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The '>C(a, y)'%0 reaction, an important component of stellar helium burning, plays a key role in nuclear
astrophysics. It has direct impact on the evolution and final state of massive stars, while also influencing the
elemental abundances resulting from nucleosynthesis in such stars. Providing a reliable estimate for the energy
dependence of this reaction at stellar helium burning temperatures has been a major goal for the field. In this
work, we study the role of potential new measurements of the inverse reaction, '°O(y, «)'?C, in reducing the
overall uncertainty. A multilevel R-matrix analysis is used to make extrapolations of the astrophysical S factor for
this reaction to the stellar energy of 300 keV. The statistical precision of the S-factor extrapolation is determined
by performing multiple fits to existing £'1 and E2 ground-state capture data, including the impact of possible
future measurements of the '*O(y, a)'?C reaction. In particular, we consider a proposed Jefferson Laboratory
(JLab) experiment that will make use of a high-intensity low-energy bremsstrahlung beam that impinges on an
oxygen-rich single-fluid bubble chamber in order to measure the total cross section for the inverse reaction. The
importance of low-energy data as well as high-precision data is investigated.
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L. INTRODUCTION astrophysical S factor given by

. The "*C(«, )/.)'6O'reacti0n is believed t(? be one of the most S(E) = o (E)Ee*™, )
important reactions in nuclear astrophysics [1,2]. A recent

review [3] highlights the key role played by this reaction  here E is the energy in the center of mass, 7 is the Som-
in both the evolution of and nucleosynthetic yields from
massive stars. The purpose of this study is to explore the
role that forthcoming measurements of the inverse reaction—  the carbon ion and « particle. Measurements of the § factor
160(y, @)!2C (OSGA)—could have on reducing the overall  as a function of energy are often reported in the literature. For
uncertainty in the cross section for the '>C(, y)'%0 reaction ~ the "C(a, ¥)'°O reaction, the value of S at E = 300 keV is
at helium burning temperatures. To do this, we perform fits to  typically quoted as the most probable energy for stellar helium
the existing data using the R-matrix approach [4] and study the burning. Of course, the cross section is so small at 300 keV
impact of including new data on the inverse reaction. This is  that it cannot be directly measured. Thus, extrapolations to
achieved by starting with a reasonable R-matrix fit that can 300 keV must be performed to study the impact of data on
be used as a basis for comparison to fits with and without the extrapolation. Of course, efforts aimed at improving the
projected '°O(y, a)'2C data. For the inverse capture data, we data and extrapolation are under way [5,7-14] at a number
start with a proposed Jefferson Laboratory (JLab) experiment of laboratories worldwide. The new inverse reaction (OSGA)
[5] in order to assess the possible role of new measurements  €Xperiments [5,7,8,13,14] bring a different set of systematic
in reducing the overall uncertainty in the cross section [6].  ©rrors than previous experiments and thus provide an addi-
A detailed R-matrix analysis of this reaction and an excellent tional check on systematics.

review of the subject is given in Ref. [3].

merfeld parameter, | / ﬁzl Zz%, and u is the reduced mass of

In the present work, we empl.oyed the R-matrix approach IL R-MATRIX APPROACH
to calculate the total cross section, o (E), for o capture to
the ground state. Considering only ground-state capture is The collision matrix for the OSGA reaction will be given

sufficient for this study since the capture to excited states is  in terms of the Hamiltonian H* which electromagnetically
believed [3] to contribute only about 5% to the total capture ~ couples the photon of multipolarity £ to the nucleus. We

rate at 300 keV. The cross section is then used to calculate the  introduce the wave function W, that describes the a-'>C
system in total spin state J and an initial-state wave function

Vi, which describes the nucleus ('°0) in its ground state.
Then, the collision matrix is given by
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where k, = E, /lic is the photon wave number and the sub-
script ¢ refers to the final a-'>C channel with quantum num-
bers slJ. Here, s is the channel spin (zero in this case), /
is the orbital angular momentum, and J = [/ + s is the total
angular momentum. In principle, we would perform the radial
integration in Eq. (2) from the origin to the channel radius
(internal piece) and from the channel radius to infinity (exter-
nal piece). According to the R-matrix theory [4], inside the
channel radius a, the final-state wave function, Wg;, can be
expanded in terms of a complete set of states, X /),

