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The CADE ATP System Competition (CASC) is the
annual evaluation of fully automatic, classical logic Au-
tomated Theorem Proving (ATP) systems. CASC-J9
was the twenty-third competition in the CASC series.
Twenty-three ATP systems and system variants com-
peted in the various competition divisions. This paper
presents an outline of the competition design, and a
commentated summary of the results.
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1. Introduction

The CADE ATP System Competition (CASC)
[19] is the annual evaluation of fully automatic,
classical logic Automated Theorem Proving (ATP)
systems — the world championship for such sys-
tems. One purpose of CASC is to provide a public
evaluation of the relative capabilities of ATP sys-
tems. Additionally, CASC aims to stimulate ATP
research, motivate development and implementa-
tion of robust ATP systems that are useful and eas-
ily deployed in applications, provide an inspiring
environment for personal interaction between ATP
researchers, and expose ATP systems within and
beyond the ATP community. CASC-J9 was held
on 14th July 2018 in Oxford, United Kingdom,
as part of the 9th International Joint Conference
on Automated Reasoning, which was in turn part
of the 2018 Federated Logic Conference (FLoC).!
CASC-J9 was the twenty-third competition in the
CASC series; see [20] and citations therein for in-

1The “FLoC Olympic Games” hosted 15 competitions
in various areas of logic and reasoning, which provided the
CASC-J9 entrants with opportunities to observe and inter-
act with developers of other types of reasoning tools.
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formation about individual previous competitions.

The CASC-J9 web site provides access to all com-

petition resources:
http://wuw.tptp.org/CASC/J9.

CASC is divided into divisions according to
problem and system characteristics. There are
competition divisions in which the systems are ex-
plicitly ranked, and a demonstration division in
which systems demonstrate their abilities with-
out being ranked (for systems that cannot be en-
tered into the competition divisions for any reason,
e.g., the system is experimental, or the entrant is
a competition organizer). Each competition divi-
sion uses problems that have certain logical, lan-
guage, and syntactic characteristics, so that the
systems that compete in the division are, in prin-
ciple, able to attempt all the problems in the divi-
sion. Some divisions are further divided into prob-
lem categories that make it possible to analyze, at
a more fine-grained level, which systems work well
for what types of problems. The demonstration di-
vision uses the same problems as the competition
divisions, and the entry specifies which competi-
tion divisions’ problems are to be used. Table 1
catalogs the divisions and problem categories of
CASC-J9.

Twenty-three ATP systems and system variants
listed in Tables 2 and 3 competed in the various
divisions. The division winners of CASC-26 (the
previous CASC) were automatically entered into
the corresponding demonstration divisions, to pro-
vide benchmarks against which progress can be
judged. Additionally, Prover9 1109a is entered into
the FOF division each year, as a fixed point against
which progress can be judged. System descriptions
of the systems are in [21] and on the CASC-J9 web
site.

CASC-J9 was organized by Geoff Sutcliffe, and
overseen by a panel consisting of Martin Giese,
Aart Middeldorp, and Florian Rabe. The com-
petition was run on computers provided by the
StarExec project [16] at the University of Towa.
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Division Problems

Problem Categories. The examples can be viewed at http:
//www.tptp.org/cgi-bin/SeeTPTP?Category=Problems.

THF Monomorphic Typed Higher-order Form theorems TNE — THF with No Equality, e.g., NUM738~1.
(axioms with a provable conjecture). TEQ — THF with EQuality, e.g., SET171"3.
TFA Monomorphic Typed First-order form theorems with TFI — TFA with only Integer arithmetic, e.g., DAT0O16=1.
Arithmetic (axioms with a provable conjecture). TFE — TFA with only rEal arithmetic, e.g., MSC022=2.
FOF First-Order Form theorems (axioms with a provable FNE — FOF with No Equality, e.g., COM003+1.
conjecture). FEQ - FOF with EQuality, e.g., SEU147+3.
FNT FOF Non-Theorems (axioms with a countersatisfi- FNN — FNT with No equality, e.g., KRS173+1.
able conjecture, and satisfiable axioms sets). FNQ - FNT with eQuality, e.g., MGT033+2.
EPR Effectively PRopositional theorems and non- EPT — Effectively Propositional Theorems (unsatisfiable
theorems in clause normal form (unsatisfiable and clause sets), e.g., PUZ037-3.
satisfiable clause sets). Effectively propositional EPS — Effectively Propositional non-theorems (Satisfiable
means that the problems are known to be reducible clause sets), e.g., GRP123-2.005.
to propositional form, e.g., CNF problems that have
no functions with arity greater than zero.
LTB First-order form theorems (axioms with a prov- CML — Problems exported from CakeML [6].

able conjecture) from Large Theories, presented in
Batches. A large theory typically has many functors
and predicates, and many axioms of which only a few
are required for the proof of a theorem. The problems
in a batch are given to an ATP system all at once,
and typically have a common core set of axioms. The
batch presentation allows the ATP systems to load
and preprocess the common core set of axioms just
once, and to share logical and control results between
proof searches.

See Section 2.2 for details of the problems.

Each problem category is accompanied by a set of training
problems and their solutions, taken from the same source
as the competition problems. The training data can be
used for ATP system tuning during (typically at the start
of) the competition.

