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Spin-dressed relaxation and frequency shifts from field imperfections
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Critical dressing, the simultaneous dressing of two spin species to the same effective Larmor frequency, is a
technique that can, in principle, improve the sensitivity to small frequency shifts. The benefits of spin dressing
and thus critical dressing are achieved at the expense of generating a large (relative to the holding field By,)
homogeneous oscillating field. Due to inevitable imperfections of the fields generated, the benefits of spin
dressing may be lost from the additional relaxation and noise generated by the dressing field imperfections.
In this analysis, the subject of relaxation and frequency shifts are approached with simulations and theory.
Analytical predictions are made from a new quasiquantum model that includes gradients in the holding field
By = wy/y and dressing field B; = w;/y where B is oscillating at frequency w. It is found that irreversible
DC gradient relaxation can be canceled by an AC spin-dressing gradient in the Redfield regime. Furthermore,
it is shown that there is no linear in E frequency shift generated by gradients in the dressing field. The results
are compared with a Monte Carlo simulation coupled with a fifth-order Runge-Kutta integrator. Comparisons of
the two methods are presented as well as a set of optimized parameters that produce stable critical dressing
for a range of oscillating frequencies w, as well as pulsed frequency modulation parameters for maximum

sensitivity.
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I. INTRODUCTION

Spin dressing is a technique that changes the effective
Zeeman splitting of an atomic or nuclear spin system [1,2]
and is found to have a wide range of applications. Notably, the
manipulation of spin dynamics of ultracold quantum gases [3],
and orbit interactions and its influence on dynamics, and en-
abling a new avenue for coupling optics to nanomaterials [4].
It is also a valuable tool in the field of fundamental physics.

A variation of spin dressing has been proposed as a
technique to maximize sensitivity in the search for the time
reversal and parity violating observable, the permanent elec-
tric dipole moment (EDM). In Ref. [5] they propose critical
dressing of spin-polarized neutrons and *He. Critical dressing
is the simultaneous spin dressing of two species so that they
have the same effective gyromagnetic ratio.

Here we present a detailed framework of the technique of
critical dressing with the aim of optimization of experimen-
tal sensitivity and mitigation of systematic effects. This is
achieved by including the effects of the fluctuations in field
as observed by the particle’s trajectory through the field inho-
mogeneities, similar to the derivation in Ref. [6]. In Ref. [7]
they approach the case of relaxation due to collisions of gas
atoms; however, in the system presented here, scattering in the
bulk does not directly affect the dynamics, it only modifies the
field fluctuations observed by the particle by modification of
the particle’s trajectory. In Ref. [8] they reformulate the result
in Ref. [2] and find solutions for nonharmonic dressing fields
as well offset dressing fields. In Ref. [9] they consider the
case of a chromatic dressing field, and in Ref. [10] they find
the propagator for the polychromatic dressed Hamiltonian.
Here we consider fluctuations in the field producing the spin
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dressing of a gas sample over a macroscopically large volume,
where the particle’s trajectory through the inhomogeneities of
the DC holding field, as well as the spin-dressing field, are
the largest sources of relaxation and frequency shifts. We use
an approach similar to that found in Refs. [6], [11], and [12].
We show that the spectrum of the correlation functions that
determine the relaxation and frequency shifts depend on the
dressed energy, it is not enough to correct the result in the
case of no oscillating field by a factor Jo(%), as would be
found if one included the shift as an intrinsic energy splitting
in the Hamiltonian.

The benefits of spin dressing and thus critical dressing
are achieved at the expense of generating a large (relative to
the holding field By,) homogeneous oscillating field. Due to
inevitable imperfections of laboratory fields, the benefits of
the spin-dressing technique may be lost from the additional
relaxation and noise generated by an imperfect field. In this
analysis the subject of relaxation and frequency shifts are ap-
proached with a quasiquantum model that includes gradients
in the holding field By = wy/y and dressing field B} = w,/y
oscillating at frequency w. We will present an analytic model
that can determine the relaxation and frequency shifts given an
inhomogeneity of the holding field By and a uniform applied
electric field. The model is considered quasiquantum due to
the use of classical trajectories, presented in Ref. [13], to de-
termine the field fluctuations in the rest frame of the particle.
Furthermore, we compare the results to a Monte Carlo simu-
lation coupled with a fifth-order Runge-Kutta integrator. This
simulation is a modified version of the simulation outlined in
Ref. [14] and used to produce the results in Ref. [15]. This
code was modified to produce a set of parameters that produce
critical dressing at a range of oscillating frequencies w, as
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well as parameters for pulsed frequency modulation of the
spin-dressing field.

II. SPIN-DRESSING MODEL

Starting from the Hamiltonian, according to Refs. [1,2], for
a spin in a strong AC magnetic field along x (B;) and weaker
DC holding field (By) along z,

H ) i
E=a)aa—i—2)L1/2?( +a)+a)02 €))
where A = (n) is the expected number of photons, which
can be written in terms of a magnetic field amplitude B
oscillating at frequency w,

_ B}V

" Snho’
The first term represents the energy in the oscillating field,
the second term represents the energy of the interaction of the
oscillating field with the spin, and the third term is the energy
of the interaction of the spin with the holding field. The Pauli
matrices in this system are chosen so that the diagonal state is
in the direction of the strong oscillating field,

(1
o =1

0, = (? (1)) = )=+ ) (. )

0

An ensemble of photons of a harmonic field is described
by Glauber states such that the coefficients of the probability
amplitudes in terms of the average photon number A = (n) are

a, = exp (_)\> )ﬁl . (6)
2/ (n")z2

The basis in m, can be written in terms of the m, eigen
states,

@
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and |n) is the basis for the quantum simple harmonic oscillator
Hamiltonian. Furthermore, from Refs. [1,2], we have

mz&ﬂm (10)
(i) = bun. an
Moy = (n'e—t 23 e -ay,

B
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where J,,_, is the Bessel function of the first kind with order
n’ — n. In Refs. [1,2] they find the energy,
E, wym  n?
T T T
where here, and for the rest of the document, m = m, with
m = %1 and 7 is given by

13)

_vB

sl
It is then shown in Refs. [1,2] that the Larmor precession
(wo) has been effectively scaled (wy — wj) and in the limit
of ¢ « 1 the scaling factor reduces to

B
wy = Jo<ywl)wo, (15)

which we refer to as the Jy approximation. Note that this
approximation breaks down when % < 1 is not valid. This is
discussed in Refs. [16] and [17] and will be addressed below.

The wave function of the system is written as a sum of the
basis states weighted by Glauber coefficients,

(l)_ Z eme—t majt f;l—ln m) (16)

n,m==1

(14)

Notice that the last term of the energy in Eq. (13) is a constant
energy shift and thus does not contribute to the dynamics; this
is the reason for its absence in the phase of the wave function
in Eq. (16). Furthermore, the changes in n are suppressed by
a factor w and A2, this allows us to add an energy shift as a
perturbation in the Hamiltonian while introducing negligible
error. We now present a brief summary of critical dressing and
show the results of optimization within a simulation of critical
spin dressing for a system of neutrons and *He.

