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a b s t r a c t

We describe a method for estimating species trees that relies on replicated subsampling of large data
matrices. One application of this method is phylogeographic research, which has long depended on large
datasets that sample intensively from the geographic range of the focal species; these datasets allow sys-
tematicists to identify cryptic diversity and understand how contemporary and historical landscape
forces influence genetic diversity. However, analyzing any large dataset can be computationally difficult,
particularly when newly developed methods for species tree estimation are used. Here we explore the
use of replicated subsampling, a potential solution to the problem posed by large datasets, with both a
simulation study and an empirical analysis. In the simulations, we sample different numbers of alleles
and loci, estimate species trees using STEM, and compare the estimated to the actual species tree. Our
results indicate that subsampling three alleles per species for eight loci nearly always results in an accu-
rate species tree topology, even in cases where the species tree was characterized by extremely rapid
divergence. Even more modest subsampling effort, for example one allele per species and two loci,
was more likely than not (>50%) to identify the correct species tree topology, indicating that in nearly
all cases, computing the majority-rule consensus tree from replicated subsampling provides a good esti-
mate of topology. These results were supported by estimating the correct species tree topology and rea-
sonable branch lengths for an empirical 10-locus great ape dataset.

! 2010 Elsevier Inc. All rights reserved.

1. Introduction

Phylogeographic studies require large sample sizes (Avise,
2000) and sequence data from hundreds (Wares and Cunningham,
2001; Zamudio and Savage, 2003) or even thousands (Bernatchez,
2001) of individuals have frequently been collected. This level of
sampling is necessary to meet the aims of phylogeographic re-
search, including the identification of population genetic structure
and the estimation of the relationships among these populations.
Initially, phylogeographic investigations were conducted using sin-
gle-locus sequence data; in this case, an estimate of the gene tree
was used as the primary tool for inferring both population struc-
ture and the relationships among populations. For a variety of rea-
sons (Brumfield et al., 2003), phylogeographic investigations have
adopted multilocus datasets, and these investigations have contin-
ued to rely on large sample sizes: datasets of 6–10 genes for
50–150 individuals are common (Dolman and Moritz, 2006;
Geraldes et al., 2008), and some investigations sample hundreds
of individuals (Garrick et al., 2008; Peters et al., 2008) or an appre-
ciably greater number of loci (Lee and Edwards, 2008; Moeller and

Tiffin, 2008). However, these large multilocus datasets can compli-
cate analyses, particularly in the case of recently developed ap-
proaches for species tree estimation. While this work is discussed
in the context of phylogeography largely due to the research inter-
ests of some of the authors, it should be noted that the results de-
scribed below should be broadly applicable to phylogenetic
research at a variety of levels of divergence.

Phylogeographic research has benefited from the development
of phylogenetic methods that directly estimate the species phy-
logeny, either from previously estimated gene trees (Maddison
and Knowles, 2006; Carstens and Knowles, 2007; Kubatko et al.,
2009) or concurrently with estimation of gene trees (Edwards
et al., 2007; Liu and Pearl, 2007; Ané et al., 2007; Heled and
Drummond, 2010). While investigations that utilize these ap-
proaches have been smaller in terms of sample size than many
single-locus phylogeographic investigations, they are still on the
order of 6–10 genes for 5–10 individuals per lineage (Knowles
and Carstens, 2007; Belfiore et al., 2008; Carling and Brumfield,
2008). With the advent of next-generation sequencing, future
phylogeographic datasets will ideally include hundreds of loci
and thousands of individuals.

