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A B S T R A C T

Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and in-
terannual variability of the land CO2 sink. However, such model-based analyses are poorly constrained by
measured CO2 exchange in open shrublands, which is the most common global land cover type, covering ∼14%
of Earth’s surface. Here we evaluate how the amount and seasonal timing of water availability regulate CO2

exchange between shrublands and the atmosphere. We use eddy covariance data from six US sites across the
three warm deserts of North America with observed ranges in annual precipitation of ∼100–400mm, annual
temperatures of 13–18°C, and records of 2–8 years (33 site-years in total). The Chihuahuan, Sonoran and Mojave
Deserts present gradients in both mean annual precipitation and its seasonal distribution between the wet-winter
Mojave Desert and the wet-summer Chihuahuan Desert. We found that due to hydrologic losses during the
wettest summers in the Sonoran and Chihuahuan Deserts, evapotranspiration (ET) was a better metric than
precipitation of water available to drive dryland CO2 exchange. In contrast with recent synthesis studies across
diverse dryland biomes, we found that NEP could not be directly predicted from ET due to wintertime decou-
pling of the relationship between ecosystem respiration (Reco) and gross ecosystem productivity (GEP).
Ecosystem water use efficiency (WUE=GEP/ET) did not differ between winter and summer. Carbon use effi-
ciency (CUE=NEP/GEP), however, was greater in winter because Reco returned a smaller fraction of carbon to
the atmosphere (23% of GEP) than in summer (77%). Combining the water-carbon relations found here with
historical precipitation since 1980, we estimate that lower average winter precipitation during the 21st century
reduced the net carbon sink of the three deserts by an average of 6.8TgC yr1. Our results highlight that winter
precipitation is critical to the annual carbon balance of these warm desert shrublands.

1. Introduction

Dryland ecosystems, defined as those in which water is the main
limiting resource (Noy-Meir, 1973), occupy 30–40% of the terrestrial
surface (Bastin et al., 2017; Reynolds et al., 2007), and model-based
studies suggest they strongly influence the global carbon cycle due to
the inherent variability of water status (Ahlström et al., 2015; Jung
et al., 2011; , 2017; Middleton and Thomas, 1992; Poulter et al., 2014).

Ground-based flux measurements in drylands show even greater tem-
poral variability than these model results (Biederman et al., 2017).
Unfortunately, the availability of continuous, long-term CO2 exchange
measurements has lagged in drylands as compared to mesic and humid
regions in datasets such as AmeriFlux (Novick et al., 2017; Scott et al.,
2015, Supplementary Information Fig. S1) and FLUXNET 2015 (http://
fluxnet.fluxdata.org/sites/site-list-and-pages/?view=map). Therefore,
current understanding of land-atmosphere exchange in drylands relies
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substantially upon local, site-based measurements of limited spatial and
temporal scales (Huenneke et al., 2002; Huxman et al., 2004; Knapp
and Smith, 2001; Muldavin et al., 2008; Sala et al., 2012). Meanwhile,
biospheric models (Ahlström et al., 2015; Poulter et al., 2014), remote
sensing observations and related models (Forzieri et al., 2014; Ma et al.,
2015; Verma et al., 2014), and empirical upscaling of sparse flux
measurements (Jung et al., 2011, 2017) are highly extrapolated and
poorly constrained due to the limited spatiotemporal coverage of dry-
land ecosystem flux observations. While recent work has quantified
carbon dioxide flux measurements for an expanded number of dryland
ecosystems (Biederman et al., 2016, 2017; Anderson-Teixeira et al.,
2011; Haverd et al., 2016; Ma et al., 2016), these synthesis studies are
dominated by grasslands, savannas, woodlands, and seasonally dry
forests. Meanwhile, less is known about carbon dioxide fluxes in open
shrublands, which are of global importance.

Open shrubland ecosystems are the most widespread vegetation
type globally, occupying an estimated 14% of the terrestrial surface
(Broxton et al., 2014). They inhabit both arid and semiarid regions, and
their biological activity (e.g., CO2 uptake and release) is largely con-
trolled by water availability at the annual scale, although the timing of
CO2 exchange may also be limited by temperature and phenology
(Muldavin et al., 2008; Naumburg et al., 2004; Reynolds et al., 2004).
Across the warm deserts of North America considered in this paper,
84% of the land area is classified as open shrublands in the MODIS land
cover dataset (Channan et al., 2014). In North America and elsewhere,
significant research and land management efforts are focused on eco-
system transitions from historical grasslands to shrublands and related
impacts on ecosystem services including habitat, grazing, fire regime,
soil erosion, water resources and carbon storage (Archer, 1994;
Huxman et al., 2005; Petrie et al., 2015; Schlesinger et al., 1990; Scott
et al., 2014; Van Auken, 2009; Wilcox and Huang, 2010).

