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Abstract

We study the process of laser-assisted spontaneous electron bremsstrahlung by running classical
trajectories in a combined Coulomb and laser (ac) fields. Due to chaotic scattering in the combined
Coulomb and ac fields, the radiation probability as a function of the impact parameter and the
constant phase of the laser field exhibits fractal structures. However, these structures are smeared
out when the cross section is integrated over the impact parameter and averaged over the phase.
We analyze the role of different types of orbits, including the trapped orbits, and the dependence
of the radiation probability on the impact parameter and the initial phase of the ac field. We
show for the first time that at low incident electron kinetic energy the Coulomb focusing leads
to a substantial extension of the range of impact parameters contributing to the bremsstrahlung
cross section and results in a substantial increase (by one to two orders of magnitude) of the cross
section as compared to the pure Coulomb case. As examples, we discuss the case of relatively high
ponderomotive energy E, when we obtain an efficient production of photons with frequencies up
to 2F),, and the case of low E, when only infrared photons are produced. Overall accuracy of
the classical approach is estimated as very good, although it does not describe resonant processes

studied previously by quantum-mechanical methods.

PACS numbers:



I. INTRODUCTION

Laser-assisted spontaneous bremsstrahlung is a process of creation of a photon with fre-
quency €2 due to electron-atom scattering in the presence of an ac field of a lower frequency
w, i.e. the process

nhw+e+ A — n'hw + Q)+ e + A.

It is different from the stimulated bremsstrahlung when the emitted photon has the same
frequency as the initial photon. Laser-assisted spontaneous bremsstrahlung is in fact the
same as the harmonic generation in the continuum. We will be interested in the process
when the atomic system A is a bare nucleus or a positive ion, then the bremsstrahlung
process is more efficient. Accordingly, we will model e — A interaction by the Coulomb

potential 2
e
V(r)= -
where Z is the charge of the positive ion.

This process has been studied since 1970s [1-6]. More recent research [7-15] was stimu-
lated by development of intense lasers. Most of these papers, particularly those dealing with
relativistic electrons, were treating the electron-ion interaction in the first order of pertur-
bation theory. Some exceptions [8, 9, 12, 16] were concentrating on the resonance processes
when the frequency of the emitted photon equals an integer times the laser frequency. A
more recent paper [17] analyzed the plateau structure due to rescattering similar to that in
high-order harmonic generation.

Here we investigate another feature of the process relevant to low-energy electron scat-
tering when the Coulomb interaction cannot be treated perturbatively. It is known that
the laser-induced atomic ionization processes can be enhanced by the Coulomb focusing
[18-25]. The action of the Coulomb potential, in combination with multiple electron returns
due to the laser field, focuses parts of the electron wave function, increasing the efficiency of
such processes as multiphoton ionization. Similar effects can occur in continuum-continuum
transitions which are the subject of studies of the present paper.

In contrast to the ionization problem, the bremsstrahlung problem can be treated purely
classically as long as the electron kinetic energy is small compared to its potential energy

at the distances equal to the electron de Broglie wavelength [26] (sec. 49). This leads to

the condition v > 1 where v is the Coulomb parameter v = Ze?/(hw) (v is the electron
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velocity). This condition should be modified in the presence of an ac laser field as discussed
below. It will be also shown that the range of validity of the classical approach is even
broader than suggested by the condition » > 1. Some discrepancies between classical and
quantum results for the laser-assisted bremsstrahlung problem were discussed in [7] and
were shown to be not due to the failure of classical mechanics but due to the difference
in description of electron states (localized wave packet versus the Volkov wave). It should
be also added that, according to the Heisenberg correspondence principle, the quantum-
mechanical matrix element of the electron dipole moment can be replaced by the Fourier
transform of the corresponding classical quantity which leads to the classical result for the
effective cross section for the spontaneous bremsstrahlung.

Classical treatment of electron motion in a combined Coulomb and ac fields was given
by Wiesenfeld [27, 28]. He found that in a certain range of initial parameters this motion
becomes chaotic and exhibits a fractal structure when a final parameter, like the deflection
angle, is plotted as a function of the (initial) impact parameter. The irregular behavior is
associated sometimes with the electron capture in an unstable bound orbits. This kind of
behavior was studied by Leopold and Percival [29] in connection with the classical ionization
problem in a microwave field. From the quantum-mechanical point of view, the electron is
captured into a Rydberg orbital, and then performs a diffusion through a manifold of Ryd-
berg states. The correspondence between classical chaotic behavior and quantum mechanics
was addressed in the past (see, for example Ref. [30, 31]). In the present paper we will
concentrate on the classical aspects of the problem. In particular, for the first time we ana-
lyze in detail the dependence of the radiation probability on the impact parameter and the

initial phase of the ac field.