Several characteristics of phylogeographic data are problematic
for species tree estimation. First, since phylogenetic methods for
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estimating the species tree require data from a single non-recom-
bining locus, the resulting data often are limited in the number of
variable sites that they contain. For example, investigations cited
above utilize data that are slightly over 1 kb in length that contain
an average of 40 variable sites. Since the accuracy of gene tree esti-
mates is correlated to the number of variable sites (Hillis, 1995),
these relatively low levels of sequence variation may be problem-
atic in that they often result in gene trees that have relatively low
levels of nodal support, particularly for nodes near the tips of the
tree. Some approaches to species tree estimation address this
shortcoming by simultaneously assessing the uncertainty in the
gene tree and species tree posterior distributions using MCMC
(e.g., Bayesian Estimation of Species Trees (BEST) (Liu and Pearl,
2007)). Second, it can be difficult to collect complete data matrices
for multilocus phylogeographic investigations, and these missing
data can complicate the estimation of species phylogeny. Third,
the computational load imposed by such large datasets can be sig-
nificant – in cases where many individuals are used, calculating a
rigorous gene tree can take greater than a month, in some cases
much longer.

Here we consider one method for estimating species phyloge-
nies given some of the difficulties inherent to phylogeographic
data. We explore the use of replicated subsampling; our approach
involves the sampling of a small number of alleles from a data set
that contains some large number of alleles (where an allele is a
sampled variant at a given locus and a locus is a set of non-recom-
bining contiguous base pairs, as are typically sampled in phyloge-
netic studies), the estimation of gene trees from these subsamples,
and the subsequent estimation of the species trees using STEM
(Kubatko et al., 2009). STEM computes the maximum-likelihood
species phylogeny given an input consisting of a set of gene trees.
Several characteristics of the coalescent process suggest that repli-
cated subsampling is an approach worth exploring. For instance,
samples collected by phylogeographic researchers consist of n
sampled individuals, containing from 1 to many alleles at a given
genetic locus, all related via descent from some common ancestral
allele. At a given locus, the time until any two alleles share a com-
mon ancestor is a function of the effective population size, and
overall the process is exponentially distributed such that most of
the coalescent events occur in the recent past, but the waiting time
on the last and deepest few coalescent events can be long. When
this process is generalized as a gene tree, the tip branches are likely
to be short and the deeper internodes long (Nordborg, 2000).
Mutations provide an incomplete record of the coalescent process;
for empirical systems, mutations are more likely to occur when the
waiting time between coalescent events is long than when it is
short (e.g., on the longer branches of the gene trees). Replicated
subsampling will draw alleles that provide reasonably good esti-
mates of these longer branches of the genealogies, even at the ex-
pense of information pertaining to the recent coalescent events.
Since the deeper coalescent events within a population are ex-
pected to provide information regarding the relationships among
populations (Hudson, 1991), a sample of the alleles by a given phy-
logeographic investigation should contain valuable information
about the species tree.

It is unclear as to the degree of subsampling that will be re-
quired to produce good estimates of the longest branches of the
gene trees, and thus of the species tree. Theory predicts that the
probability of sampling the deepest coalescent event within a pop-
ulation is approximated by n ! 1/n + 1, where n is the number of
alleles (Saunders et al., 1984); this suggests a fairly large number
of alleles would be required to sample the deepest nodes of a gene
tree. However, this theory was developed for sampling within a
single population and thus absent a phylogenetic framework; we
intend to elucidate how sampling alleles from related lineages will
influence the information provided by the samples.

2. Methods

2.1. Genealogical data simulation

Our approach proceeds by randomly subsampling n alleles per
species from a large dataset for between two and thirty loci. It then
estimates one genealogy per locus, and uses these genealogies to
estimate the species phylogeny with STEM. We conduct this proce-
dure 100 times and construct a consensus tree in order to evaluate
the accuracy of the species tree estimates. Computationally, it is
less difficult to estimate 100 small (e.g., five taxa) gene trees than
a single large (e.g., 500 taxa) gene tree due to the reduction in gene
tree space. Our first subsampling simulation (referred to hence-
forth as the ‘‘Genealogical Data – 30 Loci” simulation) has six dis-
tinct steps (Fig. 1):

Simulation Steps

1. Simulate a 5-taxa species tree topology under a Yule (pure
birth) process using Mesquite (Maddison and Maddison,
2004), total tree depth 5N generations (where N is the effective
population size). A pure birth process will tend to produce spe-
cies trees with shorter internodes than a birth–death process;
the use of the pure birth process here produces trees that
should be more challenging to estimate.