Table 1

Divisions and Problem categories

This paper is organized as follows: Section 2 out-

lines the design and organization of the competi-
tion. Section 3 provides a commentated summary
of the results. Section 4 contains short descriptions
of three of the ATP systems. Section 5 concludes
and discusses plans for future CASCs.

2. Outline of Design and Organization

The design and organization of CASC has
evolved over the years to a sophisticated state.
An outline of the CASC-J9 design and organiza-
tion is provided here. The details are in [21] and
on the CASC-J9 web site. Important changes for
CASC-J9 were: (This summary of changes is most
useful for readers who are already familiar with the
general design of CASC. Other readers can skip to
Section 2.1.)

— The TFR problem category of the TFA divi-
sion was put into a hiatus state due to the
lack of eligible problems.

— The SLH division was not run, as there was no
sign of a changed work profile being produced
by the Sledgehammer system.

— The previous year’s winners were placed into
the demonstration division, to ensure that one
of the new systems wins. (Systems were not
allowed to, and none tried to, circumvent this
by making a trivial change, e.g., incrementing
the system version number.)

2.1. System Delivery, Fxecution, and Evaluation

The ATP systems entered into CASC are de-
livered to the competition organizer as StarExec
installation packages, which the organizer installs
and tests on StarExec. Source code is delivered
separately for archiving on the competition web
site.

The ATP systems are required to be fully au-
tomatic. They are executed as black boxes, on
one problem (the non-LTB divisions) or one batch
(the LTB division) at a time. Any command line
parameters have to be the same for all prob-
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ATP System Divisions Entrants (Associates) Entrant’s Affiliation

MaLLARea 0.6 LTB Josef Urban (Jan Jakubuv, Czech Technical University
Cezary Kaliszyk, Stephan Schulz) in Prague

nanoCoP 1.1 FOF Jens Otten University of Oslo

Princess 170717 TFA Philipp Riimmer Uppsala University

Prover9 1109a FOF (demo) CASC (William McCune, Bob Veroff) CASC fixed point

Satallax 3.2 THF CASC CASC-26 winner

Satallax 3.3 THF Michael Farber (Chad Brown) Universitat Innsbruck

Twee 2.2 FOF Nick Smallbone (Koen Claessen) Chalmers University of Technology

Vampire 4.0 LTB (demo) CASC CASC-26 winner

Vampire 4.1 TFA FNT (demo) CASC CASC-26 winner

Vampire 4.2 FOF (demo) CASC CASC-26 winner

Vampire 4.3 TFA FOF FNT EPR Giles Reger (Martin Suda, Andrei University of Manchester

LTB

Voronkov, Evgeny Kotelnikov,
Martin Riener, Laura Kovacs)

Table 3: The ATP systems and entrants, continued
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lems/batches in each division. The ATP systems
are required to be sound, and are tested for sound-
ness by submitting non-theorems to the systems
in the THF, TFA, FOF, EPR, and LTB divisions,
and theorems to the systems in the FNT and EPR
divisions. Claiming to have found a proof of a non-
theorem or a disproof of a theorem indicates un-
soundness. For the three CASCs from CASC-J7 to
CASC-J8 no systems failed soundness testing, but
last year in CASC-26 five systems were found to
be unsound. For CASC-J9 things returned to the
pleasing state of no systems failing the soundness
testing.

The THF, TFA, FOF, FNT, and LTB divi-
sions are ranked according to the number of prob-
lems solved with an acceptable proof/model out-
put. The EPR division is ranked according to the
number of problems solved, but not necessarily ac-
companied by a proof/model (but systems that do
output proofs/models are highlighted in the pre-
sentation of results). Ties are broken according to
the average time taken over problems solved (CPU
time or wall clock time, depending on the type of
limit in the division). Trophies are awarded to the
division winners. Additionally in CASC-J9, Jas-
min Blanchette at the Vrije Universiteit Amster-
dam contributed a travel prize for the THF di-
vision, with expenses covered by the Matryoshka
project [2].

In addition to the ranking criteria, three other
measures are made and presented in the results:
The state-of-the-art contribution (SotAC) quanti-
fies the unique abilities of each system. For each
problem solved by a system, its SotAC for the
problem is the reciprocal of the number of systems
that solved the problem, so that if a system is the
only one to solve a problem then its Sot AC for the
problem is 1.00, and if all the systems solve a prob-
lem their SotAC for the problem is the inverse of
the number of systems. A system’s overall SotAC
is its average SotAC over the problems it solved.
The core usage is the average of the ratios of CPU
time to wall clock time used, over the problems
solved. This measures the extent to which the sys-
tems take advantage of multiple cores. The compe-
tition ran on quad-core computers, thus the max-
imal core usage was 4.0. The efficiency measure
combines the number of problems solved with the
time taken. It is the average solution rate over the
problems solved (the solution rate for one prob-
lem is the inverse of the time taken to solve it),

multiplied by the fraction of problems solved. Ef-
ficiency is computed for both CPU time and wall
clock time, to measure how efficiently the systems
use one core and multiple cores respectively.

