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ABSTRACT
The complete three-dimensional structure of the magnetic field within molecular clouds has
eluded determination despite its high value in determining controlling factors in the star
formation process, as it cannot be directly probed observationally. Considering that inclination
of the magnetic field relative to the plane of sky is one of the major sources of depolarization
of thermal emission from dust in molecular clouds, we propose here a new method to estimate
the inclination angle of the cloud-scale magnetic field based on the statistical properties of the
observed polarization fraction. We test this method using a series of Monte Carlo experiments
and find that the method works well, provided that deviations of magnetic field direction from
the averaged values are small. When applied to synthetic observations of numerical simulations
of star-forming clouds, our method gives fairly accurate measurements of the mean magnetic
field inclination angle (within 10◦–25◦), which can further be improved if we restrict our
technique to regions of low dispersion in polarization angles S . We tested our method on the
BLASTPol polarimetric observations of the Vela C molecular cloud complex, which suggests
that the magnetic field of Vela C has a high inclination angle (∼60◦), consistent with previous
analyses.
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1 IN T RO D U C T I O N

Magnetic fields have long been known to play a vital role in the
formation and evolution of molecular clouds (MCs), and their
subsequent star formation (Mestel & Spitzer 1956; Mouschovias
1991; McKee & Ostriker 2007). In MCs, multiscale supersonic
flows intermittently compress material to initiate creation of a
filamentary network that can be observed in both gas and dust
emission (André et al. 2014). Prestellar cores arise from these
turbulence-generated overdensities, and can collapse gravitationally
to create protostellar systems and later become stars (Shu, Adams &
Lizano 1987). Magnetic effects are considered to be one of the key
agents affecting the dynamics of the star-forming process in MCs,
in combination with turbulence and gas gravity, at all physical
scales and throughout different evolutionary stages (McKee &
Ostriker 2007). Therefore, understanding the specific roles played
by magnetic fields over a range of scales is a crucial and strongly
debated topic in studies of star formation.

� E-mail: cc6pg@virginia.edu

It is generally recognized that non-spherical grains are oriented
with their long axes perpendicular to the magnetic field lines,
and thus the dust emission is linearly polarized perpendicular to
the magnetic field (Davis & Greenstein 1951; Lazarian 2007).
Polarimetric observations of thermal emission from dust at mm/far-
IR wavelengths are therefore used to trace the projected magnetic
field orientation on the plane of sky (e.g. Hildebrand, Dragovan &
Novak 1984; Novak et al. 1997; Matthews, Wilson & Fiege 2001),
at least on scales larger than protostellar discs.1

Intense observational effort has been undertaken to understand
the role played by the magnetic field during star formation at
different scales, including the all-sky coverage of Planck (e.g.
Planck Collaboration XXXV 2016) and the MC-scale survey
by the Balloon-borne Large Aperture Submillimeter Telescope
for Polarimetry (BLASTPol; Fissel et al. 2016). In addition,
the Atacama Large Millimeter/submillimeter Array (ALMA), the
Submillimeter Array (SMA), the James Clerk Maxwell Telescope
(JCMT), and many other observatories have all successfully mapped

1Other polarization mechanisms, such as scattering, may become important
on the disc scale (see e.g. Kataoka et al. 2015; Yang et al. 2016).
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dust polarization patterns at smaller scales in dense filaments, star-
forming clumps, and protostellar envelopes and discs (e.g. Crutcher
et al. 2004; Chapman et al. 2013; Hull et al. 2013; Stephens et al.
2014; Ching et al. 2017; Ward-Thompson et al. 2017). Despite this
rich observational landscape, it remains unclear how dynamically
significant the magnetic fields are at varying physical scales,
because the field strength cannot be directly measured through
polarization. Some methods have been proposed to indirectly
estimate the magnetic field strength from observations, including
the widely known Chandrasekhar-Fermi method (Chandrasekhar &
Fermi 1953), and the HRO (histograms of relative orientation)
technique developed by Soler et al. (2013), which uses the shape
of the distribution of relative orientations between the gas structure
and polarization vectors to determine the relative importance of the
magnetic field. Following this direction, Chen, King & Li (2016,
hereafter CKL16) further proposed that the transition of the shape
of HROs based on gas densities could be used to infer the total
magnetic field strength of the cloud.

More fundamentally, the three-dimensional (3D) structure of
magnetic field (e.g. ratio between line-of-sight and plane-of-sky
field components) is still unknown in nearby star-forming regions.
By comparing with synthetic observations of numerical simulations,
the statistical power of polarization data can in principle become an
important factor to constrain the direction of the MC-scale magnetic
field. For example, King et al. (2018, hereafter KFCL18) com-
pared their star-forming, MC-scale simulations with the BLASTPol
polarimetric data from the Vela C cloud (Fissel et al. 2016)
through detailed statistical studies, and concluded that the magnetic
field direction within Vela C might be very close to our line of
sight.

In this paper, we introduce a new yet simple method to estimate
the overall inclination angle of the MC-scale magnetic field, based
on the measured polarization fraction of thermal dust emission from
the cloud. The intrinsic polarization coefficient p0 (assumed to
be constant across the cloud) can be derived from the measured
maximum polarization fraction pmax (which must be generated by a
line of sight with nearly uniform magnetic fields almost completely
on the plane of sky) within the cloud. Under the assumption of
perfect grain alignment, when the dispersion of the plane-of-sky
magnetic field direction is small, the inclination angle becomes
the dominant source of depolarization. If cancellation within the
line of sight can be neglected, one may obtain an estimate for
the inclination angle of the magnetic field at every pixel from
the observed polarization map. The characteristic inclination angle
of the whole cloud can then be determined statistically using the
location of the peak value of the probability distribution function
(PDF) of these estimates, which is calculated using Gaussian kernel
density estimation (KDE).

This paper is organized as follows. In Section 2, we briefly
review the basic equations for calculating the Stokes parameters
of polarized emission from dust (Section 2.1), and show the
derivation, from these equations, of the p-estimated magnetic
field inclination angle γ obs (Section 2.2). A Monte Carlo study
is presented in Section 3 as an independent test on the analytical
method. We applied our method to fully 3D cloud-scale simulations
in Section 4, where we performed two sets of tests on varying cloud
environment (Section 4.2) and viewing angles (Section 4.3). Finally,
in Section 5 we applied this new method on the Vela C MC using
the polarization data from BLASTPol. We summarize our work in
Section 6.

Figure 1. Definition of symbols. This is an updated version of fig. 1 of
CKL16.

2 DUST POLARI ZATI ON

2.1 Basic equations

Here, we review the widely adopted dust polarization equations
based on previous work (e.g. Lee & Draine 1985; Fiege & Pudritz
2000; Soler et al. 2013; Planck Collaboration XX 2015b). Symbols
are defined in Fig. 1, which is adapted from CKL16. The synthetic
polarization is determined from the integrated Stokes parameters
using the volume density n and magnetic field B ≡ |B| = |Bx x̂ +
By ŷ + Bz ẑ|:

q =
∫

n
B2

y − B2
x

B2
dz =

∫
n cos 2ψ cos2 γ dz,

u =
∫

n
2BxBy

B2
dz =

∫
n sin 2ψ cos2 γ dz, (1)

where γ is the inclination angle with respect to the plane of sky
and ψ is the position angle on the plane of sky (see Fig. 1). The
polarization fraction is

p = p0

√
q2 + u2

N − p0N2
, (2)

where N = ∫
n dz is the column density integrated along the line of

sight, and

N2 =
∫

n

(
cos2 γ − 2

3

)
dz (3)

is a correction term considering reduced emission from inclined
dust grains with smaller cross-section (Fiege & Pudritz 2000). p0 is
a coefficient determined by dust grain properties, and is assumed to
be constant throughout a cloud. The inferred polarization angle on
the plane of sky is given using the four-quadrant arctangent

