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SpedeSTEM: a rapid and accurate method for species
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Abstract

We describe a software package (SpedeSTEM) that allows researchers to conduct a species delimitation analysis using
intraspecific genetic data. Our method operates under the assumption that a priori information regarding group member-
ship is available, for example that samples are drawn from some number of described subspecies, races or distinct morpho-
types. SpedeSTEM proceeds by calculating the maximum likelihood species tree from all hierarchical arrangements of the
sampled alleles and uses information theory to quantify the model probability of each permutation. SpedeSTEM is tested
here against empirical and simulated data; results indicate that evolutionary lineages that diverged as few as 0.5N genera-
tions in the past can be validated as distinct using sequence data from little as five loci. This work enables speciation
investigations to identify lineages that are evolutionarily distinct and thus have the potential to form new species before
these lineages acquire secondary characteristics such as reproductive isolation or morphological differentiation that are
commonly used to define species.
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Introduction lines of evidence (geographical, molecular, behavioural,
etc.) support the grouping of certain samples to the exclu-
sion of others. In these instances, it is of considerable util-
ity to quantify the evidential support for these partitions.

This validation is ultimately crucial for species tree infer-

Species delimitation

Over the last decade, the widespread acquisition of
genetic data at the interface between populations and
species has led to the development of several methods
for species delimitation (Sites & Marshall 2004; Wiens
2007). As befitting a discipline that operates at the inter-

ence, as correct assignment of samples to species is a
basic assumption that is made by all phylogenetic meth-
ods (Knowles & Carstens 2007; O’Meara 2010), but may
be difficult in the face of cryptic speciation, ambiguous
samples from a hybrid zone, or any number of other
naturally occurring scenarios.

face between population and phylogenetics, many of
these methods incorporate a coalescent model within a
phylogenetic framework (Pons et al. 2006; Knowles &
Carstens 2007; O'Meara 2010; Yang & Rannala 2010).
Approaches to species delimitation can be broadly sepa-
rated out into two groups (species discovery, species vali-
dation) on the basis of whether the samples are
partitioned prior to the analysis. Species discovery
attempts to partition the samples into species, absent any
a priori information regarding species membership (e.g.,
O’Meara 2010). This can be valuable in the study of sys-
tems that have not been subject to prior investigation, but

Gene trees provide evidence vital to understanding
the process of speciation because they span intraspecific
and interspecific evolution (Harrison 1998), a connection
that is most obvious in the ancestral-descendant relation-
ships of alleles within phylogenies and populations (Hey
1994; Templeton 1994). Consequently, gene trees from
neutral loci have several advantages for species delimita-
tion. Because the pattern of allele coalescence is stochastic
and can be defined in a probabilistic manner (Tajima
1983; Takahata & Nei 1985; Hudson 1991), the rate that

does not take advantage of existing data in many well-
studied groups (for example, described races or subspe-
cies). On the other hand, it is often the case that certain
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ancestral polymorphism is lost in a given lineage pro-
vides valuable information concerning the temporal
divergence between sister lineages (Rosenberg 2002;
Hudson & Turelli 2003). This divergence may be evi-
dence that the sister lineages have not exchanged
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migrants and thus can serve as the basis for lineage
delimitation. Unfortunately, gene trees do not track the
pattern of lineages splitting and divergence as well as
one might like (Hudson & Coyne 2002), and there are cer-
tain combinations of species tree branch lengths where
the most common gene tree is incongruent with the spe-
cies tree (Degnan & Rosenberg 2006, Rosenberg & Tao
2008). Distressingly, these combinations are not particu-
larly extreme and could reasonably occur in empirical
systems. Because concatenation across loci is not a reli-
able approach to species phylogeny inference (Mossel &
Vigoda 2005; Kolaczkowski & Thornton 2006), the incor-
poration of coalescent models into phylogenetic methods
is an important recent development in systematics (Page
& Sullivan 2008).