2.2. Competition Problems

2.2.1. Problems for the TPTP-based Divisions

The problems for the THF, TFA, FOF, FNT,

and EPR divisions were taken from the Thousands
of Problems for Theorem Provers (TPTP) prob-
lem library [18], v7.2.0. The TPTP version used for
CASC is not released until after the competition
has started, so that new problems in the release
have not been seen by the entrants. The problems
have to meet certain criteria to be eligible for se-
lection:

— The TPTP tags problems that are designed
specifically to be suited or ill-suited to a par-
ticular ATP system, calculus, or control strat-
egy as biased. Biased problems are excluded
from the competition.

— The problems have to be syntactically non-
propositional.

— The TPTP uses system performance data in
the Thousands of Solutions from Theorem
Provers (TSTP) solution library to compute
problem difficulty ratings in the range 0.00
(easy) to 1.00 (unsolved) [22]. Difficult prob-
lems with ratings in the range 0.21 to 0.99 are
eligible. Problems of lesser and greater ratings
might also be eligible in some divisions if there
are not enough problems with ratings in that
range. In CASC-J9 two FNQ problems of rat-
ing 1.00 were made eligible so that 100 prob-
lems were eligible for that problem category.
Systems can be submitted before the compe-
tition so that their performance data is used
in computing the problem ratings.

In order to ensure that no system receives an ad-
vantage or disadvantage due to the specific presen-
tation of the problems in the TPTP, the problems
are preprocessed to strip out all comment lines (in
particular, the problem header), randomly reorder
the formulae/clauses (include directives are left
before the formulae, and type declarations are kept
before the symbols’ uses), randomly swap the ar-
guments of associative connectives, randomly re-
verse implications, and randomly reverse equali-
ties.
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The numbers of problems used in each division
and problem category are roughly proportional to
the numbers of eligible problems. The problems
used are randomly selected from the eligible prob-
lems based on a seed supplied by the competition
panel:

— The selection is constrained so that no divi-

sion or category contains an excessive number
of very similar problems [17].

— The selection is biased to select problems that
are new in the TPTP version used, until 50%
of the problems in each problem category have
been selected, after which random selection
(from old and new problems) continues. The
number of new problems used depends on how
many new problems are eligible and the limi-
tation on very similar problems.

Table 4 gives the numbers of eligible problems, the
maximal numbers that could have been used after
taking into account the limitation on very similar
problems (in the context of the numbers of prob-
lems used), and the numbers of problems used, in
each division and category. There were very few
new problems in CASC-J9, because there had been
very little growth of the TPTP since v7.1.0. (The
ATP community is encouraged to contribute inter-
esting new problems to the TPTP!)

The problems are given to the ATP systems in
TPTP format, in increasing order of TPTP diffi-
culty rating.

2.2.2. Problems for the LTB Division

The problems for the LTB division are taken
from various sources, with each problem category
being based on one source. CASC-J9 had one prob-
lem category?: the CML problem category used
a set of 7592 problems exported from CakeML
[6].> The problems used in the competition were
selected by running E 2.1, iProver 2.7.5, SPASS
3.9, and Vampire 4.2 on the problems with a 300s
CPU time limit. In those tests 1389 problems were
proved to be theorems, 808 problems were found
to be non-theorems, and 5395 were unsolved. The
non-theorems were removed from the set, leaving
6784 problems. The 1000 problems with the most
proofs (i.e., in some sense the easiest 1000 prob-

2Usually the LTB division has multiple problem cate-
gories, but for CASC-J9 it was decided to have just one
category, which allowed that category to have a very large
number of problems.

3Thanks to Ramana Kumar for the export.

lems) were taken (with their proofs) for the train-
ing set. For the 1000 training problems there was a
total of 3497 proofs. 784 problems were randomly
removed from the remaining 5784 problems, to
leave 5000 for the competition. In their exported
form the problems have less than 100 axioms. In
order to challenge the axiom selection capabilities
of the ATP systems, the 5362 unique axioms in
the 784 problems were added to the training and
competition problems, to form the final problems
for the competition. (While adding such “random”
axioms can have unpredictable effects on the abil-
ity of ATP systems to find a proof, testing showed
that the resultant problems were still appropriate
for the competition.)

The problems are given to the ATP systems in
TPTP format, in the natural order of their source,
i.e., for CASC-J9 in the order of their export from
CakeML. The problem batch was unordered, which
meant that ATP systems could attempt the prob-
lems in any order, and could attempt each problem
multiple times. This provides increased opportuni-
ties for sharing logical and control results between
proof attempts.

2.8. Resources

The computers had four Intel(R) Xeon(R) E5-
2609, 2.40GHz CPUs (a quad-core chip), 128GB
memory, and ran the Red Hat Enterprise Linux
Server release 7.2 (Maipo) operating system, ker-
nel 3.10.0-514.16.1.el7.x86_64.

In the TPTP-based divisions a 300s CPU time
limit was imposed for each problem. A wall clock
time limit of 600s was also imposed to limit very
high memory usage that causes swapping.

In the LTB division a 150000s wall clock time
limit was imposed on the CML problem category,
giving an average of 30s per problem. There was
no wall clock time limit for each problem, and no
CPU time limits (i.e., systems could benefit from
using all cores available on the CPUs). Time spent
before starting the first problem in the batch, e.g.,
learning from the training set and pre-loading the
common axioms, and time spent between ending a
problem and starting the next, e.g., learning from
previous proofs, is not part of the time taken on
problems. However, the time taken on such tasks
is part of the overall time taken for the batch.