II. BASIC EQUATIONS

Consider electron beam moving in an external field. For a given trajectory the energy of
radiation emitted in the frequency interval dS is ([32], Eq. (67.10))

22 ., 2e201

37rc3|rQ| dt = 3rc?

dEQ = |I‘Q|2dQ

where rq is the Fourier transform of the electron trajectory for a given impact parameter b
ro(b) = / e (b, t)dt (1)
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The total effective radiation (energy times cross section) per unit frequency in the case of
cylindrical symmetry is given by

dkg © dFEq

S=am [T ha, 2

i~ " a0 @)
In what follows we will be presenting the probability of a photon emission per unit frequency

1 dEq

P,0) = -2 3)

and the cross section for emitting one photon per unit frequency

1 d/iQ

SO =751 (4)

In the case of the laser-assisted bremsstrahlung we are interested in the following potential

V(r)= —Z;Q — Fyz cos(wt + @) (5)
where the first term is due to the Coulomb field of the nucleus, and the second due to the
external laser field with the linear polarization along the z axis. Generally the incident
beam makes some angle with the z axis, but in the present paper we limit ourselves by the
case when the incident velocity is parallel to the polarization of the laser field. Then the
cylindrical symmetry of the problem is preserved, the conserved z component of angular
momentum is 0, and the motion is planar. Fig. 1 presents a schematic view of a classical
trajectory of an electron which is undergoing spontaneous bremsstrahlung in the potential
given by Eq. (5)

We will concentrate on the case when the electron initially has a relatively low velocity
of about 0.1 a.u. at the distance from the center of few hundred Bohr. Then, depending on
the initial phase @, field strength Fj and ac field frequency w, the electron can get close
to the Coulomb center, or be reflected from the interaction region. In the former case the
radiation will be efficient, in the latter, it is negligible. If the ponderomotive energy
_

4mw?

By

equals a few a.u. the electron speed in the interaction region at the distance of a few Bohr
from the Coulomb center, can reach 2-3 a.u. Therefore we will discuss first major features
of bremsstrahlung in this velocity range. Since these velocities are small compared to the

speed of light, ¢ = 137 a.u., relativistic effects can be safely neglected.
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FIG. 1: A schematic for a classical trajectory of an electron undergoing spontaneous
bremsstrahlung. The electron radiates a photon with frequency 2 as it is being accelerated by

the Coulomb and laser fields.

III. BREMSSTRAHLUNG IN THE COULOMB FIELD
A. Comparison of classical and quantum approaches

In case Fy = 0 the analytical solution is known in both classical and quantum theories.
From now on we will use atomic units and assume that the nucleus is infinitely heavy. Then
in the classical theory, ([32], Eq. (70,18))

Po.9) = g2 {18 ] - <2 [ )"} ©

€
where E = v2/2 is the initial electron kinetic energy, u = ZQ/v3, and € is the eccentricity

of the hyperbolic orbit
vib?
=1+ %,
ngl)(x) is the Hankel’s function, and prime means the derivative with respect to its argu-
ment.
The total cross section per unit frequency ([32], Eq. (70,19)) is

B Am? 73

S(Q) = 55 = |y (i) HY (i), (7)
0

For calculations it is convenient to express the Hankel function and its derivative through

the real modified Bessel function of the third kind K, (z)

1 . 2 T
Hy (ipe) = —e #12 K (ue)



(1) /- _ 2 /2
Hiu (z,ue) - —;6 . K;}L(/’LE)

At large pv corresponding to large frequencies calculation of Kj,(ue) by either power series
or asymptotic series becomes impossible, and we use uniform Airy function approximation
discussed in Appendix A.

The quantum cross section is given by the equation ([33], Eq. (92,15))

6472 Z? v 1 d
S(Q) = 43 N2 (1 — e—2mv)(p2m0 — e
33Q vo(vg —v)? (1 — e 2™)(e?™0 — 1) \ d¢

o)
where v is determined from the conservation of energy
vs = v? + 20,

1o and v are the Coulomb parameters for the initial and final state, vy = Z/vy, v = Z/v,
and F'(€) is the hypergeometric function

4vgv
(vo —v)*

As apparent from the above equations, the important deficiency of the classical treatment

F(g):F(iV>iV0a1a£)7 62_

is in the neglect of the electron energy loss due to radiation. This should become a concern
when the electron incident energy Ey = v?/2 is comparable to the energy i) of the radiated
photon. Moreover, it seems first that for 2 > Fj/h radiation is simply not possible, and for
small incident electron velocities of about 0.1 a.u. the range of € is limited to infrared and
microwaves. However, two important points relax these restrictions. First, the quantum
bremsstrahlung does not really have the well-defined high-frequency cut-off because of the
possibility of the further loss of electron energy due to capture into Rydberg states [33].
Indeed, the quantum cross section is finite at {2 = Ey/h. In Fig. 2 we present comparison of
classical and quantum bremsstrahlung cross sections in the Coulomb field for two electron
velocities. Although at vy = 2 a.u. the formal cut-off frequency is ) = 2 a.u., the quantum
cross section remains finite at this frequency. Moreover, we see that classical and quantum
cross sections agree very well even for velocities corresponding to a relatively low Coulomb
parameter vy = Z/vy. (The classical limit corresponds to large vy).

