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Abstract
Adjustable robust optimization (ARO) involves recourse decisions (i.e. reactive actions
after the realization of the uncertainty, ‘wait-and-see’) as functions of the uncertainty,
typically posed in a two-stage stochastic setting. Solving the general ARO problems
is challenging, therefore ways to reduce the computational effort have been proposed,
with the most popular being the affine decision rules, where ‘wait-and-see’ decisions
are approximated as affine adjustments of the uncertainty. In this work we propose a
novel method for the derivation of generalized affine decision rules for linear mixed-
integer ARO problems through multi-parametric programming, that lead to the exact
and global solution of the ARO problem. The problem is treated as a multi-level
programming problem and it is then solved using a novel algorithm for the exact and
global solution of multi-level mixed-integer linear programming problems. The main
idea behind the proposed approach is to solve the lower optimization level of the ARO
problem parametrically, by considering ‘here-and-now’ variables and uncertainties
as parameters. This will result in a set of affine decision rules for the ‘wait-and-see’
variables as a function of ‘here-and-now’ variables and uncertainties for their entire
feasible space. A set of illustrative numerical examples are provided to demonstrate
the potential of the proposed novel approach.

Keywords Adjustable robust optimization · Multi-parametric programming ·
Tri-level programming

1 Introduction

Decisions taken in many disciplines have effects that can extend well into the future,
therefore the outcome of such decisions are subject to uncertainties, such as variation in
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customer demands and changes in laws or technological advances.Oneof the dominant
approaches to address decision making under uncertainty is robust optimization (RO).

In RO, uncertainty is described by a distribution-free uncertainty set, typically a
bounded convex set [6–8,10,14,15,20,21], and recourse decisions are not allowed, i.e.
the decision maker makes all the decisions before the realization of the uncertainty,
which can be overly conservative.

Ben-Tal et al. [9] extended classical robust optimization to include adjustable deci-
sions, with this class of problems being referred to as adjustable robust optimization
(ARO) problems or two-stage robust optimization problems. A general form of a linear
ARO problem is presented below (1).

min
x

cT x + max
u∈U min

y∈Ω(x,u)
bT y

s.t. Ax ≥ d, x ∈ Sx
Ω(x, u) = {y ∈ Sy :Wy ≥ h − T x − Mu}

(1)

where u is the uncertainty set, x are ‘here-and-now’ decisions, i.e. are to be made
before the realization of the uncertainty, and y are “wait-and-see” decisions, i.e. are
to be made after the realization of the uncertainty.

ARO can be applied to many diverse problems that require decisions to be taken
before and after the realization of uncertainties, such as inventory control problems [9,
17], facility location planning [5], and unit commitment [42] among others.

ARO problems are very challenging to be solved, with even the simplest linear
continuous case being computationally intractable [43].

A key approach for the approximate solution of ARO problems is to restrict the
‘wait-and-see’ adjustable decisions to be affine functions of the uncertainty [9]. This
approach is widely known as affine decision rule approximation and results in com-
putationally tractable problems as the approximated problem can be solved as a static
robust optimization problem.

Although ARO has received a lot of attention in the open literature, most of the
contributions consider continuous decisions. A very limited number of researchers
have tried to tackle the problem of discrete decision rules [11,12,22]. Bertsimas and
Caramanis [11] presented an algorithmwhere integer decision rules are parameterized
that provides only probabilistic guarantees on the feasibility of the solution. Bertsi-
mas and Georghiou [12] suggested another binary decision rule structure that offers
near-optimal designs at the expense of scalability. Hanasusanto et al. [22] presented
an approach that restricts the binary decision rules to a ‘K-adaptable structure’. Most
recently, Bertsimas and Georghiou [13] presented linearly parameterized binary deci-
sion rule structures that can be used in tandemwith different continuous decision rules
that appear in the literature. This approach is highly scalable but provides inferior pol-
icy designs than Bertsimas and Georghiou [12].