Precipitation has declined across the Southwest (southwestern U.S.
and northwestern Mexico) during the 21st century, particularly during
winter, and is expected to decline further in the future (Cayan et al.,
2010; Cook et al., 2015; Seager and Vecchi, 2010) with unknown im-
pacts on the region’s carbon balance. Although a recent synthesis of
eddy covariance data from diverse Southwest ecosystems showed an-
nual net ecosystem production (NEP) of CO2 could be predicted directly
from annual water availability (Biederman et al., 2016), many shrub-
lands have bimodal winter/summer growth patterns distinguishing
them from other summer-dominated dryland ecosystems (Reynolds
et al., 1999). Prior work has shown that in shrublands, winter moisture
plays a dominant role in annual net carbon uptake quantified by
aboveground net primary productivity (ANPP) (Huenneke et al., 2002;
Muldavin et al., 2008) and ecosystem fluxes (Jia et al., 2016; Petrie
et al., 2015). Shrublands often have greater carbon uptake in winter
than grasslands due to dominance by evergreen C3 shrubs which can
photosynthesize year-round (Huxman et al., 2004; Kurc and Small,
2004; Reynolds et al., 2004; Wohlfahrt et al., 2008). Furthermore, the
root structure of shrubs (i.e. > 30cm) allows them to access soil
moisture in deeper layers which tend to be wetted predominantly in
winter (Kurc and Benton, 2010; Kurc and Small, 2004; Ogle and
Reynolds, 2004; Scott et al., 2000).

The main objective of our study was to evaluate how the amount
and seasonal timing of water availability regulates CO2 exchange be-
tween shrublands and the atmosphere. We adopt the approach of
Huxman et al. (2004) in leveraging the distinct rainfall patterns of the
three warm deserts: Chihuahuan, Sonoran and Mojave, of the South-
west region in North America. Specifically, we evaluated NEP and its
component gross fluxes gross ecosystem production (GEP) and eco-
system respiration (Reco), where NEP=GEP Reco. These deserts present
significant gradients in the amount and seasonal timing of water
availability, the primary driver of dryland carbon exchange (Biederman
et al., 2017; Briggs and Shantz, 1913; Noy-Meir, 1973; Scott et al.,
2015). Mean annual precipitation (1980–2016) increases from
∼150mm in the Mojave Desert to ∼200mm in the Sonoran Desert to

∼300 mm in the Chihuahuan Desert (using Daymet, Thornton et al.,
2017). All three deserts experience some combination of frontal winter
precipitation and summer rainfall influenced by the North American
Monsoon (Douglas et al., 1993; Muldavin et al., 2008), while late spring
(May/June) and autumn (October/November) are generally dry.
However, the Mojave Desert receives the majority of its precipitation
during the winter, while the Chihuahuan Desert is dominated by
summer precipitation, and the Sonoran Desert has a more seasonally
balanced precipitation regime.

Although precipitation (P) is the common proxy for ecosystem
water availability (Sala et al., 2012), some P is lost to runoff (R) or
drainage beyond the rooting zone (D) and is therefore not available to
drive CO2 exchange (Fig. 1) (Biederman et al., 2016; Briggs and Shantz,
1913; Noy-Meir, 1973). After these hydrologic losses, most remaining
precipitation recharges soil moisture (SM) and becomes ecosystem-
available, excepting the amount evaporated from wet surfaces (i.e. in-
terception) (Noy-Meir, 1973). Soil moisture is subsequently depleted by
evapotranspiration (ET) (Biederman et al., 2016, 2017). While short-
term (e.g. diurnal) ET rates are controlled by several factors including
available energy, root density, leaf area, and soil properties, ET in-
tegrated over periods during which dryland SM is recharged and fully
depleted (i.e. seasonal, annual) approximates the SM that was available
to drive carbon cycling. At eddy covariance sites, ET is measured using
the same instruments and spatial scale integration as those used to
measure CO2 exchange, whereas direct SM measurements integrate
much smaller spatial scales, use different methodology, and are gen-
erally less available and less comparable across sites (e.g. due to dif-
ferences in soils, calibration and depth distribution). We previously
found that across 21 Southwest sites of diverse functional types, annual
ET directly predicted 60% of annual NEP variability (Biederman et al.,
2016) due to relatively constant cross-biome water use efficiency
(WUE=GEP/ET) and carbon use efficiency (CUE=NEP/GEP) (Fig. 1),
consistent with prior CUE results in forests (Litton et al., 2007; Waring
et al., 1998). However, it remains unknown how seasonal differences in
hydrologic partitioning, WUE and CUE will regulate shrubland NEP.

Higher VPD is expected to reduce WUE during summer due to in-
creased abiotic evaporation (Hu et al., 2008; Scott and Biederman,
2017). However, the detrimental effects of higher summer VPD on GEP
may be partially counteracted at the leaf level by different responses of

Fig. 1. Conceptual model of how water availability drives ecosystem-scale carbon dioxide
exchange in drylands, based on Biederman et al. (2016). After some precipitation (P) is
lost to runoff (R) and drainage (D), remaining water recharges soil moisture (SM). Soil
moisture is depleted by evaporation (E) and transpiration (T), measured together as
ecosystem ET. Therefore ET is a proxy of the water available to drive gross ecosystem
productivity (GEP), ecosystem respiration (Reco), and their difference, net ecosystem
productivity (NEP).
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carbon assimilation and stomatal conductance, which may be assessed
with metrics such as inherent or underlying WUE (Beer et al., 2009;
Zhou et al., 2015). In this paper we focus on ecosystem-scale WUE, a
functional metric critical to understanding large-scale interactions be-
tween water availability and dryland carbon uptake. WUE integrates
biotic and abiotic factors including ecosystem structure, C3/C4 photo-
synthetic pathway (Emmerich, 2007), stomatal response to gradients of
water vapor and CO2 (Beer et al., 2009; Keenan et al., 2013; Zhou et al.,
2015), temporal sequencing of precipitation (Cavanaugh et al., 2011;
Liu et al., 2017), and partitioning of ET between transpiration and
abiotic evaporation (Scott and Biederman, 2017).