Second, and more important, when the ac field is added, the electron, when approaching
the Coulomb center, might have the kinetic energy which is much higher than its initial
kinetic energy if the ponderomotive energy E, is high. In what follows we choose an illus-

trative case with ponderomotive energy about 3 a.u. In case of a favorable phase g, the
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FIG. 2: The bremsstrahlung cross section in the Coulomb field (Z=1) without the ac field for two
electron velocities. For each velocity the solid (blue) curve represents the classical result, and the

dash-dotted (red) curve, the quantum result.

electron kinetic energy at a distance of a few a.u. from the Coulomb center typically reaches
2E,, corresponding to velocity of about 3.5 a.u. For this velocity the classical treatment,
as follows from Fig. 2, is reasonably accurate. Second, at this velocity electron is allowed
to emit photons with energies of up to about 6 a.u. Although the classical theory does
not produce the rigorous cut-off frequency, it will be safe to assume that electron can emit
photons with energies up to 3 a.u.

We conclude that even for small incident velocities the bremsstrahlung process can gen-
erate high-frequency UV radiation in case of favorable initial conditions and high enough
ponderomotive energy, and the quantum effects play a minor role in this case. This agrees
with the remarkable classical-quantum correspondence for the motion in the Coulomb po-

tential. In particularly the Rutherford scattering cross section is the same in both theories.

B. Calculation of electron trajectories in the Coulomb field

The accuracy of numerical methods for calculation of classical trajectories can be verified
in the case Fy = 0. Consider the Coulomb scattering in the zx plane. The equations for a

hyperbolic trajectory are

2 =a(e—cosh€), x=bsinhé, t= (esinh¢ —¢)
Vo



where a = Ze?/v? is the semimajor axis, and we use a(e? — 1)/2 = b.
At t — —oo the trajectory approaches asymptotically the straight line which makes angle
a with the z axis defined as

tana = —.
a

In numerical calculations the velocity of the incident electron is parallel to the z axis. There-

fore we perform the rotation by the angle a.

7 =zcosa+axsina, 2 =—zsina+ xcosa

Z=—-|\z+-x], r=—-|———2+x
€ a € a

so that at t - —o0 2/ — —o0, 2’ — —b.

or

Above equations can be compared with numerical calculations. The results of applica-
tions of numerical algorithms of the Runge-Kutta type exhibit strong instabilities due to
the Coulomb singularities. It is well known that instabilities occur because these methods
generally do not conserve energy and do not satisfy the canonical transformation require-
ment. Although this problem can be resolved by using the symplectic algorithms [34, 35],
we found the method based on the extended Hamiltonian and canonical transformation of
the time coordinate is more efficient for hyperbolic trajectories, see Appendix B.

To avoid numerical difficulties, many classical and quantum calculations of strong-field
ionization and high-order harmonic generation use the soft-Coulomb potential [36-38] which
is finite at the origin. We stress that in the bremsstrahlung problem the full account of the
Coulomb interaction, including the short distances, is necessary, since the most of radiation

occurs at small distances.

IV. BREMSSTRAHLUNG IN THE AC FIELD

For calculation of Fourier transform of Cartesian components of acceleration, we use
alternately acceleration, velocity, and the length form, depending on the distance from the
Coulomb center. Details are presented in Appendix C.

In Fig. 3 we present P(b,2) with addition of the ac field with parameters Fy = 0.05338
a.u. (intensity I = 100 TW/cm?), w = 0.0147 a.u. (wavelength A = 3.1 um), @ = 0. Inte-

gration always starts with zo = —300 a.u. where the Coulomb field can be safely neglected.
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FIG. 3: (a) P(b,Q2) as a function of the impact parameter b for the case, Z = 1, vp = 0.1 a.u.
Fyp = 0.05338 a.u., w = 0.0147 a.u., and 2 = 0.2 a.u. Red dashed curve: pure Coulomb case for

vo = 3.56 a.u.. (b) The same as in panel (a) except 2 = 1.0 a.u.

In this situation averaging of results over z is equivalent to averaging over the phase @ [7].
To compare this probability with the probability of the field-free bremsstrahlung, we have
chosen the electron velocity v = 3.56 a.u. (kinetic energy 6.35 a.u.) corresponding to a typ-
ical velocity of electron in the ac field with the ponderomotive energy E, = F¢/4w? = 3.30
a.u.

Two striking differences with the pure Coulomb case are immediately noticeable. First,
in the laser-assisted case P(b, () exhibits very sharp quasiperiodic structures. By expanding
the b scale, as shown in Fig. 4, we can see that the structure is a fractal as was observed
before for the deflection angle as a function of the impact parameter b [27, 28] for b below
the quivering length [ = F,/w?. This fractal structure is caused by chaotic scattering which
was demonstrated by investigation of deflection angle as a function of b for several stationary
problems [39-41]. In our case [ = 247 a.u., therefore the condition b < [ [27] is satisfied in
the whole range of b where P(b, 2) is non-negligible.

Second, the range of impact parameters b contributing to the total cross section is much
larger than in the pure Coulomb case. Both features can be explained by the behavior of
trajectories in the combined laser and Coulomb fields.

In Fig. 5 we present two trajectories for impact parameter b = 47.60 and 51.55 a.u. The
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FIG. 4: (a) The same as in Fig. 3b but on an expanded b scale. (b) The b scale is expanded

further.
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FIG. 5: Electron trajectories for two impact parameters, b = 47.60 (solid curve) and 51.55 a.u.