Demonstration division systems can run on the
competition computers, or the computer(s) can be
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Division THF TFA FOF FNT EPR LTB
Category | TNE TEQ | TFI TFE |FNE FEQ |FNN FNQ|EPT EPS|CML
Eligible 105 818|176 88| 386 3470| 104 98| 137 167 |6784
Usable 105 807|172 85| 126 903 | 101 98| 137 255784
New 0 0 0 0 3 0 2 0 0 0 -
Used 100 400|125 75| 125 375| 100 100| 125 255000
New 0 0 0 0 3 0 2 0 0 0 -
Table 4

Numbers of eligible and used problems

supplied by the entrant. The CASC-J9 demonstra-
tion division systems all used the competition com-
puters.

3. Results

For each ATP system, for each problem, four
items of data were recorded: whether or not the
problem was solved, the CPU time taken, the wall
clock time taken, and whether or not a proof or
model was output. This section summarizes the
results, and provides commentary. The result ta-
bles below give the number of problems solved
in the division, the average time over problems
solved, whether or not proofs or models were out-
put, the state-of-the-art contribution, the (micro-)
efficiency, the core usage, the number of new prob-
lems solved, and the number of problems solved in
each problem category. In each table the CASC-26
winner is emphasized. Detailed results, including
the systems’ output files, are available from the
CASC-J9 web site.

3.1. The THF Division

Table 5 summarizes the results of the THF divi-
sion. There were no great improvements to the sys-
tems since CASC-26, with Satallax 3.2 solving the
most problems again, with Leo-IIT and LEO-II cor-
respondingly behind. It was rather disappointing
that effectively only three systems participated. As
one non-entrant said when asked about interest
in a THF-LTB division, “Probably won’t partici-
pate (THF without LTB is already hard enough!)”,
while another long-standing THF entrant said “I
don’t think I’ll be entering this year. Instead, I'd
rather focus on the next generation of HO ATPs”.
Hopefully these entrants and others will return for
CASC-27.

The average CPU times were notably higher
than in CASC-26, e.g., Satallax 3.2’s average CPU
time in CASC-26 was 22.9s. An examination of the
problems’ difficulty ratings shows that the prob-
lems were harder than in CASC-26 - the TNE
problems in CASC-26 had an average difficulty
rating (at the time) of 0.49, and the TEQ prob-
lems had an average difficulty rating of 0.40. In
CASC-J9 the averages were 0.53 and 0.43 respec-
tively. This illustrates what is well known in ATP
research - a small increase of difficulty can result in
much higher CPU times for finding proofs. There
were four problems (all from the CSR domain)
that LEO-II solved without proofs, because the
time limit was reached during proof generation.

The SotACs are quite even, with Leo-IIT’s being
the highest thanks to a high number of unique so-
lutions (as noted in the individual problem anal-
ysis below), but no system showed any outstand-
ing distinguishing capabilities. In contrast, the ef-
ficiencies are quite varied, with LEO-II having
the highest efficiency thanks to its lower CPU
times, and Leo-III having lower efficiency due to its
higher CPU times. Leo-III’s higher CPU times are
due to (i) its implementation in Scala, which adds
a fixed overhead for starting the JRE, (ii) running
multiple external systems in parallel, and (iii) the
Scala implementation doing garbage collection and
JIT compilation in parallel with the main thread.
On the upside, Leo-III is able to make good use of
the cores available for the parallel processing.

The systems’ performances in the two problem
categories align with their overall performances,
except that Leo-IIT had a slightly stronger per-
formance on problems with equality. Beyond that
there is no specialization to problems with or with-
out equality.

The individual problem results show that 47
problems were unsolved, 172 problems were solved
by all the systems, and 30 problems were solved
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ATP System THF AvgPrfs Sot u Core TNE TEQ
/500 CPU out AC Eff. usage /100 /400

Satallax 3.3 401 32.2 4010.33262 0.97 70 331

Leo-IIT 1.3

355 38.5 3550.35134 2.62

56 299

LEO-II 1.7.0 213 17.9 2090.29290 0.76 37 176

Demonstration division

Satallax 3.2 406 32.8 4060.33266 0.99 72 334

Table 5
THF division results

by only one system. Of the 30 unique solutions, 23
were by Leo-III, 4 by LEO-II, and 3 by Satallax
3.2. A portfolio of systems with higher SotAC val-
ues is often effective, and here a simple portfolio
of Leo-IIT and Satallax 3.2 giving each 150s would
solve 435 problems.

3.2. The TFA Division

Table 6 summarizes the results of the TFA di-
vision. The winner was the new Vampire 4.3, with
the CASC-26 winner Vampire 4.1 close behind.
Vampire 4.3 had a significantly lower average CPU
time than Vampire 4.1 (as is also reflected in
its higher efficiency). Vampire 4.3 improved over
Vampire 4.1 thanks to improved theory instantia-
tion [13] and extra heuristics to control the use of
theory axioms in proof search [12]. The Vampire
developers believe that Vampire 4.3 could have
performed even better, as there was a bug in the
detection of certain theory symbols in the problem
that affected the addition of theory axioms. As a
result Vampire 4.3 failed to solve some relatively
easy problems, e.g., ARI181=1 and ARI634=1. As
was the case in the THF division, it was rather
disappointing that effectively only three systems
participated (including Princess which had not
changed since CASC-26, but that’s better than
wimping out completely).