The gradients in the magnitude and seasonal distribution of pre-
cipitation across the three deserts offer the possibility to test several
hypotheses. First, the Mojave Desert is initially expected to have the
lowest GEP and NEP due to its low precipitation magnitude. However,
the high-intensity (convective) precipitation common in the summer-
dominant Sonoran and Chihuahuan Deserts results in significant hy-
drologic losses, reducing the fraction of precipitation recharging soil
moisture and supporting biological activity (Fig. 1). Second, greater
WUE is expected during winter due to lower surface evaporation as a
result of deeper infiltration of water into the rooting zone, where it is
less likely to evaporate than at the surface (Andraski, 1997; Ogle and
Reynolds, 2004; Scott et al., 2000; Wohlfahrt et al., 2008) and lower
vapor pressure deficit (VPD), both of which can increase the fraction of
available water that is transpired through plants (T/ET) (Hu et al.,
2008). Third, prior results showing greater ANPP during winter/spring
than summer (Huenneke et al., 2002; Muldavin et al., 2008) imply
greater CUE is expected for sites/seasons with significant winter ac-
tivity (i.e., a smaller fraction of GEP returned to the atmosphere by
Reco). With sufficient soil moisture, soil respiration is controlled by
cooler winter temperatures (Wang et al., 2014), while evergreen shrubs
may continue to photosynthesize (Huxman et al., 2004). When surface

soils dry but deeper soil moisture persists, which occurs most frequently
during winter (Scott et al., 2000), photosynthesis may persist on
moisture accessible to deep-rooted shrubs, while heterotrophic re-
spiration may be controlled by low moisture in the litter and upper soil
layers (Reichstein et al., 2002; Yang and Zhou, 2013). Meanwhile
summer moisture often triggers Reco pulses exceeding GEP, reducing net
productivity during summer (Huenneke et al., 2002; Scott et al., 2009;
Verduzco et al., 2015; Wohlfahrt et al., 2008).

In order to address these gaps in understanding how shrubland
fluxes respond to the different amounts and seasonal timing of rainfall
we sought to address, for shrublands of the warm North American de-
serts: 1) How do hydrologic losses to runoff and drainage affect the
amount of precipitation that is available to drive ecosystem carbon
exchange?, 2) Is annual water availability sufficient to directly predict
annual NEP, or is it necessary to consider seasonal differences in WUE
and CUE? 3) How have reduced annual and winter precipitation during
the 21st-century impacted CO2 exchange across the three deserts?

2. Methods and materials

2.1. Shrubland study sites across three deserts of Southwestern North
America

We assembled 33 years of flux and meteorological measurements
from six sites in the Mojave, Sonoran, and Chihuahuan Deserts as well
as precipitation data for 1980–2016 at these six sites and across the
three deserts. Available eddy covariance sites had 2–9 years of mea-
surements (Fig. 2, Table 1). Observations were made between 2005 and
2015, though measurement periods vary by site. Sites were classified by
Köppen climate (http://koeppen-geiger.vu-wien.ac.at/present.htm).
Vegetation cover ranged from 8 to 42% consisting of one or more
perennial, low-statured shrubs (Table 1). Creosotebush (Larrea

Fig. 2. Map of flux tower sites in Southwest shrublands. Background maps show (a) extent of open shrublands based on the 2012 MODIS land cover dataset, (b) mean annual
precipitation (MAP), (c) percentage of MAP falling in summer, and (d) mean annual temperature (MAT). Panel (c) also shows outlines of the three North American warm deserts (Hunter
et al., 2001). Climate data are normals for 1950–2000 from the WorldClim 1-km dataset [www.worldclim.org].
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tridentata) was important at all sites (Table 1) and was the dominant
shrub at four sites. The Jornada Mixed Shrubland (Jms) site had slightly
more mesquite (Prosopis glandulosa), while mariola (Parthenium in-
canum) was most common at Lucky Hills Shrubland (Whs). Data for
Whs, Santa Rita Creosotebush (Src), Sevilleta Shrubland (Ses), and
Amargosa Desert Research Shrubland (Adr) are available through
AmeriFlux (https://ameriflux.lbl.gov) while the remaining data can be
obtained from the corresponding author.