2. Simulate gene genealogies onto the species tree using the pro-
gram ms (Hudson, 2002). For each species tree, we simulated
a 30-locus dataset with 100 alleles per species – thus, these
genealogies contain 500 tips using a per locus h = 4Nel of 10.0.

Analysis Steps

3. Randomly prune (i.e., remove) alleles from each genealogy until
only one allele per species remains: the 500-tip genealogy is
reduced to a 5-tip genealogy for each of the 30 loci. This was
accomplished using a Perl script and the program PAUP* (Swof-
ford, 2002).

4. Use the 30 pruned genealogies as input dataset for STEM. The
output (the maximum-likelihood species tree and its likeli-
hood) are saved.

5. Remove two loci and estimate the species phylogeny using
STEM. Repeat until only two loci are left.

6. Return to step (3) 99 times.
7. Begin the Analysis Steps again; prune each locus to three alleles

per species intraspecific sampling effort.
8. Begin the Analysis Steps again; prune each locus to five alleles

per species intraspecific sampling effort.
9. Begin the Analysis Steps again; prune each locus to 10 alleles

per species intraspecific sampling effort.

Hereafter, a ‘‘treatment” refers to a given intraspecific subsam-
pling effort and number of loci (e.g., three alleles per species and
two loci is one treatment). We repeated the entire method for 40
independent species tree topologies. The first 20 topologies were
simulated at a total tree depth of 5N generations (where N is the
effective sample size) and the second 20 topologies were simulated
at a total tree depth of 10N generations. Both of these tree depths
represent extremely rapid diversification, with an average waiting
time for cladogenesis between 1N and 2N (for 5N trees) and be-
tween 2N and 4N (for 10N trees) and produce data with significant
levels of polymorphism shared among populations.

We evaluated the performance of STEM in two ways. First,
within each treatment, we computed the symmetric difference
distance (SDD; Robinson and Foulds, 1981) between each STEM
replicate and the actual species tree topology. SDD is a pairwise
comparison and returns the number of nodes that are present in
one tree and not the other (a value of 0 corresponds to identical
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topologies). The percentage of replicates that had an SDD of 0
was used as a metric for accuracy of topology estimates. Second,
we computed Kuhner–Felsenstein (KF; Kuhner and Felsenstein,
1994) distances between each replicate and the actual species
tree. This is a metric for similarity in branch lengths and topol-
ogy; larger scores correspond to less accurate species tree esti-
mates. We computed the KF distance between each replicate
and the actual species tree using the TreeDist package in Phylip
(Felsenstein, 2005) then calculated the mean and variance for
each treatment. We scaled all KF distances by the total depth
of the species tree (e.g., either 5N or 10N) so that we could com-
pare performance across tree depths. Finally, a consensus tree
was found for each treatment using SumTrees (Sukumaran,
2008); we considered the consensus tree to be correct if the
SDD between the consensus tree and the actual species tree
was 0.

2.2. Estimated gene trees simulation

The above analyses were conducted using the actual simulated
genealogies and thus represent the optimal scenario. Empirical
datasets are limited in their ability to estimate the genealogy by
the mutational process, as such STEM (in addition to other ap-
proaches that estimate the species tree from gene trees) should

be less accurate when estimated gene trees are used as input. To
assess the effect of using estimated genealogies, we simulated se-
quence data onto the genealogies, which allowed us to control for
the stochastic selection of randomly choosing alleles by systemat-
ically removing the same alleles from all datasets. We used the fol-
lowing approach to assess the accuracy of replicated subsampling
when estimated gene trees are used as input (henceforth referred
to as the ‘‘Estimated Gene Trees – 10 Loci” simulation):

Simulation Steps

1. Use the same 40 species tree topologies generated by Mesquite
for the Genealogical Data – 30 Loci simulation (five taxa, both
5N and 10N tree depth).