A. Critical dressing

In the presence of two spin species with different gyro-
magnetic ratios, e.g., ¥;, ¥k the dressing parameters (B, )
can be tuned such that the effective Larmor precession (wy =
y'By) is the same for the two species, i.e., y = y,. In the Jy
approximation this can be achieved if we deﬁne a=y;/v
then, in terms of the dressing parameter x = y B; /w, critical
dressing occurs when x = x, where x, is found by solving the
following equation,

Jo(xe) = aJo(axe). 7)

However, if the Jy approximation is not valid then the
effective gyromagnetic ratio can be calculated numerically to
high accuracy by writing the matrix elements of the Hamilto-
nian over a large range of n and n’ and then diagonalizing the
resulting matrix. The resulting eigen values of the diagonal-
ized matrix will determine the Zeeman splitting where the nth
entry is the order of the perturbation. This method is further
discussed in Refs. [16] and [17]. Thus, the effective frequency
can be determined from

wy = —. (18)

Where AFE is the Zeeman splitting determined numerically
from nth order perturbation theory.
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TABLE 1. Critical dressing parameters for a range of @ values where By, is the solution to critical dressing given by Ref. [5], By the
solution found numerically from higher-order perturbation theory, and By, is the critical dressing field found using simulations. The value of
Bgm was optimized such that y, = y};, to within 1 part per 10'°. This corresponds to 6 changing by less than 5 x 107 rad over 1000 s. All the
above were optimized using a By = 3 uT, where, in this case, w;, ~ 380 rad/s.

o (rad s o By, (uT) By (uT) By (LT) BB 100% Bim =Bt 100%
@0 1o t
100000 164 648.8541 648.8433379 648.8345280 —0.003 —1.3578 x 1073
30000 49.1 194.6562 194.6202953 194.6176552 —0.020 —1.3565 x 1073
18000 294 116.7937 116.7338304 116.7322440 —00.053 —1.3590 x 1073
10000 16.4 64.8854 64.7775066 64.7766232 —0.168 —1.3637 x 1073
6000 9.81 38.9313 38.7511230 38.7505920 —0.466 —1.3704 x 1073
4200 6.87 27.2519 26.9938929 26.9935194 —0.948 —1.3836 x 1073
3000 4.91 19.4656 19.1026874 19.1024180 —1.866 —1.4100 x 1073
2400 3.93 15.5725 15.1162445 15.1160267 —2.931 —1.4410 x 1073
2100 3.43 13.6259 13.1019402 13.1017478 —3.847 —1.4682 x 1073
1800 2.94 11.6794 11.0633252 11.0631580 —5.276 —1.5115 x 1073
First observations of critical spin dressing are discussed  versus antiparallel,
in Ref. [18], which is a thorough reference for critical spin , ,
dressing. Here we present results from Monte Carlo sim- Aw = oy — oy, (20)

ulations optimized for the critical dressing parameters of
neutrons and *He over a wide range of w and where, in this
case, @ = y3/y, ~ 1.11 and y3, ¥, are the *He and neutron
gyromagnetic ratios. The optimization was performed until
the effective gyromagnetic ratios differ by less than 1 part
in 10'°, It was observed that the J, approximation is overall
very good for w > wy; however, as the dressing frequency
approaches the holding field frequency, differences between
the simulation and the J, approximation can grow large.
Monte Carlo results are compared to numerically calculated
higher order perturbation theory, and the Jy approximation in
Table I.

While for estimation purposes the Jy approximation is fast
and fairly accurate, for precision measurements it may not
be accurate enough, for example, in the search for permanent
electric dipole moments.

B. Critical dressing applied to the neutron electric
dipole moment

A specific case where critical dressing is of particular
interest is in a system of neutrons and *He for the search for
the neutron electric dipole moment, due to a spin-dependent
interaction of neutrons and *He. Making use of the spin-
dependent interaction via critical spin dressing is a sensitive
probe of the relative phase of the *He and neutrons. This is
further discussed in Refs. [5,19].

In the absence of spin dressing the frequency of precession
in a uniform magnetic field (By) and electric field (E), given
the existence of a permanent neutron electric dipole moment
(d,), with magnetic dipole moment p,, is given as

2unBo  2d,E
_ 2mBy  2,E

h [ (19)

Wo

However, in the case of critical spin dressing the preces-
sion frequency will be modified according to Eq. (18). The
experimental signature of a nonzero d, is a difference in
precession frequency for electric and magnetic fields parallel

where a/TT is the frequency when the magnetic and electric
field are parallel and a)’T | 1s the frequency when the magnetic
field and electric field are antiparallel. In the limit where the
Jo approximation is valid the frequency shift from the electric
dipole moment, d,, can be written in terms of the Bessel
function J,

4d, E
Aw = Jo(x.) .

2D

Beyond the Jy approximation, wy, can be determined nu-
merically as discussed above or from the Monte Carlo sim-
ulation. We illustrate the onset of the breakdown of the Jy
approximation in Fig. 1, where it is shown that the preces-
sion frequency shift determined from the simulation is best
predicted by the numerical diagonalization of a higher-order
perturbation theory where the shift due to the electric field is
included in the Hamiltonian used to determine the perturbed
Zeeman splitting. From this result we might assume that this
numerical method can be used to predict the relaxation and
frequency shifts that are introduced with inhomogeneities in
the holding fields. However this technique will not provide an
accurate prediction, because the frequency shift is an extrinsic
effect, it is determined from the strength of the spectrum for
the correlation function at the Larmor frequency. Since the
frequency has been changed by the spin dressing, we may
also expect the contribution from the correlation function to
change as well. Therefore a more detailed investigation of the
relaxation and frequency shifts due to inhomogeneities of the
field is desired; in the following section we present a model
for this purpose.

III. RELAXATION AND FREQUENCY SHIFTS FROM
FIELD INHOMOGENEITIES IN A SPIN-DRESSED SYSTEM

We assume here that Eq. (16) is the solution to the Hamil-
tonian; for wy < w the Jy approximation is valid. When that
condition is broken the exact expansion must be used, or
alternately, computed to high accuracy numerically, this is
discussed in Sec. Il A. We use this solution to add additional
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FIG. 1. Frequency shift due to a neutron EDM of d, =1 x
1072 e cm and 75 kV /cm electric field in a critically dressed system
of *He and neutrons. Excellent agreement is observed between the
shift predicted from the simulation (Aws,) and the higher order
perturbation theory (Awy). The deviation from the simulation and
the shift predicted from the J, approximation (Awy,) is apparent
at lower frequencies. The deviation from a constant for the J
approximation is due to deviation of x, from that given by Eq. (17).
For these calculations By = 3 uT giving w;, ~ 380 rad/s

perturbations in the Hamiltonian, these perturbations take the
form of an electric field E = EZ, and inhomogeneous field
functions for the spin-dressing B oscillating at a frequency
w, and DC holding field By. We will discuss solutions in the
particle rest frame such that spatial B-field inhomogeneities
couple with the particle motion to become time-dependent
variations. The perturbation is thus time varying (n) =
A(t). However, this will be represented by a change in the field
By — (By) + § B(t), where for now § B (t) is some arbitrary
function of time, but is small compared to (B ). A similar term
for the Hamiltonian occurs in Ref. [20], where they also model
the gradient of a dressing field. Recall that this change is a
negligible shift in the total energy, shifting all levels by the
same amount at any instant, thus the overall dynamics can be
well described if we include the term %%(zﬁ + a), this

will result in a time-dependent energy but does not introduce
significant error as long as y§B; is small compared to w
and y B). Interestingly, ¥ B need not be small compared to
y By. Furthermore, we require @ > wy if we wish to use the
approximation in Eq. (15). For simplicity we use the notation

wii(t) =y 8By (1), (22)
woi (1) =y 8By (t) + yv, E./c, (23)

where the i index represents the fluctuations due to the field
in that direction, the number index determines the source, the
0 index indicates it is generated from inhomogeneities of the
holding field, while terms with the 1 index are generated from
the dressing field which oscillates at frequency w. With this

simplification, the perturbing Hamiltonian is written as

1
Hpert = —— w1, (t)0, + w1,(1)oy, + o1, (t)o 1(a + a’)

40172
Oy o o

+ w0x (1) = + w0y (1) = + w0 (1) = (24)
2 2 2

Thus, the total Hamiltonian is written as

H w1

- T 1 T

7 = wa a+4)»1/2O'X(a+a )+Hperl~ (25)

We continue to evaluate this Hamiltonian to second order
in perturbation theory for all off-diagonal matrix elements
and diagonal elements oscillating at @, assuming a constant
energy for the time evolution. This is equivalent to neglecting
the wo.(t)o, term in Eq. (24). We include the DC field
diagonal matrix elements that arise from the w, (¢ )o, term in
Sec. III B, where time evolution in the energy is required, this
is discussed in detail in that section. We will find expressions
for frequency shifts, and transverse relaxation, 7,. We do no
explicitly consider 77, because it does not seem to hold much
interest given that we are considering the spin-dressed system
of a gas, which has typically undergone a 77/2 pulse. We will
identify the leading terms that contribute to 75, and show
that this model is qualitatively in agreement with previous
formulations found in reference [12,21-23] considering the
effects of spin dressing.