Precipitation falling late in the calendar year (November/
December) is often stored as soil moisture and should be associated
with biological activity in the following growing season (Biederman
et al., 2016; Jia et al., 2016; Ma et al., 2007; Pereira et al., 2007; Scott
et al., 2000; Thomas et al., 2009; Verduzco et al., 2015). Therefore,
annual CO2 and water vapor (ET) flux sums and meteorological driving
variables were calculated using an ecohydrologic year spanning No-
vember 1-October 31. (Biederman et al., 2017; Thomas et al., 2009).
We further divided the ecohydrologic year into winter (Nov. May) and
summer (Jun. Oct.). This partition was selected because May and June
tend to be sufficiently hot and dry to reliably deplete soil moisture,
minimizing seasonal carry-over and improving the accuracy of ET as a
metric of water availability.

The Chihuahuan, Sonoran and Mojave Deserts are predominantly
covered by open shrublands (respectively 93%, 75%, and 79%; Fig. 2a).
The gradients in the amount and timing of water availability are shown
by historical mean climatology for 1950–2000 (Fig. 2b, c) and the mean
seasonal cycles measured at each flux site (Fig. 3, years indicated in
Table 1). Because annual rainfall totals are low in the Mojave, sporadic
summer rainstorms can significantly affect annual totals (and seasonal
distribution) in some years. The deserts have mean annual temperatures
between about 12 and 19°C. Mean seasonal cycles of temperature are
similar, although in the Mojave, winter temperatures are lower, and
peak temperature occurs one month later (July) than in the other two
deserts, where summer monsoon storms reduce maximum temperatures
beginning in July (Fig. 3). In all three deserts, there is evidence that
some winter moisture can be stored in the soil until warming tem-
peratures drive ET (Andraski, 1997; Kurc and Small, 2007; Scanlon
et al., 2005; Scott et al., 2000). Accordingly, MODIS EVI (Huete et al.,
2002) at the study sites usually shows greening beginning in late winter
(March-May) though the major greening season occurs in the summer
(July-September) at the Sonoran and Chihuahuan sites (Fig. 3). At the
Mojave sites, where vegetation cover is less than 20% (Table 1), EVI
peaks in April and May, although the seasonal EVI signal amplitude is
low (Fig. 3). Elevations (mean ± 1 standard deviation using a 1-km
DEM) are 950 ± 440, 450 ± 370, and 1370 ± 250m for the Mojave,
Sonoran, and Chihuahuan, respectively.

2.2. Data collection and processing

Measurements of terrestrial-atmosphere gas exchange were made at
the ecosystem scale using the eddy covariance technique (Goulden
et al., 1996). Data collection and regular calibrations of eddy covar-
iance flux measurement systems followed common practices (Lee et al.,
2006). We assembled 30-min measurements of precipitation, tempera-
ture, ET, VPD, NEP, and GEP and Reco derived from NEP using con-
sistent methods for all sites. We partitioned NEP into GEP and by first
eliminating NEP data when the friction velocity, u*, was less than
0.15 m s&1 (Scott et al., 2009; Scott, 2010). We then fit an exponential
function of air temperature to the remaining nighttime NEP data over a
moving ∼5 day window (Reichstein et al., 2005), with varying window
sizes to prevent grouping data across precipitation events, which result
in immediate respiration pulses that change the relationship between
temperature and nighttime NEP (Xu et al., 2004). The resultant ex-
ponential functions were used to fill missing nighttime NEP data and
model daytime Reco. Missing daytime NEP values were filled using a
second-order polynomial of incoming PAR fit to separate morning or
afternoon data for the 5-day moving window. We compared annualTa
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NEP sums produced by the above methods with those provided in the
FLUXNET2015 database (http://fluxnet.fluxdata.org/data/fluxnet
2015-dataset/data-processing/) for the two sites present in both data-
sets (Whs and Src). The average uncertainty in annual NEP related to u*
threshold filtering and gap-filling ranged from 5 to 16 gC m2, which is
much smaller than the NEP variability between the sites or among the
years at a given site (Fig. S1). Finally, we calculated GEP as GE-
P = Reco + NEP. GEP and Reco are always positive with this sign con-
vention. Previous studies have compared this method with a daytime
partitioning approach based on light-response curves and found good
agreement at the annual scale (differences< 10%), although best
practices suggest that a common approach should be used across all
sites in multi-site data synthesis studies (Desai et al., 2008; Lasslop
et al., 2010).

Because multi-year records at the Ses site commenced with calendar
year 2007, the first two months of this record (November and December
2006) were filled using mean monthly fluxes of 2007–2014 (Biederman
et al., 2016), representing 2% of data for this site. November and De-
cember are usually dry, inactive months at this Chihuahuan Desert site
(Fig. 3a), with each contributing, on average, 3–5% of annual fluxes (P,
ET, GEP, Reco).

2.3. Remote sensing of vegetation greenness

We used the enhanced vegetation index (EVI) from the Moderate
Resolution Imaging Spectroradiometer (MODIS) Collection 5 to explore

seasonal similarities between greenness and fluxes of CO2 and water.
This index is distributed as the MOD13Q1 data product with 16 day
temporal resolution (Google Earth Engine Team, 2015). We used the
single ∼250 m pixel containing each flux tower. Mean monthly EVI
values were computed using data classified as best-quality to reduced
contamination associated with clouds, shadows, and snow/ice.