2. Simulate genealogies for 10 loci onto a species tree. Each gene-
alogy has 10 alleles per species; this is the genealogy-based
dataset. Simulate 1000 basepairs of sequence data onto each
of the 10 genealogies in the genealogy-based dataset. Each indi-
vidual sequence corresponds to one allele on the genealogy.
This was done with the program Seq-Gen (Rambaut and
Grassly, 1997); we used an HKY model of sequence evolution,
a transition–transversion ratio of 0.5, equal nucleotide probabil-
ities and scaled branches by 0.003 (in order to end up with 30–
80 variable sites per dataset). We refer to these data as the
sequence-based dataset.

Fig. 1. Schematic of simulations conducted on each of the 40 species trees. Subsampling Topological Data – 30 loci on left and subsampling estimated gene trees – 10 loci on
right. The right side is further subdivided into the paired ‘‘Genealogy-based dataset” and ‘‘Sequence-based dataset”. Gray boxes and numbers correspond to steps outlined in
the methods text. Thick vertical bars separate the datasets.
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Analysis Steps

1. Prune each locus to the one allele per species. Estimate geneal-
ogies from the pruned sequence datasets. In PAUP*, we con-
ducted a likelihood search using SPR branch swapping, and
saved trees with the molecular clock enforced and midpoint
rooting.

2. Use the 10 pruned genealogies as an input dataset for STEM.
The output (the maximum-likelihood species tree and its likeli-
hood) are saved.

3. Remove one locus and analyze with STEM again. Repeat until
only two loci are left.

4. Begin the Analysis Steps again; prune each locus to three alleles
per species intraspecific sampling effort. Conduct steps (4) and
(5).

5. Begin the Analysis Steps again; prune each locus to five alleles
per species intraspecific sampling effort. Conduct steps (4)
and (5).

6. Begin the Analysis Steps again; do not prune the loci. Conduct
steps 4 and 5.

7. Return to step (1) 99 times.

We repeated the entire method for all 40 species tree topolo-
gies. Performance was assessed with the topological metric
(SDD), the scaled branch length metric (KF/N distances) and con-
sensus tree methods discussed above. Portions of this research
were conducted with high performance computational resources
provided by Louisiana State University (http://www.hpc.lsu.edu).

2.3. Empirical dataset

We used 10 non-coding loci (Fischer et al., 2006) for six hominid
species: gorillas (Gorilla gorilla [n = 18]), humans (Homo sapiens
[n = 2]), bonobos (Pan paniscus [n = 9]), chimpanzees (Pan troglodytes
[n = 30], Sumatran orangutans (Pongo abelii [n = 6]) and Borneo
orangutans (Pongo pygmaeus [n = 10]). For two of the loci, therewere
only16gorilla samplesand for a third locus, therewereonlynineBor-
nean orangutans. We subsampled three alleles per species for all 10
loci and performed 100 replicates. The replicates were then used as
input for STEM (h = 0.00211, averaged across taxa from Fischer
et al., 2006). We then calculated a 50%majority-rule consensus tree.

3. Results

Simulated species trees had a wide range of divergence dates
for the speciation events, and their shortest internodes ranged
from 0.024N to 2.88N. These levels of divergence are expected to
produce a large number of shared alleles across lineages, and a
qualitative examination of the simulated data (not shown) sup-
ported this expectation.