(dotted curve).

first corresponds to a large probability P = 0.14 x 10~* a.u. and the second to a small
probability P = 0.42 x 107® a.u. Both trajectories undergo Coulomb focusing. However,

whereas the first trajectory approaches very close to the Coulomb center (minimum distance

10



104 [ T T T T

Q= 0.2 a.u.
Q=1.0a.u. i

10°

10-6:— '( ‘\.“‘ \,\‘ m’ e

—_
2
~
T
L

P(b,Q) (a.u.)

101t |

1012 ]

0 10 20 30 40 50 60
b (a.u.)

10713

FIG. 6: P(b,Q2) as a function of the impact parameter b for the case, Z = 1, v = 0.1 a.u.
Fy = 0.05338 a.u. (I =100 TW/cm?), w = 0.1 a.u., and Q = 0.2 a.u. (upper curve) and 1.0 a.u.

(lower curve)

0.0164 a.u.), the second trajectory misses the center (the closest approach is 9.24 a.u.) and
does not exhibit a large acceleration, therefore contributing very little to the radiation.
Therefore the spikes in P as a function of b correspond to the hard-collision trajectories.
Apparently the hard-collision events depend randomly on the impact parameter b and lead
to the fractal structure.

However, two certain features can be noticed. First, in intermediate range of impact
parameters the spikes exhibit a quasiperiodic structure. Second, due to the initial nonzero
velocity in the z direction, trajectories drift in this direction leading to the disappearance
of spikes and the effective cut-off in b. For the given choice of the parameters this occurs at
about 140 a.u.

To give a rough analytical estimate for the cut-off in b, consider the drift of the electron
in the direction perpendicular to the electric field with the starting position x = b, z = 0.

Neglecting z as compared to x during the drift, we obtain for the drift velocity v,
1 1 1/2
bz (L)
x b
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Integrating the equation

dx
i ()

we obtain the expression for the time during which the electron reaches the Coulomb center

b3\ /2
t = -
(&)

During this time the center of the trajectory in the z direction covers the distance
b3\ /2

20 = Vot = Ty <8Z> .
In order to obtain a hard collision, this distance should be smaller than the oscillating
amplitude in the z direction Fy/w?. As a result, we obtain for the impact parameter cut-off

b< (82)/3 <7T£(;2)2/3,
This estimate works well when the quivering amplitude is large compared to the impact
parameter. For example in case Fy = 0.05338, w = 0.0147, b < 170 a.u. which agrees very
well with data presented in Fig. 3.

According to this estimate, with the growth of w the cut-off impact parameter should
decrease as w™*3. In Fig. 6 we show P(b) for w = 0.1 a.u. (A = 456 nm), Q = 0.2 and
1.0 a.u. The reduction of the impact parameter cut-off value is qualitatively confirmed by
the figure, although it is not as drastic as predicted by the w~*?3 dependence. Since the
quivering length in this case is 5.34 a.u., the above estimate is not working as well. Another
apparent features in this case are that the spike structure is not as regular, and in the
range of impact parameters where P is substantial, it is larger than in the case w = 0.0147.
Another interesting feature is that the fractal structure of P(b) dependence extends well
beyond the quivering length [. Apparently the fractal structure in the present problem is a
more general feature than suggested in [27].

To investigate the role of the constant phase shift ¢, consider the z-component of the

electron velocity in the absence of the Coulomb interaction

FO . FO .
v: = v — —sin ©o + = sin(wt + @o)-

To obtain Coulomb focusing, we need a relatively small averaged velocity
_ F

0 .
U, = vy — — sin Qg
w
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FIG. 7: Total bremsstrahlung cross section per unit frequency, Eq. (4), for Fy = 0.0538, 2 = 0.2

a.u. as a function of phase @q for two values of the laser frequency.

For the case of field parameters Fjy = 0.05338, w = 0.0147 presented in Fig. 3, this occurs in
two narrow ranges of g close to 0 and 7. For all other phases the electron simply does not
get close to the Coulomb center, and the radiation is weak. This is demonstrated in Fig. 7
for two values of laser frequencies corresponding to vow/Fy = 0.0275 and 0.1873 a.u. This
figure also demonstrates the chaotic structure in the dependence of P on the other initial
parameter, @g.

We conclude that the average over @ strongly reduces the cross section for larger value
of the quiver velocity Fy/w = 3.63 a.u., but not as strongly for a smaller Fy/w = 0.534
a.u. In Fig. 8 we compare the bremsstrahlung cross section for @y = 0 with the averaged
cross section for the first case. Although the averaging decreases the result by an order
of magnitude, the bremsstrahlung process is still much more efficient than in the Fy = 0
case. To show this, we have calculated the field-free bremsstrahlung cross section for electron
velocity 3.56 a.u. (kinetic energy 6.35 a.u.), the same as chosen for plotting field-free P (b, (2)
in Fig. 3. The figure shows that the field-free cross section is about two orders of magnitude
lower than the averaged cross section for the laser-assisted process.