2.4. Hydrometeorological datasets

We used two sources of long-term climate data. Climate normals for
the North American deserts were characterized by the mean annual
temperature, mean annual precipitation, and summer precipitation for
1950–2000 using the 1 km WorldClim dataset (www.worldclim.org).
To assess the impacts of 21st-century changes in hydroclimate on
carbon dioxide fluxes, we assembled monthly precipitation for
1980–2016 from the Daymet gridded dataset (Google Earth Engine
Team, 2015; Thornton et al., 2017), which provides full North Amer-
ican coverage and has high accuracy for the Southwest region (Behnke
et al., 2016). We calculated spatially averaged precipitation for each
desert and season (winter/summer) using the mean of all 1-km pixels
contained within each desert. WorldClim was considered the best
source of long-term mean climate (average of 50 years), while Daymet
data best supported our analysis of precipitation for each season and
year since 1980.

One site (Whs) was co-located with runoff measurements for a
subwatershed within the Walnut Gulch Experimental Watershed (Stone

Fig. 3. Mean monthly precipitation (P, mm), tem-
perature (T, °C), and MODIS enhanced vegetation
index (EVI) for the combined sites in the (a)
Chihuahuan, (b) Sonoran, and (c) Mojave Deserts
(Table 1). Vertical lines show demarcation between
winter and summer (1-June) according to the defi-
nition used here. Shading indicates standard devia-
tions of monthly values. Values shown are mean
seasonal precipitation and temperature.
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et al., 2008). Runoff was divided by watershed area (0.34 ha) to pro-
duce a linear measure comparable to precipitation and ET. Area-nor-
malized streamflow data were obtained from http://www.tucson.ars.
ag.gov/dap/digital/aggregate.asp (Flume 106). At Jms, the flux tower
was located in a 4.7-ha subwatershed where significant deep drainage
occurred in the channel before runoff was measured with a weir. Here
we present integrated drainage and runoff values from a water balance
analysis of this watershed (Schreiner-McGraw and Vivoni, 2017).

3. Results

3.1. Time series of precipitation, productivity, and ET

Monthly time series of precipitation, GEP and Reco illustrate the
availability of records at each site and for each desert (Fig. 4). The
greatest number of data years was available for the Chihuahuan Desert
(3 sites and 21 years), while the Sonoran Desert had one site with
5 years and the Mojave had two sites comprising 7 years. All sites had
rainfall grouped into winter and/or summer with dry spring and au-
tumn (Fig. 4), consistent with the mean seasonal cycles (Fig. 3). How-
ever, there is large year-to-year variability in both the amount and
seasonality of precipitation. For example, there was below-average

Fig. 4. Monthly precipitation, gross ecosystem productivity (GEP) and ecosystem respiration (Reco) for each shrubland eddy covariance site. Vertical lines denote 1-Nov, the start of the
ecohydrologic year. Numbers shown are precipitation (mm) for each complete ecohydrologic year available. Panels (a-c) represent the Chihuahuan Desert, panel (d) shows a Sonoran
Desert Site, and panels (e-f) represent the Mojave Desert.
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precipitation across the Chihuahuan (Fig. 4a–c) and Sonoran sites
(Fig. 4d) during winter 2011, while the available sites all received
above-average precipitation during summer 2008. At the Mojave sites
(Fig. 4e, f), monthly precipitation totals are lower than for the other
deserts (note the different scales). CO2 fluxes responded to precipitation
at all sites, while both fluxes were low, including negligible GEP, during
dry periods. With sufficient winter precipitation, GEP usually exceeded
Reco (e.g., winter 2010 at Whs, Ses, Src and most winters at Mojave
Global Change Shrubland (Mgc)). Summer precipitation, however,
often triggered a rapid rise in Reco, followed by a lagged rise in GEP,
particularly following a dry winter (e.g., Whs, Ses, Jms, Src in summer
2011).

3.2. Quantifying ecosystem-available water

We investigated the relationship between water availability and
vegetation cover across the six sites using simple linear models.
Although cover was significantly (p < 0.05) predicted by mean annual
precipitation (R2 = 0.58), mean annual evapotranspiration was a
stronger predictor (R2 = 0.78). Seasonal ET was a weaker predictor of
cover than the annual sums (data not shown). To investigate why ve-
getation cover was better predicted by ET than precipitation, we ex-
amined the relationship between ET and P (Fig. 5). Seasonal pre-
cipitation sums up to ∼150 mm were matched to or slightly exceeded
seasonal ET (close to 1:1 line). In 12 of the 14 summer seasons when
precipitation exceeded ∼150 mm, which occurred only in the Sonoran
and Chihuahuan Deserts, ET < < P, suggesting hydrologic losses to
runoff and drainage (Fig. 1). Adding measured R and D in small wa-
tersheds co-located with two of the flux towers (Whs, Jms) closed most
of this discrepancy in the seasonal water balance (P∼ ET + R + D)
(Fig. 5). This supports the idea that ET is a better metric of soil water
available to drive ecosystem carbon cycling after hydrologic losses
(Fig. 1), and we use ET as the water availability metric hereafter.