3.1. Subsampling Genealogical Data – 30 Loci

As intraspecific sampling increased, estimates of the species tree
improved, both with regard to topology and branch lengths (Fig. 2).
For example, with one sampled allele per species and two loci (total
tree depth 5N), 53.2% of the replicates had the correct topology
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(Table 1), and as alleles were added this percentage improved sub-
stantially (three alleles = 80.95%, five alleles = 85.45%, 10 alleles =
89.45%). However, as loci are added, the improvement that results
from adding alleles diminishes such that there is little beyond three
alleles when more than six loci are used (Fig. 2). Thus, these results
suggest that replicated subsampling of three alleles and six loci will
almost always accurately estimate the topology of the species tree.
Additionally, as the species tree depth increases from 5N to 10N,
these results generally improve (Fig. 2). Similar to the estimates of
topology, the branch length estimates usually improve as data are
added, and KF/N distances consistently approach zero as both loci
and intraspecific sampling increase (Table 1, Fig. 2, Supplementary
Table S2). The exceptions are the 5N, one allele treatments, where
accuracy never exceeds 65% and branch length estimates worsen
as data are added.

The accuracy of species tree estimates also depends on the
shape of the species tree; some topologies resulted in genealogies
that produced poor estimates of the species phylogeny, while oth-
ers did not (Fig. 3). Performance is related to the length of the
internodes of the species tree: the treatments with lowest percent-
age of correctly estimated topologies tended to be on species trees
with shortest internodes (R2 = 0.45125, Fig. 4). These results are
consistent with another recent exploration of STEM’s performance
(McCormack et al., 2009).

3.2. Subsampling estimated gene trees – 10 loci

The results using the estimated gene trees (sequence-based
dataset) mirrored those from the actual genealogies (genealogy-
based dataset), although overall topological accuracy and goodness
of branch length estimates were worse (Fig. 5). For example, the
percentage of replicates estimating the correct topology in the
three sampled alleles per species and five loci treatment (total tree
depth of 5N), decreases from 88.5% to 58.4% when estimated gene
trees are used as input (Supplementary Table S3). However, in al-
most all cases, the majority of the replicates correctly estimated
the topology even in cases where performance was appreciably
lower. This suggests that the use of a majority-rule consensus tree
in conjunction with replicated subsampling may provide a good
estimate of the species tree topology, even when species diver-
gence is extremely recent. The one species tree from our simula-
tions where this is not true (tree35; Fig. 3) is an example of the
anomalous gene tree zone (Degnan and Rosenberg, 2006), where
the most commonly sampled genealogy does not reflect the
branching order of the species tree.

When estimated gene trees were used as input, the most notice-
able decrease in performance involved branch lengths, as mea-
sured by the KF/N distances (Fig. 5, Supplementary Table S4). KF/
N distances are appreciably higher when estimated gene trees
are used. In this case, it is clear that users of STEM will benefit
by gathering data from additional loci: going from two loci to six
loci decreased KF/N by approximately 0.15. However, the differ-
ences in branch length may not be dramatic for species trees of cer-
tain shapes – in some cases the increase from estimated to actual
was <0.001 KF/N units (Supplementary Table S4), effectively the
same tree (Fig. 6).

It requires an average of 2.15 s for estimating 100 replicates of
the one allele per species gene trees, 363.65 s (6.06 min) for three
alleles per species, 4274.2 s (71.2 min) for five alleles per species
and 87,178 s (24.21 h) for 10 alleles per species. STEM computes
the analytical solution to all these datasets in <1 s.

3.3. Empirical dataset

After subsampling three alleles per species for all 10 loci of the
great ape dataset, we calculated a 50% majority-rule consensus tree

of the 100 replicates (Fig. 7). The consensus tree fully recovered the
accepted great ape topology with 100% consensus among repli-
cates. The total tree depth was 18.64N generations (Fig. 7).

4. Discussion

Phylogeographic investigations require methods that work well
with large numbers of individuals, and that can handle large
amounts of data in an efficient manner. Our subsampling method
reduces the computational load of large datasets by repeatedly
pruning it to a small number alleles and analyzing the smaller
dataset. Since the estimation of gene trees is the most computa-
tionally intensive step in an analysis that uses STEM to estimate
species phylogeny, replicated subsampling is likely to require less
time and produce equally good results.