Wiy = ih'Pe™ EMI,AMLF}/L?XA(J% (3)

where ¢, is a Coulomb phase shift, I',,. is the width of level
w in channel ¢, and A, is the matrix that relates the internal
wave function and the observed resonances. Here,

Ay = (Es — E)83y — &y )

where E, is a level energy, 6,, is the Kronecker §, and
& is given in terms of the Coulomb shift factor, S, the
boundary condition constant, b., and the Coulomb penetration
factor, P,

S)»/L = 2:c[(Sc - bc) + iPc]V)»cV/wa (5)

where here c refers to essentially the « channel in this case and
the ;. are the o reduced width amplitudes. The « channel is
the only open channel and closed channels are neglected.

The internal part of the collision matrix for radiative cap-
ture to the ground state is given by

. i 1/2 1/2
U)i{y’c =1e i E)\MA)‘HFM{([]FM/}/IJ’ (6)

where ¢; is the Coulomb phase shift for orbital angular
momentum /, and I'y,;; and I',,,;; are the formal ground-state
« and radiative widths, respectively. For a given level, the
observed width can be related [4] to the reduced width by

_ 2PZ y)\zalj
= ds;\’
1+ V)\ZalJ(Té)

while the reduced widths for the bound states are given by

N

2
Yial
2 (dSy\’
L+ viu (TEI)
where Sj; is the bound-state shift factor for orbital angular
momentum /. For the photon radiative width, we have

L (dS,
Coayr = Polyiso| 1+ Vi ) 9

®)

2 _
Vielb =

dE
where I,/ is the observed radiative width and

E+ @L+1)/2
ﬂz[‘z} , (10)

Erk + Q
where Q is the Q value for the reaction and E,,, are the physical
resonance energies as given in the equation E,, = E, + (b, —
SV i
We then calculated the EL ground-state radiative cross
section [15] for the '>C(«, ¥)'®O reaction from the collision

TABLE I. Parameters used in the present simultaneous fits to
original data for E1 and E2 and a channel radius of 5.43 fm.
These parameters were used to generate the curves in Fig. 1. The
E, are eigenenergies, not physical resonance energies. The widths
for resonances above threshold are the observable widths I'y,. The
widths for the bound states are reduced widths y2,. The minus
signs in front of the widths indicate the signs of the reduced width
amplitudes. The values marked with an asterisk were allowed to vary
in the fit and are given for the “all” fit in Table II. All other parameters
were fixed.

r E El Tiye E, E2 Tiye

MeV)  Tia/viy  €V)  MeV) Tu/yh, (V)

(keV) (keV)
1 —-0.297 114.6* 0.055 —0.482  105.0* 0.097
2 2416 4147 —0.0152* 2.683 0.62 —0.0057
3 5.298 99.2 5.6 4.407 83.0 —0.65
4 5.835 —-299 42.0 6.092 —349 —1.21*
5 10.07 500 0.604*
matrix for spin-0 nuclei:
QL+ D)m 2
opc(E) = ————|ULF|". (1)

kg

We only considered ground-state transitions and statistical
errors in this study. We initially chose a channel radius of
5.43 fm to be consistent with a previous analysis [3], but later
consider a larger channel radius to be consistent with other
analyses [16,17]. We employed five E1 resonance levels and
four E2 resonance levels in the internal part of the R-matrix
analysis as shown in Table I. This analysis is similar to that
of Refs. [18] and [19], and the details comport with results
of Lane and Thomas [4]. In order to speed up computations,
we turned off the external part for this study. This external
contribution is most sensitive to the E2 part of the cross
section since the E'1 external part is greatly reduced by isospin
symmetry. In fact, the external E'1 part would vanish under
perfect isospin conservation. We performed the fit for data
less than 3 MeV, where the external part is small. As a check,
we turned on the external piece for several fits, but it did not
significantly change the results.