A. Relaxation and frequency shifts in second-order
perturbation theory

We will write the relaxation and frequency shifts in terms
of the wave function determined from perturbation theory. To
do this we will find the expectation value of the spins aligned
in the plane perpendicular to the DC holding field,

(ox + iay) = (04). (26)

From the real part we find 75 relaxation and the imaginary
part the accumulated phase due to the frequency shift. Despite
deriving the matrix elements in the representation where the
diagonal Pauli Matrix is along x, we write them in terms of
a basis diagonal in z. We start with the spins in the plane of
Larmor precession, for example, after a 5 pulse. Since we are
now in the z basis, we have

1 /1 1
v O = =
V2\1) V2
where to first order the elements of the wave function are, after
having summed over the Glauber states,

(4 + 1=, 27)

t
y = —i/ dr'( f) (fIH|i)dr, (28)
0
the contribution to second order is
t t
WO = it [ [ a G
0 0
(29)

so that our total perturbed wave function to second order is

V= Iﬂ(o) + I//(]) + 1//(2). (30)
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Our task is the evaluation of the matrix elements of the
perturbing Hamiltonian. However, we can be more restrictive
of the terms required in our final calculation if we consider a
general perturbed wave function,

a
V= (b) (€29

from this we find the expectation value of (o),
(04) = 2a*b. (32)

Now, (o) can be written in terms of the matrix elements
used to build . For this notation we write (+|H|+) =
H,,, and (—|H|+) = H_,, etc. The evaluation and dis-
cussion of (o) is completed in the Appendix, where we
find

(04) =1—2¢ / H_.(0)H,_(1)dt
0

- 4tRe< / l H(O)H(r)dt). (33)
0

From this we find the frequency shift,

8w=Im<d<dat+>>=Im<2 / H—+(0)H+—(T)a’r>, (34)
0

Sw = 21m( / ” H_+(0)H+_(t)dt>, (35)
0

where we assumed the observation time is much longer than
the correlation time to change the limit from ¢ to co. Refer-
ence [11] asserts that the equations are valid for intermediate
times, as we find here; however, we will continue with the
Fourier transform due to their simplicity. For the transverse
relaxation, we have

1 =2Re[/oo H_+(O)H+_(T)df>
T 0

2
+ 4Re[ / H__(O)H__(r]dt:|. (36)
0

The matrix elements for all unique terms in the Hamilto-
nian are evaluated in the Appendix. The results are presented
here:

1 "o
(m'lorelm) = 2 (1 - mm’)e' 2=k 37

(o (a + ab)|m) = x2ei2 =)0 cos(ewr)(1 — mm'),

(38)

i N B
(m/|ay|m) — 7(31%(}%_”’ )wot(m _ m/)Jo(y 1)
2 w

" (V31>
+ (m 4+ m’) sin(wt ) J; - ) 39)

(m'|oy(a +a")|m)

B\ . Ny
— i)\510<"'>e'5<m—'" N cos(wt)m —m'),  (40)
w

1 . Ny g o
(m/|az|m) = E(m + m/)el%(m—m Japt l(m _ m/)ezz(m—m Yyt

B
x i (’”) sin(wr), 41)
w
(m'|o(a + a®)|m)
Lo B
= ¢izlmm >wo’xiJ0<y‘) cos(wt)(m +m').  (42)
w

The matrix elements shown above are all in terms of the
Jo approximation, if more accuracy is required the dressing
factor [Jy(y B;/w)] should be replaced by a dressing factor
found numerically using Eq. (18). For simplicity we write the
result as a double sum of possible terms. The cross terms
do not vanish, if there is a field shape that depends on the
same variable, these can be written in terms of the correlation
of a function of the same variable [e.g., B}, o f(x), B}, «
g(x)], then the fields will be correlated. These terms only
vanish in special cases, e.g., for Bj, o x, with B}, x%. We
ignore cross terms between the DC and AC fields as these
terms always contain some rapidly oscillating phase and can
be neglected, this is shown in the Appendix. The relaxation
can be written in terms of modified variables w;; — )| i
specifically,

o) (1) = 8B, (1), (43)
o}, (1) = iy Jo((x))8 By, (1), (44)
w,(t) = y Jo((x))8 B (1), (45)

/ vy (1)
@, (1) = y[ﬁBOX(tH 2 E] (46)

/ . v (1)
w, (1) = iy Jo((x))| 8Boy(t) + ——E |, (47)
C

wh (1) = ¥ Jo((x))8 Bo, (1), (48)
@0, (1) = y J1({x))8 B (1), (49)

where ay,, corresponds to the first harmonic of the oscillating
terms in the matrix elements, which arise due to the dressing
field; this is discussed in the Appendix. Notice that /|, (t) =
wix(t), because x corresponds to the direction of the applied
dressing field, it does not obtain a factor Jy(x). With these
definitions we can write our phase shift as

1 oo ’ ’ —iwyT
b =2Im| o 3 Z/O )/ (0)w},(7) cos(w)e " dt

k=x.y j=x.y
(50
1 o0 . !
+2Im | - Z Z A ) (0w (e 7 dr
k=xy j=x,y
(51)

Notice that there is no cross correlation between the AC and
DC terms, wy; and wyy, in the frequency shift. This is because
a quickly oscillating phase appears in all cross correlation
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terms in the expansion, this is shown in the Appendix. Thus,
there is no linear in E frequency shift generated by gradients
in the dressing field. Typically, the first term(s) can be ignored,
and the second term(s) dominates the frequency shift. We turn
our attention to the transverse relaxation where we hold off
on writing the zero frequency term for the DC field inho-
mogeneity. This is investigated in Sec. III B, where we show
that for the zero frequency part of the DC relaxation we must
include the time dependent energy in the Hamiltonian. The
current method does not take into account the time variation
of the energy. This fails for the diagonal DC field component
(wp.), because @y, (1) is a relatively large contribution to the
overall phase. In fact, given that this is a static contribution
to the diagonal matrix element, it is the whole contribution
of the phase for that term, and while it is small compared
to (wp), (w1), and w, it cannot be ignored when it is the
sole contribution to the phase. For the off-diagonal terms, or
diagonal terms oscillating at w, the energy dependence of the
time evolution operator can be ignored due to the negligible
size of the phase shift compared to (w;), and w. Starting
from the evaluation of (o) in terms of the wave function
constructed from second-order perturbation theory, we find
(after omitting wy_)

1 1 o .
A =2Re| 7 > Z /0 ) (0)w, (T) cos(w)e " dT
k=x.y j=x,y
(52)
_1 e .
+2Re| - > Z fo ) () ()7 dr
L k=x,y j=x,y
(53)
L oo
+4Re 5[ w;Z(O)w’lz(r)cos(wr)dt} (54)
L2 Jo

+Re|:i / h e T sin(a)t)w/lx(O)a){)Zq(r)dr} (55)
0

+Re|:i / emieht sin(wr)wgm(O)wgzq(r)dr]. (56)

In general, there is no reason a field in one direction will not be
correlated with another over the same position coordinate. For
example, Maxwell’s equation does not preclude the relation
ddlfj ddlz" , in this case these two field inhomogeneities would
be correlated due to a similar dependence on the y-position
variable, and thus the cross terms must be included for an

accurate prediction of the relaxation. Furthermore, we will not
consider the terms found in Egs. (55) and (56) any further.
These terms contribute as the difference in the real part of the
spectrum at @ & w(, and are highly suppressed for typical spin-
dressing parameters, when @ > @y, but we included them
here to maintain generality.

The transverse relaxation that we find is nearly in agree-
ment with the formulation found in Ref. [21], with the ex-
ception that our contribution from the y and z field power
spectrum contain an extra factor Joz((x)) due to dressing.
We now finish the derivation of 7, by examining terms in
the diagonal component of the Hamiltonian containing wy,
without assuming a dressed energy that is constant in time. We
will find that diagonal terms typically dominate the relaxation,
this is because typically the magnitude of the gradient for the
on-axis field component is similar to the off-axis component,
so that all other terms can be ignored. However, we should
be aware that there are solutions to Maxwell’s equation where
this assumption is not valid.