To expand the Coulomb focusing to a larger range of @q, the quiver velocity should be

made comparable to vy. This can be achieved by reducing Fj or increasing frequency. To
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FIG. 8: Total bremsstrahlung cross section per unit frequency, Eq. (4), for @9 = 0 and averaged

over @qg. The field-free cross section is given for velocity vy = 3.56 a.u.

demonstrate this, we choose w = 0.05696 (A = 800 nm) and F, = 0.0056 a.u. (I = 1.1
TW/cm?). For these field parameters, however, the ponderomotive energy is small, E, =
2.4 x 107% a.u., therefore, with the initial electron velocity vy = 0.1 a.u., only infrared
photons (with the wavelength about 5 pm or longer) will be emitted. Instead of the high-
order harmonic generation, we obtain frequencies that are lower than those we are starting
with. To increase the frequency range, we need to increase the initial velocity to a few a.u.,
but then the laser-assisted bremsstrahlung would become indistinguishable from the field-
free bremsstrahlung. Nevertheless, we will investigate the case of low vy and low 2 since it
is closely connected to the interesting problem of chaos in ionization of Rydberg atoms by
microwave and far infrared radiations.

With these field parameters, in a certain range of impact parameters within the chaotic
regime, we found unstable trajectories which become trapped by the Coulomb field. To
demonstrate this, in Fig. 9 we present the electron distance from the Coulomb center as a
function of time for several impact parameters.

As follows from this figure, the capture event randomly depends on b and can occur for
small b, as well as for large b. Trajectories for these two cases are shown in Fig. 10. Similar

pictures were obtained by Wiesenfeld [28]. For the bremsstrahlung problem, the important
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FIG. 9: Electron distance from the Coulomb center as a function of time for several impact

parameters, w = 0.05696, Fy = 0.0056 a.u., @g = 0.
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FIG. 10: Electron trajectory for; (a) w = 0.05696, F' = 0.0028, b = 0.55, @9 = 7/2., (b) w =
0.05696, Fy = 0.0056, b = 44.85, @¢ = 7 /4.
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quantity is the closest approach where the most radiation occurs. To demonstrate the
relevant fractal structure, we plot in Fig. 11 the distance as a function of time in the
vicinity of b = 27.75 a.u. with the successive enlargement of the b scale.

The fractal structure of the radiation probability as a function of b leads to computational
difficulties in calculation of the total bremsstrahlung cross section. Another difficulty is of
the physical origin. Some of the orbits within the chaotic region remain trapped for a long
time, sometimes probably forever corresponding to the invariant tori found by Leopold and
Percival [29] (trajectories of class C1) in the classical ionization problem. In the classical
treatment, the electron in trapped orbits will radiate an infinite energy, even if the electron
energy loss due to radiation is incorporated in the equations of motion, and the cross section
will become infinite. It is apparent that the classical treatment fails at this point, and
quantum effects should be incorporated. Fortunately, however, for a typical calculation
covering an extended range of impact parameters b there are very few trajectories which are
trapped “forever”, and they can be simply neglected in calculation of the radiation cross
section. The error due to this omission is substantially smaller than the error caused by
the fractal structure of the dependencies of P on b and ¢q. In Fig. 12 we present the
dependence of the radiation cross section on @q. The result of averaging over ¢y depends
on the increment Ag used for representing dependence S(¢q). In Table I we present the
result of the average using the trapezoidal rule with various A@g. This comparison allows
us to claim that the uncertainty in S due to the chaotic behavior of trajectories is about
0.4%

Finally, in Fig. 13 we present the bremsstrahlung cross section for @, = 0 and the
cross section averaged over @q. A substantial enhancement of radiation as compared to the
Fy = 0 case is observed. This case contrasts with the large quivering length case presented
in Fig. 8 where the averaging over @ substantially cancels the enhancement effect due to

the Coulomb focusing.

V. LIMITATION OF THE MODEL AND QUANTUM EFFECTS

There are two important features which are not observed in the present calculations, both
related to the resonance effects. The first type of the resonance occurs when the frequency

of the emitted radiation €2 is equal to or close to sw where s is a positive integer. The
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TABLE I: Dependence of the averaged cross section on the increment Ay

A w = 0.002 |w=10.01
/16 0.3476 0.1783
/32 0.3499 0.1784
/64 0.3498 0.1780

other type of resonance is related to a temporary capture of the electron by the ion with the
following ionization. In fact the second type includes the first type as well since the number
of absorbed photons before the capture k is related to the energy of the bound state € and
the frequency of the emitted radiation as [16]

O=FE)— e+ kw.

The total number of absorbed photons is &+ m where m is the number of absorbed photons
after the capture.

Both effects were described in the past by quantum-mechanical methods [7-9, 12, 16].
Description of the first effect does not seem to be possible by the pure classical theory
since the dependence r(t) does not contain higher harmonics with frequencies sw. Quantal
description which takes into account electron-laser interaction in higher orders is essential
in this case. It is interesting, however, that the stimulated bremsstrahlung which is the
emission of s photons of frequency w can be described semiclassically [42] by treating elec-
tron motion classically but the electromagnetic field quantum-mechanically. This suggests
that the classical-trajectory approach used in the present paper can be modified to treat
resonances of the first type. Resonances of the second type can be obtained in the classical
ionization problem [43, 44] when the process starts with the stationary orbit. In the scatter-
ing problem the temporary capture does occur in classical theory. However, the motion in
quasistable orbits occurs usually for a few impact parameters, therefore the sharp enhance-
ments observed in P(b,2) do not show up in the S(€2) dependence. Nevertheless it is useful
to discuss classical-quantum-mechanical correspondence for the resonant scattering.