III. SIMULTANEOUS FITS AND PROJECTIONS
FOR Sg1, Sg2, AND TOTAL S

We used a SIMPLEX fitter [20] for the present work. Our best
R-matrix fit of the existing £1 and E2 S-factor data, shown
in Fig. 1, was taken as the most probable description of the
S-factor data. In order to explore the statistical variation in
the S-factor extrapolations, we created S-factor pseudodata
by random variation according to a Gaussian probability
distribution about the best-fit S-factor values at the measured
energies. In the randomizations, we multiplied the individual
pseudodata uncertainties by the square root of the ratio of the
original best-fit values to the original measured uncertainties.
We further multiplied these uncertainties by the square root
of the E'1 and E2 reduced chi squares, the Birge factor [21],
for the E'1 and E2 fits, respectively. This procedure should
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FIG. 1. The astrophysical S factor for the E'1 (E2) cross section
as a function of center-of-mass energy is shown in the top (bottom)
panel. The solid curves represent the best fits and are based on the
parameters in Table I, while the data are taken from Refs. [24-33].

give a conservative estimate for statistical uncertainties. For
the subthreshold states, we fixed the radiative widths of the
subthreshold states at the measured values and varied the
reduced o widths. We allowed the reduced « and radiative
width of the first £'1 state above threshold to vary in the fit,
while we allowed the radiative width of the fifth E'1 state to
vary. We also allowed the radiative width of the fourth E2
R-matrix level to vary. The first E2 state above threshold is
very narrow and we fixed the parameters of this level at those
of Ref. [3]. The radiative width of the third £2 resonance was
treated separately. We observed that using the value in Ref. [3]
resulted in a cross section that was significantly smaller than
the data of Ref. [22]. Rather, we made a fit to £2 data that
included the data of Ref. [22]. We then fixed the third E2
radiative width at —0.65 eV found from the fit and used it in
subsequent fits to the data below 3 MeV. Indeed, we fixed all
other parameters except the third E2 radiative width and those
marked with an asterisk in Table I at the values of Ref. [3].
The parameters allowed to vary are denoted by an asterisk in
Table 1.

Also, following Ref. [3], we performed the fits by maxi-
mizing L rather than minimizing x 2, where L is given [23] by

L = %iIn{[1 — exp(—R;/2)]/Ri} 12)

and R, = [f(x;) — d,-]z/al.2 is the usual quantity used in x?
minimizations. Here, f(x;) is the function to be fitted to data,
d;, with statistical error o;. The L maximization has the feature
that it reduces the impact of large error bar data on the fit
and generally gives larger S-factor uncertainties in projected
values of $(300 keV) than that of a x? minimization. In this
work, Ly is maximized and defined by

Lot = Lgy + Lgs> + Losca, (13)

where Lg(2) is L for E1(2) data and Losga represents L for
the inverse reaction data or JLab data in this case.

The parameters of the bound levels are very important for
the projection to 300 keV. The resonance energies were fixed,
but the parameters, E;, depend on the reduced width of the
levels. We allowed the reduced widths of the bound states
to vary, so the E; varies. We chose the R-matrix boundary
condition constants to cancel out this effect for the second
levels so that E; = E,, for these levels. For the third and
higher levels, the reduced widths were not varied because o
elastic scattering determined these widths and allowing them
to vary did not make a significant difference. We used the
S-factor data sets given in Refs. [24-33] and show the E'1 and
E?2 ground-state S factors in Fig. 1.