It was noted in the CASC-26 report that some
of CVC4’s proofs were vacuous (the output is “No
instantiations”), which occurs when the proof
is found using quantifier-free reasoning during pre-
processing. Justifying preprocessing steps is a long
term project in CVC4. The developers reported
progress since CASC-26, but the work was not
complete for CASC-J9. CVC4 had a higher ef-

ficiency than Vampire 4.3 because it had lower
CPU times for the first 67 problems solved (sep-
arately ordered by CPU time for each system) in
the TFI problem category. CVC4 also performed
strongly in the TFE problem category, thanks to
improved support for unbounded non-linear arith-
metic. Vampire 4.1 did worse in the TFE prob-
lem category because of a known inability to rea-
son about quotients over the reals, as occurred in
the six TFE problems that Vampire 4.3 solved and
Vampire 4.1 did not, i.e., if that bug did not ex-
ist in Vampire 4.1 it would have solved the most
problems.

The individual problem results show that only
1 problem was unsolved, 80 problems were solved
by all the systems (40 in each problem category),
and 23 problems were solved by only one system.
Of the 23 unique solutions, 12 were by CVC4, 6 by
Vampire 4.1, 3 by Vampire 4.3, and 2 by Princess.
The best portfolio would be to give 100s to each
of CVC4, Vampire 4.1, and Vampire 4.3, which
would solve 194 problems, i.e., almost complete
coverage of the division. The high fraction of prob-
lems solved by all systems, particularly in the TFE
problem category, indicates that harder problems
might be chosen for the TFA division.

3.3. The FOF Division

Table 7 summarizes the results of the FOF divi-
sion. The new Vampire 4.3 beat the CASC-26 win-
ner Vampire 4.2. Excluding Vampire 4.2, Vampire
4.3 also had the lowest average CPU time, highest
SotAC, and highest efficiency. The improved per-
formance of Vampire 4.3 is attributed to changed
strategy schedules and (according to the devel-
oper) “getting lucky with problem selection”, as

41t was a busy year for the CVC4 developers, as
CVC4 was entered into and did well in multiple rea-
soning competitions. In particular, CVC4 had out-

standing performances in SMT-COMP (http://smtcomp.
sourceforge.net/2018/) and SyGuS (http://www.sygus.
org/SyGuS-COMP2018.html).
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ATP System

TFA AvgPrfs Sot u Core TFITFE

/200 CPU out AC Eff. usage /125 /75

Vampire 4.3
CVC4 1.6pre

163 14,2 1630.33 539 0.67 93 70
157 15.0 1570.36 613 0.61 85 72

Princess 170717 105 13.4 1050.30 311 2.24 62 43

Demonstration division

Vampire 4.1

162 23.1 1620.35491 0.75 98 64

Table 6
TFA division results

nothing significantly new was added to help solve
FOF problems. The lefthand plot of Figure 1 shows
the ordered solution times for the FOF division.
It clearly divides the systems into five groups: the
two Vampires; E and CSE_E; CVC4, Leo-II and
iProver; leanCoP, nanoCoP, CSC1.1, CSC1.0, and
Prover9; and finally Twee and Geo-III. The same
grouping is evident in the righthand plot of Fig-
ure 1, which shows the fraction of problems solved,
in the order that the problems were presented in
the competition. The righthand plot additionally
shows a different grouping for problems with lower
difficulty ratings: the Vampires, CSE_E, E, CV(C4,
Leo-III, and iProver solving most of the easy prob-
lems; leanCoP, nanoCoP, and the CSEs solving
less, and finally Prover9, Twee, and Geo solving
the least (with gaps between those three systems).
The consistent decrease in success rates after the
first 200 problems also confirms that the TPTP
problem ratings do reflect increasing difficulty of
the problems for the systems.

It is admirable that the newcomer CSE_E did so
well. It is clearly the case, and it is fully acknowl-
edged, that CSE_E stands on the shoulders of the
giant E (version 2.1). CSE_E first tries to solve the
problem with E, and if unsuccessful it tries with
CSE 1.0. If neither solves the problem then se-
lected clauses inferred by CSE are combined with
the original problem’s clauses to form a new prob-
lem for E. The majority of CSE_E’s solutions were
found by the initial run of E. Another 3 problems
were solved by CSE alone, and 11 more by E with
CSE clauses added. None of the 3 problems solved
by CSE alone, and only one of the 11 problems
solved by E with CSE clauses added, were solved
by the E 2.2pre entry in the competition. Evidently
the clauses inferred by CSE help E. CSE_E was
awarded the “best newcomer” prize, and a brief
system description of the CSE family of systems is
provided in Section 4.

CSE_E, iProver, and Twee each solved a prob-
lem for which they did not output a proof. In
CSE_E’s case the problem (SY0525+1.015) was
solved in 169s by E, but CSE_E was unable to cap-
ture and reformat E’s proof output. For iProver,
the problem (LCL666+1.010) was solved in 146s,
but subsequent investigation revealed that proof
reconstruction takes about an hour, almost all
within MiniSAT. The iProver developer classed it
as “a weird problem”. In Twee’s case the prob-
lem (GRP779+1) was solved in 261s, but Twee ran
out of time during post-processing that makes the
proof human-readable. The developer of Twee has
suggested that the generation of human-readable
proofs “should perhaps be turned off” for the com-
petition.