The quantum-mechanical description of the resonant scattering [16] in the case of
Coulomb potential is particularly challenging because of the large number of Rydberg states.

It was assumed [16] that the capture occurs only in the ground state of the hydrogen atom
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because the field-free radiative recombination cross section is higher for this state. How-
ever, the presence of the ac field may radically change this situation. In fact the classical
quasistable quasiperiodic orbits in which capture occurs, according to the correspondence
principle, represent a superposition of these Rydberg states. The problem with the classical
treatment is that it might result in an infinite radiation in this case, if the orbit is not
ionized classically. There are two quantum effects responsible for the finite radiation prob-
ability. One is the stimulated and spontaneous emission leading to electron transition to a
lower quantum state, typically to the atomic ground state. The other is the multiphoton
or tunneling ionization resulting in electron escape from the orbit. Our simulations have
shown that typically electron is captured either into a high-lying orbit which ionizes quickly
classically (trajectory of class C3 according to Leopold and Percival [29]), or in a lower orbit
with the energy roughly corresponding to that of the n = 2 or n = 3 states. The latter, as
a rule, is an invariant torus, and often never ionizes within the classical mechanics domain
[29]. Tts decay should be described quantum-mechanically. The lifetime of the corresponding
n = 2 quantum state with respect to the spontaneous emission to the ground state (6.6 x 107
a.u.) is too long compared to our typical time scale, and the stimulated emission can be ne-
glected in nonresonant case, that is if sw, s = 1,2, ... is not close to the transition frequency,
0.375 a.u. Therefore the major contribution to the decay of the intermediate state is due
to the multiphoton or tunneling ionization. Our typical field parameters correspond to the
multiphoton regime (large Keldysh parameter), and the ionization rate can be estimated by
the semiclassical perturbation theory [45], since our intensity is relatively small. At [ = 1.1
TW /cm?, A = 800 nm ionization of the n = 2 manifold is dominated by the three-photon
absorption with the rate 0.6 x 10~% a.u. Although the corresponding lifetime is compatible
with our time scale, the problem remains with quasistable trajectories for which the electron
passes the nucleus many times during the time interval of 10* a.u. In the classical theory
the radiation probability is strongly increased due to these passages whereas the quantum
state corresponding to the quasistable orbit does not radiate at all (or radiates on a much
longer time scale due to the spontaneous emission). Fortunately, as was discussed above, for
each particular value of the initial phase @ there are very few impact parameters leading
to quasistable trajectories. Therefore these cases are simply ignored when we integrate over
the impact parameter to obtain the cross section. The chaotic behavior of the trajectories,

discussed above, in large extent smears out the uncertainty created by this approach.
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One more deficiency of the classical approach is that it does not provide the high-frequency
cut-off, the cross section is simply monotonically decreasing with €2. However, from the
discussion above, it can be estimated as v3/2+2E, since this is the maximum kinetic energy
of the electron at the distance of a few Bohr from the Coulomb center. More accurate
quantum-mechanical treatment [16] suggests that the cut-off frequency is greater than the
above estimate by F - vo/w, or Fug/w in case of initial velocity parallel to the ac field.
However, for the cases discussed in the present paper this is an insignificant extension. For
example, if I = 100 TW/cm?, w = 0.0147 a.u. this estimate extends the cut-off frequency
from 6.6 to 6.96 a.u.

VI. CONCLUSION

We conclude that the Coulomb focusing, leading to a substantial extension of the impact
parameters contributing to the bremsstrahlung cross section, results in a substantial increase
(by one to two orders of magnitude) of the cross section as compared to the pure Coulomb
case. Due to chaotic scattering in the combined Coulomb and ac fields, the emission prob-
ability P(b,€2, @o) as a function of b and the constant phase of the laser field @ exhibits
fractal structures. However, these structures are smeared out when the cross section is in-
tegrated over b and averaged over @qy. The average over @, is completely equivalent to the
average over the starting point of trajectory [7]. Although the accuracy of the classical cal-
culations is good, they do not include the resonance regime studied quantum-mechanically
in [7-9, 16]. These studies were concentrating on the regime whereby the initial electron
kinetic energy is high compared to the ponderomotive energy F,. In contrast, the present
paper is focused on the case of small initial kinetic energy but relatively high F, when the
Coulomb focusing effects become important.

To address the question about the connection with previous quantum-mechanical cal-
culations, we note that nonperturbative quantal treatments were applied so far only to
short-range potentials. Therefore previous quantal calculations and the present one comple-
ment each other rather than present two approaches to the same problem. Refs. [16,17], for
example, concentrate on the short-range case when quantum-mechanical effects are impor-
tant. Although those calculations include some effects of the Coulomb potential, they are

mostly pertinent to quantities responsible for the resonant capture, for example, radiative
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recombination cross section. In contrast, we are mostly concerned with the effect of the
Coulomb interaction in the continuum, particularly the Coulomb focusing effect, which can
be described classically, as follows, for example, from Refs. [18-25]. It would be unphysical
to apply our approach to a short-range potential, since quantum effects play a crucial role
in scattering of low-energy electrons by a short-range potential.

