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Abstract Satellite remote sensing provides unmatched spatiotemporal information on vegetation gross
primary productivity (GPP). Yet understanding of the relationship between GPP and remote sensing
observations and how it changes with factors such as scale, biophysical constraint, and vegetation type
remains limited. This knowledge gap is especially apparent for dryland ecosystems, which have characteristic
high spatiotemporal variability and are under-represented by long-term field measurements. Here we
utilize an eddy covariance (EC) data synthesis for southwestern North America in an assessment of how
accurately satellite-derived vegetation proxies capture seasonal to interannual GPP dynamics across dryland
gradients. We evaluate the enhanced vegetation index, solar-induced fluorescence (SIF), and the
photochemical reflectivity index. We find evidence that SIF is more accurately capturing seasonal GPP
dynamics particularly for evergreen-dominated EC sites andmore accurately estimating the full magnitude of
interannual GPP dynamics for all dryland EC sites. These results suggest that incorporation of SIF could
significantly improve satellite-based GPP estimates.

1. Introduction

Year-to-year variability of the atmospheric CO2 growth rate is primarily driven by fluctuations in carbon
uptake by land ecosystems (Keeling et al., 1995). Arid and semiarid dryland ecosystems cover ~40% of
the global land surface, and mounting evidence suggests that they play a dominant role in driving the
interannual variability of CO2 uptake by terrestrial ecosystems (Ahlström et al., 2015; Jung et al., 2017;
Poulter et al., 2014). Drylands are characterized by frequent drought and high temperatures and thus are
also excellent study systems for improved understanding of coupled drought–vegetation dynamics (Scott
et al., 2015). Yet there is a relative paucity of continuous, long-term measurements of dryland vegetation
dynamics, resulting in dryland gross primary productivity (GPP) estimates that are poorly constrained by
observational data including estimates from remote sensing, atmospheric inversion models, empirical
regression models, and terrestrial biosphere models (Biederman et al., 2017; Jung et al., 2011; Ma et al.,
2015; Verma et al., 2014; Xiao et al., 2014). Improved understanding of dryland GPP dynamics is a critical
step toward accurate prediction and forecasting of interannual variability of terrestrial CO2 uptake and, in
turn, atmospheric CO2 concentrations.

Satellite remote sensing is unmatched in spatiotemporal coverage and has been used to quantify global GPP
dynamics since the early 1980s (Coops et al., 2010; Monteith, 1972; Potter et al., 1993; Running et al., 2004;
Smith et al., 2016). Satellite-based GPP estimates have helped shape our current understanding of dryland
function within the context of the broader Earth system (Ahlström et al., 2015; Jung et al., 2017; Poulter
et al., 2014). However, GPP cannot be directly observed, and satellite-derived GPP estimates rely heavily on
vegetation indices (VIs) such as the normalized difference vegetation index (NDVI) and enhanced vegetation
index (EVI) that provide information on vegetation state (e.g., photosynthetic capacity), not physiological
function (e.g., photosynthetic activity). Operational GPP products based on this approach are widely used
and available since the early 2000s as NASA Moderate Resolution Imaging Spectroradiometer (MODIS) pro-
ducts (Running et al., 2004; Zhao et al., 2005; Zhao & Running, 2010), and more recently as NASA Soil
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Moisture Active Passive products (Jones et al., 2017). Although the spatial variability in satellite-derived GPP is
generally consistent with field measurements (Biederman et al., 2017; Verma et al., 2014), satellite-derived
GPP suffers from substantial uncertainties at seasonal to interannual timescales, particularly for dryland
ecosystems. For example, across the drylands of southwestern North America, the MODIS GPP product was
found to only account for 20–30% of the interannual variation in eddy covariance flux-based GPP observa-
tions (Biederman et al., 2017). The relative poor performance of remote sensing-based GPP estimates across
drylands is likely due to the high heterogeneity of dryland ecosystems as well as limitations of greenness-
based VIs (Biederman et al., 2017; Verma et al., 2014).