Problem definition

Phylogenetic inference near the species level should
incorporate aspects of population genetic theory because
the genetic forces that act within a population, such as
genetic drift, selection and migration, may each play an
important role in speciation (Maddison & Knowles 2006).
Several recent approaches to phylogeny estimation oper-
ate under the assumption that genetic drift has produced
the incongruence between gene trees and species trees
(Maddison & Maddison 2004; Liu & Pearl 2006; Ané et al.
2007; Edwards et al. 2007; Oliver 2008; Kubatko et al.
2009; Heled & Drummond 2010). Relative to species
delimitation, the most important aspect of these
approaches is the shift in which entities are used as the
operational taxonomic units (OTUs) in the phylogenetic
analysis (Carstens & Dewey 2010). Rather than using sin-
gle or multiple representative samples as exemplars,
methods for species tree inference overtly treat species or
population lineages as the OTUs and include multiple
samples within each lineage. Thus, adoption of the
species tree paradigm allows the relationships among
species (or population) lineages to be inferred directly
while also allowing the validity of sample assignment to
be explored.

The method described here incorporates STEM
(Kubatko et al. 2009), an analytical technique that calcu-
lates the maximum likelihood species tree from a sample
of observed gene trees under the assumption that the dis-
cord between the topology of gene trees and the species
phylogeny is produced by the coalescent process alone.
Because the phylogeny produced by STEM is an analyti-
cal solution that maximizes the probability of the gene
trees given the species tree (with branch length), the only
type of phylogenetic uncertainty that can influence the
estimation of the species tree is the uncertainty in the
inference of the gene trees themselves; this uncertainty
can be assessed using conventional approaches, such as

nodal support (Felsenstein 1985) or parametric bootstrap-
ping (Goldman 1993).

An information-theoretic approach to species
delimitation

Our method proceeds by recognizing that there are often
several putative ‘groups’ within a described species, for
example subspecies, distinct populations or morpho-
types. It allows users to divide their data into partitions
that correspond to these groups, so that the indepen-
dence of the evolutionary lineages represented by these
partitions can be evaluated. Partition is used here in the
mathematical sense of the term as the set of nonempty,
exhaustive and mutually exclusive subsets of a set of
elements. The number of possible partitions in a set of N
elements is equal to the Bell number for N. The sequence
of Bell numbers grows at a greater than exponential rate,
presenting a practical and computational limitation
(O’'Meara 2010). For this reason, we restrict the calcula-
tions to all hierarchical permutations, those within but
not between species. For example, if a user defines three
partitions within species A and 4 within species B, Spede-
STEM will calculate the likelihood of the species tree
given the gene trees for the product of the Bell numbers
of 3 and 4 (i.e.,, 5 x 15 = 75) rather than the Bell number
of 7 (i.e., 877). Note that the hierarchical nature of the val-
idation approach does not force the species to be mono-
phyletic when the species tree is computed by STEM.
Once the user assigns samples to some number of parti-
tions, gene trees are estimated from each partition and
stored in a format compatible with STEM. SpedeSTEM
calculates the likelihood of the species tree given the set
of gene trees for all hierarchical permutations of the data
and then computes a series of metrics based on informa-
tion theory. Essentially, each permutation is represented
as a model of lineage composition. The Akaike Informa-
tion Criteria (AIC) (Akaike 1973) of each arrangement are
calculated, as well as the AIC differences (4;) and model
probabilities (w;), which describes the Kullback-Leibler
(K-L) distance (Kullback & Liebler 1951) of model i to the
best model and the probability that model i is the best
model, respectively (Anderson 2008).