Our key idea for the exact solution ofAROproblems came from the observation that
the second stage variables (y) are multi-parametric in terms of the first stage variables
(x) and uncertainty (u). Therefore, the idea is to solve the lower level problem multi-
parametrically considering u and x as parameters. This step would allow us to arrive

123



Adjustable robust optimization through multi-parametric…

in a set of generalized (exact) affine decision rules valid for the whole feasible space
of uncertainty u and ‘here-and-now’ decisions x .

The rest of this paper is organized as follows. Section 2 presents a sub-class of
classical ARO problems that allows ‘here-and-now’ decision to constrain the feasible
space of the uncertainty, Sect. 3 presents a tri-level solution algorithm for the solu-
tion of the ARO problems, Sect. 4 presents four numerical examples to illustrate the
applicability of the algorithm, Sect. 5 presents the computational performance of the
algorithm through a set of randomly generated problems, and Sect. 6 concludes this
paper with key overall remarks.

2 AROwith a decision dependent uncertainty set

Uncertainty parameters can be classified as exogenous and endogenous. Exogenous
uncertainties are uncertainties that cannot be affected by decisions made, whereas
endogenous uncertainties are ones that their realization or ability to be observed is
affected by the decision maker [26]. Both RO and ARO literature has mainly consid-
ered exogenous uncertainties, with few recent publications considering endogenous
uncertainty sets in an RO setting [26,29,32] and even fewer in ARO settings [25,27].

The ‘here and now’ decisions chosen might not always be operational for all real-
izations of an endogenous uncertainty. For example, a processing plant might be more
profitable if it is designed for amaximumcapacity (‘here-and-now’ variable) that is less
than the demand of some customers (uncertainty). When the uncertainty is defined as
a function of ‘here-and-now’ variables (x), instead of being free this would result into
problem (2), an optimization problem that can take into consideration ‘here-and-now’
decisions that constrain the feasible space of the uncertainty.

min
x

cT x + max
u∈U (x)

min
y∈Ω(x,u)

bT y

s.t. Ax ≥ d, x ∈ Sx
Ω(x, u) = {y ∈ Sy :Wy ≥ h − T x − Mu}.

(2)

Key approaches for the solution of classical mixed-integer ARO problems, such as
Zeng and Zhao [41], are based on the enumeration of extreme points of the polyhedral
set ofU . These approaches will fail for problems that the uncertainty set is dependent
on the decision variables, as the optimum is no more guaranteed to lie on the extreme
points of the polyhedral set of U . Therefore, such approaches will result to an overly
conservative solution.

Problem (2) can be directly reformulated as a tri-level problem (3).

min
x

cT x + bT y

s.t. min
u∈U (x)

− bT y

s.t. min
y∈Ω(x,u)

bT y

s.t. Ax ≥ d, x ∈ Sx
Ω(x, u) = {y ∈ Sy :Wy ≥ h − T x − Mu}.

(3)
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Multi-level programming problems are very challenging to solve even for the case
of two linear continuous decision levels, which has been shown to be NP-hard by
Hansen et al. [23]. The computational complexity of multi-level problems with more
than two decision levels was discussed by Blair [16] who noted that multi-level linear
problems are NP-hard and their complexity increases significantly when the number
of levels increases to more than two.

Solution approaches presented in the literature for tri-level problems have addressed
a very restricted class of problems, mainly linear continuous problems [4,19,24,33,
35,37–40], with only a few attempts to solve problems containing only integer vari-
ables [34,36] with no guarantee of optimality.

Despite the challenges in solving mixed-integer tri-level problems, a recent algo-
rithm for the global solution of mixed-integer linear tri-level problems has been
proposed by Avraamidou and Pistikopoulos [2] and can be adopted for the solution of
mixed-integer ARO (MI-ARO) problems with a decision dependent uncertainty set.
The algorithm is summarized in the next section.