By potentially providing information directly related to vegetation physiological function, emerging solar-
induced fluorescence (SIF) and photochemical reflectivity index (PRI) data offer a significant advancement
over traditional VIs (Frankenberg et al., 2011; Penuelas et al., 2011; Schimel et al., 2015; Sun et al., 2017;
Vicca et al., 2016). Vegetation fluorescence is the light reemitted from chlorophyll during photosynthesis
and thus represents a potential direct proxy for photosynthetic activity (Manish Verma et al., 2017; Parazoo
et al., 2014; Schimel et al., 2015; Sun et al., 2017; Wood et al., 2016; Zhang et al., 2014). Fluorescence has been
measured for decades at the leaf level using the pulse amplitude-modulation technique and is now also
being measured passively (i.e., SIF) from remote sensing platforms (Porcar-Castell et al., 2014).
Alternatively, PRI detects nonphotochemical quenching via changes in the foliar carotenoid pigment pool
and thus dynamically tracks changes in photosynthetic activity (Gamon et al., 2016; Porcar-Castell et al.,
2014). PRI has been used as a photosynthesis proxy over a range of climate conditions and vegetation types
(Gamon et al., 2016; Gamon, Peñuelas, & Field, 1992; He et al., 2016). While previous analyses have explored
these emerging proxies in tropical (Lee et al., 2013), temperate (Yang et al., 2015), boreal (Walther et al., 2016),
grassland (Jeong et al., 2017), and cropland ecosystems (Wood et al., 2016), their ability to capture GPP
dynamics across heterogeneous dryland ecosystems remains relatively unknown.

Here we address this knowledge gap by evaluating the ability of current satellite-based EVI, SIF, and PRI data
sets to detect seasonal to interannual changes in GPP across a new synthesis of data from eddy covariance
(EC) flux tower sites distributed across southwestern North America (Figure 1). These sites cover wide ranges

Figure 1. Multiscalemaps of the Southwest EC flux tower network. (a) View of the EC sites used in the analysis with regional
mean MODIS EVI. (b) View of the cluster of flux tower sites in southeast Arizona. (c) View of the Santa Rita Mesquite
(SRM) flux tower site within the southeast Arizona cluster. The white gridlines correspond to the pixels of SIFGOME2. The EC
site marker colors in Figures 1a and 1b indicate subregional groupings of sites sharing similar seasonal climatic and
ecological dynamics. Innermost and outermost circles around each flux tower site indicate the 3 km fine-resolution and 0.5°
coarse-resolution EC footprints analyzed in this study. The colored points in Figure 1c correspond to the day of year of
available SIFOCO2 observations for the year 2016, whereas the underlying tan color indicates areas classified as shrubland.
For site codes and descriptions, see Table S1.

Geophysical Research Letters 10.1002/2017GL075922

SMITH ET AL. 749



in annual precipitation (200–1,000 mm) and annual temperatures (2–25°C) and thus represent key climati-
cally distinct subregions within the fairly broad dryland classification (Biederman et al., 2016, 2017). These
newly synthesized observational data enable a robust benchmark to test the potential of SIF and PRI as
next-generation GPP proxies that are more closely linked to plant physiological function.

2. Data and Methods
2.1. Study Region and Sites

The study region (hereafter referred to as “the Southwest”) includes EC sites in Arizona, New Mexico, and
portions of southern California within the conterminous USA, and sites in Sonora, Mexico (Figure 1). The
Southwest is generally characterized by water limitation at the annual scale and has large spatial gradients
in mean annual precipitation and temperature due to interactions among topography, latitude, weather pat-
terns, and distance from oceans (Biederman et al., 2017). We used 20 EC flux sites distributed across the major
climatic and ecological subregions of the Southwest including Monsoon Low, Mid, and High elevation, and
Mediterranean Low and Mid elevation sites (Figure 1 and Table S1 in the supporting information). We
included in the analysis all available EC sites with a minimum of three observation years (total site
years = 118 years) during the study period from 2007 to 2016; the resulting site years selected for this analysis
are summarized in Table S1. The dominant International Geosphere-Biosphere Programme (IGBP) vegetation
classes of the region include grassland, open and closed shrubland, savanna and woody savanna, mixed
forest, and evergreen needleleaf forest (Table S1). For additional site details, see Table S1 and https://www.
fluxdata.org/.