3.3. Magnitude and variability of water and carbon fluxes across sites

Cross-site patterns in seasonal and annual water availability (ET)
reflect the climatology of the three deserts (Fig. 6), with the lowest ET
totals at the Mojave sites (Mgc and Adr). Seasonal distributions of ET

between winter and summer (Fig. 6) are similar to those of precipita-
tion (Table 1, Fig. 3), suggesting there is negligible moisture storage
across summer/winter seasons at these sites (i.e., precipitation re-
charges root-zone soil moisture, which is depleted by ET each season).
Across sites, mean seasonal photosynthesis (GEP) and water availability
(ET) are well-correlated, with Pearson’s correlation coefficients of
R = 0.73 in winter and R = 0.89 in summer, suggesting similar sea-
sonal water use efficiency (WUE = GEP/ET). The correlation between
Reco and ET was even stronger: R = 0.75 in winter and R = 0.96 in
summer. In contrast, there is little evidence that spatial patterns in
mean net productivity (NEP) could be predicted directly from water
availability (Fig. 6a,d). On average, the Whs site was a carbon source
(NEP< 0) in winter and annually, with NEP ∼ 0 for summer, although
the standard deviations exceed the mean NEP magnitudes. The Whs site
switched between a carbon source and sink in dry and wet years, re-
spectively. The Ses, Jms and Mgc sites were consistently carbon sinks
seasonally and annually. The Sonoran Src site had, like Whs, mean
NEP ∼ 0 in summer but took up CO2 consistently in winter, driving a
positive mean annual NEP (net carbon sink). The Mojave Adr site had
NEP very close to zero (|NEP| < 10 gCm2) in the one winter and two
summers for which data are available.

3.4. Relating water availability to gross and net ecosystem productivity

To address our second research question, we aggregated the 33 site-
years to evaluate whether water availability could directly predict NEP
across the shrublands, as was previously demonstrated for a broader
regional dataset (Biederman et al., 2016). In these shrublands, we found
no direct relationship between ET and NEP for annual, winter, or
summer sums (Supplementary Information Fig. S2a). Likewise, there
was no direct relationship of NEP with mean seasonal temperature (Fig.
S2b). To understand why the direct ET-NEP relationship did not hold
for this shrubland dataset, we next investigated the linkages between
ET and NEP shown in Fig. 1: the linkage of ET with GEP (i.e. water use
efficiency); and the partitioning of GEP into Reco and NEP (carbon use
efficiency). We also addressed the impacts of VPD on ecosystem-scale
WUE using the concept of underlying WUE, where uWUE = -
GEP*VPD0.5/ET (Zhou et al., 2015).

Across all site years, there was no difference between winter and
summer in the slope of the relationship of ET with GEP*VPD0.5
(ANCOVA, p > 0.05), although the intercept was greater for summer
(Fig. 7a). There were no differences in the relationship of ET with GEP,
and a single linear model fit the combined dataset (Fig. 7b,
GEP = 0.66ET + 5.6; R2 = 0.62; n = 66 seasons). Because the inter-
cept was not significantly different from the origin, the slope of this line
may be interpreted as the WUE (gCm2 mm1H2O, equivalent to 1H2O),
which did not differ between winter and summer (Fig. 7b) (Fig. 8).
Furthermore, we found no relationship between WUE and mean sea-
sonal temperature (T) or vapor pressure deficit (VPD, Fig. S4). In con-
trast, the slope between ET and Reco was 45% lower in winter than
summer (Fig. 7c), suggesting that an increase of 100 mm of water
availability in summer was associated with a 67 ± 5 (std. err.) gC m2

increase in Reco, compared with only 37 ± 5 gC m2 in winter. Al-
though mean Reco was, on average, greater in summer, when tem-
peratures were warmer, than in winter (i.e. different means,
p < 0.05), we found no significant relationships between Reco and
temperature within either season (Fig. S5).

The different winter/summer relationship of water availability with
Reco resulted in significant seasonal differences in the CUE relationship
between Reco and GEP, which defines NEP (Fig. 7d). The slopes suggest
that in summer, an incremental increase in GEP of 100 gC m2 would be
counteracted by an average of 77 ± 9 gC m2 of Reco, leaving a residual
23 gC m2 allocated to NEP. In winter, however, an incremental increase
in GEP of 100 g Cm2 would be counteracted by an average of only
23 ± 7 gC m2 of Reco, leaving 77 gC m2 allocated to NEP.

