous trial, presence of an object that was selected on the previous trial (prev. selected present), and the interaction of the last two predictors. Reported values are the

normalized regression coefficients (±s.e.m.), p-values for each coefficient (two-sided t-test), and adjusted R-squared for each experiment.

Regressor Abs. difference in

subjective reward prob.

Trial number BICp (Ft)–BICp

(Obj)

Reward outcome on

prev. trial

Prev. selected

present

Reward outcome on prev. trial x

prev. selected present

R2

Exp. 1 -0.12±0.006 (p = 10−16) -0.16±0.005

(p = 10−16)

-0.02±0.005

(p = 10−5)

-0.05±0.005

(p = 10−16)

-0.05±0.005

(p = 10−16)

-0.05±0.006 (p = 10−16) 0.045

Exp. 2 -0.13±0.008 (p = 10−16) -0.12±0.008

(p = 10−16)

-0.03±0.008

(p = 10−5)

-0.06±0.008

(p = 10−16)

-0.05±0.008

(p = 4.3�10−9)

-0.07±0.008 (p = 10−16) 0.037

Exp. 3 -0.21±-0.008 (p = 10−16) -0.13±0.008

(p = 10−16)

-0.06±0.008

(p = 0.005)

-0.05±0.008

(p = 10−9)

-0.05±0.008

(p = 6.6�10−9)

-0.03±0.008 (p = 10−4) 0.074

Exp. 4 -0.18±-0.007 (p = 10−16) -0.20±0.007

(p = 10−16)

-0.01±0.007

(p = 0.03)

-0.03±0.007

(p = 10−5)

-0.02±0.007

(p = 2�10−4)

-0.02±0.007 (p = 0.002) 0.089

https://doi.org/10.1371/journal.pone.0197263.t003
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on trials in which the object-based model provided a better fit (i.e., when they adopted object-

based learning). To further investigate this relationship, we computed RT for object-based, fea-

ture-based, and equivocal trials (trials where the adopted model was ambiguous; see Methods).

This analysis illustrated that subjects were faster by about 40ms when they adopted an object-

based compared to a feature-based model (Fig 7A–7B; Table 3). Moreover, RT was fastest on

equivocal trials. At the same time, however, the minimum BIC based on the two best models

on each trial, a measure of the best prediction by either model, was the largest for equivocal tri-

als (Fig 7C; Table 4). These indicate that subjects were slightly faster on equivocal trials, per-

haps because on those trials they made decisions more randomly as suggested by the reduced

quality of fit. To address the concern that faster RT on object-based trials could also be due to

more random choice behavior on those trials, we calculated the average normalized RT on fea-

ture-based and object-based trials after matching the BIC values (see Methods). We found that

even on the BIC-matched trials (i.e. trials with similar quality of fit) subjects were still faster

when they adopted the object-based learning compared to when they adopted feature-based

learning (one-sided ranksum test, p = 0.03, using data from all four experiments; Fig 7D).

Therefore, even though the quality of fit was in general worse for object-based trials, faster RT

on these trials was not due to more random behavior on those trials. Overall, these results illus-

trate that RT is influenced by the learning strategy adopted by subjects on a trial-by-trial basis.

Because subjects also became faster over time, a shorter RT on trials when the object-based

strategy was adopted could be exaggerated by a gradual shift from using feature-based to

object-based strategy and shorter RT as each experiment progressed (especially in Experiment

3 in which this shift was prominent). To test this possibility, we also fit RT using a GLM model

that included all interaction terms between the four predictors in Table 2. None of these

Fig 6. The average (across subjects) normalized RT for different types of trials depending on the presence or

absence of previously selected object and rewarded or unrewarded outcome. RT was mainly modulated by the

presence or absence of the previously selected object when the previous trial was not rewarded.

https://doi.org/10.1371/journal.pone.0197263.g006

Fig 7. The RT depended on the model adopted by individual subjects on a trial-by-trial basis. (A) Plotted is the

average (across subjects) normalized RT for three types of trials. The error bars indicate s.e.m. Subjects made decisions

faster during trials where the object-based model was used than when the feature-based model was used. In some

experiments, subjects were even faster on equivocal trials (when the better model was ambiguous). (B) The same as in