A. Fits with a channel radius of 5.43 fm

Proposed OSGA experiments [5,7,8,34,35] are expected to
have several orders of magnitude improvement in luminosity
over previous experiments and should provide data at the
lowest practical values of energy. We take our best R-matrix
fit of the E'1 and E2 S-factor data as the most probable de-
scription of the projected JLab data. We then randomly varied
these OSGA S-factor pseudodata based on their projected
uncertainties according to a Gaussian probability distribution
about the best-fit S-factor values. The parameters that were
used to provide the R-matrix curves shown in Fig. 1 are
given for reference in Table L. In order to study the impact
of proposed OSGA data and low-energy data in particular, we
performed five fits: a fit to existing £1 and E2 data (denoted
by “all” in Table II); a fit to data published after the year 2000
(denoted by “2000”), both with (denoted by “J” in Table II)
and without projected JLab data; and a fit to all data in Fig. 1
above 1.6 MeV (denoted by “E > 1.6” in Table II). Although
it has been customary [36] to eliminate data sets that deviate
by more than three standard deviations from the fitted results,
we chose to select data sets after the year 2000 as a test of
systematic deviations and as suggested by Strieder [37]. This
approach assumes that experimental equipment and methods
have improved over the decades. Another reason for this
approach is that not all authors of the data sets disclose their
systematic errors. The S factors projected to 300 keV along
with standard deviations, o, which represent the statistical fit
uncertainty are given in Table II for the five cases. The reduced
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TABLE II. S-factor projections to 300 keV and standard devi-
ations for total S, Sg;, and S, for fits with a channel radius of
5.43 fm.

Data Orlg X3 S o SE| OE1 S52 OE2
(keV b)
All 2.3 1123 72 71.6 6.4 347 28

AllJ 22 1135 6.1 818 5.8 31.7 3.0
2000 1.7 1235 69 89.6 6.4 339 33
20007 1.7 125.0 6.7 89.7 6.3 352 34
E>16 2.6 119.6 58 87.1 54 325 26
AllJ/10 24 1164 24 81.1 35 353 19
AllJ/2 22 118.8 42 81.8 39 372 28

x? for the fit to the original data is also shown. As a test of the
method, we arbitrarily reduced the error bars for the projected
JLab data by an order of magnitude and present the results as
“all J/10” in the table.

Several observations can be made from Table II. The stan-
dard deviations for the total projected S factors with proposed
JLab data are generally smaller than those without JLab data.
The total and E'1 projections appear to be significantly larger
for E > 1.6 MeV data than the fits to “all” data, indicating
the importance of low-energy data. As expected the standard
deviations for the “all J/10” case are significantly smaller than
that for the other cases. For the fits to the data after 2000, the
reduced x? is significantly smaller than that for fits to “all”
data. This indicates that the data sets after 2000 are more
consistent with one another than with all data sets. Finally,
the S-factor projections for E2 appear to be about a third of
those for E'1.

As an example, the projections from the simultaneous fit
to all E1 and E2 data, the case represented by the first line
in Table II, are shown in Fig. 2. The dashed vertical line
indicates the projection for the fit to the original data, while
the histogram represents the results of fits to 1000 sets of
randomized pseudodata. The dotted curve is a Gaussian based
on the mean and standard deviations found from the fits.
The S(300 keV) from the fit to original data is 112.3 keV b
while the mean for the fits to pseudodata is 114.0 keV b. The
standard error for the fits to pseudodata is about 0.2 keV b.
Thus, the statistical error in the fits to 1000 sets of pseudodata
cannot alone explain the discrepancy. If one speculates that the
systematics in the original data are driving the discrepancy,
then we could compare the “2000” data. The S(300 keV)
for the fit to the “2000” data is 123.5 keV b, while the mean
of the pseudodata fits is 123.2 keV b, in better agreement with
one another.

Figure 3 shows the curves that represent +1, 2, and 3
standard deviation simultaneous fits to existing E1 and E2
data. We generated the curves by performing 500 fits to the
data, generating 500 sets of parameters similar to those in
Table I, and then using the parameter sets to determine the
standard deviation at each value of energy. The representative
capture data, shown as open triangles, were taken as the sum
of E'1 and E2 results governed by where both E'1 and E2 data
exist. The projected JLab data are represented by red triangles
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FIG. 2. Projections of the astrophysical S factor to 300 keV for
simultaneous fits of existing £1 and E2 data (top panel) and for E'1,
E?2, and proposed JLab data (bottom) for a channel radius of 5.43 fm.
The blue dashed vertical lines indicate the projections for the fit
to the original data, while the histograms represent the results of
1000 fits to randomized data that would lie along the fit to original
data. The red dotted curves are Gaussians based on the means and
standard deviations found from the fits.

in the figure. Given the statistical errors for the projected JLab
data and the small number of values, one might not expect the
projected JLab data to have a large impact on the statistical
error. Although the impact of new JLab data cannot easily be
seen from this figure, reducing the expected JLab errors by
only a factor of 2 could make a significant impact as illustrated
by the last line in Table II.