Subsampling

Phylogeographic studies require large sample sizes to
accurately identify population substructure (Avise 2001),
and it is not uncommon for sequence data from hundreds
(Wares & Cunningham 2001; Zamudio & Savage 2003) or
even thousands (Bernatchez 2001) of samples to be col-
lected. While multilocus phylogeographic investigations
often sample fewer individuals to sequence more genes,
the resulting data set can still be quite large. For example,
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sample sizes of 6-10 genes and 50-150 samples are com-
mon (Dolman & Moritz 2006; Geraldes et al. 2008), but
some investigations sample hundreds of individuals
(Garrick et al. 2008; Peters et al. 2008) while others sample
many more loci (Lee & Edwards 2008; Moeller & Tiffin
2008). The large sample sizes of phylogeographic data
present two difficulties to species tree inference methods:
the computational time required for gene and species tree
estimation increase with sample size, and it is often the
case that there are missing data from some individuals at
some loci. In anticipation of these difficulties, Spede-
STEM allows users to utilize replicated subsampling to
estimate the species trees (Hird et al. 2010). This approach
draws a small number of alleles from each putative line-
age, estimates gene trees from the reduced data and then
uses the reduced gene trees to estimate the species tree.
The process can be repeated any number of times; Hird
et al. (2010) demonstrated that replicated subsampling
produced accurate estimates of the species tree using a
few as 3-5 alleles per species.

Methods

Program implementation

SpedeSTEM is a Java application that makes use the BioJ-
ava library (Holland ef al. 2008) to represent nexus files as
Java objects. It also utilizes an R-script that requires the
ape library (Paradis et al. 2004) for R and requires UNIX or
LINUX executables of STEM (Kubatko et al. 2009). If the
user wishes to automate the estimation of the gene trees,
paUP* (Swofford 2002) is also required. This is particularly
desirable when the subsampling option is invoked.

The user supplies the following set of files:

1. A set of single-locus DNA sequence alignments in

nexus format (i.e., one for each locus).

2. A locus-information file containing a model of

sequence evolution and a scaling factor indicating the

mode of inheritance for each locus.

3. A group-information file that records the member-

ship of alleles to groups as well as the subsampling

proportion for each group.

Additional parameters supplied by the user include
the following;:

e The number of subsampling replicates to be run
(optional).

o A value for 6 = 4N,p to be used by STEM for all loci.

o A flag to indicate the search strategy for gene-tree
estimation in PAaUP* (optional;, subtree pruning-
regrafting, nearest-neighbour interchange, tree bisec-
tion-reconnection, or Branch and Bound can be used)

e A path to a folder that will hold all the intermediate
and result files created by SpedeSTEM.

© 2010 Blackwell Publishing Ltd

TECHNICAL ADVANCES 475

If subsampling is specified, SpedeSTEM begins by cre-
ating a series of nexus files from the subsampled alleles.
The algorithm then conducts gene tree estimation using
raUP* (we used Portable version 4.0b10 for Unix). Note
that any gene tree estimation program that takes nexus
files as input can be used (e.g., GArLL; Zwickl 2006), pro-
vided that the estimated gene trees meet the requirements
of STEM (ultrametric, consistent with the molecular clock,
midpoint-rooted). As part of the process of generating the
gene-tree file, any polytomous nodes in the gene trees are
resolved using the ape library for R. Next, the algorithm
generates gene tree and settings files for STEM, estimates
the —InL (model | data) for each permutation using STEM
and collects the output in a ‘STEM output’ folder. If indi-
cated in the command line, SpedeSTEM will also generate
all hierarchical permutations of lineage grouping using
the information provided by the user in the group-infor-
mation file. The results across permutations are collected
in a file called “AICMatrix’, also written to the ‘STEM out-
put’ folder. This file allows the user to examine the rela-
tive evidential support for competing hypotheses using
information theory (Anderson 2008).

Program testing

Empirical data.  To evaluate the performance of
SpedeSTEM across a range of scenarios, including the
difficulties that routinely arise in empirical data sets, we
evaluated SpedeSTEM using an empirical data sets from
Myotis bats (Carstens & Dewey 2010) as well as data sim-
ulated under a variety of demographical scenarios. The
empirical Myotis data consist of six loci (phased) collected
from 37 individuals; these data are sampled from eleven
described subspecies belonging to four species, and an
outgroup (Myotis volans). We conducted the species
delimitation analysis by subsampling three alleles from
each of four described subspecies within Myotis lucifugus
and two within Myotis evotis. Because of a limited
number of individuals from Myotis thysanodes, we did not
partition this species into its three described subspecies.