3 Tri-level programming throughmulti-parametric optimization

As discussed in Sect. 2, when considering the ARO problem as a tri-level problem,
the feasible set of the third-level (‘wait-and-see’) decision variables are parametric in
terms of the second (uncertainty) and first level (‘here-and-now’) decision variables,
and the second level (uncertainty) decision variables are parametric in terms of the
first level (‘here-and-now’) variables.

Faisca et al. [19] presented an algorithm based on multi-parametric programming
that can address continuous multi-level programming problems. Expanding on their
work, the approach used was presented in Avraamidou and Pistikopoulos [2] and is
based upon the recently proposed bi-level mixed-integer linear and quadratic algo-
rithms [3,31]. The algorithm is summarized in Table 1. For more details, information
and computational studies on this algorithm the reader is directed to Avraamidou and
Pistikopoulos [2].

This approach can solve mixed-integer linear tri-level problems of the general
formulation (4) to global optimality.

min
x1,y1

z(x, y) = c1T x + d1T y

s.t. A1x + B1y ≤ b1
min
x2,y2

u(x, y) = c2T x + d2T y

s.t. A2x + B2y ≤ b2
min
x3,y3

v(x, y) = c3T x + d3T y

s.t. A3x + B3y ≤ b3
x = [xT1 xT2 xT3 ]T , y = [yT1 yT2 yT3 ]T
x ∈ R

n, y ∈ Z
p
2

(4)

where ci ∈ R
n , di ∈ R

p, Ai ∈ R
mi×n , Bi ∈ R

mi×p, bi ∈ R
mi , x1 and x2 are compact

(closed and bounded), x is a vector of the continuous problem variables and y is a
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Table 1 Multi-parametric based algorithm for the solution of tri-level mixed-integer linear programming
(T-MILP) problems

Step 1 Establish integer and continuous variable bounds, and
transform the integer variables into binary variables

Step 2 Recast the third level problem as a multi-parametric
mixed-integer linear programming (mp-MILP) problem, in
which the optimization variables of the second and first level
problems are considered as parameters

Step 3 Solve the resulting mp-MILP problem to obtain the optimal
solution of the lower level problem as explicit functions of the
second and first level decision variables

Step 4 Substitute each multi-parametric solution into the second level
problem to formulate k mp-MILP problems, considering the
first level decision variables as parameters

Step 5 Solve the resulting ka mp-MILP problems to obtain the optimal
solution of the second level problem as explicit functions of
the first level decision variables

Step 6 Substitute each multi-parametric solution into the first level
problem to formulate single-level MILP problems

Step 7 Solve all single level problems using CPLEX® MILP solver

Step 8 Solve the comparison optimization problem (2.6) to select the
exact and global optimum solution

aThe maximum number of critical regions is bounded by k ≤ Σn−1
c=0 c!lc where n = Σh

i=0l!/(l − i)!i !, h is
the number of optimization variables and l is the number of constraints. More information about this can
be found in Dua et al. [18]

vector of the discrete problemvariables. The subscript numbers (1, 2 and 3) indicate the
optimization level the constant coefficient matrices and the decision variables belong
to.

The presented algorithm has been implemented as part of B-POP® toolbox, amulti-
parametric toolbox for the solution ofmulti-level programming problems. The toolbox
features (1) bi-level and tri-level programming solvers for linear and quadratic pro-
gramming problems and their mixed-integer counter-parts, (2) a versatile problem
generator capable of creating random bi-level and tri-level problems of arbitrary size,
and (3) a library of bi-level and tri-level programming test problems.

This algorithm can yield fully adaptive second stage policies for problems with the
general formulation of (1), and fully adaptive second stage policies along with the
globally optimal solution for the general class of problems formulated as (2).

Although this approach can be easily extended to quadratic programming problems,
as B-POP can also solve quadratic mixed-integer tri-level problems, in this paper we
focus on the linear formulation (2).