Twee and Geo, which were last ranked in the di-
vision, had high SotAC values. This demonstrates
how quite different calculi can solve some differ-
ent problems (as is noted in the individual prob-
lem analysis below). Twee converts FOF problems
to CNF, then if they are Horn converts them to
unit equality problems that it attempts to refute
using unit equality reasoning. Geo-III is based on
geometric resolution. Another system with a dif-
ferent calculus is nanoCoP, which is based on the
non-clausal connection calculus. nanoCoP solved
16 problems not solved by its clausal predecessor
leanCoP, but due to the additional overhead of
dealing with the non-clausal formula structure, al-
together slightly fewer problems than leanCoP. As
interesting newcomers, brief system descriptions of
Twee and nanoCoP are provided in Section 4.

There were three new problems in FOF division,
all of which are encodings of simple calculations
(e.g., 2+ 2 = 4) in Robinson Arithmetic Q [15].?
These problems were too hard for most of the sys-
tems.

5Those problems were bugfixed in the TPTP after the
competition, but even in their buggy form they were still
theorems.
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ATP System FOF AvgPrfs Sot u Core New FNE FEQ
/500 CPU out AC Eff. usage /3 /125 /375

Vampire 4.3 461 16.4 461 0.20 483 0.83 2 115 346
CSE_E 1.0 363 26.4 3620.15 333 0.95 1 90 273
E 2.2pre 350 25.6 3500.15 339 0.84 1 92 258
CVC4 1.6pre 298 43.5 2980.14232 0.82 0 83 215
iProver 2.8 248 29.4 2470.14167 0.92 0 102 146
leanCoP 2.2 143 46.7 1430.11 56 0.81 0 75 68
nanoCoP 1.1 133 48.6 1330.10 55 0.81 0 71 62
CSE 1.1 126 54.9 1260.10 61 097 0 62 64
CSE 1.0 123 50.2 1230.10 64 099 0 61 62
Twee 2.2 74 62.2 730.17 50 0.87 0 16 58
Geo-IIT 2018C 50 40.1 500.18 21 095 0 14 36
Demonstration division
Vampire 4.2 454 15.1 4540.19 473 0.83 2 116 338
Leo-IIT 1.1 256 31.2 2560.14 94 2.67 1 82 174

Prover9 1109a 122 29.7 1220.13 113 0.87 0 28 94
Table 7

FOF division results
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Fig. 1. Ordered solution times and success rates in the FOF division
The ordered solution times are for problems solved, individually sorted for each system in ascending order.
The success rates are for all problems in the order they were presented, i.e., in non-decreasing order of difficulty rating.

The individual problem results show that 14
problems were unsolved, 1 problem was solved by
all the systems, and 17 problems were solved by
only one system. Of the 17 unique solutions, 6 were
by Vampire 4.3, 3 by Twee, 2 by Vampire 4.2, 2 by
CSE_E, 2 by Geo-III, 1 by CVC4, and 1 by Leo-
II1. A simple portfolio of Vampire 4.3 and CSE_E,
giving each 150s, would solve 467 problems.

3.4. The FNT Division
Table 8 summarizes the results of the FNT di-

vision. Vampire 4.3 came out well ahead. Vampire
4.3’s improved performance came mainly from two

new features in its finite model building compo-
nent: clique detection to detect a minimal model
size, and, with a greater effect, blocked clause elim-
ination [5].

As in the THF division the average CPU times
were higher than in CASC-26, and again increased
problem difficulty was the cause. In this case the
average difficulty rating was about the same for the
FNQ problem category - 0.46 in CASC-26 and 0.47
in CASC-J9, but significantly higher in the FNN
problem category - 0.19 in CASC-26 and 0.40 in
CASC-J9. This resulted in increased average CPU
times in the FNN problem category, e.g., Vam-
pire 4.1’s average CPU time jumped from 24.4s to
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ATP System FNT AvgMdls Sot g Core New FNN FNQ

/200 CPU

out AC Eff. usage /2 /100 /100

Vampire 4.3 191 45.0
iProver 2.8 137 27.9
CVC4 1.6pre 116 29.5
E 2.2pre 38 21.1
Geo-IIT 2018C 38 23.5

1910.31 176 0.96 1 96 95

1370.24 326 2.91 1 80 57
116 0.23 208 0.83 1 69 47
380.25105 094 0 28 24
380.20 113 0.86 1 14 10

Demonstration division

Vampire 4.1 188 48.2

186 0.30 362 0.95 1 94 94

Table 8
FNT division results

70.9s.

Apart from the CPU times, the results paral-
lel those of CASC-26, with the Vampires first, fol-
lowed by iProver, CVC4, and E. Similarly, the So-
tACs, efficiencies, and core usages are pretty much
the same. Finally, the Vampires again showed
stronger performance in the FNQ problem cate-
gory. The reader is referred to [20] for explana-
tions. As was noted in Section 2.2, two problems
of rating 1.0 were made eligible and used in the
FNQ problem category. None of the systems solved
either of them.