Fig. 5. The relationship of evapotranspiration (ET) with precipitation for the winter and
summer seasons at the six shrubland sites combined. Each point represents one season at
one site. Black diamond symbols indicate the sum of ET and independently measured
runoff (R) available for the Whs and Jms sites, where the flux towers are co-located with a
flow-measurement flume. Red square symbols indicate the sum of ET, R and deep drai-
nage (D), which was estimated in a separate water balance analysis at Jms. No runoff
occurred during winters. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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4. Discussion

4.1. Low respiration makes winters critical for net carbon uptake

Here we assembled a regional synthesis of six eddy covariance sites
(33 site-years of measurements) in shrublands of the three warm North
American deserts, which present gradients in both average annual
precipitation and its seasonal distribution between winter and summer
growing seasons (Table 1, Fig. 2). We found that ET is a more accurate
measure of ecosystem-available water than precipitation (Fig. 5). ET
and GEP were positively related across sites (spatially), but NEP did not
show a spatial relationship with ET or with the desert in which a site
was located (Fig. 6). Ecosystem-scale water use efficiency
(WUE = GEP/ET) did not differ between winter and summer (Fig. 7b).
However, the slopes of Reco with ET and Reco with GEP were lower in
winter than summer (Fig. 7c), resulting more carbon sequestration in
winters than summers, on average (Fig. 7d). Below we discuss how this
work improves understanding of water-carbon relations in desert
shrublands and use our results to make a simple estimate of how

reduced precipitation in the Southwest has shifted the regional carbon
balance during the 21st century.

4.2. Hydrologic partitioning and use of ET as a proxy for water availability

Here, we found several lines of evidence suggesting ET was a better
proxy of water availability than precipitation (P), some of which is lost
to runoff (R) and drainage (D) before it becomes available to the eco-
system (Fig. 1). ET reflects when SM is available to the ecosystem and
has the added benefit of being measured on a commensurate scale and
with the same methodology as the carbon fluxes. An important im-
plication is that ET measurements may be used as an independent check
of various methods used to assess soil moisture including direct mea-
surements, models, and remote sensing. While dryland shrub cover has
previously been related to precipitation (Fensham et al., 2005), we
found that mean annual ET was a better predictor of cover. Between
0–150 mm of seasonal precipitation, ET was approximately equal to P
(Fig. 5). Instances in which ET slightly exceeded P could be due to
precipitation undercatch, which is likely to be 5–10% of P (Scott, 2010;

Fig. 6. Spatial patterns across the six sites in mean seasonal and annual sums of (a) ET, (b) GEP, (c) Reco and (d) NEP. In the lower portion of (d), the numbers of measurement years (n)
per site are shown. Error bars represent one standard deviation of the mean (not calculated for site Adr winter or year where n = 1). Mean seasonal values may not sum to mean annual
values where the number of measurement years is unequal for winter and summer.
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Shuttleworth, 2012), small inter-seasonal carry-over of soil moisture
(Andraski, 1997; Templeton et al., 2014) or errors in measurements and
processing (Moreo et al., 2017). These results imply that representing
local water balance at these sites does not necessarily require adjusting
ET upward to force energy balance closure (Scott, 2010). This may be

due to a failure to properly account for energy storage terms in typical
closure assessments performed with sub-daily fluxes (Leuning et al.,
2012). It has previously been assumed that in dryland environments,
ET≈ P at seasonal or longer timescales (Kurc and Small, 2004;
Reynolds et al., 2000). However, during the wettest summers in the
Chihuahuan and Sonoran Deserts, when precipitation exceeded
∼150 mm, ET< <P. Because potential evapotranspiration (PET)>
>P during summer at these desert sites, ET< <P likely occurred as a
result of hydrologic losses to R and D, which occurs primarily along
ephemeral runoff channels (Goodrich et al., 2004; Templeton et al.,
2014) as supported by independent watershed measurements at two
sites (Fig. 5). Controls on hydrologic losses may include precipitation
intensity, vegetation, soils, and channel morphology (Polyakov et al.,
2010; Turnbull et al., 2013). Collectively, our results support the idea
that precipitation likely overestimates water available to drive CO2

exchange (Biederman et al., 2016; Ponce-Campos et al., 2013; Villarreal
et al., 2016), particularly in the Sonoran and Chihuahuan Deserts,
where precipitation is dominated by high-intensity summer rainfall.

4.3. CO2 exchange in warm desert shrublands of North America

It is not surprising that GEP was positively linked with water
availability (Fig. 6, Fig. 7), as has been demonstrated many times for
dryland ecosystems (e.g. Biederman et al., 2016; Huxman et al., 2004;
Muldavin et al., 2008; Noy-Meir, 1973; Scott et al., 2015). However,
our results did not support our expectation that WUE would be greater

Fig. 7. The seasonal relationship of (a) ET with GEP*VPD0.5, (b) ET with GEP, (c) ET with Reco, and (d) the carbon balance between GEP and Reco, which determines NEP. Each point
represents one site-season. In (a) the slopes were not significantly different, but different intercepts suggest a higher underlying water use efficiency (uWUE) in summer than winter
(ANCOVA, p < 0.05). In (b) there was no seasonal difference in the linear relationships, so the data were fit with a combined model. In (c) and (d), the slopes were lower in winter than
summer, so separate models were used. In (d), points above the 1:1 line indicate seasons when an ecosystem functioned as a net carbon source to the atmosphere (Reco> GEP), while
points below the line indicate net carbon uptake. All linear models shown are significant versus a constant model (p < 0.05).