B. T, due to spatial inhomogeneities in a spin-dressing
and holding field

Now we create a model to determine transverse relaxation
(T») that incorporates diagonal heterogeneities in the spin-
dressing field. This is not considered in the previous section or
in Ref. [21], where the AC gradients that cause relaxation spa-
tially average to zero. The model requires that we incorporate
our time dependence into the energy of the state determined
from the Hamiltonian, given by

H= a)z(t)%. (57)

Here, w, = y Jo[x(:)][{Bo) 4+ 8 Bo(¢)] and the time evolution
operator is given as

U(5t,0) = exp {—iy]o(x(t))[(Bo) + 8Bo(t)]%8t}. (58)

Alternatively, one could proceed with the propagator given in
Ref. [8], where they account for nonharmonic waveforms, or
in Ref. [10], where they account for a distribution of frequen-
cies. However, we do not consider these because typically for
systems investigated here the precision and stability of the
frequency and generated waveform is far greater than the field
uniformity. The general solution is

o) = e+ + |-, (59)

We start with the spins along the 4-x direction, equivalent to a
system directly after a 7 pulse, our solution becomes

1 t t
la) = (exp {—iy/ Jo[x(t’)]Bo(t/)dt’}l—i—) + exp {i)// Jo[x(t/)]SBo(t’)dt/}|—>>. (60)
0 0

V2

To find an expression for 7>, we evaluate (o, + ioy) = (o) and find its rate of decay,

1 t t
(o, tlopla, t =0) = ((—| exp {—iy / Jg[x(t”)][Bo(t”)]dt”} + (+]exp {iy / Jo[x(t”)][éSBQ(t”)]dt”})
0 0

2

X |+)(—|<6XP{—iJ// Jo[x(t’)][Bo(t’)]dt’}I—i-) +exp{i)// Jo[X(t’)][cSBo(t')]dt’})I—)- (61)
0 0
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We concentrate on the phase in the exponential. To simplify
the time dependence in the Bessel function, we write

/dw¢ =Vfd{fo<W)[B<)+SBoz(t)]},

(62)
qu(f)ZV/11<y<£1))6?6[30+8301(t)]
+yf10(%)d5302(1), (63)
w¢(t):Z/Jl(y<jl>)[30dwlx—i-(SBOZ(t)da/lx]
+y/10<y<fl>>d3302(t), (64)

B
(,()¢(l‘) Z’Z)/Jl(y(a)l))Boda)lx
+y f Jo(yioB'))daBoZo), (65)

o)=L, (”B”)Bowlx + Vfo<y<Bl>>530z(f)-
w w w
(66)

We substitute this back into Eq. (61),

(04) = exp {i /" |:yfl(V<Bl))Boa)1x(l/)
0o Lw w
+ yJo(y<jl>>SBo(t/):|dt/}. (67)

This is the general form of the zero-frequency decay compo-
nent of 7». Theoretically, if we know By(t), then the solution
is known. However, perfect knowledge of By(z) for every
particle is challenging. Thus, we describe thermal motion by
a conditional probability distribution function, a model that is
appropriate for this derivation is described by Refs. [13,24].
The evaluation of (o,) is completed in the Appendix, and
diagonal DC field contribution to 75 is

- Re[s%% (0) (68)
Tz pc o
w2
+ J1(x)* =3 S0y, (0) (69)
w
o
—201(0) = S, (O)}. (70)
 Soua,

Again, we use w;, = y Jo(x)By, where Sepa) (0) is the zero
frequency of the spectrum of the autocorrelation function of
wj(t). In general, we define the spectrum to be

Soyou (@) = /0 {@ij (0)an(T))e "7 d. (71)

Defining the spectrum from ¢t = 0 — oo allows us to keep the
imaginary parts, which are necessary for the prediction of the
frequency shift.

The DC diagonal rate is summed with the off-diagonal and
AC diagonal rates for the full prediction of 75,

1 1
Tz =Re 4 kgy j;y [Sw/'fw;k (@ +wp) + S“"u"’/m(w - a)f))]
1
+5 DY Supap (@) + Sujwf, (@) + Sy (0)

k=x,y j=x,y
2 @o
+ J1(x)"— o0, (0) = 2J1(x)— S0y, (0) . (72)
w w N

In the case of the cross correlation S, . (0) we will
find that if the variation in w;, and a)(’)z is due to spatial
inhomogeneities then only terms that are a function of the
same variable will be correlated. For example, if there is
a spin-dressing field gradient along x, and the static field
gradient along x then the cross correlation will not vanish,
[Sw;wy (0) # 0]. This formulation of the relaxation offers the
curious ability to make the cross term the opposite sign as the
squared terms, implying that one can slow down and essen-
tially cancel the DC relaxation as long as the gradients in each
field are of the right proportion. The spin-dressing gradient
that allows this cancellation, i.e., % ~ 0, corresponds to

1
for — ~ 0, (73)

Giyj = Gozj— ——,
e T

where Gi,; = dg]‘.

DC field gradient, Go,; = df;Z. Physically, the gradient in
the spin-dressing field changes the effective gyromagnetic
ratio in the correct proportion to the gradient in the holding
field allowing the spins to have the same effective frequency
throughout the whole volume. When the spins have the same
effective frequency across the spatial volume the relaxation
from these terms vanishes. Matching the effective gyromag-
netic precession across the volume to extend coherence times
has recently been reported in Ref. [25], where they indepen-
dently predict and experimentally verify that a spin-dressed
inhomogeneity can counteract an applied DC inhomogeneity
to recover the original coherence times, even in the presence
of large gradients. Therefore this result is not limited to the
Redfield regime as presented here, and is valid where the
signal decay becomes dominated by the reversible process of
gradient dephasing. We expand on this and claim that from
Eq. (72) it is clear that the attenuation of the polarization
due to the motion of the spins is also suppressed, making the
technique technically superior when compared to refocusing
the spins with spin echo. However, some relaxation is un-
avoidable, because the AC relaxation terms, specifically from
the first line in Eq. (72), are dominant when the cancellation
is sufficient.

and j can be x,y, or z, and for the

C. Comparison to simulations

Monte Carlo simulations coupled with a fifth-order Runge-
Kutta integrator are compared to the theoretical predictions for
the relaxation and frequency shifts of the spin-dressed system.
The simulation package is further described in Refs. [14,15].
The simulation is for a system of *He in a superfluid *He bath
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= 104 L Jo Approx. Enhanced Relaxation ]

Jo Approx. Dressing Gradient Only
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FIG. 2. T; in the Jy approximation due to a spin-dressing gradi-
ent, showing full theoretical cancellation. Expectedly, full theoretical
cancellation does not result in an infinite 7, as the AC terms in
the relaxation become the dominant source of relaxation. Otherwise,
results agree within the spin-dressing Jy(w; /@) approximation, the
deviation observed is due to this approximation breaking down. The
gradient in the uniform field is 3 x 107 By/cm in the z direction,
and the AC gradient is determined from Eq. (73).

below 450 mK, as this is the system used to search for the
neutron electric dipole moment (discussed in Sec. IIB and
Refs. [5,19]). This superfluid solution is chosen because of
the ability to change the diffusion coefficient of the 3He (D5),
via scattering off of phonons, by small changes in temperature
(T). In Refs. [26,27] we find D3 o T~". The ability to change
the diffusion coefficient and thus, the mean free path, allows
the ability to study the effect of the particle’s trajectory on the
relaxation and frequency shifts. With the intention of mitigat-
ing unwanted relaxation or frequency shifts. The volume in
the simulation is confined to a rectangular cell of dimensions,
(x,y,2), 40 x 10.2 x 7.6 cm.