χ = 1

2
arctan2(u, q). (4)

The dispersion in polarization angles, S, is usually defined at
each pixel as the averaged difference between the direction of
polarization vectors at this pixel x and other pixels xi located a
distance δ (see e.g. Falceta-Gonçalves, Lazarian & Kowal 2008;
Planck Collaboration XIX 2015a; Fissel et al. 2016; KFCL18):

S2(x, δ) =
∑

�χ2(x, xi)

number ofxi

, (5)
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where the angular difference in polarization between pixels x and
xi can be written as

�χ (x, xi) = 1

2
arctan2

(
q(xi)u(x) − q(x)u(xi), q(xi)q(x)

+ u(xi)u(x)
)
, (6)

which can be directly calculated from the Stokes parameters. The
inclusion of δ (and therefore the form of correlation function
for S) is more relevant in observational data, where the spatial
resolution/telescope beam size must be taken into consideration
when calculating the dispersion. In this study, we only consider
the dispersion measured among the eight nearest neighbours of a
given pixel (see CKL16) to utilize the intrinsically high resolution
of numerical simulations, but we caution the readers that dispersion
could be a function of scale (see also Section 5).

2.2 Inclination angle and polarization fraction

As discussed in CKL16, the polarization fraction is determined by
two major factors: inclination angle γ , and the dispersion of position
angle ψ along the line of sight, because this dispersion gives rise
to cancellation within the line of sight. If we consider the ‘perfect’
scenario when there is no variation in neither γ or ψ along the line
of sight, the polarization fraction from equations (1) to (3) becomes

p = p0 cos2 γ

1 − p0

(
cos2 γ − 2

3

) . (7)

Theoretically, the maximum value of p happens when cos 2γ = 1
(γ = 0; the magnetic field is completely on the plane of sky).
The maximum polarization fraction one can measure in a cloud is
therefore

pmax = p0

1 − 1
3 p0

, (8)

or equivalently,

p0 = 3 pmax

3 + pmax
. (9)

This provides a way to estimate the polarization coefficient p0,
which is directly related to dust grain properties of the cloud (size
distribution, alignment efficiency, etc.; see e.g. Lazarian 2007).
Note that, as we discussed in Appendix A, pmax can be recovered
quite accurately in general (although some exceptions exist), and
therefore equation (9) can be used to determine p0 within gas
structures of different scales (clouds, clumps, dense cores, etc.).
Such information can potentially provide a powerful probe of the
dust grain properties among various physical scales and at different
evolutionary stages during star formation.

Once we have p0 derived from the measured pmax, we can
calculate cos 2γ obs explicitly from the observed polarization fraction
pobs using equation (7):

cos2 γobs = pobs

(
1 + 2

3 p0

)
p0 (1 + pobs)

. (10)

As a result, γ obs is the inclination angle from the plane of sky
corresponding to pobs, and can be derived at every pixel from any
polarimetric observation map.

However, note that we assumed no cancellation along the line of
sight from variations of magnetic field directions and that the incli-
nation is the only source of depolarization (i.e. homogeneous grain
alignment). The angle γ obs derived from equation (10) therefore
also represents the largest possible inclination angle corresponding

to pobs and p0. Because of these uncertainties, when referring to
the cloud-scale magnetic field orientation, we consider the most
probable value of γ obs of all detections of pobs among the entire
cloud, denoted as γ obs

�, to potentially reduce the errors statistically.
Since the clouds are expected to mostly be background with a few
regions containing overdense structures like filaments and cores, the
peak location of PDF, or the most probable value, could in principle
represent this background value, which is what we are looking for:
the inclination angle of cloud-scale magnetic field. Nevertheless,
we would like to point out that in the case of a highly disordered
magnetic field, it will be intrinsically difficult to characterize the
magnetic field structure by just one direction, and therefore the error
in the derived inclination angle from equation (10) increases with
the level of perturbation within the cloud (see Appendix A for more
details). Also note that the most probable value is only significant
with a large number of measurements to provide sufficient statistical
coverage, which are exactly the cases of numerical simulations and
the BLASTPol data of Vela C (see Section 5) considered in this
study. We perform various tests to investigate the accuracy of this
p-derived inclination angle in the following sections.

3 MONTE CARLO EXPERI MENTS

To investigate the accuracy of our analytical correlation of p and
γ , we conducted Monte Carlo experiments to study the effects of
parametrized statistical perturbations on the theoretical estimate
(equation 7). The main purpose of this set of tests is to examine
whether, in less-complicated systems and with better-quantified
distortions, the dependence of the peak location of p distribution
on inclination angle γ agrees with the analytic prediction described
in Section 2.2.

Our Monte Carlo model for the polarization fraction consists
of a set of N realizations of polarized emission due to a set of M
random unit vectors (corresponding to magnetic field orientation
within a single line of sight) that are used to generate a pair of
Stokes parameters from equation (1). This generates an ensemble
of N polarization fractions, upon which KDE is used to estimate
the polarization fraction PDF (see e.g. KFCL18). For simplicity, we
assume in these Monte Carlo experiments that the gas density is the
same everywhere.

To sample our random vectors, we assume that they are described
by two independent distributions for the inclination angle γ and
the plane-of-sky position angle ψ (see Fig. 1). The von Mises
distribution is a well-known analogue of the Gaussian for circular
variables (Fisher 1995) and is a suitable parametric choice for these
orientation angles for random vectors centred at an average quantity
subject to statistical perturbation. For some angle θ with circular
mean θ and concentration κ , the von Mises distribution for θ is

P (θ )
∣∣
(θ,κ)

= eκ cos(θ−θ)

2π · I0(κ)
, (11)

where I0 is the zeroth-order modified Bessel function. The concen-
tration, κ , goes roughly as the inverse of the variance (κ ∼ σ−2

where σ is the standard deviation). Since the observer is free to
rotate their coordinate system on the plane of sky such that ψ = 0,
we are free to simplify our model by observing that for any choice
of ψ , provided that the sightline in question is taken out of context
with its neighbours, we can rotate our sightline such that ψ = 0.
Under this assumption, each Monte Carlo simulation depends only
on the three parameters, γ (the mean inclination angle), κγ (the
concentration of the inclination angle), and κψ (the concentration
of the position angle).
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Figure 2. Polarization fraction PDFs obtained using our Monte Carlo
model. Each panel contains five Monte Carlo simulations, each with a
different choice for cos2 γ . The top row contains simulations with κγ = 16
(highly concentrated γ values), and the bottom row, simulations with κγ = 1
(highly disordered γ values); the left column contains simulations with
κψ = 16, and the right column, simulations with κψ = 1. Vertical dashed
lines represent the polarization coefficient adopted in these Monte Carlo
experiments, p0 = 0.1, and horizontal dashed lines mark the N−1/2 error
in Monte Carlo simulations. The peaks of the PDFs change accordingly
with cos2 γ , though the locations of the peaks (see Table 1) as well as
the shapes of the distributions could be significantly altered because of the
highly disturbed values of either γ or ψ .

We conducted Monte Carlo simulations for five mean inclination
angles (cos2 γ = 0.9, 0.7, 0.5, 0.3, 0.1), two inclination angle con-
centrations (κγ = 1, 16), and two position angle concentrations
(κψ = 1, 16). For each simulation, we adopted M = 50 (the
number of random vectors per sightline) and N = 105 (number
of polarization fraction samples) to be comparable with synthetic
observations discussed in Section 4. The resulting KDE estimates
of the polarization fraction PDFs are presented in Fig. 2. The error
in Monte Carlo simulations goes as N−1/2, which is annotated as a
dashed black horizontal line in each plot; the adopted polarization
fraction coefficient p0 = 0.1 is also annotated as a vertical line.