4 Numerical examples

To illustrate the use and benefits of using the presented algorithm for the solution
of the MI-ARO problems with decision-depended uncertainty set, four small scale
numerical examples are solved using three different computational methods, (a) affine
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decision rule approximation, (b) column-and-constraint generation algorithm, and (c)
B-POP® toolbox.

(a) Affine decision rules (ADR), Ben-Tal et al. [9]
Most popular among the methods derived for the solution of classical two-stage
linear robust optimization problems that contain only continuous decisions and the
uncertainty is a polyhedron. ‘Wait-and-see’ decisions are approximated as affine
adjustments of the uncertainty. Affine decision rules can be optimal in a number
of instances (e.g. 4.1 Example 1), but their simple structure generally sacrifices
optimality for tractability and scalability.

(b) Column-and-constraint generation algorithm (C&C), Zeng and Zhao [41]
This approach was developed for the solution of mixed integer ARO problems.
The basic idea behind this algorithm is to reduce the AROproblem to a single-level
optimization problem by enumerating significant extreme points of the polyhedral
set U on-the-fly in a decomposition framework. This method scales very well in
terms of variables but not in terms of the number of constraints.

(c) Tri-level optimization throughmulti-parametric programming (B-POP), Avraami-
dou and Pistikopoulos [1,2]; Faisca et al. [19]
A MATLAB® based toolbox for the exact global solution of different classes
of mixed-integer multi-level programming problems through multi-parametric
programming algorithms [30]. B-POP® is available for download at paramet-
ric.tamu.edu.

4.1 Example 1: Linear ARO problem

A simple problem taken from Ning and You [28], (5), is chosen as the first numerical
example to illustrate in detail the steps of the proposed algorithm.

min
x1,x2

3x1 + 5x2 + max
u∈Ubox

min
y1,y2

6y1 + 10y2

s.t. x1 + x2 ≤ 100
x1 + y1 ≥ u1
x2 + y2 ≥ u2
xi , yi ≥ 0, i = 1, 2
Ubox = {u1, u2|5.5 ≤ u1 ≤ 52.1, 9.5 ≤ u2 ≤ 54.8}.

(5)

The first step is to recast the lowest optimization level into a multi-parametric
problem, by considering x and u variables as parameters.

min
y1,y2

6y1 + 10y2

s.t. x1 + x2 ≤ 100
x1 + y1 ≥ u1
x2 + y2 ≥ u2
xi , yi ≥ 0, i = 1, 2
Ubox = {u1, u2|5.5 ≤ u1 ≤ 52.1, 9.5 ≤ u2 ≤ 54.8}.

(6)
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Table 2 Parametric solution of
problem (6)

CR Definition Variables

1 x1 − u1 ≤ 0 y1 = −x1 + u1
x2 − u2 ≤ 0 y2 = −x2 + u2
x1 + x2 ≤ 100

2 − x1 + u1 ≤ 0 y1 = 0

x2 − u2 ≤ 0 y2 = −x2 + u2
x1 + x2 ≤ 100

3 x1 − u1 ≤ 0 y1 = −x1 + u1
− x2 + u2 ≤ 0 y2 = 0

x1 + x2 ≤ 100

4 − x1 + u1 ≤ 0 y1 = 0

− x2 + u2 ≤ 0 y2 = 0

x1 + x2 ≤ 100

Problem (6) is then solved using POP® toolbox, to get the optimal parametric
solution of y as a set of affine functions of the rest of the optimization variables
(x1, x2, u1, u2) in different critical regions (Table 2).