In order to more quantitatively explore the efficacy of the
proposed JLab data, we made 1000 fits to a varying number of
projected JLab data points from one to seven points beginning
with the highest energy point, 1190 keV, and ending with
the lowest energy point, 590 keV. These results are shown
in Fig. 4. Note that we generated the JLab data as before
by the fit values with a channel radius of 5.43 fm to “all”
data, then randomizing according to the projected statistical
errors. We repeated this procedure with the JLab projected
statistical errors divided by 2 as well as by 10. These results
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FIG. 3. Energy dependence of Sg; + Sk, from a fit to “all” data
indicating the & 1, 2, and 3 standard-deviation bands shown as the
dash-dotted, short-dashed, and long-dashed curves, respectively. The
curves are based on the parameters in Table I. The open triangles
represent a sum of E1 and E2, where both £1 and E2 data exist.
The standard deviation at 300 keV is given by the first line and fourth
column of Table II. The projected JLab data are represented by the
red triangles.

are also shown in Fig. 4. The higher precision data indicate
a clear pattern of diminishing returns in terms of the standard
deviations as a function of the cumulative number of projected
JLab data points. This pattern is not so clear for the actual
proposed JLab statistical errors.
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FIG. 4. Standard deviation from 1000 fits with a channel radius
of 543 fm to “all” data with no JLab data (open square), with
projected JLab data (solid squares) as a function of the cumulative
number of JLab data points beginning with the highest energy JLab
point, the same with JLab projected statistical errors divided by a
factor of 2 (solid circles), and the projected JLab statistical errors
divided by a factor of 10 (solid triangles). The error limits shown in
the figure are just the standard errors for the fits.

TABLE III. Projections to 300 keV and standard deviations for
total S, Sk, and Sg; for a channel radius of 6.5 fm.

Data Orig x2 S o Sk ox Sg2 Om2
(ke V-b)
All 2.3 1249 83 80.6 7.1 443 50

AllJ 22 121.7 6.3 84.3 59 374 28
2000 1.6 131.3 83 905 7.7 40.7 3.8
2000 J 1.6 1313 72 905 6.9 40.7 3.8
E>1.6 24 136.9 8.6 1025 8.1 343 3.1
AllJ/2 23 116.0 57 1765 6.2 395 32

B. Fits with a channel radius of 6.5 fm

As mentioned before, some previous R-matrix analyses
have used a channel radius of 6.5 fm. In order to be consistent
with these previous analyses, we set the channel radius at
6.5 fm, and as before, we performed five fits: a fit to existing
E1 and E2 data (denoted by “all” in Table III); a fit to data
published after the year 2000 (denoted by “2000”), both with
(denoted by “J” in Table III) and without projected JLab data;
and a fit to all data in Fig. 1 above 1.6 MeV (denoted by
“E > 1.6” in Table III). The S factors projected to 300 keV
along with standard deviations, o, are given in Table III for
the five cases. The reduced x? for the fit to the original data is
also shown. As with the 5.43-fm case, the standard deviations
for the total projected S factors with proposed JLab data are
generally smaller than those without JLab data. Again, the
total and E'1 projections appear to be significantly larger for
E > 1.6 MeV data than the fits to “all” data, and the size of
the difference substantially exceeds the statistical errors. As
can be seen from comparing Tables II and III, the S-factor
projections to 300 keV are generally larger for a channel
radius of 6.5 fm than those for 5.43 fm. This finding is
consistent with that of Ref. [3]. Again, the fit to data sets
after 2000 also exhibit a smaller reduced x 2 than that for “all”
data. It is interesting to note that if the errors on the expected
seven JLab data points are reduced by a factor of 2, the case
presented in the last line of Table III, then the result is in
agreement with the 5.43-fm case, the first line in Table II. This
indicates that high-quality data at low energy could even bring
fits with different channel radii into agreement at least with
regard to the extrapolation to 300 keV.