4.1. Subsampling Genealogical Data – 30 Loci

The results of our first simulation show that as data are added,
results improve. In most cases, the topological correctness exceeds
95% and in all cases it exceeds 50%. Perhaps the most striking result
is the poor performance of subsampling one allele per species,
especially when compared to the sampling of three alleles per spe-
cies. This may be explained by the fact that no intraspecific coales-
cent information exists when only one allele per species is
sampled. The percentage of replicates with the correct topology
plateaus before reaching 100% in both the 5N and 10N trees. It is
worth noting, however, that all the 10N treatments reached 100%
correctness to the exclusion of one species tree (tree35) with an
extremely difficult topology that contains an internode of 0.024N
generations. Finally, these results suggest that as an empirical
guide, subsampling three alleles per species for six loci will result
in the correct topology in >90% of replicates and result in KF/N val-
ues <0.05. In cases where six loci are not available, four loci may be
adequate, as the four loci treatments performed almost as well as
six loci.

4.2. Subsampling estimated gene trees – 10 loci

The difference between simulated gene trees and simulated se-
quence data is the error associated with the estimation of geneal-
ogies from sequence data. This error is attributable to the inherent
variance in the mutational process, as well as some degree of phy-
logenetic estimation error. In combination, this error can be sub-
stantial so we analyzed its effect on the proposed subsampling
method. This simulation paired the same alleles across the geneal-
ogies known without error and the sequence data simulated from
the genealogies thus comparing the performance of the exact same
alleles. In this way, decreases in performance were entirely attrib-
utable to estimation error. Unsurprisingly, the actual genealogies
performed better than the estimated gene trees (by 8.35–39.9%).
As either loci or alleles were added, the difference between the
performances of the paired datasets grew. So although adding both
loci and alleles produces an improvement in the accuracy of the
species tree estimation, the actual genealogies had larger gains
than the estimated gene trees (data not shown).

4.3. Application of method

Perhaps the most obvious application of this method involves
subsampling a dataset many times and computing a consensus
tree of the replicates. This application performed well in our simu-
lations (Fig. 8). Across all replicates of the ‘‘Genealogical Data – 30
Loci” simulation, 90.83% of the treatments produced a consensus
tree that matched the topology of the actual species tree. Failure
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of the consensus tree to recover the correct topology was corre-
lated with intraspecific sampling. When the one allele/species
treatments were excluded, the number of correct consensus trees
rose to 97.6% and if the anomalous tree (tree35) was excluded,
the number rises further to 99.9%.

We have shown our method works well for simulated data. In
order to use this approach with confidence on species phylogenies
without a known species tree, we analyzed an empirical dataset
that has generally accepted phylogenetic relationships. The great
ape dataset included 10 loci for six hominid taxa: gorillas, humans,
bonobos, chimpanzees, Sumatran orangutans and Borneo orangu-
tans (Fischer et al., 2006). This dataset was part of a larger dataset
that was used to show that the genetic distances between subspe-
cies of chimpanzees and bonobos were as much as the genetic var-
iation within humans. There was no phylogenetic analysis done
with these loci in Fischer et al. (2006), however the phylogenetic
relationships between the great apes is generally accepted to be:
((Gorilla,(Human,(Chimp, Bonobo))),(Orangutan)). We subsampled