As a next step, 4 multi-parametric problems are formulated, each corresponding to
one critical region, by adding the critical region definitions to the set of constraints
of the next level problem, substituting in the affine functions for y1, y2, and consid-
ering the higher level variables (x1, x2) as parameters. The four problems created are
presented below (7–10).

min
u

−6u1 − 10u2 + 6x1 + 10x2

s.t. x1 − u1 ≤ 0
x2 − u2 ≤ 0
x2 + y2 ≥ u2
x1 + x2 ≤ 100
5.5 ≤ u1 ≤ 52.1
9.5 ≤ u2 ≤ 54.8

(7)

min
u

−10u2 + 10x2

s.t. −x1 + u1 ≤ 0
x2 − u2 ≤ 0
x2 + y2 ≥ u2
x1 + x2 ≤ 100
5.5 ≤ u1 ≤ 52.1
9.5 ≤ u2 ≤ 54.8

(8)

min
u

−6u1 + 6x1

s.t. x1 − u1 ≤ 0
−x2 + u2 ≤ 0
x2 + y2 ≥ u2
x1 + x2 ≤ 100
5.5 ≤ u1 ≤ 52.1
9.5 ≤ u2 ≤ 54.8

(9)
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Table 3 Parametric solution of
the middle level problem

CR Definition Variables Objective

1.1 0 ≤ x1 ≤ 52.1 u1 = 52.1 6x1 + 10x2 − 860.6

0 ≤ x2 ≤ 54.8 u2 = 54.8

x1 + x2 ≤ 100

2.1 5.5 ≤ x1 u1 = 5.5 10x2 − 548

0 ≤ x2 u2 = 54.8

x1 + x2 ≤ 100

3.1 0 ≤ x1 u1 = 52.1 6x1 − 312.6

9.5 ≤ x2 u2 = 9.5

x1 + x2 ≤ 100

4 x1 + x2 ≤ 100 0

min
u

0

s.t. −x1 + u1 ≤ 0
−x2 + u2 ≤ 0
x2 + y2 ≥ u2
x1 + x2 ≤ 100
5.5 ≤ u1 ≤ 52.1
9.5 ≤ u2 ≤ 54.8

(10)

The resulting four multi-parametric problems are then solved using POP® toolbox.
The solution of all of the problems is presented in Table 3.

The next step of the algorithm is to substitute the optimal solutions in Table 2
into the higher level problem and solve the resulting single-level problems to get four
different solution strategies.

The final step is to compare those strategies and choose the optimal one to be the
exact and global solution of the original tri-level programming problem.

The global solution of the original tri-level problem is x1 = 45.2, x2 = 54.8
and the objective is 451. Note that this solution is the same as the one presented in
Ning and You [28]. The optimal affine decision rules developed through the tri-level
multi-parametric programming method are:

y1 = −x1 + u1
y2 = −x2 + u2

(11)

For this ARO problem, using the affine decision rules method results in the same
solution as the multi-parametric method and the column and constraint generation
algorithm. Even though the solution is the same, the affine decision rules developed
through the affine decision rulemethod are different from themulti-parametricmethod
and are presented below (12).

y1 = −0.81438 + 0.14807u1
y2 = 0.

(12)

123



Adjustable robust optimization through multi-parametric…

Table 4 ARO Example 2 solutions

Affine decision rules Column-and-constraint B-POP

Objective 0 6600 6600

First-stage
decisions

v1 = 0, v2 = 0 v1 = 1, v2 = 0 v1 = 1, v2 = 0

x1 = 0, x2 = 0 x1 = 24,000, x2 = 0 x1 = 24,000, x2 = 0

Second stage
decision
rules

y11 = 0, y12 = 0 y11 = −18,000δ1 + 20,000

y13 = 0, y21 = 0 y12 =
−x2 − 18,000δ2 + 20,000

y22 = 0, y23 = 0 y13 = x1 + x2 + 18,000δ1 +
18,000δ2 − 40,000

y21 = 0, y22 = x2, y23 = 0

4.2 Example 2: Mixed integer linear ARO problem

Example problem (13) was formulated to show how the three approaches considered
perform when the first stage decisions contain both binary and continuous variables.