The individual problem results show that 7
problems were unsolved, 7 problems were solved
by all the systems, and 6 problems were solved by
only one system. Of the 6 unique solutions, 4 were
by Vampire 4.3, and 2 by Vampire 4.1. A portfolio
approach does not help.

3.5. The EPR Division

Table 9 summarizes the results of the EPR di-
vision. The winner, iProver 2.8, had better perfor-
mance than its predecessor iProver 2.6. The main
improvement in iProver 2.8 was the use of com-
plete lookahead literal selection in the instantia-
tion and resolution modules. If multiple literals
are eligible for selection in the given clause, com-
plete lookahead literal selection selects the literal
for which the complexity of the inferred clauses,
e.g., the number of inferred clauses, the number of
symbols in inferred clauses etc., is minimal (similar
to [4]). There is a significant gap from iProver and
Vampire to the lower ranked systems, illustrating
that special techniques are required for the EPR
division.

It was pleasing to see that all the systems out-
put proofs and models. However, both iProvers
and Vampire solved some EPT problems with-

out proofs. In all cases it was because the time
limit was reached during proof production or out-
put. For the one problem for which Vampire did
not output a proof (MSC015-1.022), the proof was
found after 280s, and when the time limit was
reached the part of the proof that had been output
already contained over 2.5 million inference steps.
Subsequent testing revealed that the completed
proof has over 6 million inference steps. Process-
ing such large proofs, e.g., proof verification, is a
challenge for ATP research. For the higher ranked
systems the problem category rankings align with
the overall ranking. For Geo-III and Leo-III there
is a clear preference for the EPS and EPT problem
categories, respectively.

The individual problem results show that 6
problems were unsolved, no problems were solved
by all the systems, and 15 problems were solved
by only one system. Of the 15 unique solutions,
10 were by Vampire, 4 by iProver 2.8, and 1 by
iProver 2.6. A simple portfolio of iProver 2.8 and
Vampire, giving each 150s, would solve 142 prob-
lems.

8.6. The LTB Division

Table 10 summarizes the results of the LTB di-
vision. The winner, MalLARea, was the only sys-
tem to take full advantage of the features of the
division, viz. learning from the training data, mak-
ing multiple attempts on problems, learning from
proofs found, and using all cores. Before start-
ing on the competition problems MaLARea used
the training data for learning axiom selection, and
augmented that with incremental learning of ax-
iom selection after each competition problem was
solved. MaLARea made two passes through the
problems (in principle it can make more, but the
time limit of the division prevented another pass).
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ATP System EPR AvgPr Mo Sot pu Core EPT EPS
/150 CPU out AC Eff. usage /125 /25

iProver 2.8 133 29.2 v v 0.34169 0.97 108 25
Vampire 4.3 128 458 v v 0.36171 0.95 104 24
E 2.2.pre 27 476 v v 023 64 087 19 9
Geo-IIT 2018C 10 41.7 v v 0.23 44 0.76 0 10

Demonstration division

126 375 v v 0.32163 0.96 101 25
171241 v v 024 4 257 17 0

iProver 2.6
Leo-IIT 1.3

Table 9

EPR division results

In the first pass it solved 828 problems, and in the
second pass it solved another 48 problems by us-
ing higher time limits for each problem. MaLARea
took advantage of the multiple cores by running
various k-NN learners/premise-selectors and vari-
ous E strategies in parallel.

Grackle was the only other system to make use
of the training data. It used the training problems
(but not the solutions) to develop strategies for
E. It then used all the strategies to attempt each
problem using E. Four problem-strategy pairs were
run in parallel with a 20s wall clock time limit per
pair, to make use of the four cores available.

Vampire 4.0 had a bug that caused it to termi-
nate after 100000s wall clock time, at which point
it had attempted only 3553 of the problems. Its
success rate when it terminated was higher than
that of Vampire 4.3 - 16% of attempted problems
solved vs. 15%. Without the bug it might have
outperformed Vampire 4.3.

ATP System LTB Avg Avg Prfs Sot WC Core
/5000 WC CPU out AC pEff. usage
MaLARea 0.6 876 4.7 16.1 8760.35 17 3.2
757 1.8 6.0 7570.25 97 2.1
iProver 2.8 61314.1 55.9 6130.21 2 4.0
E 2.2pre 45816.1 7.4 4580.19 13 0.5
Grackle 0.1 37911.7 46.4 3790.19 3 4.0
Demonstration division

Vampire 4.0 594 2.9 109 5940.24 88 2.8
Table 10

LTB division results

Vampire 4.3

It is clear that the LTB problems were hard for
the systems. The wall clock efficiency values are
low compared to the other divisions of the compe-
tition, due to the low numbers of problems solved.
The wall clock efficiency values are also highly var-
ied. Vampire has higher efficiency due to its low

wall clock times, helped by it’s reasonable use of
the cores available. Despite making maximal use
of the cores available, iProver and Grackle have
low efficiencies because of their higher wall clock
times.

The individual problem results show that 4069
problems were unsolved, 249 problems were solved
by all the systems, and 159 problems were solved
by only one system. Of the 159 unique solutions,
131 were by MaL.ARea, 14 by Vampire 4.0, 13
by Vampire 4.2, and 1 by E. It is hard to judge
whether or not a portfolio approach would help
here, as the various systems impose different inter-
nal time limits on proof attempts.