Simulation studies—data  simulation. ~ ms (Hudson
2002) and seQ-GEN (Rambaut & Grassly 1997) were used to
generate data under four broad scenarios (Fig. 1), hereaf-
ter referred to as ‘treatments’. For Treatment I, the depth
of node 1 ranged from 0.25N to 6N. For Treatment II, the
depths of nodes 1 and node 2 ranged from 0.25N to 4N.
Treatment III and treatment IV correspond to Treatments
I and II, respectively, with the addition of reciprocal
migration between taxa A and B at relatively low
(m = 0.01) and moderate (m = 0.1) levels. One hundred
simulated data sets for each combination of parameter
settings were generated. Twenty loci were generated for
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Fig. 1 Models used in data simulation. Data were simulated
under the model of lineage divergence shown in (a). for Treat-
ments I and III. The depth of node 1 was varied between 0.25N
and 6N, with the depths of the other nodes held constant. The
numbers in parentheses represent the number of simulated
alleles for each lineage, and the m with arrows mark the lineages
that exchange alleles via gene flow in Treatment III. The model
shown in (b). was used for Treatments II and IV. Node 1 was var-
ied between 0.25N and 4N, and node 2 ranged from 0.5N to 8N.

each replicate. Sequences were generated with 50 vari-
able sites under the HKY model with base pair frequen-
cies of 0.3, 0.2, 0.2, 0.3, a Ti/Tv ratio of 3.0, and
6 = 4N.u = 10.

Program execution. ~ The requisite loci-information
and group-information files were generated using Perl
scripts, with all loci treated as autosomal (i.e., STEM scal-
ing factor = 1.0). Lineages A and B were grouped
together for treatments I and III, and lineages A, B and C
were treated as three groups within one species for treat-
ments II and IV. Replicated subsampling (100 replicates;
5 alleles for all lineages except the outgroup) was used.
The gene trees were estimated using raur* (Swofford
2002) with the TBR search strategy. To examine the effect
of sampling more loci on the results, SpedeSTEM was
executed using a randomly selected five, ten, fifteen and
twenty of the simulated loci.

Results and discussion

Empirical data

Unlike traditional approaches to statistics, which aim to
test hypotheses (i.e., to reject or fail to reject the null), the

information-theoretic approach utilized by SpedeSTEM
aims to quantify the evidential support for a set of mod-
els given the data. For analyses that do not include sub-
sampling, the calculations of AIC, Akaike differences (4;)
and model probabilities (w;) follow Anderson (2008).
These metrics can be used to rank the hypotheses and to
quantify the evidential support for each; the w; can be
interpreted as the probability that a given model is the
shortest K-L distance of those contained within the set of
models to the ‘true’ model. For analyses that implement
subsampling, we advocate averaging the —InL (model |
data) across replicates with a subsequent calculation of
the information-theoretic metrics from these averaged
values.

An example can be seen in the Myotis data (Table 1).
The AIC score of the model that treats each of the subspe-
cies within M. lucifugus and M. evotis as an independent
lineage encompasses over 97% of the total model proba-
bility, indicating that this model is closer to the true
model than the other models in the comparison (Ander-
son 2008). These results are consistent with those of Car-
stens & Dewey (2010) and easily interpreted. Notably,
the replicated subsampling decreases the computational
effort required to conduct the delimitation analysis; 100
replicates drawing three alleles from each of eight Myotis
lineages required ~120 min on a laptop with an older
MacBook Pro (2.4 GHz Intel Core 2 Duo processor).

Simulation study

The implementation of the information-theoretic metrics
prevents us from reducing the results from the simula-
tion study to a table of P-values. To simplify discussion,
we measure accuracy using the median value (across rep-
licates) of the model probabilities of the correct model of
lineage composition. This value approaches 1.0 as —InL
(modelye | data) improves.