Using the three different approaches the solutions presented in Table 4 were
obtained. In this instance, both the column-and-constraint generation algorithm and
B-POP return the exact optimal solution of the MI-ARO problem, whereas the solu-
tion generated through the affine decision rule approach is suboptimal and overly
conservative.

Furthermore, B-POP has the capability to also generate the second-stage decision
rules for the entire feasible space of the uncertainty and first-stage variables, giving
the decision maker more insights into the dynamics of the problem.

max
x,v

− 0.6x1 − 0.6x2 − 100, 000v1 − 100, 00v2

+ min
δ∈U (x,v)

max
y∈Ω(x,v,δ)

5.9y11 + 5.6y12 + 4.9y13

+5.6y21 + 5.9y22 + 4.9y23
s.t. y11 + y21 ≤ 20, 000 − 18, 000δ1

y12 + y22 ≤ 20, 000 − 18, 000δ2
y13 + y23 ≤ 20, 000 − 18, 000δ3
y11 + y12 + y13 ≤ x1
y21 + y22 + y23 ≤ x2
x1 ≤ 130, 000v1
x2 ≤ 130, 000v2
δ1 + δ2 + δ3 ≤ 2
x1, x2 ≥ 0
y11, y12, y13, y21, y22, y23 ≥ 0
δ1, δ2, δ3 ≥ 0
δ1, δ2, δ3 ≤ 1
v1, v2 ∈ {0, 1}2.

(13)
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4.3 Example 3: Mixed integer linear ARO problem

Example problem (14)was formulated in order to investigate how the three approaches
considered perform when the first-stage decision variables can directly constrain the
feasible region of the uncertainty through the problem’s constraints. This example
problem contains both continuous and integer ‘here-and-now’ optimization variables.

Following the same three different approaches, the solutions in Table 5 were
obtained. In this instance, where the first-stage decision variables can constrain the
induced feasible region of the uncertainty and second stage variables, enumeration of
the extreme points of the uncertainty set may not result in the optimal solution. For this
reason the column-and-constraint generation algorithm along with the affine decision
rules gave a sub-optimal solution to the original ARO problem.

min
x,z

400x1 + 414x2 + 326x3 + 18z1 + 25z2 + 20z3

+ max
g∈G(x,z)

min
y

22y11 + 33y12 + 24y13 + 33y21 + 23y22

+30y23 + 20y31 + 25y32 + 27y33
s.t. z1 + z2 + z3 ≥ 700 + 40(g1 + g2 + g3)

z1 ≤ 800x1
z2 ≤ 800x2
z3 ≤ 800x3
y11 + y12 + y13 ≤ z1
y21 + y22 + y23 ≤ z2
y31 + y32 + y33 ≤ z3
y11 + y21 + y31 ≥ 206 + 40g1
y12 + y22 + y32 ≥ 274 + 40g2
y13 + y23 + y33 ≥ 220 + 40g3
g1 + g2 + g3 ≤ 1.8
z1, z2, z3 ≥ 0
y11, y12, y13, y21, y22, y23, y31, y32, y33 ≥ 0
g1, g2, g3 ≥ 0
g1, g2, g3 ≤ 1
x1, x2, x3 ∈ {0, 1}3.

(14)

4.4 Example 4: Mixed integer linear ARO problem

The last example problem formulated contains both continuous and integer ‘here-
and-now’ and ‘wait-and-see’ optimization variables and both continuous and integer
uncertainties.
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Table 5 ARO Example 3 solutions