The vanishing relaxation effect, simulated with gradients in
both the holding and dressing fields simultaneously, is shown
in Figs. 2 and 3. Full cancellation of the holding field gradient
(G.. =3 x 107 By/cm) by the dressing field gradient is
shown in in Fig. 2. In Fig. 3, the spin-dressing gradient is
tuned to partially cancel the holding field gradient (G, =
107> By/cm), with 3% residual gradient remaining according
to Eq. (73). Although the gradient cancellation is not exact in
Fig. 3, it still shows a sizable gain in coherence time. For this
example, in either of the holding field gradients, the applied
gradient in the AC field need only be stable to ~ 5% of its
target value, found from Eq. (73), for a substantial gain in the
dressed coherence time. As expected, total cancellation is not
observed in Fig. 2 as the AC field terms become dominant.
The cross term that extends the relaxation time can also
enhance the relaxation rate so that relaxation is faster than
the sum of the individual rates. The enhanced relaxation is
shown in Figs. 3 and 2, where the gradient in Eq. (73) has
the opposite sign. Deviation from the simulations is observed
in both Figs. 3 and 2 as the dressing frequency decreases.
This is due to the approximation in Eq. (15) becoming invalid.
Presumably this discrepancy is largely removed by using the
full expansion found in Ref. [2], or by finding it numerically

& » ® ® @

Simulation Partial Cancelation
2] Simulation Enhanced Relaxation
Jo Approx. Partial Cancelation
Jo Approx. Enhanced Relaxation
Simulation Dressing Gradient Only H
Theory Dressing Gradient Only

=
T
% <O 0%

102

0 1000 2000 3000 4000 5000
f (Hz)

FIG. 3. T, in the J, approximation due to a spin-dressing gra-
dient, showing partial cancellation, 3% effective remnant gradi-
ent according to Eq. (73). The theory points are circles and the
simulation data are stars, results agree until the Bessel function
approximation breaks down due to relatively slow AC frequency
compared to the Larmor frequency. The gradient in the uniform field
is I x 107 By/cm in the z direction and By = 3 uT

as described in Sec. II A. The slope of the Jy approximation
around the critical dressing parameter x. is also required.
Nonetheless, a substantial gain in 7, is observed. This
effect allows the ability to change the relaxation rate by
either tuning the dressing field gradient or the holding field
gradient. Typically for dressed systems we have w% > j?g ;
Thus, a change in the dressing field gradient will change
the relaxation at a slower rate compared to the holding field
gradient. Therefore the resolution for changing the relaxation
is smaller for the dressing field gradient, making it technically
easier to manipulate the relaxation through manipulation of
that gradient. However, it requires tuning an AC gradient to be
in phase with the original dressing field. With modern timing
resolution this problem is certainly solvable, but achieving
the stability required may be challenging. Furthermore, we
can determine the size of the gradient in the spin-dressing
or holding field by keeping the gradient in one constant and
varying the gradient of the other.

Typically, the zero frequency components of the field
will dominate the relaxation, however there are solutions to
Maxwell’s equation where this is not the case. Thus, sim-
ulations for gradients in w;, and w;,, were performed and
compared to the theory. This is shown in Fig. 4.

For the simulations of the phase shift we include an
electric field E = E Z, and include a magnetic gradient in
the z direction with the negative of the x direction, Go,, =
—Gxx- This example scenario is simple but realistic since it
satisfies Maxwell’s equations, a condition that can broken in a
simulation. This gradient is efficient in examining the model
as it will give us the minimum number of similarly behaving
terms, and thus the most direct in comparison to simulations.
For this case, we have the following terms in the Hamiltonian
that must be considered:

@, () =y Jo({x))G12:2(1), (74)
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FIG. 4. Comparison of T, due to gradients in the off-axis compo-
nents of the spin-dressing field for the numerically solved dressing
factor versus the simulation. Each gradient was simulated across a
range of dressing frequencies. The circles indicate theory prediction
and the error bars are from the simulation. There is no deviation
observed at the lower frequencies because the dressing factor was
computed numerically for the simulation and theory, rather than
using the Jy approximation.

w1, (1) = Y G rex (1), (75)

). =y Jo((x))Goz:z(1), (76)
), = )’[Go)cxx(t) + vi (;)E], (77)
ohy (0 = iy do(e) L E. 78)

x107*

O Theory 300 mK
T Simulation 300 mK

gsﬁ%f b ! !

I I
0 1000 2000 3000 4000 5000
f (Hz)
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FIG. 5. Linear in E frequency shift in a rectangular cell of
0.4 x 0.102 x 0.076 m (x,y,z) dimensions, respectively. The
spins contained in the cell are under the influence of a dressed field.
The upper plot is modeling *He in a superfluid helium-II bath at
250 mK in a 2 uT holding field along the z direction. The lower
plot is for the same system 300 mK in a 3 uT holding field. The E
field is 750 kV/cm along the z direction and the DC field gradient
is 2 uT/m along the x direction, this gradient is large compared to
gradients achieved in laboratory fields to increase the effect above
the resolution of the simulation. In this simulation the EDM is set to
Zero.

For this example, we ignore contributions of f—f as typically
these are negligible, although we should be cautious in simu-
lations not to make E large enough to become the dominant
term when searching for other effects. Typically, by making
E unphysically large we magnify the desired linear in E
effect (for simulations purposes), but it can be obscured if the
relaxation and frequency shifts due to E? become dominant. If
we assume that E? terms can be neglected, and keeping only
terms linear in E, we find

2 oo
Sw = ZZEGOXX]O(()C))RG[‘/(; X(O)UX(T)e_iw(,JT:I’ (79)

7/2
S = —22 EGow Jo((x))
C

0o o, L2
X {wé)lm[/(; x(O)x(f)e‘“"“T:| + 1;}, (80)

J/2 L2
S = _C2EGOXXJO(<x>){a)6lm[(sxx(w)] + 1;} (81)

This was simulated for the range of critically dressed
frequencies found in Table I. In Fig. 5 we find good agreement
that is consistent with the combined error of the simulation
and extraction of the frequency shift.

We now examine the effect of modulation of the spin-
dressing parameters on the phase shifts and relaxation.

D. Modulated critical dressing

Modulated critical spin dressing is the modulation of pa-
rameters of the critically dressed spin system around the
critically dressed value. It is a technique that can be utilized
to optimize statistical precision and mitigate systematic drifts.
Experimental observation of the systematic improvement is
presented in Ref. [18]. In Ref. [28] they find pulsed modula-
tion to be the optimum modulation technique for statistical
sensitivity. In pulse modulated dressing the gyromagnetic
frequencies of the two spin species are momentarily allowed
to shift to a large difference so that a known angle 6,, is
accumulated between the spins. When 6,, is accumulated
an observation period of critical dressing is continued for a
given time. After this time has been completed the frequency
change is reversed and the angle 6,, is undone. It is shown in
Refs. [19,28] that a statistically optimum value for the angle
0. between the spins exists. The modulated dressing is used
to swing neutron and *He spins to +6,. For example, this is
achieved at the start of the critical dressing when the initial
phase between the spin species is equal to —6,, after the
critical dressing observation period the modulation pulse is
applied where 6,, = 26, bringing the phase to 6., after another
observation period a pulse 6,, = —26, is applied. The pulse
train repeats for the duration of the measurement. For more
details refer to Refs. [5,19].

The modulation technique was optimized across a number
of different modulation strategies and pulses. It is clear from
modern timing resolution that frequency modulation is most
precise experimentally. Initially square pulses in the frequency
w of the pulse were pursued as the modulation technique,
however this was repeatedly shown to have poor coherence
times. Despite great effort, a set of parameters that approached
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TABLE II. Optimized parameters for range of w, values for the
modulation function given in Egs. (83) and (84). For all frequencies
n = 51 was used and B, values are the same as the By;,, values found
in Table 1. 6, is the time average value of 6 between modulation
pulses and /{A6?) is the rms in 6 between modulation pulses. These
parameters were tuned such that 6, changes by less than 5x107> rad
between up and down pulses after 1000 s.

w(ads')  wump (rads™) a 0 (rad)  /(A62) (rad)
30 000 12711.5053 0.7256 0.7998 0.012
18 000 7624.44225 0.7257 0.7998 0.012
10 000 4231.97665 0.7260 0.7998 0.012
6000 2542.33540 0.7260 0.8022 0.013
4200 1766.76950 0.7280 0.7999 0.014
3000 1255.05106 0.7300 0.8012 0.015
2400 994.364100  0.7330 0.8006 0.018
2100 862.250665  0.7357 0.7996 0.019
1800 730.012950  0.7395 0.7995 0.020

acceptable behavior was never determined for the square
pulses, despite an analytic solution in Ref. [5]. It was found
that if the square pulses where smoothed the modulation
of frequency would remain coherent, and ultimately no re-
laxation or distortion was observable after 10° modulation
cycles. Of the functions studied the parametric function that
demonstrates the best performance is

Wyar (1) = @ + wampf(r)’ (82)
where
1 x -
fr)= ae*n[r(t)fjlz _ ae*n[r(t)*%]2 (83)
and
r(1) = moday (gl + Pm), (84)

where wuyp is the amplitude and wgy, is the frequency of
the modulation (about 1 Hz), ¢, is a modulation phase,
the parameter a controls the relative heights of the positive
and negative modulation pulses, and n controls the sharpness
of the peaks. The integral of this pulse can be written in
closed form with the use of the error function, which is
a well tabulated function. Using this modulation pulse the
required parameters of the pulse for the desired effect on
the spin solution can be calculated accurately, and quickly,
leaving the possibility of feedback timing corrections during
the measurement. A table for the modulation parameters for
a range of w is shown in Table II. A time sequence plot of
the pulse train for a particular frequency (w = 10 000) and the
response of the spins are shown in Fig. 6.