Treatment I represents the simplest possible scenario,
where the validity of a single pair of putative lineages (A
& B) is evaluated. In this case, the accuracy of Spede-
STEM is initially high, even at shallow (i.e., 0.25N) levels
of divergence, and improves as the depth of the node
increases and as data (in the form of loci) are added.
Across all treatments, the correct model is always sup-
ported by the data, in most of these cases the support is
overwhelming (Fig. 2; Supplemental Table S1). When
complexity is added and three lineages are included
(Treatment II), the accuracy of SpedeSTEM decreases
slightly (Supplemental Table S2). For example, species
are easily delimited given a node depth of 2N genera-
tions for two diverging lineages, but when a third lineage
is added at a slightly older node depth (i.e., 2N for node
I, 0.5N for node 2), the accuracy decreases from a median
model weight of 0.997 (five loci) to a median weight of

© 2010 Blackwell Publishing Ltd
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Table 1 Information-theoretic metrics from reanalysis of the Myotis empirical data. Results from 100 replicates (2-97 omitted for sake of
brevity) based on a partitioning of the described species Myotis lucifugus into four subspecies (alascensis = ala; carissima = car,
relictus = rel; lucifugus = luc) and the described species Myotis evotis into two subspecies (chrysonotus = chr; jonesorum = jon)

Replicate -InL -InL. -InL -InL -InL
Model
Permutation 0 1 98 29 (ave) k AIC A; likelihood w;
ala, car, rel, lug, chr, jon, thy, ke, vo 138.60 144.65 142.87 145.41 143.22 8 302.435 0.000 1.000000 0.970
ala, car_lug, rel, chr, jon, thy, ke, vo 145.49 151.48 149.91 150.85 149.33 7 312.670 10.235  0.005992 0.006
ala, car_rel, lug, chr, jon, thy, ke, vo 145.48 151.54 149.76 149.47 149.52 7 313.043 10.608 0.004971 0.005
ala_luc, car, rel, chr, jon, thy, ke, vo 145.49 151.63 149.97 150.82 149.70 7 313.395 10.960 0.004169 0.004
ala_rel, car, lug, chr, jon, thy, ke, vo 145.48 151.42 149.76 150.83 149.76 7 313.510 11.075  0.003936 0.004
ala_car, rel, lug, chr, jon, thy, ke, vo 145.60 150.09 149.85 148.20 149.83 7 313.651 11.216 0.003669 0.004
ala, car, rel_luc, chr, jon, thy, ke, vo 144.15 151.42 149.78 152.37  149.87 7 313.737 11.302  0.003514 0.003
ala, car, rel, luc, chr_jon, thy, ke, vo 145.59 151.65 149.86 152.40 149.93 7 313.855 11.420 0.003313 0.003
ala_rel, car_luc, chr, jon, thy, ke, vo 148.94 156.21 154.66 154.36 153.81 6 319.614 17.179  0.000186 0.000
ala_luc, car_rel, chr, jon, thy, ke, vo =~ 14894  156.53  154.84 15297 15397 6 319934 17499  0.000159 0.000
ala_rel_luc, car, chr, jon, thy, ke, vo 148.94 154.96 154.79 154.30 153.99 6 319.989 17.554 0.000154 0.000
ala, car_lug, rel, chr_jon, thy, ke, vo =~ 15047  156.48 15490 155.84 154.04 6 320.084 17.649  0.000147 0.000
ala, car_rel, luc, chr_jon, thy, ke, vo 150.47 156.54 154.75 154.46 154.23 6 320.463 18.028 0.000122 0.000
ala_luc, car, rel, chr_jon, thy, ke, vo 150.47 156.63 154.96 155.81 154.41 6 320.810 18.375 0.000102 0.000
ala_rel, car, luc, chr_jon, thy, ke, vo 150.47 156.42 154.75 155.82 154.46 6 320.926 18.491 0.000097 0.000
ala_car, rel _luc, chr, jon, thy, ke, vo 149.15 154.82 154.76 153.16 154.47 6 320.945 18.510 0.000096 0.000
ala_car, rel, luc, chr _jon, thy, ke, vo ~ 150.59  155.09 154.84 153.19 15453 6 321.068 18.633  0.000090 0.000
ala, car_rel luc, chr, jon, thy, ke, vo 148.94 156.20 154.64 152.96 153.55 7 321.098 18.663 0.000089 0.000
ala, car, rel_luc, chr_jon, thy, ke, vo ~ 149.14 15642  154.77 15736 15458 6  321.153  18.718  0.000086 0.000
ala_car_lug, rel, chr, jon, thy, ke, vo 150.49 155.07 154.87 151.59 153.93 7 321.853 19.418 0.000061 0.000
ala_car_rel, lug, chr, jon, thy, ke, vo 150.48 154.81 154.73 150.21 154.13 7 322.265 19.830 0.000049 0.000
ala, car_rel luc, chr jon, thy, ke, vo 15392  161.20 159.63 15795 15826 5 326.512 24.077  0.000006 0.000
ala_car_lug, rel, chr_jon, thy, ke, vo 155.47 160.07 159.86 156.58 158.63 5 327.264 24.829 0.000004 0.000
ala_luc, car_rel, chr_jon, thy, ke, vo = 153.92  161.53  159.83 15796  158.67 5 327.347 24912  0.000004 0.000
ala_rel luc, car, chr jon, thy, ke, vo ~ 153.92  159.96  159.78 15929 15870 5 327.397 24962  0.000004 0.000
ala_car_rel luc, chr, jon, thy, ke, vo 153.94 159.77 159.59 153.65 158.12 6 328.248 25.813 0.000002 0.000
ala_car, rel_luc, chr_jon, thy, ke, vo ~ 154.14  159.82  159.75 158.15 159.18 5 328361 25926  0.000002 0.000
ala_car_rel, luc, chr_jon, thy, ke, vo 155.47 159.81 159.72 155.20 158.84 6 329.684 27.249 0.000001 0.000
ala_rel, car_luc, chr_jon, thy, ke, vo =~ 153.92  161.21 159.65  159.35  158.51 7 331.026  28.591 0.000001 0.000
ala_car_rel luc, chr_jon, thy, ke, vo 158.92 164.77 164.58 158.64 162.83 5 335.657 33.222 0.000000 0.000
b 1.031024326