2.2. Satellite Data

We used EVI data derived from theMODIS (Moderate Resolution Imaging Spectroradiometer) sensor onboard
the NASA EOS Terra satellite from 2000 to 2016. We used the 16 day composite 1 km resolution MODIS/Terra
EVI (MOD13A2 V006) data product. The 16 day pixel reliability data layer that accompanied the EVI data was
used to identify and remove lower quality data.

We used PRI data derived from the MODIS spectral reflectance records obtained from the NASA EOS Terra
and Aqua satellites from 2000 to 2016. We used daily 1 km resolution PRI derived from the Terra/Aqua
MODIS Level 1B reflectance (MOD/MYD021KM) data product. MODIS PRI uses a broad range of wavelengths
that generally track changes in foliar chlorophyll and carotenoid pigment levels (Gamon et al., 2016). We
derived PRI using MODIS Band 11 (526–536 nm) and Band 13 (662–672 nm) reflectance data following the
methods of He et al. (2016). Low-quality reflectance data were filtered using the daily 1 km resolution
Terra/Aqua MODIS Cloud product (MOD/MYD35_L2). Please see He et al. (2016) for more detail on the
PRI derivation.

We used SIF data derived from the GOME-2 (Global Ozone Mapping Experiment) sensor onboard the
European Organisation for the Exploitation of Meteorological Satellites MetOp satellites from 2007 to 2016
(hereafter, SIFGOME2). Specifically, we used the monthly composite, 0.5° resolution GOME-2/MetOp-A
Version 2.6 SIF data product. These data are based on channel 4 of the GOME-2 sensor with ~0.5 nm spectral
resolution and wavelengths between 734 and 758 nm. The GOME-2 sensor experienced significant degrada-
tion over its lifetime, particularly in the early part of the record. To account for this, the SIFGOME2 data product
was corrected by adjustments based on the degradation of solar irradiance values (Joiner et al., 2016). We
further checked for SIFGOME2 degradation across EC sites by analyzing long-term trends in the time series
data (Figure S1). We found that across EC sites, SIFGOME2 seasonal and interannual variability was much larger
than the mean long-term trend (Figure S1). Please see Joiner et al. (2013) and Joiner et al. (2016) for more
detail on the SIFGOME2 data.

We also used SIF data derived from the NASA OCO-2 (Orbiting Carbon Observatory) satellite from 2015 to
2016 (hereafter SIFOCO2). While OCO-2 collects spatially dense samples at relatively high spatial resolution
(1.3 by 2.5 km), the global coverage on a monthly time step is relatively sparse due to a relatively narrow
instrument observation swath (Verma et al., 2017). We combined SIFOCO2 signals at 757 nm and 771 nm by
applying a standard signal strength correction factor of 1.4 to the weaker 771 nm signal (Verma et al.,
2017; Wood et al., 2016). SIFOCO2 data were provided with accompanying ancillary data including data quality
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and daily correction factors, which were used to remove low-quality data and convert instantaneous SIFOCO2
to daily average SIFOCO2 values, respectively.

2.3. Space and Time Scaling

For each EC site, data were spatially aggregated based on (i) a 3 km fine-resolution and (ii) a 0.5° coarse-
resolution site footprint in order to control for the different native resolutions of the utilized satellite data sets
described above. The fine-resolution footprint was defined as a 3 km diameter circle around each EC site loca-
tion, while the coarse-resolution footprint was defined as a 0.5° diameter circle around each EC site (Figure 1).
For each data product, all pixels with a centroid that fell within the footprint were averaged.

Due to the coarse resolution of SIFGOME2 data, we did not extract a 3 km fine-resolution time series for these
data. Instead, we estimated a fine-resolution SIFOCO2 time series for selected sites (SRM and VCP only). We
aggregated all SIFOCO2 observations that had a measurement centroid falling within a 0.25° diameter circle
surrounding the tower site. We further filtered SIFOCO2 observations to include only those with a similar land
cover type to that of the dominant land cover type of the 3 km footprint (Figure 1 and Table S1).

To help explain differences due to spatial scaling, we assessed differences in vegetation land cover types
between the fine- versus coarse-resolution footprints across tower sites. We quantified each site by its
dominant (>10% cover) land cover type at both the 3 km fine and 0.5° coarse-resolution footprints using
MODIS (MCD12Q1 V005) land cover data and International Geosphere-Biosphere Programme (IGBP) classi-
fication (Table S1).