Pulsed modulation corrects for slow electronic drifts in
the dressing parameters, specifically drifts slower than the
frequency of modulation f, ~ 1 Hz. This is discussed further
in the Appendix. However, modulation does not decrease sen-
sitivity to phase shifts compared to a dressed system that is not
modulated. This includes the frequency shift due to an electric
dipole moment and any geometric frequency shifts, nor will
it increase 7,. Therefore, we do not expect the analysis of
the theory to change other than by the amount prescribed by
the theory due to the changing dressing pulse that enables

154 .
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FIG. 6. Plot of 6, 6, and w, against time for three complete
modulation cycles where parameters are given by those in Table 11
for w, = 10000 rad s and ¢noq = 7/2. 9 is the total angle between
the two species’ spins and 6, is the angle between the projection of
the two species’ spins on the plane perpendicular to By.

the modulation. The geometric phase was simulated under the
modulation parameters shown in Table II and compared to the
theory; the results are shown in Fig. 7.

IV. CONCLUSION

An analysis of critical dressing was completed in simula-
tions, values that optimize the critical dressing are proposed,
and are found to be in very close agreement with theory.
Furthermore, an example of modulation was proposed for a

7 x1073
O Theory 300 mK
6 T Simulation 300 mK
N
< l l
s B
4 L L L L I}
0 1000 2000 3000 4000 5000
frf (Hz)
-0.03
-0.035

of (Hz)

N 5 S S P
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-0.045
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. (H2)

FIG. 7. Linear in E frequency shift for modulated spin dressing
in a rectangular cell of 0.4 x 0.102 x 0.076 m (x, y, z) dimen-
sions, respectively. The spins contained in the cell are under the
influence of a modulated dressed field. The upper plot is modeling
SHe in a superfluid helium-II bath at 250 mK in a 2 uT holding
field along the z direction. The lower plot is for the same system
300 mK in a 3 4T holding field. The E field is 750 kV/cm along
the z direction and the magnetic field gradient is 2 ©T/m along the
x direction; this gradient is large compared to gradients achieved in
laboratory fields to increase the effect above the resolution of the
simulation. In this simulation the EDM is set to zero.
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specific pulse shape over various critical dressing frequencies
and shown to be stable for periods long compared to relaxation
times in laboratories. The effect of field inhomogeneities of a
dressed system was investigated, simulations are compared to
a new analytical model.

A model that incorporates Redfield-like gradient relaxation
and frequency shifts into a spin-dressed system has been
proposed and compared to simulations. Good agreement be-
tween the analytical model and the simulations is observed,
allowing confidence in fast estimations without the use of a
spin-dressing simulation. This provides a means of predicting
observables, in situ, that is to say, in a time frame that is
much faster than the transverse relaxation of a typical run
of an experiment. Full and accurate simulations of dressed
spin systems typically take several days to complete due
to the computational complexity, this complexity is further
discussed in Ref. [14].

We highlight the prediction to cancel DC gradient relax-
ation by an AC gradient relaxation, a rare scenario where

two wrongs make a right. It also gives rise to the unfortunate
ability to create a relaxation rate that is faster than the sum
of the two individual rates. Nonetheless, this technique holds
promise of achieving better than previously expected coher-
ence times given an ambient field inhomogeneity.

Finally, the model elucidates the correct approach for cal-
culating systematic frequency shifts; where we find the corre-
lation function is evaluated at the dressed energy splitting, and
not the intrinsic Zeeman splitting that arises from the holding
field alone. Furthermore, it is shown that there is no linear in
E frequency shift generated by gradients in the dressing field.
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APPENDIX

Here we evaluate the matrix elements given the Hamiltonian in Eq. (25). The perturbative terms can be classified by those
proportional to oy, oy, 0;, ox(a + a®), etc. For simplicity we consider the contributions from the operators separately, first we

consider the matrix elements of (m'|oy|m),

S | — — — —

(n',m'loy|n, m) = 56"'a;kﬂn((nﬁr|(+|x —im'(n_[{=[)(oy)(In-)|+)x +imln_) |=).), (AL)
(n',m'loy|n, m) = Eema:fan((n+|<+|x — im"(n_ (=) () (=] + [=) (FDn) [ 4) 5 + imln)_|=)),
S | — _ — —

(n',m'loy|n, m) = Ee"'a:'an((n;|<+|x|+)(_lim|n7>|_)x —im (n_|(—= L] =)+l ) [+)0), (A2)

T T T o\ 1 . X 4 / i
(n',m'|oyn, m) = Ee"'za;,an(m(n+|n_) —m'{n_|ny)), (A3)
— — 1 B B
(n',m'loy|n, m) = ¢! (= orti (mom )wO’la "y |:mJ,, n(y 1) - m’Jn_,1/<y l>:| (A4)
2 1) 3]

Now we set n’ = n + ¢, and sum over n, giving us (m’|oy|m),

B
m|ay|m ZZ et(n nJwt+iy (m—m"wyt ia +qan|:m~] ( ) /J_q<ywl)i|. (A5)

We keep all the terms, for now, but note here large values of ¢ do not contribute due to the behavior of the a,, coefficients, and g
determines the harmonic of the term while large harmonics will not contribute at our desired sensitivity. We continue to simplify

the expression,

=1 | B B
(m’|ay|m) — Z Zeiqwt-kiz(m—m’)w(')ri[qu (ywl> /J (le):| (A6)

g=—00

We note here that large values of ¢ do not contribute due to the behavior of the a, coefficients, and g determines the harmonic
of the term. We find that it is enough to only consider the first harmonic where ¢ = +£1,

/ i it(m—m")wlt ’ )/B] N . )/Bl
(m'|oy|m) = Ee 2 o'(m —m')Jy W + (m + m’) sin(wt ) J, - ) (A7)
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Now we turn to o,

(n',m'|og|n, m), (A8)

1 i(n—n"Ywt+it(m—m"wlt T tondnl| Tn) imln)
= e 2 Oy an (0|4 (+1x — im(n'| _(=])(ox)(n) L [+)x +im|n)_|—=).),

2
1 R [ I _
= Sevapay (0| (+1x — im(n'| (=) (+) (+] = [=}(=D(n) L [+), + imn)_|-),), (A9)
2
1 ! i L (m—m")w)t _x T Iy .
= Ee’(”_” SR gy (4 (L ) () )+ 2mlm [ (= [edn) 1)), (A10)
1 N i m—m)wlt  x
= E(l —mm')e'? 'ayandpn, (A11)
summing over n and n’ we have
1 1 Ny
/ 3 — (1 = / zi(m—m Yyt */ nan’n, Al12
(|0 |m) ;2< mm')e aya (A12)
’ 1 IN i L (m—m" )t
(m'|oy|m) = 5(1 —mm')e'? o, (A13)
Now that we have a simple expression of the matrix elements required for (o,) we consider o,(a + a'), where we must
commute a + al with e¥2 0@,
YN womloc(a+ahinm), (Al4)
m==x1m'==%1
L m—m")wyt (1.7 | SV TV . T
=D X SNl = im L =)o@ + @) (n) ), + im0, (A15)
m==x1m'==%1