We used the peak of the polarization fraction PDF (i.e. the most
probable value) as an estimator for pobs for each simulation, which
is presented in the left-hand panel of Fig. 3 as a function of cos2 γ .
It is immediately apparent that the Monte Carlo simulations with
the smallest amplitude perturbations to either γ or ψ result in
the best agreement with the analytic estimates (the dashed black
line). Reducing the concentration κγ to 1 induces the Monte Carlo
simulations to deviate more strongly from the analytic estimates,
particularly as cos2 γ varies far from the central value of 0.5.
Reducing κγ appears to have the same effect as the extreme
inclination effects at low κψ . These results suggest that as the
concentration κγ weakens, the value of cos2 γ as an overall measure
of inclination angle is reduced considerably. Extreme inclination
values are therefore far more rarely realized, and as a result, the
overall measured inclination angle should be driven away from
such extreme values, even though the distributions themselves are
centred at those values. This is consistent with the interpretation in
KFCL18 of inclination as a mixing angle, which is not necessarily
representative of a coherent inclination shared by all sightlines in
any particular target.

Reducing the concentration of κψ drives the Monte Carlo simula-
tion results far from the simple analytic predictions, particularly at

Figure 3. Left: Plot of pobs as functions of cos2 γ , for both the analytic
solution (equation 7; black dashed line) and the peak locations measured
from our Monte Carlo models in Fig. 2. Right: The circular standard
deviation of the polarization angle, σχ , measured in out Monte Carlo
models with different mean inclination angles. Note the excellent agreement
between the analytic prediction for the κγ = 16, κψ = 16 simulation (blue
line), which also has the lowest σχ . Decreasing κγ worsens agreement with
the analytic prediction, especially at extreme values of cos2 γ (magnetic field
being roughly parallel or perpendicular to the line of sight). Models with
wide distribution of position angle ψ (concentration level κψ = 1; yellow
and red lines) also have large uncertainties in polarization angle (σχ ∼ 6◦
− 10◦), which result in significant deviation from the theoretical prediction
of the pobs − cos2 γ correlation.

high cos2 γ (small inclination angle; magnetic field almost parallel
to the plane of sky), when reductions in polarization fraction due to
inclination effects are expected to be minimized (also see discussion
in Section 4.3). This suggests that at low concentration κψ the effects
of cancellation within the line of sight, where polarization signals
interfere destructively, becomes more important. One indirect probe
of cancellation effects is the dispersion in polarization angles S
(see equation 5): as a population, measurements of S in regions
with high cancellation should be higher on average than regions
with low cancellation, neglecting coherent structures in S that
arise due to dominant magnetohydrodynamical flows. Our Monte
Carlo simulations are manifestly unable to compute S as each
sightline is considered independently of other sightlines; however, a
polarization angle (χ ; see Fig. 1) can be computed from the Stokes
parameters used to compute the polarization fraction, and these
may be considered as a population. We use the circular standard
deviation of the polarization angles, σχ , as an estimator forS. These
are presented in the right-hand panel of Fig. 3. Those Monte Carlo
simulations with high concentration κψ tend to have the lowest σχ ,
and thus might be expected to correspond to regions with the lowest
S. We therefore conclude that the analytical solution, equation (10),
works better when the dispersion in magnetic field direction on
the plane of sky is small, and when the magnetic field is neither
completely on the plane of sky or perfectly along the line of sight.
This leads to our analysis in Section 4.

4 N U M E R I C A L VA L I DAT I O N

4.1 Simulations

We next tested our method on synthetic observations of simulated
star-forming MCs. Using Athena (Stone et al. 2008), we conducted
4 fully 3D MHD simulations to cover a range of physical properties
in the simulated clouds (see Table 2), which are shown in Fig. 4.
The simulation set-up considers the commonly adopted cloud–
cloud collision scenario of MC formation (e.g. Heitsch et al. 2006;
Vázquez-Semadeni et al. 2006; Inoue & Fukui 2013; Dobbs et al.
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Table 1. Comparison between the analytical result and Monte Carlo test,
both with p0 = 0.1.

cos 2γ (γ ) estimated/measured polarization fraction p
Analytical Monte Carlo methoda

solution κγ = 16, κγ = 1, κγ = 16, κγ = 1,
(equation 7) κψ = 16 κψ = 16 κψ = 1 κψ = 1

0.9 (18.4◦) 0.092 0.088 0.068 0.043 0.038
0.7 (33.2◦) 0.070 0.068 0.061 0.034 0.030
0.5 (45.0◦) 0.049 0.049 0.049 0.024 0.024
0.3 (56.8◦) 0.029 0.029 0.037 0.014 0.018
0.1 (71.6◦) 0.009 0.010 0.031 0.005 0.015

aColumns (3)–(6) are values measured at the peaks of the PDFs, p�.

2014; Chen et al. 2017); we constructed dense, star-forming regions
via supersonic collision of two diffuse, turbulent, and magnetized
clouds. In our simplified scenario, we assumed our simulation box
is just big enough to cover the colliding clouds (Lbox ∼ 2Rcloud);
therefore, plane-parallel convergent flows (along z-direction) from
both sides of the box are added on top of the local turbulence
as the intercloud velocity between the two clouds to induce the
collision. We also set the initial magnetic fields in both clouds
to be at 20◦ with respect to the convergent flows to create oblique
MHD shocks; for simplicity, we assumed both clouds have the same
magnetic field strength. As described in Chen & Ostriker 2012,
2014, 2015 (hereafter CO12, CO14, CO15) and Chen et al. (2017),
these flows compress gas to form a post-shock layer, which has
density and magnetic field strength comparable to those observed in
MCs. Following the general equations of MHD shocks, the desired
MC conditions (magnetically supercritical, super-Alfvénic, etc.)
can be easily achieved by selecting appropriate inflow conditions
(see derivations in CO12 and CO14).

Since the bulk motion in these convergent flows is neutralized
at the shock front, local turbulence within the two colliding
clouds becomes important kinematically in the post-shock region.
Following CO14 and CO15, we generate the velocity perturbation
that follows a power spectrum vk

2 ∝ k−4 based on the observational
results from MCs (McKee & Ostriker 2007; also see e.g. H. Gong &
Ostriker 2011; M. Gong & Ostriker 2015). The velocity perturbation
amplitudes within the colliding clouds are determined by assuming
that these clouds are viralized with virial number αvir = 2:

αvir ≡ 5σv
2Rcloud

GMcloud
= 2. (12)

With Mcloud ∼ 4πρ0Rcloud
3/3 and Lbox ∼ 2Rcloud, the local velocity

amplitude from turbulence is

σv =
√

Gπαvir

15
ρ0

1/2Lbox. (13)

We chose αvir = 2 and ρ0 = 50 cm−3 for all of our cloud-scale
simulations.