(A) but showing the average actual RT over all subjects after removing the median RT from each individual RT

distribution. (C) Plotted is the average (across subjects) of minimum BIC for each group of trials after removing the

average minimum BIC over all trials for each subject. Subjects’ choice behavior was hardest to fit on equivocal trials

indicating that they made choices more stochastically on those trials. (D) Plotted is the average (across subjects)

normalized RT on BIC-matched object-based and feature-based trials. Similarly to the result obtained with all trials, on

BIC-matched trials, subjects made decisions faster during trials when they adopted the object-based rather than

feature-based strategy.

https://doi.org/10.1371/journal.pone.0197263.g007
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interactions and especially the interaction between trial number and model-adoption index

(measured by the difference in BICp values) were statistically significant (p> .05). We also cal-

culated the average RT over the course of the experiment across all subjects separately for trials

in which object-based or feature-based strategy was adopted (Fig 2). We found a consistently

shorter RT on object-based trials during the entire course of each experiment. Taken together,

these results suggest that the overall faster RT on object-based trials was not caused by a com-

bination of a shift to object-based learning and faster decision making as subjects progressed

through each experiment.

Because a large number of subjects performed in both Experiments 1 and 2, we also tested

the effect of previous participation on RT in a given experiment (see Methods). This analysis

did not reveal any effects of previous participation on RT. We also used a GLM to predict the

average value of the difference in the goodness-of-fit (<BICp(Ft)–BICp(Obj)>) based on the

current experiment (1 or 2), previous participation, and their interactions (capturing the order

of experiments). The result of this GLM did not reveal any effect of previous participation or

the order of experiments on the learning strategy.

Finally, to ensure that exclusion criterion did not bias our results in a certain way, we ana-

lyzed RT of excluded subjects using the same models and methods used for included subjects.

We found higher BIC values for excluded compared to included subjects, suggesting that on

average, choice behavior was more difficult to fit for removed subjects (S3 Table). More impor-

tantly, we found that the overall best model based on object-based or feature-based strategy

(models with decay) did not provide a significantly better fit than the counterpart model for

excluded subjects. This indicates that the adopted model could not be detected well in

excluded subjects. Nevertheless, we also analyzed RT data from excluded subjects in all four

experiments using the same GLM used for included subjects (S4 Table). This analysis revealed

that the dependence of RT on the four regressors was similar for included and excluded sub-

jects during Experiments 2 and 4 (experiments with largest percentages of excluded subjects),

although the effect of the difference in BICp was not significant for Experiment 4. The signs of

all other regressors with a significant effect on RT were similar for excluded and included sub-

jects. Altogether, these results demonstrate that excluded subjects likely did not engage in the

experiment or use any certain strategy. More importantly, our exclusion criterion did not lead

to removal of meaningful information nor did it bias our conclusion.

Table 4. Comparisons of RT and minimum BIC during different types of trials. Reported are the p-values (two-sided signed-rank test) for comparisons of the average

RT, average normalized RT, and minimum BIC between a given pair of trials (object-based, feature-based, and equivocal trials) across subjects depicted in Fig 7A–7C.

Object-based vs. equivocal Object-based vs. Feature-based Feature-based vs. equivocal

Exp. 1 0.0023 0.0039 0.0001 average RT (ms)

Exp. 2 0.0024 0.2305 0.0051

Exp. 3 0.6139 0.0046 0.0003

Exp. 4 0.0578 0.0480 0.0009

Exp. 1 0.0045 0.0030 0.0001 average norm. RT

Exp. 2 0.0026 0.2443 0.0064

Exp. 3 0.5806 0.0062 0.0003

Exp. 4 0.0653 0.0544 0.0010

Exp. 1 0.0036 0.0001 0.1231 minimum BIC

Exp. 2 0.0001 0.0001 0.0765

Exp. 3 0.5615 0.0001 0.0001

Exp. 4 0.0002 0.0001 0.0032

https://doi.org/10.1371/journal.pone.0197263.t004
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Discussion

We investigated the pattern of RT during a set of a multi-dimensional learning and decision-

making tasks in order to provide insights into neural mechanisms underlying the construction

and comparison of reward values. Specifically, we tested whether the type of learning strategies

adopted by the subjects and the underlying reward value representation were reflected in the

pattern of RT during binary choice. We found a decrease in RT over the course of experiments

and after rewarded trials. Moreover, RT was strongly modulated by the difference in the value

of reward probabilities assigned to the two alternative objects on a given trial such that it was

maximal when the absolute value of the difference in the actual or estimated reward probabili-

ties was minimal. As expected, this effect was stronger for estimated than for actual reward

probabilities. More importantly, the model adopted by the subject on a trial-by-trial basis

influenced RT such that subjects were faster when they made a choice using the object-based

rather than the feature-based strategy. These results confirm our hypotheses that at least two

stages of value-based decision making, construction of reward value for each option and value

comparison between pairs of options, are influenced by the learning strategy adopted by the

subject. A crucial aspect of our experiments, which allowed us to study the influence of value

construction on RT, is the rich multi-dimensional task in which multiple learning strategies

coexist and interact to determine choice.