Affine decision rules Column-and-constraint B-POP

Objective 33,680 33,680 30,536

First stage
decisions

x1 = 1, x2 = 0 x1 = 1, x2 = 0 x1 = 1, x2 = 0

x3 = 1, z1 = 458 x3 = 1, z1 = 458 x3 = 1, z1 = 220

z2 = 0, z3 = 314 z2 = 0, z3 = 314 z2 = 0, z3 = 480

Second stage
decision
rules

y11 = 166 + 40g1 + 40g2 y11 = 0, y12 = 0, y13 = z1

y12 = 0 y21 = 0, y22 = z2, y23 = 0

y13 = 220 + 40g3 y31 = 40g1 + 206

y21 = 0, y22 = 0, y23 = 0 y32 = −z2 + 40g2 + 274

y31 = 40 − 40g2 y33 = −z1 + 40g3 + 220

y32 = 274 + 40g2, y33 = 0

Table 6 ARO Example 4 solutions

B-POP

Objective −27.1784

First-stage decisions x1 = 10, y1 = 0

Second-stage x2 = −165x1 − 10y1 − 205u1 − 40u2 + 50

Decision rules y2 = 0, y3 = 0

min
x1,y1

9x1 + max
u1,u2

min
x2,y2,y3

2x1 + y1 + 2u1 + u2 − 4x2 + 2y2 + 10y3

s.t. 6.4x1 + 7.2u1 + 2.5x2 ≤ 11.5
−8x1 − 4.9u1 − 3.2x2 ≤ 5
3.3x1 + 4.1u1 + 0.02x2 + 0.2y1 + 0.8u2 + 4y2 + 4.5y3 ≤ 1
y1 + u2 + y2 + y3 ≥ 1
−10 ≤ x1 ≤ 10
−10 ≤ u1 ≤ 10
x1, x2 ∈ R

2, y1, y2, y3 ∈ {0, 1}3
u1 ∈ R, u2 ∈ {0, 1}.

(15)

Both ADR and C&C solution approaches cannot be used for classes of problems
that contain integer variables in the second stage, like problem (13). Therefore, in
Table 6 we present only the exact optimal solution obtained using B-POP® toolbox.

5 Computational studies

The algorithm presented in this paper has been implemented in a toolbox, B-POP,
a MATLAB based toolbox for multi-level programming. The toolbox features (1)
multi-level programming solvers for linear and quadratic programming problems and
their mixed-integer counter-parts, (2) a versatile problem generator capable of creating
randommulti-level problems of arbitrary size, and (3) a library ofmulti-level program-
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ming test problems. The reader is also directed to Avraamidou and Pistikopoulos [2]
where the efficiency and performance of the toolbox for the solution of mixed-integer
tri-level problems were presented and discussed.

In this section, we will assess the performance and efficiency of the toolbox for the
solution of two classes of ARO problems.

(a) Class 1 This class considers the mixed-integer version of the ARO problem with
decision dependent uncertainty set presented as (2). Formulation (2) is expanded
here to include both integer and continuous variables.

min
x1,y1

cTω1 + max
u,v

min
x2,y2

bTω2

s.t. Wω2 ≥ h − Tω1 − Mωu

ω1 = [xT1 yT1 ]T
ω2 = [xT2 yT2 ]T
ωu = [uT vT ]T
ω1 ∈ Sω1 , x1 ∈ R

α, y1 ∈ Z
k
2

ωu ∈ U (ω1), u ∈ R
β, v ∈ Z

n
2

ω2 ∈ Sω2(ω1, ωu), x2 ∈ R
γ , y2 ∈ Z

m
2 .

(16)

(b) Class 2 This class considers a more general mixed-integer ARO problem where
uncertainties can directly affect the objective of the problem. This class is formu-
lated as (17).

min
x1,y1

cTω + max
u,v

min
x2,y2

bTω

s.t. Wω2 ≥ h − Tω1 − Mωu

ω = [xT1 yT1 u
T vT xT2 yT2 ]T

ω1 = [xT1 yT1 ]T
ω2 = [xT2 yT2 ]T
ωu = [uT vT ]T
ω1 ∈ Sω1 , x1 ∈ R

α, y1 ∈ Z
k
2

ωu ∈ U (ω1), u ∈ R
β, v ∈ Z

n
2

ω2 ∈ Sω2(ω1, ωu), x2 ∈ R
γ , y2 ∈ Z

m
2 .