Table 2 lists the major properties of the dense clouds formed
in our simulations,2 measured at the time when the gas density
reaches nmax ≥ 107 cm−3 (a condition considered as the formation
of protostars; see CO14 and CO15 for more discussions). Roughly

2We only listed the post-shock conditions of these simulations and not the
pre-shock parameters, because the key purpose of these simulations is to
create star-forming environments similar to those observed in MCs, not to
investigate the formation mechanism of MCs. The initial conditions of our
simulations are therefore less relevant to this study.

speaking, models L1–L20 follow the trend from more magnetically
dominated to more turbulent (see Fig. 4). Note that model L10 is
previously reported as model A in KFCL18. Also, model L1 is
actually a smaller scale, prestellar core-forming simulation from
CO15 (their model M10B10); for this type of ‘local’ box embedded
in MCs, the convergent flows are representing the cloud-scale
(�Lbox) turbulence, and the velocity perturbation amplitude follows
the scaling relation δv ∝ 1/2 (see equation 21 of CO14).3

For each simulated cloud, we considered three different ways
to calculate the representative inclination angle γ . The most
straightforward way is to take the average of the magnetic field
B and use that direction as the mean inclination angle of the cloud:

B = Bx x̂ + By ŷ + Bz ẑ, (14)

γB ≡ cos−1

√
Bx

2 + By

2

|B|2 . (15)

We can also directly calculate the inclination angle at each cell of
the simulation box, γ 3D:

γ3D, (i,j ,k) = cos−1

√
Bx

2 + By
2

|B|2
∣∣∣∣

(i,j ,k)

, (16)

and use the most probable value (i.e. the peak location of PDF),
γ 3D

�, to represent the inclination angle of the cloud.
However, to be more comparable to the synthetic observations,

which is projected on to two-dimensional (2D) space, we define
another quantity γ 2D:

cos2 γ2D, (i,j ) =

∑
k

ρi,j,k · cos2 γ3D, (i,j ,k)

∑
k

ρi,j,k

. (17)

This is the density-weighted mean of inclination angle at each line
of sight through the whole depth of the cloud. We again use the
most probable value, γ 2D

�, to represent the cloud-scale inclination
angle.

For all tests discussed in Sections 4.2 and 4.3, we listed γB , γ 3D
�,

and γ 2D
� as comparisons to the p-derived inclination angle γ obs (see

Tables 2 and 3). It is not surprising that γ 3D
� could deviate from γB

by a certain amount, because mathematically the inclination angle
cannot take into account the ±γ values; i.e. antiparallel vectors will
add constructively instead of cancel each other out. This effect is
more dramatic when the average magnetic field is around extreme
values (0◦ and 90◦), because by definition (equation 16) γ 3D is
always within [0◦, 90◦]; for example, both vectors 10 x̂ + ẑ and
10 x̂ − ẑ would be considered to have inclination angle γ ≈ 6◦,
and thus the median value would be 6◦ instead of 0◦ as if directly
calculated from averaging the vectors first. The same happens to
vectors x̂ + 10 ẑ and −x̂ + 10 ẑ around γ = 90◦. Similar errors
also apply to the projected inclination angle γ 2D, as well as the
measured polarization angle in real observations. The ±γ for a given
|γ | will both give a positive contribution (of the same amplitude) to
polarization, because intrinsically it is the projected ‘shape’ of the
spinning grains that determines the orientation of polarization.

3In this set-up, there is separation of scales between the box size and
the cloud scale corresponding to the convergent flow speed according to
the Larson’s law, and turbulence information in-between is missing in the
simulation.
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Figure 4. The structure of simulated clouds. Top row: number density of hydrogen nucleus nH (colourmap, in log -scale) and magnetic field structures (white
streamlines) of a slice cut through y ≈ 0.4 Lbox. Note that the pre-shock regions are not included in the synthetic observations and following analysis. Middle
row: column density NH (colourmap, in log -scale) integrated through z-axis with synthetic polarization vectors (colour-coded by polarization fraction). Bottom
row: maps of dispersion of polarization angle S with synthetic polarization vectors. The colourscales of the S maps are centred at the median value, 〈S〉; in
principle, regions with S < 〈S〉 (i.e. brown-yellow regions) could give better estimate of the magnetic field inclination angle γ (see Table 2).

Table 2. Major properties of simulations considered in this study, as well as the polarimetric properties and polarization-inferred inclination angles from
synthetic observation of these models along the z-direction. The superscript � represent the most probable values of that property (i.e. the peak locations of
PDFs), and σ represents the standard deviation. Results from Vela C cloud are also included for comparison.

Model Lbox vrms
a βplasma

a MA
a p� σ log p 〈S〉 σlogS pmax Derived γB γ 3D

� γ 2D
� γ obs

� γobs, S<〈S〉∧
(pc) (km s−1) p0 (◦) (◦) (◦) (◦) (◦)

L1 1 0.76 0.15 1.04 0.089 0.09 0.8◦ 0.36 0.101 0.098 7.7 1.4 11.2 20.6 18.5
L5 5 0.99 0.14 1.33 0.068 0.18 1.9◦ 0.37 0.096 0.093 8.7 2.2 17.5 39.0 31.9
L10 10 1.87 0.05 1.45 0.067 0.22 2.8◦ 0.41 0.100 0.097 17.6 9.7 19.8 38.8 34.8
L20 20 2.15 0.03 1.39 0.060 0.25 4.4◦ 0.41 0.100 0.097 15.2 4.0 19.6 44.0 39.3

Vela C – – – – 0.043 0.28 7.9◦ 0.28 0.150 0.142 – – – 64.9 54.5

aWe note that these measurements only serve as references, not definite properties of individual clouds. Since every MC is spatially large and could cover a
wide range of physical environments, it is inappropriate to use a single value to represent the entire cloud. Also, note that though the Alfvén Mach number
MA gives the ratio between kinetic and magnetic energies, it does not capture the fact that most of the post-shock flows are along the magnetic field lines (and
therefore do not lead to distortion of magnetic field structure).

Table 3. Similar to Table 2, but showing the results from different viewing angle of the same simulation (model L10).

Rotating p� 〈S〉 derived γB γ 3D
� γ 2D

� γ obs
� γobs, S<〈S〉∧

angle p0 (◦) (◦) (◦) (◦) (◦)

15◦ 0.073 2.8◦ 0.095 2.5 1.3 15.6 32.6 29.6
−15◦ 0.056 3.1◦ 0.096 32.5 33.1 28.0 45.9 41.4
−45◦ 0.035 5.0◦ 0.096 62.5 55.6 46.4 58.9 53.5
−75◦ 0.014 7.3◦ 0.093 87.5 67.2 57.1 69.2 67.5

Vela C 0.043 7.9◦ 0.142 – – – 64.9 54.5
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3D magnetic field structure from polarization 3505

Figure 5. Left: Comparison of the most probable values of 2D projected
inclination angle γ 2D

� with the inclination angle of the average magnetic
field in the 3D space γB , for all tests discussed in Sections 4.2 and 4.3. All
dots are colour-coded by the polarization angle dispersion (in log space)
of corresponding models; the perfect scenario γ2D

∧ = γB is plotted (dotted
diagonal line) to guide the eyes. The grey line represents the best linear fit.
Right: Result from Section 4.2; scatter plot of the difference between the
most probable values of p-derived and 2D projected inclination angles, γ obs

�

− γ 2D
�, as a function of 〈S〉, for both original (smaller dots) andS-corrected

(larger dots) inclination angles, colour-coded by their corresponding γ obs
�

values. Grey straight lines represent results from linear fitting, with thinner
line representing fitting result using smaller dots (original γ obs

�) and thicker
line representing that from S-corrected values (larger dots). The median
value of S of Vela C (Fissel et al. 2016) is also included (vertical dashed
lines, colour-coded by its p-derived inclination angle; see Section 5).

Figure 6. The PDFs of polarization fraction (left) and dispersion in polar-
ization angles (right) from synthetic observations (along the z-direction) of
the four simulation models considered in this study. Note that though the
shapes of p distributions vary significantly among models, the peak locations
(the most probable values; see Table 2) do not move far from the maximum
value. In contrast, the shapes of S remain almost the same (as well as the
widths; see Table 2 for the standard deviation σlogS ), regardless the very
different peak locations (see the median values of S listed in Table 2).