As has been demonstrated, agreement between classical and quantum approach to the
bremsstrahlung in the Coulomb field is good for electron velocities considered in the present
paper. Relativistic effects and interference of classical trajectories might be nonnegligible,
but we believe that we have demonstrated that the nonrelativistic classical approach captures
the major features of the problem.

The bremsstrahlung process discussed in the present paper can be of interest for the
purpose of generation of UV photons. Whereas the standard HHG process, starting from the
bound state, has an advantage of a more focused electron current, the continuum-continuum
transition might be efficient due to a broad range of impact parameters contributing to the
radiation. The efficiency can be increased further by increasing the ion charge Z. Another
possibility is changing the geometry by choosing a nonzero angle between the direction of the
incident beam and the laser polarization. Changing the polarization from linear to circular

and elliptical can be also explored.
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APPENDIX A: MODIFIED BESSEL FUNCTION OF THE THIRD KIND
Consider the function Kj;,(z) where o and x are real. It satisfies the equation
2y +ay — (@ =Py =0

By substitution
y=a '2f(x)
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we obtain
2
" +1/4
f (—1+“2/>f=0.
x
We treat this equation in the spirit of the quasiclassical approximation. Since the x interval

is between 0 and oo, we introduce the Langer correction. Then, what can be called the

square of the momentum, is

2
2 w

For z > u (classically forbidden region) the action, or the phase integral, is

z 2\ 1/2
S(if):/ (1— K ) dil?/Z(:L‘Q—ug)l/z—uarccos%.

Iz (/)2

Using the uniform Airy function approximation [46], we obtain

K(x) = m (25)1/6 A l@s)m] . (A1)

The constant can be determined from the asymptotic expression for K;,(z)

TNV
K; (m)w(%) e’

Using now the asymptotic of the Airy function for x > pu,

3 1/6 . 3 2/3 1 e
S(x) ~x — ur/2, (2,9) Ai [<2S> 1 ~ 51

we obtain

c =2 2ge T2,

For x < u (classically allowed region) we obtain the same expression (A1) except that now

1/2 2 2\1/2
2 1w pA (=
S = [ <_1+($/>2> 0 = (i — 2V 4 i AT . )

and the argument of the Airy function is negative.

In summary

71.21/2 s 3 1/6 ‘
Kiuw) = e ™ <2S> A

<(39)"]

where the sign of the argument of Airy function is + for x > p and — for z < pu.
This expression works even at the turning point, when x = u. Suppose, for example, that
x approaches p from below so that u — x is a small number. Then

w12 a2)1/2 p—z (12 — (1 — m)2]1/2
S(m):/m (uyy)dy_/o [w /(jb_nn)] i
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In the limit x — p we obtain

_ /2
(20" pre 2 (2\'
S(x) ~ / Pap==2(2 — z)32
(w)ﬂonnzgﬂ(ux)
and -
3

(55) _ 9-1/6,,-1/3

(M2—$2)1/4_ H )
Finally

9\ 1/3
Kyl =7 (2) " emraio) (A2

where Ai(0) = 0.35502805
As an example, consider the cross section S(2) in the case of large frequency 2 when

> 1. Using Eq. (A2)

. I\
eMEK (p) = M Ai(0)

and a similar equation for the derivative

o _721/2|u2—x2|1/4 3 N6 3 \2/3
2K (1) = - <25> AY :I:(2S)

0\ 2/
MK (1) = () AY(0).

1
we obtain
- 2m? ) T
™ Ky (V) K, (1) = 7A1(0)A1/(0) = “31,
where we have used
1
Ai(0)AT(0) = ————.
(A0 =~
Finally
16722
Q p—
() 33/2(muy)2c3Q

meaning that the effective radiation 25(£2) is independent of €2 at high Q. This equation is
the same as in [32], Eq. (70.22) which was obtained there by other methods.

APPENDIX B: REGULARIZED COULOMB TRAJECTORIES

In cylindrical coordinates, consider the following Hamiltonian for the motion of the elec-
tron in Coulomb plus external electric field,
1 L2 Ze?
H(p, 2,pp, Dor t) = 5105 + P2+ 575 — ——5=—= — Foz cos(wt + @q), (B1)

2 202 p?+ 22
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where L, is the z—component of the electron’s angular momentum and 7 is the charge of
the Coulomb center. The numerical solutions for the equations of motion near the Coulomb
center become highly unstable due to the singularity in the potential. In this appendix,
we will show how to remove this singularity from the Hamiltonian and obtain reqularized

Coulomb trajectories based on the formalism of extended Hamiltonian.

1. Extended Hamiltonian

The ordinary Hamiltonian H can be extended to a new Hamiltonian I'" by introducing

time as a new mechanical variable [47]. The extended Hamiltonian I' can be written as
I'=H + p, (B2)

where p; is the canonical momentum for time ¢. In the extended phase space, two additional

Hamilton’s equations are defined according to

dt ~ or
b e B3
dr 0pt ’ ( )
dp, O  OH
e T B4
dr ot ot’ (B4)
where 7 now works as the independent variable. It can be readily shown that py(t) = —H (t)

and for a time independent Hamiltonian, p,(t) = —Ey, with Ey being the initial energy of

the system. Thus, I'(T =t) = 0.