Results indicate strong support (e.g., w; values) for the model that treats each of these subspecies as a distinct evolutionary lineage. The
other models collapse two or more subspecies into a single lineage (indicated by the ‘" between abbreviations), have far lower probabili-
ties and thus lower Akaike Information Criteria (AIC) scores indicating that they exist at a greater distance to the true model.

0.888 (five loci). Unsurprisingly, the validity of shallower
nodes (i.e., more recent cladogenesis) is the most difficult
to establish. These results illustrate the complexity
involved with delimiting species that are members of
multispecies radiations; we attribute much of this diffi-
culty to the presence of unsorted ancestral polymorphism
in each of the three descendent lineages (Fig. 1). It should
be noted that it is possible to validate more than two spe-
cies even among lineages that have rapidly radiated,
although more data are required. For example, three lin-
eages can be validated as distinct even if they formed as
recently as 0.75N generations in the past, so long as 20
loci are used. As in Treatment 1, the performance of
SpedeSTEM improves as data are added and the node
depth increases.

© 2010 Blackwell Publishing Ltd

Because gene flow can lead to a decrease in accuracy
for species tree estimation (Eckert & Carstens 2008), we
also simulated data under the topologies used in the first
two treatments with low (m =0.01) and moderate
(m = 0.1) amounts of gene flow. When gene flow occurs
between two diverging sister lineages (i.e., Treatment
III), the accuracy of SpedeSTEM is decreased (Supple-
mental Table S3), but the method is still quite capable of
validating lineages that are independent across all depths
of divergence. At shallow nodes, however, as the rate of
gene flow increases, more data are required to success-
fully validate two lineages as distinct. For example, when
lineages separated by 0.25N divergence exchange and
m = 0.1, 10 loci are required before the median w; value
surpasses 0.95. The decreased accuracy is most easily
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Fig. 2 Results from Treatment I. The median model probability
(w;) across 100 replicates is reported at seven levels of diver-
gence for 5, 10, 15 and 20 loci.