Though γB could in principle best represent the cloud-scale
magnetic field direction, γ 2D is more practical when comparing
with observations. We therefore plotted γB versus γ 2D

� in Fig. 5
(left-hand panel) using all synthetic observations discussed in the
following sections; though the projected inclination angle γ 2D

� has
large errors with respect to the ‘real’ inclination angle γB when
γB ∼ 90◦, there seems to be a nearly linear trend that could be used
to estimate γB from γ 2D

�. This could be useful when estimating the
3D magnetic field direction within individual MC from polarimetric
observations, which we will discuss further in Section 5.

4.2 Test 1: environmental effect

The four simulations listed in Table 2 have the same initial velocity
perturbation pattern (see Fig. 4), and have similar overall magnetic
field direction γB (mostly on the plane of sky; average inclination
angle �15◦). Though these models are all magnetically dominated
(βplasma � 0.1 − 0.2, which is common for shock-compressed
regions), they are very different in terms of turbulence level (vrms;
column 3 of Table 2). This is reflected in the polarization level p
and the dispersion of polarization angle S. Fig. 6 compares the

PDFs of p and S for the four models; note that though the shape
of p distribution changes significantly from model L1 (the most
quiescent) to model L20 (the most turbulent), the peak (i.e. the
most probable value of p, p�; see column 5 of Table 2) does not
change much. On the other hand, even though the median values of
S are very different between models (a factor of �5; see column
7 of Table 2), the shapes and widths of these PDFs remain similar
(see column 8 of Table 2 for values of σlogS , the standard deviation
of S in log space).4

We made synthetic polarimetric observations (viewing along the
z-direction with p0 = 0.1 at grid-size resolution, which is Lbox/512;
we will discuss the effect of resolution in Section 5) of these
simulations following equation (1), then applied equations (9) and
(10) to calculate the p-derived inclination angle, γ obs. The measured
pmax and the correspondingly derived p0, as well as the median value
of γ obs, are listed in Table 2. Fig. 7 compares the density-weighted
average inclination angle γ 2D (top row) and the p-derived γ obs

(second row) for each model; one can clearly see that the p-derived
angle follows the same patterns as the 2D projected angle, but is
generally larger. This is expected, since equation (10) considers the
‘perfect’ scenario when there is no variation in position angle ψ

along the line of sight, and therefore γ obs could be considered as
the maximum possible γ instead of the actual inclination angle.

The difference between γ 2D and γ obs, or the ‘error’ of the p-
derived inclination angle, is thus defined as �γ ≡ γ obs − γ 2D and
is plotted as a PDF of all pixels from the synthetic observation map
in Fig. 7 (middle row). The error in estimated inclination angle is
definitely dependent on the level of turbulence; for models with
larger rms velocity (vrms), there are about half of the pixels with
errors �γ � 20◦−30◦ (models L10 and L20). In contrast, for the
least perturbed model L1, almost all pixels have errors within ∼20◦.

The correlation between the accuracy of the p-derived inclination
angle and the turbulence level within the cloud can be inferred from
the correlation between �γ and the dispersion in polarization angle
S, which is illustrated as a 2D histogram in Fig. 7 (fourth row).
It is obvious that pixels with smaller S, in general, tend to have
smaller errors in p-derived inclination angle; in fact, if we measure
the most probable value of γ obs among only the pixels with S less
than its median value (〈S〉; grey dashed line in the 2D histogram),
i.e. considering only half of the pixels from the map that are less
perturbed (the yellow-brown regions in the S maps in Fig. 4), it
could be different from the most probable value of the whole map
and could be more accurate (closer to γB). These S-corrected γ obs

�

are also listed in Table 2.
We summarize the results from this set of tests in the bottom

row of Fig. 7. The cloud-scale inclination angle (γB, grey vertical
lines), the averaged inclination angle in 3D (γ 3D, black solid
curves), the averaged projected inclination angle (γ 2D, black dashed
curves), and the p-derived inclination angle (γ obs, blue curves) are
plotted together for comparison. Generally speaking, our method of
deriving magnetic field direction provides estimates of inclination
angles within ∼30◦. Also included in the bottom row of Fig. 7 is the
S-corrected γ obs (yellow curves), which only includes pixels with

4Note that while we consider the peak location of PDF, or the most probable
value, as the characteristic value for both polarization fraction and inclination
angle, we use the median value of S to represent the level of polarization
angle dispersion within the cloud. This is related to the fact that the PDFs of
S being more symmetric than p and γ , but also because when measuring S
we are not trying to separate the background cloud (more pixels) from the
overdense structures (smaller spatial coverage), and thus the median value
is a good representative of the level of dispersion for the entire cloud.
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3506 C.-Y. Chen et al.

Figure 7. Results of the p-derived inclination angle from each model listed in Table 2 (columns). Top row: Maps of the projected inclination angle γ 2D, with
polarization vectors (colour-coded by polarization fractions at the same colourscales as in the second row of Fig. 4) and column density contours. Second
row: Similar to the panels above, but showing p-derived inclination angle γ obs. Note that γ obs almost follows the same pattern as γ 2D, just at larger angles,
because by theory γ obs is the maximum-possible inclination angle at each location. Third row: Distributions of the difference between predicted and projected
angles, γ obs − γ 2D; the very few amount of negative values are not shown here. In all models, most of the sightlines have angle error less than ∼30◦. Fourth
row: 2D histograms (in log scale) of polarization angle dispersion S and the angle difference γ obs − γ 2D, which suggest the p-derived inclination angle is
more accurate for regions with lower dispersion. The median values of S are indicated by grey dashed lines. Bottom row: Comparisons of the theoretical (γB ,
γ 3D, γ 2D; grey vertical line, black solid and dashed curves) and estimated (the original and S-corrected γ obs; blue and yellow curves) inclination angles, with
dashed vertical lines showing the most probable values of corresponding γ obs.

dispersions less than the median value 〈S〉 of the entire map. The
low-S-selected sightlines obviously give a better estimate for γ obs

�,
but only by a small amount (�5◦). The most probable values (the
location of the peak determined from Gaussian KDE) of both the
original and S-corrected γ obs are also included as dashed vertical
lines for easy comparisons.

A quantitative correlation between �γ � ≡ γ obs
� − γ 2D

� and
〈S〉 is shown in the right-hand panel of Fig. 5, for both the
original (smaller dots) and S-corrected (larger dots) γ obs

�. Clearly,
for models with similar inclination angles (indicated by colours),
the error in p-derived inclination angle follows roughly a linear
dependence on the level of dispersion of the cloud (grey lines).

Though this could be useful when applying this method to estimate
the magnetic field direction within a cloud, we note that the
inclination angle itself could be an important factor determining
the error of this method (see Section 5 for the case of Vela C).
This is because the basic theory of p-derived inclination angle,
which assumes no structure along each sightline, is intrinsically
less applicable when the inclination angle is small; when most
of the magnetic field is aligned with the plane of sky, the effect
of depolarization is dominated by variation of ψ along the line of
sight, which is neglected in equation (7). It is not until the inclination
angle is large enough to be responsible for most of the depolarization
that our method would produce a more accurate prediction. Also, as
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3D magnetic field structure from polarization 3507

Figure 8. Number density of hydrogen nucleus nH (colourmaps, in log -
scale) and magnetic field structures (white streamlines) of slices of model
L10, cut through y ≈ 0.4 Lbox. The simulation box is rotated by various angles
around y-axis to generate a range of cloud-scale magnetic field directions
when viewed along the z′-direction. Note that only the post-shock regions
are shown here.

discussed in Section 4.1, the projected inclination angle intrinsically
has larger error when the average magnetic field orientation is
roughly either on the plane of sky (γB ≈ 0◦) or along the line of
sight (γB ≈ 90◦). This is the main focus of the following section.