4. System Descriptions

Three new systems were entered into the FOF
division of CASC-J9: the CSE family consisting of
CSE 1.0, CSE 1.1, and CSE_E 1.0; nanoCoP 1.1;
and Twee 2.2. The following brief descriptions of
these new systems were written by their develop-
ers.

CSE 1.0, CSE 1.1, and CSE_E 1.0 are automated
theorem provers for first-order logic. CSE is based
mainly on a novel inference mechanism called
Contradiction Separation Based Dynamic Multi-
Clause Synergized Automated Deduction (S-CS)
[23]. The S-CS inference rule takes two or more
clauses as input, selects a subset of the literals from
each input clause to build a contradictory set of
sub-clauses, and infers the disjunction of the non-
selected literals of the input clauses (binary reso-
lution is thus just a special case). The number of
clauses and the numbers of selected literals per in-
ference are not fixed, and are adjusted dynamically
for each inference. CSE has a number of strategies,
including clause selection, literal selection, weight
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strategy, and so on. CSE 1.0 and CSE 1.1 differ in
the way that the contradiction in the sub-clauses
is established. In CSE_E, E 2.1 [14] then CSE 1.0
are applied to the given problem. If either prover
solves the problem, then the proof process com-
pletes. If not, some clauses inferred by CSE are
fed to E as lemmas for further proof search. CSE
is implemented mainly in C++, with Java being
used for job dispatch in CSE_E. Acknowledgement:
Development of the CSE family has been partially
supported by the National Natural Science Foun-
dation of China (NSFC) (Grant No.61673320) and
the Fundamental Research Funds for the Central
Universities in China (Grant No.2682018ZT10).

nanoCoP 1.1 [9] is an automated theorem prover
for classical first-order logic with equality. It is a
very compact implementation of the non-clausal
connection calculus [8], and the core prover con-
sists of only a few lines of Prolog code. The non-
clausal connection calculus generalizes the clausal
connection calculus by adding a decomposition
rule and generalizing the extension rule to non-
clausal formulae. So far, all popular and effi-
cient proof calculi translate FOF problems into
clausal form. This modifies the structure of the
given formula, and it is difficult to translate the
(clausal) proof back into a FOF proof. Using non-
clausal matrices, the proof search of nanoCoP
works directly on the original structure of the
FOF problem, which avoids translation into and
back from clausal form. This combines the ad-
vantages of more natural non-clausal sequent or
tableau provers with the goal-oriented efficiency of
connection provers. Additional inference rules and
techniques include regularity, lemmata, restricted
backtracking, and a fixed strategy scheduling [11].
The calculus and the implementation can be ex-
tended to first-order intuitionistic and several first-
order modal logics [10].

Twee 2.2 is an equational theorem prover. It
combines unfailing completion with strong criteria
for checking redundancy of critical pairs, including
ground joinability testing [7] and a novel test based
on connectedness [1]. Twee is strong on problems
with many unorientable equations or many critical
pairs. Its main weaknesses is its simplistic search
strategy: critical pairs are considered in order of
weight, terms are always ordered by Knuth-Bendix
ordering (KBO) with each function symbol having
a weight of 1, and the proof search is not goal-
directed. Twee converts FOF problems into clause

normal form, discards non-Horn clauses, and then
reasons about the Horn clauses by encoding them
as equations; the technique is described in [3]. The
heuristics described in [3] were inadvertently omit-
ted from the CASC version of Twee - happily, this
improved Twee’s performance. As expected, Twee
performed best in equation-heavy domains. Of the
problems that only Twee was able to solve, all were
heavily equational, none were unit equality, and
only one was non-Horn. Twee is implemented in
Haskell. It features a fast rewriting engine, com-
pact storage of queued critical pairs, and an LCF-
style kernel that certifies all generated rewrite rules
as well as producing human-readable proofs.

5. Conclusion

CASC-J9 was the twenty-third large scale com-
petition for fully automatic, classical logic ATP
systems. The competition provided exposure for
system builders both within and beyond the ATP
community, and provided an overview of the imple-
mentation state of fully automatic classical logic
ATP systems. CASC-J9 fulfilled its objectives by
evaluating the relative abilities of current ATP sys-
tems, and stimulating development and interest in
ATP.

The highlights of CASC-J9 were disappointing
turnouts in the THF and TFA divisions (i.e., low-
lights), three interesting new systems in the FOF
division, and the re-emergence of MalLARea in the
LTB division.

While the design of CASC is mature and stable,
each year’s experiences lead to ideas for changes
and improvements. Some changes that are being
considered for CASC-27 are:

— Two versions of the FOF and FNT divisions,

one with a CPU time limit for each problem
(as is currently the case), and another with
a wall clock time limit for each problem, to
promote the use of all cores on the CPU.

— The UEQ (Unit EQuality) division will come
out of its hiatus state.

— A multi-format LTB category in which each
problem is encoded in several of the avail-
able TPTP languages — TH1, THO, TF1, TFO,
and FOF. Systems will be able to attempt
whichever versions they want, and a solution
to any version will constitute a solution to the
problem.
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As always, the ongoing success and utility of
CASC depends on ongoing contributions of prob-
lems to the TPTP. The automated reasoning com-
munity is encouraged to continue making contri-
butions of all types of problems.
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