The subjects in our experiments could perform the task as a search (i.e. foraging) for more

rewarding objects or features on each trial (especially during Experiments 3 and 4 with a large

set of objects). Therefore, our results could be relevant to visual search and object identification

based on reward values [35]. We found that RT for selection between two options increased as

the subjective values of the two options became more similar. If we consider selection between

the two objects on a given trial as a search for a more rewarding object (target), our observation

dovetails with the finding in visual search that more visual similarity between the target and dis-

tractor increases RT [5]. Interestingly, there are a number of studies in which the visual search

has been manipulated by differential reward assignment on targets or distractors [34,36–38].

Overall, those studies have demonstrated that task-irrelevant distractors previously associated

with larger rewards can slow down target detection [36,37], and this reduction in performance

has been attributed to attentional capture by the rewarding feature. Interestingly, in an experi-

ment in which different reward magnitudes (large and small) were randomly delivered on cor-

rect trials, the magnitude of reward differentially modulated RT on the following trial

depending on whether the rewarding feature of the target stayed the same or not between the

two trials [34]. If the feature stayed the same, subjects were faster after high-reward trials relative

to low-reward trials. In contrast, if the feature switched, subjects were slower after high-reward

trials relative to low-reward trials.

Our results also could be linked to the distance effect in numerical cognition where the

reaction time for discriminating two numbers decreases as the difference between the two

numbers increases [39,40]. Interestingly, the distance effect seems to be influenced more

strongly by response-related processes than overlap between the representations of numbers

[41]. The response time in our experiments, however, is influenced by both the difference

between the estimated values of competing objects on each trial (value comparison) and how

their values are constructed (representation of value).

The feature-based learning provides a heuristic for learning and choice in dynamic, multi-

dimensional environments. Importantly, heuristic feature-based learning not only reduces

dimensionality but also increases adaptability without compromising precision [24]. Here, we

showed that subjects were faster when they made a choice using the object-based rather than

the feature-based model. Based on these results, we predict that there will be a larger difference
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in RT when feature-based versus object-based strategy is adopted for more high-dimensional

options. However, RT using the feature-based strategy could be dramatically reduced for high-

dimensional options if the comparison between the two options is limited to dissimilar fea-

tures only, allowing the feature-based learning to be a “fast and frugal” heuristic [20]. The

dependence of RT on the subject’s adopted model of the environment also implies that the

adopted model should be estimated and considered when interpreting the top-down effects

during conventional or foraging visual search tasks [35] (see [42] for a review of top-down

effects).

Finally, with regard to how value comparison contributes to RT during decision making,

we found that the difference in the probability of reward assigned to the two targets presented

on each trial predicted RT, similarly to our previous observation [43]. There is growing interest

in economics to use RT in order to infer a decision maker’s preference beyond what can be

revealed only by choice [18,44,45]. For example, based on the observation that RT increases as

the subjective values of options become closer to each other in a binary choice, Konovalov and

Krajbich [46] have suggested that RT could be used to detect the indifference point. In another

work, Clithero [44] has suggested that RT can be used along with choice to improve out-of-

sample predictions. Our results suggest that even the adopted model could be predicted based

on RT on a given trial. It would be interesting to test in the future whether RT can be used to

improve the fit of choice behavior. However, as we showed here, RT monotonically decreases

over time even during continuous learning, indicating that precautions must be taken if RT is

used as a measure of the indifference point in such situations.

Altogether, by examining behavior during a set of complex, multi-dimensional learning

and decision-making tasks, we show that the pattern of RT can be used to investigate different

stages of value-based leaning and decision making, and more specifically, how reward value is

constructed and compared on a single trial.
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S1 Fig. Comparison of the goodness-of-fit measures in all experiments. Panels (A-C) plot

the goodness-of-fit measures in terms of the, negative log likelihood (-LL), Akaike information

criterion (AIC), and Bayesian information criterion (BIC), respectively. The goodness-of-fit
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