4.3 Test 2: viewing angle

Though the four simulations discussed in the previous section
cover wide ranges of physical properties and dispersion levels,
their average magnetic field orientations are similar and roughly
on the plane of sky when viewed along the z-axis. We therefore
selected model L10 as the test model, and rotated the simulation
box to change the viewing angle so that the averaged magnetic field
inclination angle varies between ∼0◦ and 90◦. The corresponding
rotating angles are listed in Table 3; since model L10 initially has
mean magnetic field inclination angle γB ∼ 15◦ (see Table 2 and
Fig. 4), we picked θ rot = 15◦, −15◦, −45◦, and −75◦ around +y-
direction to get γB ∼ 0◦, 30◦, 60◦, and 90◦. This is demonstrated
in Fig. 8, and the resulting maps of synthetic observation (column
density, polarization, and polarization angle dispersion) from each
viewing angle are illustrated in Fig. 9 (first and second columns).

Fig. 10 contains the PDFs of polarization fraction and polarization
angle dispersion. Compare to Fig. 6, we clearly see that in addition
to varying shapes of p distribution, the peak location of p (p�; see
Table 3) also changes accordingly to the inclination angle. This
reflects the core concept of our method of deriving the inclination
angle based on the variation of polarization fraction. The angle
dispersion, however, does not move as dramatically as in Fig. 6
for varying turbulence level. This indicates that the polarization
angle dispersion is more directly related to the physical properties
of the cloud rather than the viewing angle. We discuss further details
about other possible controlling factors of p and S in another study
(King et al. 2019, submitted).

Similar to Fig. 7, we investigate the correlation between polariza-
tion angle dispersion,S, and the error in p-derived inclination angle,
�γ ≡ γ obs − γ 2D, by plotting the 2D histogram in Fig. 9 (third
column). The range of the error is significantly reduced with larger
inclination angle. In fact, after corrected by selecting only pixels

with dispersions smaller than the median value 〈S〉 (grey dashed
lines in the 2D histogram), the p-derived inclination angle could be
as accurate as within �10◦ from γ 2D

� (models of θ = −45◦ and
−75◦; see columns 6 and 8 of Table 3).

The last column of Fig. 9 summarizes and compares all theoretical
and p-derived inclination angles from this set of data. Intriguingly,
we note that for models with larger inclination angles (models
of θ = −45◦ and −75◦; γ ≈ 60◦ and 90◦), the p-derived values
follow the inclination angles averaged in 3D (γ 3D, black curves),
and therefore, the theoretical, cloud-scale inclination angles (γB ,
grey vertical lines) are better than the 2D projected values (γ 2D,
dashed black curves). As we already know there is intrinsic error
between the 2D projected and the cloud-scale inclination angles
(see Fig. 5, left-hand panel), these results suggest that the p-derived
inclination angle could be more accurately tracing γB than the
density-weighted mean, γ 2D under certain circumstances, e.g. when
the inclination angle is large and is the dominant effect controlling
the depolarization of the cloud. We will make use of this result
when applying this method to observational data of real clouds (see
Section 5).

We again quantitatively investigate the dependence of angle
difference �γ ≡ γ obs − γ 2D on the inclination angle by scatter-
plotting their most probable values in Fig. 11 (left-hand panel)
for both original (smaller dots) and S-corrected (larger dots) γ obs.
Though we clearly see the error is reduced with larger inclination
angle regardless of the increasing dispersion level (indicated by
colours), the change is not monotonic, and therefore, a simple
linear fit would not be appropriate here as applied in Section 4.2.
This is indeed expected, because (as discussed in Section 4.1) the
projected angle γ 2D could introduce further errors with respect to the
cloud-scale value when the inclination angle is either small (�10◦)
or large (�60◦; see the left-hand panel of Fig. 5). We therefore
directly compare the p-derived values to the cloud-scale inclination
angle, and plot γobs

∧ − γB in the right-hand panel of Fig. 11. The
contamination from γ 2D is now removed, and the angle difference
γobs

∧ − γB for both the original andS-corrected γ obs
� values seems

to nicely follow linear correlations with γ obs
� (grey straight lines).

These promising results provide the basis for applying this method
to real clouds, which we discuss in the following section.

5 A PPLI CATI ON: THE V ELA C MC

We applied our method to 500 μm polarization observations of
the Vela C giant MC using data from the BLASTPol telescope
during its Antarctic flight of 2012–2013. Vela C has a mass of
approximately ∼105 M� (Yamaguchi et al. 1999) is relatively
nearby (d = 700 ± 200 pc; Liseau et al. 1992), and is generally
cold (T ≤ 15 K) with the exception of one region where two O9.5
stars are powering a compact bipolar H II region (Netterfield et al.
2009; Hill et al. 2011; Ellerbroek et al. 2013). Since Vela C is the
most detailed polarimetric map yet made of a star-forming MC
(with >103 independent polarization measurements made over the
∼30 pc cloud), it is an excellent target for statistical studies such as
KFCL18 and our proposed method here.

To ensure that the detected polarized emission is from Vela C
instead of background/foreground diffuse ISM dust, Fissel et al.
(2016) used different methods to identify and subtract diffuse
polarized emission. Here, we consider only their ‘intermediate’
method of diffuse emission subtraction; however, we have verified
that the results do not change significantly for different diffuse
emission separation methods. We also only include dust sightlines
within the four Vela C cloud sub-regions defined in Hill et al. (2011).
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3508 C.-Y. Chen et al.

Figure 9. Results of synthetic observations from different viewing angles of model L10, as listed in Table 3. First column: synthetic observations of rotated
models along the new z-direction, with column density NH (colourmap, in log -scale) and polarization vectors (colour-coded by polarization fractions). Second
column: maps of dispersion of polarization angle, S, with polarization vectors. The colourbars of these maps are centred at the median values of S so that
regions with S < 〈S〉 are yellow-brown coloured. Third column: 2D histograms (in log-scale) of dispersion in polarization angles S and the angle difference
γ obs − γ 2D, with the median values of S indicated by grey dashed lines. The p-derived inclination angle clearly is more accurate when the magnetic field is
more aligned with the line of sight. Fourth column: Comparisons of the theoretical (γ 3D, γ 2D; black solid and dashed lines) and estimated (the original and
S-corrected γ obs; blue and yellow lines) inclination angles, with dashed vertical lines showing the most probable values of corresponding γ obs. The inclination
angles of the average magnetic field in 3D, γB , are also plotted as grey thin vertical lines for each viewing angle.

Figure 10. Similar to Fig. 6, but for different viewing angles of model
L10. Note that the peaks of p distribution changes dramatically for different
viewing angles (i.e. different inclination angle of the magnetic field).

To avoid errors introduced by de-biasing the polarization data, we
only include sightlines with polarization signal-to-noise ratio levels
> 5 (see Fissel et al. 2016 for more discussions). A polarization
map of Vela C is shown in Fig. 12 (middle and bottom panels).

To determine the best value of pmax, we examined the PDF of p
from the whole map (Fig. 12, top panel), then picked the value that
is on the edge between the Gaussian-like curve and the flat long
tail. After zooming in (see the inset of the top panel of Fig. 12),
we picked pmax = 0.15 for the entire Vela C Cloud. Note that
the choice of pmax would definitely affect the derived values of
p0 and γ obs; however, considering the intrinsic error between the
projected (γ 2D) and the real-space magnetic field inclination angle
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3D magnetic field structure from polarization 3509

Figure 11. Results from Sections 4.3; scatter plots of the difference between
the most probable values of p-derived and 2D projected inclination angles
(γ obs

� − γ 2D
�, left), and the difference between γ obs

� and cloud-scale
inclination angle γB (right), as functions of γ obs

�, for both original (smaller
dots) and S-corrected (larger dots) inclination angles, colour-coded by their
corresponding median S values (in log scale). The grey straight lines in
the right-hand panel represent linear fitting results using the original γ obs

�

(thinner line) and the S-corrected values (thicker line). The results of Vela C
(see Section 5) using data from Fissel et al. (2016) are also included (vertical
dashed lines, colour-coded by the median value of S among Vela C).