three alleles per species for 10 loci and performed 100 replicates.
The replicates were then used as input for STEM (h = 0.00211).
We then calculated a 50% majority-rule consensus tree (Fig. 7).
The consensus tree fully recovered the accepted great ape topology
with 100% consensus among replicates. The estimates of branch
lengths we similar to published estimates of divergence time be-
tween great ape taxa. The branch separating bonobos and chim-
panzees on our STEM tree is 2.7N generations long. If we assume
an average generation time of 15 years (Won and Hey, 2005), the
branch becomes 41.52N years and if we assume an average effec-
tive population size of 15,200 (average of two chimpanzee subspe-
cies Ne and the bonobo Ne estimates from Won and Hey, 2005),
their divergence time is approximately 631,100 years ago. Won
and Hey (2005) estimate this divergence to be 0.86–0.89 million
years ago. Given our very broad assumptions, we believe this is a
reasonable performance of our method in estimating branch
length. Additionally, we reduced the dataset to both five loci and
two loci, and the results were the same: recovery of the accepted
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topology with branch lengths similar to those shown in Fig. 7. An
additional benefit of this method is a record of the proportion of
times that a particular node occurs across replicates this propor-
tion could be utilized as a measure of nodal support.

4.4. Performance of method

Overall, subsampling alleles provides a good estimate of the
underlying species tree across a range of data. As more information
is added, the percentage of replicates with the correct species
topology increases and the probability that the consensus tree is
correct increases. The branch lengths approach the correct values
as more data are added as well. Consequently, there is a trade-off
between the amount of data and the speed of the analysis. Given
the profile of the accuracy curves for our simulations, we propose
that a reasonable trade-off between correctness and computational
speed occurs using eight loci and three alleles per species, which

produced the smallest dataset that was >95% accurate at both 5N
and 10N (Table 1). If eight loci are unattainable, six loci with five
alleles per species or four loci with 10 alleles per species also have
>95% accuracy at both 5N and 10N. For our simulation of gene trees
estimated from sequence data, a decrease in accuracy was found,
but 50% majority-rule consensus trees should provide a good esti-
mate of the species tree, as all treatments had greater than 50%
accuracy. Finally, our method provides computational efficiency.
We used GARLI (Zwickl, 2006) to calculate a 500 taxa tree similar
to the sequence datasets in our analysis, which it finished in 3 h.
Our replicated subsampling method takes between 6 min (for
three alleles per species) to 24 h (for 10 alleles per species), calcu-
lating gene trees with PAUP* under maximum-likelihood. This
represents an increase in efficiency, as we not only have an esti-
mate of the species tree, we also have support for the nodes of
the trees as well. The support for the bipartitions are similar to
the support assigned with a statistical jackknife, which also relies
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on subsampling taxa (as compared to a bootstrap, which subsam-
ples sites, with replacement).

4.5. Application to empirical systems

The approach described above is likely to be broadly applica-
ble to phylogenetic and phylogeographic investigations into
empirical systems, but there are several important caveats. First,

thorough sampling is critical; all analyses have been conducted
by subsampling a small number of alleles at random from a lar-
ger set, and this scheme is not equivalent to sampling one or two
individuals from a widespread species. Second, while STEM as-
sumes that the OTUs represent independent evolutionary lin-
eages, the actual species boundaries in empirical systems may
be unknown, which could produce inaccurate estimates of spe-
cies phylogeny. For systems such as these, we advocate a joint

0.0 7.0
KF Distance (X10   )-1

6.566.174.613.612.371.110.370.29

Fig. 6. Visualization of differences in KF distance. The gray phylogeny is the actual species tree. The black trees (drawn on the same scale) show how similar the topologies are
for several KF distance values.
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estimation of species trees and lineage membership (e.g.,
O’Meara, 2010; Carstens and Dewey, 2010). Finally, no simulation
study can capture the complexities of a particular empirical
system, and for this reason we advocate the use of power analy-

ses that are tailored to the empirical system of interest. To facil-
itate these analyses, we have made all the scripts used in
this research available at: http://www.lsu.edu/faculty/carstens/
archives/HKC.2010.zip.
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5. Conclusions

Our analyses suggest that replicated subsampling is a useful
approach to species tree estimation. For large phylogeographic
datasets, which are likely to consist of multilocus allelic data from
hundreds of individuals, this approach will correctly estimate
species topology even in difficult cases where lineage divergence
is rapid and recent. In the vast majority of cases, it will also provide
good estimates of branch lengths.
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