1 — . _ _
= > 2 e @it = im W= (H = =) (=D@ + a4 +imTn) =),

m=x1m'==%1

1 . P — _ _ 7
= Y Y S QL) (i + @D+ P m (=@ ] =),

m==x1m'=%1

1 Nl — L JR— I
=D D e (ki@ + ang) — m'm{nC (@ + ahin-)), (A16)

m==x1m'=%x1
Concentrating on the evaluation of (a + a’)[n.), we start by writing |n.) in terms of |n),
(a+a)ng) = (@ +ahe20@ =), (A17)

For simplicity, set w = %%, ¢ =a+al,and b = a' — a. Notice the similarities of b and ¢ with the position and momentum

operators of a simple harmonic oscillator,
i/ h
x =, (a+ad)=,/ c (A18)
2mw 2mw
1/ h
p=i m‘; @ —a) =i,/%b. (A19)

[c,b] =2, (A20)

and

We know that [x, p] = ih, thus,

with the commutation relation,
[c, e™"P] = F2we ™7, (A21)
the matrix elements are
(nsl(a+ahinz) = (n'| F 2w + cln),

(Wi l(@ + aDns) = FL 8, + /'l = 1)+~ + 1n'ln + 1. (A22)
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Evaluating (m’|o,(a 4 a')|m), we have

1 H ’ i ’ / — — — —
(m'loy(a +al)m) = - Z Z el ez =it g (@ + abing) — m'm(n”|(@ + ahn_)), (A23)

(m |Gx(a+aT)|m Zze ananlifann 1 ++vn 8nn+1 lln_mm(fann 1 +vn+ 3nn+1+ (Snn):l

(A24)
<m lox(a +aT)|m Zze Ay dp [N/»Sn m—-1+~n+ 18,11 — ; - m/m<\/;5n’n—l +vn+ 181 + g(Sn’n>]~
(A25)
We proceed by summing over n,
1 - . "o
(m'lo (@ +ah)im) = 2 Z Ze’("’” ayayel 1w (A26)
[(\/n T8t + V0o = b lm =) (1= m'm) |. (A27)

1. N ; :
(m/lax(a+aT)|m> — zelé(mm)wor[(zelwtan—lan\/ﬁ'i_zelwtan_i,-[an /n+ 1)(1 —m/m)—Z|an|ZZ)8nn|n’l—m,|i|,
n n n

(A28)
1, N 4
(m'loc(a +a"m) = Eel%“"*’" >wol[(e’w’ﬁ e V) —m'm) — Lo, m — m’|], (A29)
w
(o (a + ab)lm) = rzel 20m=mpt [cos(wz)(l —m'm) — Im — m’|]. (A30)
2w

Where in the second-to-last step with large A the Poisson distribution behaves like a Dirac § function in n, numerically this
is found to be an extremely good approximation. We continue by noting that the term containing 7 carries a 1/A which is the
number of photons in the field, which is very large, and so the term with 1 can be neglected. We have

(o (a + ab)m) = 12l 2= cos(wt)(1 — mm'). (A31)
Now we find

', m'|oy(a +a")ln, m) (A32)
= ;e’“’ et b s =m0 (! (] — im (0 [(— )0 )(a + a)([n)|+) + imln_)| =), (A33)

%e (L [ = im =D+ = + =) (D@ + aD)Y(n ) +) + imln )| =),

%e (U [ =] = im (=11 =)D + ah () +) + imln_)| =),

= %e~~<<7+|<—| — im'(n_|(+])(a + a")([n 1) |+) + imln )| =), (A34)
= >"”elz<'"*m’>w6‘§(m<7+|<a+a*)|rT_> —m'(n_|(a +a')ny)). (A35)

Therefore, we must find

1n
(n’l(a + ang) = (nZlclng) = (nlce¥2oP|ny). (A36)
With the commutation relation

[c, eT"’] = F2we TP, (A37)
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we have
(lelns) = 1™ 20cin) F L Jo(x), (A38)
(lelnz) = Ve 2 = 1) 4+ i+ Tle™ 20n + 1) F () (A39)
= Vi ni (yBl) vt + V1 F Ly <wa')8"/”1 F o) (A40)

We see that the term containing 7 is negligible compared to the other two terms. Substituting this back in and summing over n
and n’, we have

(m'loy(a +ah)m) = % Xn: ;eiéw—m”%’, (A41)
x anfan{me"("—"“” [ﬁan_nH (yfl) wnet + VA T l(yfl )61} (A42)
m'e! (1= e |:\/77Jn’—n+1 (Vfl)am_l F VA Uy (Vfl)anfn_l} } (A43)

(m/|oy(a+a7)|m) = lze 2 (m—m" )t { [eiw’ﬁlo(waI> + e 0 <VBI>:|

(22

N B
(m'|oy(a + ab)lm) = ie'z " >wo’,\%Jo<y‘) cos (wt)(m — m'). (A45)
w

This is expected if we consider the comparison of the ¢ = 0 elements with (m'|o,|m) to (m’|oy|m). We now consider

(m’|o,(a +aT)|m) = ZZ (n',m'|o,(a + aT)In, m). (A46)

Concentrating on individual terms of sum, we have

(n",m'|o.(a + a"Hln, m) (A47)
1. B - o
= 5e’<"‘” ot gl 2=t (! [(4+| — im' (n_|(—])(ox)(a + a")(n)|+) + imln_)| =), (A48)
= ’Ee---<<7’+|<+| —im (n_[(=D(=+) (=] + |=)(+Da + a)(ni)|+) + imln_)|—)),
%e (= Y =] = im (=] =) (1)@ + aD)(ng) |+) + im[n_)|=)),
fe (= (=] — im (0 [(+])(@ + a")(ny) |4) + imln_)| =), (A49)
VY LI — L — -
= et piz 10 m (' J(a + aDlno) + m'(n”|(a + ahins)). (A50)
Thus, we find
’ T _ itm—mHolt4 L (VB]> ’
(m'lo,(a+a'")|m) =e'2 o' A2 Jo[ —— ) cos (wt)(m + m"). (A51)
w
Furthermore, we have
(m'|o.|m) = l(m + m’)JO(VB‘>e"%<'"’"’>w6’ —i(m — myel 2 m=m)ent g, (yB‘) sin(wt). (A52)
2 w w
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1. Evaluation of the perturbed expectation of o,

Evaluation of the perturbed expectation of o, generates terms to fourth order. We only include terms to second order, first
order terms average to zero (which is not precisely true for ultracold neutrons), and terms that include H;; H;; oscillate fast
compared to other terms, and will be ignored. The only matrix elements that are found to contribute are

t pt t pt t et
(o4) =1 —/ / H_ H _dt"dr —/ / H}_H*_ dt"dt +/ f H{ H__di'dt" (A53)
0 Jo 0 Jo 0 JO

t pt t pt
_/o./o HLHLdt”dt’—/O/; H__H__dt"dt', (A54)

because the functions in H; are ultimately functions of the trajectories of stationary ensembles is valid except for the phases;
however, nonstationary phases oscillate fast and will vanish. Notice that the third integral on the right-hand side has a range [0, #]
for both ¢" and ¢”. This term arises from the first-order part of the wave function. We can use the symmetry of the stationary
trajectory correlation function to express this term in the common form,

t pt t pt
/ / HL_H__dt/dt” = —2Re (/ / H__ H__dt”dt’>. (A55)
0 Jo 0 Jo

We substitute this into the equation for (o) and continue,

t t t t
(o4) =1 —/ f H_+H+_dt”dt’—/ / H}_H* dt"dt (A56)
0 JO 0 JO
t pt t pt t pt
—2Re // H__H__dt"dt —/f HLHjerz”dz/—// H__H__dt"dt', (A57)
0 JOo 0 Jo 0 Jo
t pt t pt
(o )=1-2 f / H_.(t)YH._(¢")dt"dt' — 4Re [ / H__H__dt"dt' ), (A58)
0 JO 0 Jo
t t
(o) =1—2t / H+(O)H+(r)dr—4tRe( / H(O)H(t)dr). (A59)
0 0

In the last step we used the fact that the functions are stationary and replaced t = ¢” — ¢’. In the above equation terms
that contain an oscillating phase that is fast compared to the scale of the measurement, for example, it may contain /¢ +"),
are considered negligible. Interestingly, this oscillating phase ensures that the terms that contribute are indeed stationary.
Furthermore, from the derivation of the matrix elements found in the next section of the Sec. 2 of the Appendix, we find
that the complex conjugate is the equivalent of changing the order of the quantum index, thus, H} _ = H_,.