(17)

Computational results for problems belonging to Classes 1 and 2 are presented in
Table 7. P column lists the problem names, X1 denotes the total number of continuous
first stage variables, Y1 denotes the total number of binary first stage variables, X2
denotes the total number of continuous second stage variables, Y2 denotes the total
number of binary second stage variables, U denotes the total number of continuous
uncertainties, V denotes the total number of binary uncertainties, Si denotes the com-
putational time required for the completion of step i of the algorithm (see Table 1
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Table 7 Computational results for ARO problems

P X1 Y1 X2 Y2 U V S3 (s) S5 (s) S7 (s) S8 (s) T (s)

P1 2 2 1 1 2 2 0.358 6.279 0.006 0.001 6.644

P2 4 4 5 5 2 2 0.472 0.338 0.002 0.0004 0.812

P3 10 10 2 2 10 10 0.989 0.825 0.002 0.0004 1.816

P4 10 10 10 10 10 10 1.835 2.505 0.002 0.0004 4.342

P5 30 20 30 20 30 20 11.198 3.941 0.040 0.017 15.196

P6 2 2 1 1 2 2 0.182 0.082 0.002 0.0008 0.266

P7 4 4 5 5 2 2 0.448 0.152 0.002 0.0005 0.602

P8 10 10 2 2 10 10 0.910 0.668 0.002 0.0005 1.581

P9 10 10 10 10 10 10 1.550 1.608 0.0028 0.0005 3.162

P10 50 50 5 5 30 30 26.839 7.083 0.033 0.032 33.988

for the steps), and T denotes the total computational time for each test problem. Test
problems P1 to P5 belong to Class 1 and P6 to P10 belong to Class 2.

The computations were carried out on a 2-core machine with an Intel Core i7 at
3.6GHzand16GBofRAM,MATLABR2015a, and IBMILOGCPLEXOptimization
Studio 12.6.2. Note that, the independent problems in Steps 5 and 7 of the algorithm
in Table 1 were solved sequentially and not simultaneously (which obviously would
have increased the computational performance).

The test problems listed in Table 7 are available through parametric.tamu.edu web-
site, in the POP section under the name ‘BPOP_ARO’.

Results in Table 7 show that we can solve problems of class 1 with a total of 90
continuous variables and 60 integer variables in about 15 s, and problems of class
2 with a total of 85 continuous variables and 85 integer variables in about 34 s. As
discussed in Avraamidou and Pistikopoulos [2], the limiting steps of the algorithm
involve the solution of the multi-parametric problems (S3 and S5 on the table).

6 Key overall remarks

Using multi-parametric programming to solve the inner problem for ‘wait-and-see’
variables, we were able to show that affine rules are mere approximations, and can
be sub-optimal for general classes of problems, as different affine decision rules are
optimal in different spaces of ‘here-and-now’ and uncertainty variables feasible space.

Moreover, we developed a theory for generating exact generalized affine rules and
solving to global optimality linear ARO problems involving both continuous and inte-
ger decision variables in both stages, where the uncertainty can be both integer and
continuous and is a function of the first stage variables. This theory can be extended
for quadratic problems by the use of multi-parametric mixed-integer quadratic pro-
gramming algorithms that are already implemented in B-POP® toolbox. Through this
methodology, we are able to capture the full set of affine decisions as a function of
‘here-and-now’ decisions and uncertainty.

One can also observe that even if the first-stage objective function is changed, the
affine decision rules generated through this approach are still valid. Furthermore, the
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decision maker has access to a plethora of strategies to choose from, as opposed to
other solution methods that will only generate one strategy.

Future directions include extending this approach for the solution of the classical
ARO problem where the uncertainty is not decision dependent, and for quadratic
MI-ARO problems.
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