noticed at deeper levels of divergence, consistent with
the general finding that ongoing gene flow can inhibit
divergence (Wright 1931). Gene flow has the largest
impact on the accuracy of SpedeSTEM when there are
three lineages to delimit (i.e., Treatment IV), particularly
at low levels of divergence and moderate levels of gene
flow. (Fig. 3). Gene flow inhibits the ability of Spede-
STEM to validate independent evolutionary lineages in a
manner that is proportional level of gene flow, as well as
the depth of divergence (Supplemental Table S4). For
both low and moderate amounts of gene flow, validation
becomes more accurate as data in the form of additional
loci are added (Fig. 4). However, accuracy values that do
not consistently surpass 0.9 until 15 loci are analysed
(Supplemental Table S4).

Conclusion

This study introduces a novel approach to lineage delimi-
tation (SpedeSTEM) that enables biologists to identify
distinct evolutionary lineages shortly after they form.
Our motivation for this software is illustrated by the
example from the Myotis example; in this case as in
numerous others there are described subspecies that are
essentially hypothesized evolutionary lineages. Spede-
STEM allows biologists to evaluate whether the pattern
of genetic variation exhibited by the lineages that com-
pose such systems are consistent with a model of a single
or of multiple species. In this manner, we envision Spede-
STEM as a tool that will aid taxonomists in their endeav-
our to identify and describe species.

SpedeSTEM employs replicated subsampling (Hird
et al. 2010), an approach that allows large phylogeo-
graphic data sets to be evaluated. By increasing the rigor
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Fig. 3 Results from Treatment IV. The median model probabil-
ity (w;) across 100 replicates is reported at five levels of diver-
gence for differing levels of gene flow. In all cases, data from five
loci were used.
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Fig. 4 Results from Treatment IV with moderate levels of gene
flow (m = 0.1). The median model probability (w;) across 100
replicates is reported at five levels of divergence for differing
amounts of data.

with which phylogenetic reasoning can be applied to the
analysis of population genetic variation, and by facilitat-
ing the incorporation of population level processes into
phylogenetic analysis, SpedeSTEM offers dramatic prac-
tical benefits to biologists investigating empirical systems
at the interface between population genetics and system-
atics, the very region where speciation occurs.

Our results demonstrate that the number of lineages
and the amount of migration are both factors that influ-
ence the accuracy of SpedeSTEM. For example, when
there are only two putative lineages, SpedeSTEM is able
to validate lineages as independent using =10 or more
loci, even when the divergence between these lineages is
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0.25N generations (Fig. 2). At this level, ancestral poly-
morphism will be broadly distributed across sister lin-
eages ((Hudson 2002), and thus, a visual inspection of the
gene trees would not indicate that cryptic lineages are
present. While these results are promising, factors such
as gene flow and multiple lineages will negatively influ-
ence the accuracy of SpedeSTEM. For example, in the
case where the depth of Node I is 1N generations and
gene flow is moderate (m = 0.1), SpedeSTEM only consis-
tently surpasses the 0.9 threshold for accuracy when 15
or more loci are used (Fig. 3). The important factor in the
accuracy of SpedeSTEM is the depth of Node II; when
this node is short, the ancestral polymorphism is more or
less evenly distributed among the three lineages, making
it difficult to extract signal, but as this depth increases the
accuracy improves. These findings are consistent regard-
less of the level of migration (Fig. 4).

The above results demonstrate that empiricists will be
able to identify cryptic lineages in their focal taxa with a
modest amount of data, an ability that will allow them to
more easily identify the environmental and landscape
forces that produce lineage diverge (and that may lead to
speciation). Because lineage divergence can be detected
at an earlier stage, these events will have occurred more
recently in the past and thus will be more generally
detectable.
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