The bound p-wave reduced width amplitudes found from
the fits to “all” and “E > 1.6” MeV data for a channel radius
of 6.5 fm are given in Fig. 5. The histograms from the fits
shown in the figure are asymmetric, indicating that the error
is not a Gaussian distribution. The reduced width amplitudes
of the bound p- and d-wave states, and the quantity P ylzl
found from the fits are given in Table IV along with a recent
value found from the '®N(Ba) process [16] for the bound
p-wave state and for a transfer reaction [17] for the bound
d-wave state. Here, the quantity P, ylzl, where P; is the p-
wave penetration factor evaluated at 300 keV, was included
in Table IV in order to better compare with that of Ref. [16].
As pointed out in Ref. [16], the quantity P, ylzl is the dominant
term in the capture cross section. The present fits give values
of Py that are consistent with the experiment and analysis
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FIG. 5. Histograms of the subthreshold E1 reduced width am-
plitudes the 6.5-fm fits for the “all” data case, solid curve, and the
“E > 1.6 MeV” data case, dashed curve. The red dashed and blue
dash-dotted vertical lines indicate the projections for the fit to the
original data for the “all” and “E > 1.6” MeV data, respectively.

of Ref. [16], although the channel radius of Ref. [16] is 6.35
fm. The fits to data above 1.6 MeV (“E > 1.6”) give results
that are larger for the p-wave state and smaller for the d-wave
state than that for the other results. Again, this indicates the
importance of low-energy data. The fit for the after 2000
data that includes projected JLab data “2000 J” reduces the
statistical error somewhat for the bound p-wave state. It is
noted that while the S£,(300) of 46.2 4+ 7.7 keV b found from
a recent transfer reaction [17] is in excellent agreement with
the Sg»(300) from the present analysis with a 6.5-fm channel
radius for “all” data as indicated in Table III, the reduced
width for the E2 bound state for the “all” case differs by about
20 between these two approaches.

IV. SUMMARY

From this study, it appears that inverse reaction data can
have a significant impact on the projection of S(300 keV)
based on the projected OSGA data. We took the projected
JLab data to represent E1 + E2 data since only total cross
sections to the ground state will be measured. The projected
standard deviation for the 1000 fits to the E'1 and E2 data with

TABLE IV. Reduced width amplitudes, y,; and y,;, and P, )/121 for
the bound states from the fits to “all,” “2000,” and “E > 1.6” MeV
data for a channel radius of 6.5 fm. The result from g-delayed
a decay of '®N [16] and for a transfer reaction [17] are also given
for comparison.

Fit or data Vil Piyv3 Va1
(MeV'72) (ueV) (MeV'!/2)

All 0.097(*+5:956 4.68(T93% 0.150(9)

2000 0.104(F5:508 538070 0.142(8)

E>16 0.114(F5:905) 6.46(*03! 0.130(6)

"N(Ba) 5.17(75)(54)

2¢B, "Li)'°0 0.134(18)

the proposed JLab data is generally smaller than that without
JLab data. The JLab data constrain the total E1 + E2 cross
section in the fit. This leads to smaller standard deviations
than fitting £'1 and E2 separately. Fitting only data above
1.6 MeV leads to a significant shift upward in the projected
S factors at 300 keV. This illustrates the importance of lower
energy data in the extrapolation to 300 keV. Since the expected
OSGA data will be less than 1.6 MeV and even lower than
existing data, we can infer that the proposed OSGA data
will have a significant impact on the value of the low-energy
extrapolation. The significant difference between S(300 keV)
for the fits with channel radii of 5.43 and 6.5 fm indicates
model uncertainty. The lower energy OSGA data may help
resolve this ambiguity. For example, if the uncertainties on
the projected seven JLab data points are reduced by a factor
of 2, the S(300 ke V) from a fit with a 5.43-fm channel radius is
brought into agreement with that from a 6.5-fm fit. This level
of accuracy at low energies would represent an interesting
goal not only for the upcoming JLab experiment, but also for
the other future experiments.
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