(γB; see Fig. 5, left), the error from pmax is relatively insignificant
in comparison. Fig. 13 shows the PDF of p-derived inclination
angle (γ obs, bottom panel) as well as the correlation between the
dispersion of polarization angle S and γ obs as a 2D histogram (top
panel). The most probable values of p-inferred inclination angles
(i.e. the location of the peak measured from Gaussian KDE), both
original (64.9◦) and S-corrected (54.5◦), are listed in Tables 2 and
3.

We first refer to Fig. 5 to investigate the accuracy of these p-
derived inclination angle estimates. The right-hand panel of Fig. 5
shows the scatter plot of the angle difference between p-derived and
the 2D projected values, �γ ≡ γ obs

� − γ 2D
�, as a function of 〈S〉,

using the set of models discussed in Sections 4.2. Though the linear
fitting result from �γ versus 〈S〉 indicates a very large error in γ obs

�

of Vela C (∼30◦), we note that the inclination angle itself could be
a critical factor in estimating the error of γ obs

� (see Section 4.3).
This is illustrated in the left-hand panel of Fig. 11; considering the
result from this set of models with varying inclination angles, the p-
derived γ obs

� of Vela C could be only ∼10◦ higher than the actual
2D projected inclination angle. Roughly speaking, this suggests
γ 2D ∼ 45◦ within Vela C (since the p-derived γ is the maximum-
possible inclination angle, theoretically γ obs ≥ γ 2D should always
hold). Considering the discrepancy between the 2D projected value
and the cloud-scale inclination angle, if γ 2D

� ≈ 45◦ for Vela C,
our linear fit in Fig. 5 (left-hand panel) indicates that the actual
inclination angle of the magnetic field within Vela C is ∼65◦.

On the other hand, from Section 4.3 we find that when the average
inclination angle of the cloud-scale magnetic field is not small
(�30◦), it is possible to directly link the p-derived inclination angle
to the cloud-scale value, as demonstrated in the left-hand panel of
Fig. 11. Therefore, by comparing the measured inclination angle of
Vela C and the linear fit using those from simulations (also, note
that the S-corrected γ obs

� derived in Vela C is very close to that
measured in our model θ = −45◦, or γ = 60◦; see Table 3), our
results suggest that the magnetic field in Vela C has an inclination
angle γB ∼ 60◦.

These values roughly agree with the results reported in KFCL18
using 2D correlations between polarization fraction, dispersion in
polarization angles, and column density of the Vela C cloud and
comparing with simulation models. Though the method adopted in
KFCL18 is not completely independent from the analysis reported

Figure 12. The polarimetric observation of Vela C, adopted from Fissel
et al. (2016). Top: PDF of polarization fraction measured in the entire
Vela C cloud, zoomed-in to p < 0.2 in the inset, which is used to
determine pmax = 0.15. Middle: the map of Vela C in column density
with polarization vectors (colour-coded by polarization fraction). Bottom:
dispersion of polarization angles in Vela C (in log-scale). The colourbar is
centred at the median value of S so that regions with S < 〈S〉 are yellow-
brown coloured.

in this work (both methods consider the distribution of polarization
fraction as a probe to magnetic field structure), the reliability of
our new method is reassured by the consistency between these two
studies. Therefore, it is likely that the cloud-scale magnetic field
in Vela C has a large inclination angle, with a large line-of-sight
component and only a relatively weak field on the plane of sky.
However, we would like to point out that Vela C is a giant MC, which
may contain regions with different magnetic field structures (see
e.g. Soler et al. 2017; Fissel et al. 2018). As a result, the p-derived
inclination angle may differ between regions. We will discuss this
topic in a future study. Another caveat is that we assumed that, on
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Figure 13. The estimated magnetic field inclination angle of Vela C. Top:
2D histogram of logS and p-derived γ obs, with grey dashed line showing
the median value of S. Bottom: PDFs of p-derived γ obs, both original (blue)
and S-corrected (yellow). Dashed lines indicate the most probable values
(64.9◦ and 54.5◦) for both distributions.

the scale of MCs, the variation of the polarization is dominated
by the variation of the magnetic field configuration rather than the
grain alignment efficiency. The latter is explored in detail in King
et al. (2019, submitted).

We would also like to note that spatial resolution could have
crucial impact on polarization measurements, especially the level
of dispersion in polarization angles (see e.g. fig. 3 of KFCL18). In
this study, we considered grid-size resolution for all of our synthetic
observations, which are Lbox/512 ≈ 0.002, 0.001, 0.02, 0.04 pc for
models L1, L5, L10, L20, respectively. Though these isothermal,
ideal-MHD simulations are free to be re-scaled (see discussions
in KFCL18), we note here that the spatial resolutions adopted in
our synthetic observations are very different from the beam size of
BLASTPol (∼0.5 pc in Vela C), and therefore may introduce further
uncertainties when we translate γ obs of Vela C into γB or γ 3D using
the results from these synthetic observations.

6 SU M M A RY

We propose a new method to estimate the direction of MC-
scale magnetic field with respect to the plane of sky using dust
polarization level measured in the cloud. By considering only
regions with relatively low dispersion in polarization angles (where
the depolarization is mostly determined by inclination angle), we
successfully showed that this new method gives estimates for the
magnetic field inclination angle with accuracy �10◦–30◦. This
method is further tested on BLASTPol polarimetric observation

towards the Vela C MC, which suggests that the cloud-scale
magnetic field direction in Vela C is inclined ∼60◦–65◦ away from
the plane of sky.

We summarize our main conclusions below:

(i) Under the assumption of a uni-directional magnetic field
along individual lines of sight, the basic equations for deriving
dust polarization (equations 1–3) give a simple expression of the
inclination angle of magnetic field γ for each observed polarization
fraction pobs (equation 10). Since any variation of the plane-of-
sky magnetic field position angle ψ along the line of sight will
further reduce the polarization level in addition to that imposed by
inclination angle, this inferred value of γ only represents the upper
limit of inclination angle of magnetic field at a given location.

(ii) Assuming that the maximum polarization fraction within the
cloud pmax can be measured (which only happens when there is at
least one line of sight contains only uniform magnetic field on the
plane of sky), the polarization coefficient p0 can be directly derived
from this maximum polarization fraction (equation 9). Once p0 is
derived, every measured polarization fraction value can be used to
infer the local, averaged inclination angle of magnetic field at that
particular line of sight using equation (10).

(iii) We found that, using 3D MHD MC-scale simulations, the
projected inclination angle (γ 2D; equation 17) could differ from the
averaged inclination angles calculated in 3D space (γB and γ 3D;
equations 14 and 16), especially when the 3D inclination angle is
close to extreme values (0◦ or 90◦; see the left-hand panel of Fig. 5).
Nevertheless, under the criterion of similar dispersion level S, the
3D inclination angle can be inferred from γ 2D using linear fitting
from simulation data (see the left-hand panel of Fig. 5).

(iv) Based on previous work (CKL16; KFCL18), the major de-
polarization effects within MCs (in addition to dust grain alignment
efficiency) are the relative strength of line-of-sight magnetic field
(i.e. the inclination angle), and the dispersion level of the plane-
of-sky magnetic field direction. This is further confirmed in our
Monte Carlo experiments of measuring polarization fraction among
models with different inclination angles and concentration levels of
plane-of-sky magnetic field direction (Section 3). We found that
the polarization fraction−inclination angle correlation in our less-
perturbed Monte Carlo models agrees quantitatively better with the
theoretical prediction (Fig. 2), which is the analytic solution for a
perfect scenario (uniform magnetic field at each line of sight).