2. Regularization of the extended Hamiltonian

For the purpose of regularization, we will introduce the semi-parabolic coordinates into

the extended Hamiltonian, according to [28]

X=\VeP+tz+z n=\ypPP+z"—z xn=0. (B5)

Now the extended Hamiltonian in semi-parabolic coordinates will read,

L 2/ 2 2 LE 2Z¢? L 2
LOGIE P oy ) = S OC +17) (03 +p3) + 2 L 5 (X" = 1) Fy cos(wt + @) + py

As the next step towards the regularization, the old extended Hamiltonian is transformed

to a new Hamiltonian K together with a time transformation. This is achieved via the
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following rule

K =g, dt=g(x,n)dI. (B6)

It can be shown that the canonical nature of the equations of motion is preserved in the new
Hamiltonian K [48]. For the Coulomb problem in semi-parabolic coordinates, the choice of
g(x,n) = x*>+n? will eliminate the singularity at (p = 0,z = 0) from the Coulomb potential.
The transformed Hamiltonian K (x,n,t, py, Py, pi) for the extended Hamiltonian I' is given
by

1 oI 1
K =3 +r,)+ 2 topt (O + m*)pe = 22¢* = S (X" = 01" Fy cos(wt + o). (BT)

Now, the Hamilton’s equations of motion for K are as follows (here we have assumed for

simplicity L, = 0):

a5,

ar B8

a7 = X+ (B8)
d 1
d—];f = —§[X4 — n*| Fyw sin(wt + @) (B9)
EX _ 9 (wt + @o) — 2 (B10)
ar? X Lo COS(wt + Qg XDt
En_ o (wt + @o) — 2 (B11)
a2 1" Fo cos(Wt - Qo NPt

And the initial conditions at T' = 0 are
dXo . . d770 . .
0, Pt H(to), qT NoPo + Xo%o, IT X0Po — Mozo;

where (po, 20, to) and (g, Zo) are initial configuration and velocities in the (p, z, t) coordinates.
The numerical solutions of Eqs. (B8)-(B11) behave well near the Coulomb center. By
tabulating the solutions x(7"),n(T") and t(T), the trajectory in (p, z,t) coordinates can be

numerically obtained.

APPENDIX C: CALCULATION OF FOURIER INTEGRALS

For calculation of Fourier transform of Cartesian components of acceleration, Eq. (1), we

use the grid points obtained from the regularized Coulomb trajectories method, Appendix
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B. Assuming that the values of a function f(t) is varying slowly between two successive grid

points ty, to, we can approximate it by a linear function

ft)=fo+ 0Bt
where
fo— f1
B=P= fo=h-ph,
then

/: F()edt = (ZJ;(; I é) (eiftt2 _ i) | Z%(tzemtz ~ e,
However, close to the nucleus the acceleration varies very rapidly and the linear approx-
imation is insufficient. In this case the integration of acceleration can be reduced to the
integration of velocity. Consider the time interval between t; and t, where acceleration

cannot be approximated by a linear function. Then

to i ) X to .
le:emtdt = u(ty)e™ —u(t))e ™ —iQ [ w(t)e™dt. (C1)
t1 t1

If necessary, this can be reduced further to integration of the coordinate

to . . . to .
C;;e’mdt = [v(ty) — iQx(ty)]e™2 — [v(ty) — iQu(t,)]e™ — QZ/ z(t)edt.  (C2)
t1 t1

Note, however, that for numerical calculations it is not convenient to reduce the whole
integration to the integral of velocity or coordinate (as is done in the analytically-solvable
Coulomb case [32]) because these quantities do not disappear at ¢ — f00. Generally even

acceleration does not disappear in this limit because of the ac field. However, since
/ e M Fy cos(wt + @o)dt = mFpe "05(Q — w)

this contribution can be dropped unless w = €). In numerical calculations the contribution
of the ac field term should be included because it influences the integrals in Eqgs. (C1) and
(C2). Therefore we subtract the following expression from the numerical result

Fy ) ei(Qer)tf -1 ei(wa)tf -1

/Otf "M Fy cos(wt + @o)dt = 5 e“"om + e‘“"om
where we have assumed that the initial integration time is 0 and the final integration time
is ty.

Fig. 14 demonstrates the importance of the above correction, Eq. (C1). We present here

the probability per unit frequency P(b,2), Eq. (3), as a function of the impact parameter
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b for a pure Coulomb field. When we employ Eq. (C1) at the distance of 20 integration

points from the closest approach, we obtain perfect agreement with the exact result, Eq.
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FIG. 11: Electron distance from the Coulomb center as a function of time for several impact

parameters b given at the top of each panel (in a.u.). The field parameters are the same as in Fig.

9. Panels (a)-(c) shows the fractal structure as the step in b decreases.
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A = 4.56 to 22.8 pum.The field parameters are Fy = 0.0056 a.u. w = 0.05696 a.u (A = 0.8 pm.)

Field-free cross section is compared to the case @y = 0 and @g-averaged cross section.
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FIG. 14: Probability of spontaneous emission per unit frequency as a function of the impact
parameter for the pure Coulomb case, Z = 1, v = 0.1 a.u. for frequencies 2 = 0.4 and 1.0 a.u.
Solid curves: the exact result. The dashed curves diverging near b = 0 do not include the velocity

correction, Eq. (C1).
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