Fig. 8. Mean monthly precipitation for each desert before and after the year 2000.
Shading shows temporal standard deviations among years.
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in winter due to reduced evaporative losses (i.e. increased T/ET) re-
sulting from deeper soil infiltration and lower winter VPD. Greater
underlying water use efficiency (Fig. 7a) in summer suggests that sto-
matal response may have partially compensated for the detrimental
effects of VPD at the ecosystem scale (Beer et al., 2009; Reichstein et al.,
2007). It should be noted that partitioning of available water between
transpiration and evaporation may be a dominant control of WUE in
open shrublands, where the ratio of T/ET may vary widely (i.e.
30–70%) depending on bare soil fraction, precipitation sequencing and
phenology (Scott and Biederman, 2017). This large and variable role of
abiotic evaporation in desert ecosystems challenges our ability to link
process-level responses of vascular plants with the functional relation-
ships between water and carbon at the ecosystem scale (Medlyn et al.,
2017).

An absence of seasonal differences in WUE suggests that greater net
productivity during winter in shrublands (Huenneke et al., 2002; Jia
et al., 2016; Muldavin et al., 2008; Petrie et al., 2015) is related to
carbon use efficiency (CUE). Greater winter CUE is supported by our
finding of, on average, more than three times as much Reco per unit of
GEP during summer than winter, making winter a much more effective
season for net productivity in shrublands (Fig. 7d). Although photo-
synthate production (GEP) is a first-order control of respiration across a
range of temporal scales (Litton et al., 2007; Vargas et al., 2011; Waring
et al., 1998), the critical result here is a weaker coupling of this re-
lationship during winter. Reco may be partially decoupled from GEP
during winter because lower winter temperatures (Fig. S5) may reduce
ecosystem respiration relative to ongoing photosynthesis by evergreen
shrubs (Wang et al., 2014), or because deeper soil moisture infiltration
in winter may support activity of deep-rooted shrubs while rapid drying

limits heterotrophic respiration in the litter and upper soil layers
(Reichstein et al., 2002; Yang and Zhou, 2013).

Desert ecosystem fluxes are small in magnitude and inherently
variable (Biederman et al., 2017; Evans et al., 2014; Noy-Meir, 1973).
Measurement uncertainty is likely comparable to these small net ex-
changes. However, many sources of uncertainty are small (Fig. S1), and
systematic errors affect absolute flux magnitudes more than the re-
lationships among variables, which are comparatively robust
(Baldocchi, 2008; Desai et al., 2008; Lasslop et al., 2010). We therefore
emphasize the value of long-term, multi-site synthesis enabled by ob-
servation networks such as AmeriFlux (Novick et al., 2017). We require
a greater number of observations to adequately characterize desert
ecosystem function (Chu et al., 2017), in contrast to their poor re-
presentation in currently available datasets such as FluxNet 2015
(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). Here, com-
bining six sites and 33 site-years enabled identification of relationships
among mechanistically linked fluxes (Fig. 1) despite the small magni-
tude and narrow range of flux values. More observations are particu-
larly needed for the Mojave Desert due to its low and episodic water
availability and the importance of winter flux seasonality demonstrated
by our results.

4.4. Implications for north american desert carbon balance in the 21st
century

We combined our results with historical precipitation data for
1981–2016 across each desert to estimate the impacts of reduced an-
nual and winter precipitation on CO2 exchanges (Cook et al., 2015;
Seager and Vecchi, 2010). Mean monthly precipitation was lower in the

Fig. 9. Differences between seasonal water and CO2 exchanges from 2000
to 2016 as compared with 1981–1999. Shown are mean and standard
deviation of the differences. In (a) and (b), water fluxes are in mm. In (c-e)
CO2 fluxes are in gC m2.
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21st century for some winter months in the Chihuahuan and Mojave
Deserts and was lower for all winter months in the Sonoran Desert
(Fig. 9).

From the precipitation values in each year, we predicted each flux in
Fig. 1 including ET (based on Fig. S6), GEP (Fig. 7b), Reco (Fig. 7d), and
NEP = GEP Reco (Fig. 9). While any changes in summer GEP were
largely counteracted by summer Reco changes (Fig. 7c, d), the lower
Reco response to winter moisture resulted in winter declines in net
carbon uptake across the three deserts (Fig. 9e). When multiplied by the
shrubland area of each desert, these changes suggest an annual decline
in net carbon uptake of 6.8 Tg C for the years 2000–2016 as compared
with 1981–1999. While there are many sources of uncertainty in this
estimate including spatial extrapolation from limited sites up to the
three deserts with their inherent variabilities in climate and land cover,
we suggest this analysis provides a valuable first-order estimate based
on direct observations.

5. Conclusions

This study highlighted the importance of efforts to understand
ecologically available water including measurements (e.g. runoff, soil
moisture, and drainage) as well as efforts to define and predict water
availability as a function of variables such as climate, topography, soils,
and vegetation. Although we found relationships linking water avail-
ability (ET) to GEP and GEP to Reco (Fig. 7), and therefore to NEP
(Fig. 1), we did not find a direct relationship between ET and NEP (Fig.
S2a) as expected based on prior synthesis results in dryland ecosystems
of the Southwest (Biederman et al., 2016). Instead, we found that the
relationship between respiration and gross productivity was partially
decoupled in winter and that declining winter precipitation during the
21st century has already reduced the carbon sink strength of the
Southwest.
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