(v) We examined the accuracy of the p-derived inclination angle
in simulated clouds with different dispersion levels of polarization
angle (Section 4.2), and different mean inclination angles of mag-
netic field (Section 4.3). We confirmed that the p-derived inclination
angle is more accurate in clouds with smaller S; in addition, we
found that by excluding regions with S larger than the median
value 〈S〉, the error is reduced in these S-corrected values (see the
yellow and blue curves in the bottom row of Fig. 7). We also noted
that our method of predicting γ from p is more applicable when
the real γ is away from the extreme values (0◦ and 90◦), as the
error γobs,S<〈S〉∧ − γB is within ∼±10◦ for simulated clouds with
inclination angle 30◦−60◦ (Fig. 9, right-hand panel).

(vi) We tested our method on the Vela C MC using polarimet-
ric data from BLASTPol (Fissel et al. 2016). The results from
simulations (Section 4) are adopted to correct the errors in the p-
derived inclination angles (Figs 5 and 11). Though there are still
uncertainties in determining pmax (and hence p0; see Table 2 for
values), our result suggests that the cloud-scale magnetic field of
Vela C is at ∼60◦−65◦ with respect to the plane of sky (see Fig. 13),
i.e. much closer to the line of sight than to the plane of sky. This is in
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good agreement with the conclusion of KFCL18. Considering Vela
C contains sub-regions with very different physical properties (Soler
et al. 2017; Fissel et al. 2018), future studies using the same method
on individual sub-regions might be helpful to further improve the
understanding of the magnetic field structure in Vela C.
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field C. B., Fissel L. M., 2013, ApJ, 774, 128
Soler J. D. et al., 2017, A&A, 603, A64
Stephens I. W. et al., 2014, Nature, 514, 597
Stone J. M. Gardiner T. A. Teuben P. Hawley J. F. Simon J. B., 2008, ApJS,

178, 137
Vázquez-Semadeni E. Ryu D. Passot T. González R. F. Gazol A., 2006, ApJ,
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APPENDI X A : ACCURAC Y O F ESTI MATED p0

A N D γ O B S

Indeed, there are limits on the method of estimating the average
inclination angle of cloud-scale magnetic field discussed in this
paper. In principle, the measure of pmax (or equivalently, p0) assumes
that one of the observed sightlines has γ ≈ 0 no matter what the
cloud-scale inclination angle is. If the cloud-scale inclination angle
is large (i.e. closer to the line of sight), this could only happen when
the dispersion of magnetic field direction is large, which means the
cloud is strongly perturbed, or equivalently, has high Alfvén Mach
number MA. However, under those conditions, depolarization due
to the projection effect (cancellation among various position angles
along the line of sight) may not be negligible, which may affect
the accuracy of equation (10). To test how good pmax and γ obs

are recovered in various cloud conditions with different inclination
angles, we expand our analysis in Section 4.3 to include models L1
(less perturbed) and L20 (most perturbed), and compare the results
with those discussed in Section 4.3 using model L10 (moderately
perturbed).

These results are summarized in Fig. A1, where we show the
PDFs of polarization fraction p and angle dispersion S for all
three models, with four different inclination angles of the cloud-
scale magnetic field. One can clearly see that the shape of the p
distribution (the left-hand panel of Fig. A1) changes accordingly
with inclination angle more dramatically in model L1 than models
L10 and L20. This is because in less-perturbed environment, the
dominant de-polarization effect comes from the inclination angle,
while in more turbulent cloud, it is the projection effect that causes
most of the depolarization. The S distributions in Fig. A1 (right-
hand panel) provide further evidence to this argument, because S
is a measurement directly related to the projection effect.5 The fact

5Though the projection effect depends on the angle dispersion along the line
of sight while S measures the angle dispersion on the plane of sky, these
two quantities are closely correlated, as shown in fig. 13 of CKL16.
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Figure A1. Similar to Fig. 10, but now comparing model L10 (middle
panels) with two additional models, L1 (top panels) and L20 (bottom
panels).

that the peak locations of S remain almost the same under varying
inclination angles in model L20 but move up significantly with
increasing γ in model L1 suggest that in less perturbed environment
(L1), the projection effect is critical only when the inclination angle
is large, while in more turbulent cloud like L20, depolarization
caused by projection effect is crucial even when the cloud-scale
magnetic field is closer to the plane of sky.

The quantitative measurements are listed in Table A1. As we
expected, in more turbulent model L20, the value of p0 is better
recovered (comparing to the theoretical value 0.1 adopted in our
synthetic calculation) even when the cloud-scale inclination angle is
large. In contrast, when the cloud is less perturbed and the magnetic
field is more organized (model L1), it is almost impossible to get
a correct estimate of p0 when the inclination angle is large, due to

the absence of sightlines with γ ≈ 0. However, we also see that the
accuracy of p-derived inclination angle does not seem to be affected
much by the uncertainty of p0, as model L1 still gives better estimate
of the cloud-scale inclination angle (γobs, S<〈S〉 closer to γB) even in
highly inclined cases. This suggest that our method, equation (10),
works nicely in less-perturbed clouds even when the magnetic field
is almost aligned with the observer’s line of sight. More importantly,
this implies that the cloud-scale inclination angle is better reflected
by the difference between pmax and p�, not the absolute values of
those quantities, which is consistent with our method of deriving γ

from p.
Finally, we want to stress that the uncertainty in pmax determined

from real observational data is not likely to have significant effect
on the derived inclination angle γ . Using the case of Vela C as
an example: in Section 5, we presented the PDF of polarization
fraction (in linear space) of Vela C in Fig. 12 (top panel). We picked
pmax = 0.15 based on the PDF and argued that the derived γ obs is
relatively insensitive to the value of pmax. This is demonstrated in
Fig. A2, where we compare the results in Fig. 13 (pmax = 0.15;
left-hand panel) with a different but also reasonable choice of pmax,
0.2 (right-hand panel). One can clearly see that the resulting γ obs

is almost unaffected by the slight difference of pmax. This confirms
our statement above that even in the situation that pmax cannot
be accurately recovered, our method still returns good estimates
(within ∼30◦) of the inclination angle of cloud-scale magnetic field
using observed polarimetric information.

We caution the readers again that even though our method
suggests a way to estimate p0 from the observed pmax that can in
principle be used to derive dust grain properties at different physical
scales, under some rare circumstances (when the magnetic field in
the cloud is relatively well-ordered with the mean field closer to
the observer’s line of sight) the observed pmax may be significantly
below the intrinsic maximum polarization fraction. Only in this
regime the derived value of p0 based on the observed pmax may not
be considered as the real polarization coefficient.
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Table A1. Comparing results from models with various turbulence levels and different cloud-scale magnetic field direction. The polarization coefficient
adopted in these synthetic observations is p0 = 0.1.

Model γB ≈ 0◦ γB ≈ 30◦ γB ≈ 60◦ γB ≈ 90◦
Derived γ 3D

� γobs, S<〈S〉∧ Derived γ 3D
� γobs, S<〈S〉∧ Derived γ 3D

� γobs, S<〈S〉∧ Derived γ 3D
� γobs, S<〈S〉∧

p0 p0 p0 p0

L1 0.098 1.0 19.5 0.096 27.6 33.5 0.082 55.6 56.4 0.061 78.8 72.9
L10 0.095 1.3 29.6 0.096 33.1 41.4 0.096 55.6 53.5 0.093 67.2 67.5
L20 0.098 1.8 37.7 0.096 24.0 45.4 0.096 48.2 50.5 0.093 60.9 57.8

Figure A2. Similar to Fig. 13, but now comparing two pmax choices.
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