2. Evaluation of the second-order Matrix Elements

Now we concentrate on the w; ; (1" )w(t") terms,

t t
1 _— I
[Hi-H_{, ., =/ / Za)lj(t’)wlk(t”)e”"ol cos(wt’ e " cos(wt”)dt"dt’. (A60)
0o Jo

The first term can be separated into harmonics in ¢” and ¢’, for which we have

1
[H+— H—+]a)1jwu ZZ

1 e o e
[H+7H7+]wl!w”\ :R/dt/fdt//a)lj(t/)a)lk(t//)(ela)ol +iwt +el(l)ol —lwt )(e—l(l)ol +iwt _"_ e—l(l)of —ilwt )’

f f dr'dt" wy (1w (t")e' ™" cos(wt e " cos(wt”), (A61)

(HyiH- oo =11—6 / dt’ / dt" ) (t Yoy (1) (e @t Ti@h—on” 4 pilepmon=ilwitox” 4 ilepte)t'=1") 4 pilep=e)t'=1")
(A62)

(o Ho oyl = % / dt’ f At o0 (F Yoy (1 (0~ HO ) | o V0 ) el to)t 1) | i)t —1"))
(A63)
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Any exponential argument containing w(t’ + t”) will oscillate much faster than ones with w(¢#’ —¢”) and can be ignored.

Furthermore, we will substitute ¢ —t' = t,

1 o
[y~ Hot loyjon = T6/dt,/dt//wlj(f/)wlk(t//)[e'(“’“‘“)(’ ") g @)=

2
[Hy H_ylo0, = %Git/a)u(O)wlk(r)[e_’%’ cos(wt)]dr.
More generally, we can write
)/2 .
[Hy H_y)o0, = gt[drwlj(O)a)lk(r)[e”wor cos(wt)].

Here we show that the cross terms between w( and w; for the off-diagonal elements can be neglected.
[Hoy Hy ooy, = % // o) (1)), (') cos(wt” e 0" =t dt”
+ % / f ) (1)), (1) cos(wt e = ar'dr”,
[Hoy Hyojwy = % / / @, (wp, (1)@ + e e 0 " dr dt”
+ % / / o}, ()wp (") (e + e ) D dr'dr”.
Wesett =t" — ¢/,
[H_ Hi oy, = % / / W) (T + 1w () (T e T T gy g
+ é // o) () (T + 1) 4 e e dr'dt”,
(Ho Hi oo = % f f W) (T + 1w (1) (e @TOTTD p ploorat) Ty gyl gy
+ % / / o (), (T + 1) e Y dr' dr”.
We see that all terms contain oscillating phases that allow the result to be neglected,

[HerHJrf]a)’lw(’) ~ 0.

Here we examine the cross frequency terms of the diagonal elements (o), and show they can be neglected,
(Ho_H__lufe, = % // o}, (1" (1) cos(wt")dt'dt" + % // wy. (1w (t") cos(wt')dt'dt”,
substituting t = ¢t — ¢/,
[Ho_H__luu, = % / / 0, (T + )y () (T + e TH)ar dr”
+ % / / ), (), (") + e ydt'dt".

Again, all terms contain a rapidly oscillating phase, so we have

[H——H——]w'la)(’) ~ 0.

(A64)

(A65)

(A66)

(A67)

(A68)

(A69)

(A70)

(A71)

(A72)

(A73)

(A74)

(A75)

(A76)

(A77)

(A78)

(A79)

The evaluation of the matrix elements for wjwy terms are not included here. However, identical derivations are found in
Refs. [6,11,12] with the exception of the factor Jy(x )2. Now we show evaluation of the matrix elements that contribute from the
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terms where g = 1. Several of these terms cancel due to fast oscillating factors, or by symmetry, here we consider terms that
contribute in principle,

(A Hy o), o, (A80)
= f / %efw/o(f*f’)[sin(wt’)cos(wz)wlx(t)woqz(t’) — sin(wt ) cos(wt w1 woy- (1)]dtdt’, (A81)
= f / %eiwb(f—")wlx(z’)woqz(t)é[(ei“"/ — e (e e — (€ — e TN + e )dtdl,  (A82)
= [ [ S oot i ey il gy, (A83)
= —t / ée—"wa sin(w7)w, (0)wo, (T)dT.[4pt] (A84)

We point out that this is a phase- and frequency-shifted sine transform. This translates into the real part of the difference in
the spectrum shifted by @ & w;, and when w 3> wj, these terms are negligible. A similar derivation is completed for the squared
terms of the off-diagonal components,

[H_ Hi oy, o, (A85)
= / / e =" [sin(wt’) sin(wt Yoy (oL (t)(1)1drdt’ (A86)
= / f eiwf)(“’)[i(e"w’/iw’ — eler—ioryglor _ ei“”)i|dtdt’ (A87)
— / / N (g 0 _ giorien Y1y (A88)
= —% eI Sin(T )wozg (0)wog, (T)dT. (A89)

Again, we point out that this will be highly suppressed as it goes with the difference in the spectrum at w =+ ). Which is
negligible when w >> w,.

The last term that contributes, in principle, is the diagonal components for ¢ = 1. The only nonvanishing term is the squared
term from o, . It can be shown to be

it .
(H—H__loj, o, =~ 3 f SIN(@T)@0yq (0)woyg (T)dT. (A90)

From symmetry, this term is zero when we take the real part to find the relaxation.

3. Simplification of the DC field diagonal contribution to 7,

Starting from Eq. (67), we continue by expanding the exponential in a series and taking the leading-order terms,

(04) = €7 Jy U 0 Booonc (1 + 1G5 Bo (el (A91)
: B B
<a+>w1—iyf [VL(“ ”)Bowu(t’)wJo(” 1))6300)}”’, (A92)
0 Lo 1) 1)
2 t B B
v [VJI(V< ‘>)Bow1x(z’)+yJo<y< 1>>B(;(ﬂ)]dz’x... (A93)
2 Jo Lo w w
v B B
/ [7/11(7/( 1)>Boa)1x(t')+ylo(y< 1))Bé(t/)}dt”. (A94)
0 Lw w w
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Now we write x = @, to signify that there is no more time

dependence within the Bessel functions. From the definition
of §By(t) we see that the first term averages to zero, for the
last term on the right-hand side we find

2 t t
(o) ~ 1 —%Jo(x)z / §Bo(t")dt’ / §Bo(t")dt", (A95)

Ji(x)’a? ’

t t
1) X(t’)dt’/ wix(t)dt”, (A96)
2 [Conwar [ o)

2] J B ! :
LY SN (x)Bo / w1 (t)dt' / 8Bo(1")d1".

w
(A97)

We recognize that all functions are mechanically stationary
and proceed to write them in terms of the correlation functions
of the variable T = ¢t — ¢/,

t

2
(o0p) = 1— J%Jo(x)z(t —lth | By(0)By(z)dz, (A98)
—t

Ji(x)?w} d
[ — t J—
2wl =l 5

_,_M(f =t | @ (0)By(r)dr.

| (0| ()dT,  (A99)

(A100)

Now we take the limit that . is much smaller than ¢, but at
time ¢ the decay is small, allowing us to write the results in
the usual form of a Transform. From this simplification, we
can write

(o )~ 1— szo(x)zt/oo B,(0)B)(t)dt (A101)
0
2.2 o)
—L)Z“’Ot/ (0 (1)dT (A102)
w 0
2 00
+2Mt/‘ o (0)BY(t)dr. (A103)
0

This result is used to derive Eq. (70).

4. Modulation alternative

The pulsed modulation is optimized to maximize sensi-
tivity while correcting for linear drifts below about f, =
1 Hz. However, noise, either external noise or noise generated
by field inhomogeneities, can be further reduced by cosine
modulation in conjunction with a sharp band pass around
Jfim to “lock-in” to the signal. It is expected that in general
the ultimate sensitivity will be larger for pulsed frequency
modulation. This is due to the strict requirement on the
inhomogeneities of the dressing field from the requirement of
transverse relaxation time, simultaneously ensuring minimal
noise from spin-dressing inhomogeneities.
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