SIFGOME2 and SIFOCO2 use a simple cosine correction based on the solar zenith angle to temporally scale
from instantaneous to daily integrated values. This simple method of temporal scaling thus assumes diur-
nal symmetry in SIF dynamics. We carried out an assessment of GPP dynamics at hourly timescales for the
SRM site—the most arid savanna EC sites in our synthesis where we expected the greatest diurnal GPP
asymmetry—to evaluate the validity of the SIF scaling approach in capturing daily GPP dynamics
(Figure S2). While diurnal asymmetry was apparent in hourly GPP estimates, we found that controlling
for the overpass times of GOME-2 (9:00–10:00 LT) and OCO-2 (13:00–14:00 LT) resulted in very similar sea-
sonal GPP dynamics (r = 0.998 and r = 0.984, respectively; Figure S2). These results suggest that for the
purposes of our study, scaling instantaneous to daily integrated SIF using cosine correction is appropriate
for capturing seasonal dynamics.

2.4. Data Analysis

For the seasonal analysis, all data were aggregated to monthly mean values (n = 12). To compare relative sea-
sonal variations in satellite proxies and EC GPP, all data sets were normalized to range from 0 to 1. Linear
regression analysis was performed at the individual EC site and subregional scale (Table S2). For the interann-
ual analysis, monthly data were summed annually for each year of observation. For each site, only site-years
with a corresponding complete monthly record were used. To compare relative interannual variations in the
satellite proxies and EC GPP, data were converted to Z-scores, which represent variations in terms of standard
deviations from the mean. Linear regressions were preformed to evaluate relative differences in the ability
of the satellite proxies to capture the full range of interannual variability in EC GPP estimates (Table S3).
Thus, temporal slopes were interpreted such that values greater than 1 represent oversensitivity, whereas
values less than 1 represent undersensitivity to interannual EC GPP variations (Biederman et al., 2017).
Temporal regressions were only performed on long-term EC sites with data records longer than 4 years.
Relationships were evaluated based on the correlation coefficient (r), root-mean-square error, bias, slope,
and p value of the regression fit using the “lm” function of the “stats” package of the open source R
programming language.

3. Results
3.1. Seasonal GPP Dynamics

SIFGOME2 was found to most consistently capture seasonal GPP dynamics (r = 0.91) compared to EVI (r = 0.83)
and PRI (r = 0.78) across the Southwest eddy covariance sites examined (Figure 2 and Table S2). SIFGOME2

captured seasonal GPP dynamics better across Monsoon Low, Monsoon Mid, and Mediterranean Mid
subregions (Figure 2 and Table S2). Conversely, EVI was slightly better at capturing seasonal GPP dynamics
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across Mediterranean Low and Monsoon High subregions (Figure 2 and Table S2). Comparison of the 0.5°
coarse and 3 km fine-resolution site footprints for EVI and PRI revealed that these findings are largely
robust across spatial scales, with the exception of the Mediterranean Mid subregion (Figures S3 and S4).

Monsoon Mid sites included two evergreen forest sites (FUF and VCP) and two evergreen woodland
sites (MPJ and WJS) at 1,900 to 2,500 m elevation (Table S1). GPP at these sites typically declines with
snowmelt-derived soil moisture during early summer and then resumes with the arrival of monsoon precipi-
tation in July–August, resulting in a characteristic bimodal GPP seasonality (Biederman et al., 2017). SIFGOME2

captures both the spring and summer peaks in GPP seasonality, while EVI and PRI capture only a single sea-
sonal peak resulting from the summer monsoon precipitation (Figure 2). While there is some variation across
these sites, we show that this general pattern of SIF sensitivity to early season GPP dynamics is observable
across individual EC sites within the subregion (Figure S5). We found further evidence that SIF better captures
early-season GPP dynamics by evaluating SIFOCO2 retrievals for the Valles Caldera evergreen forest site (VCP)
in NewMexico (Figure S6). We found that both SIFGOME2 and SIFOCO2 captured significant early-season photo-
synthetic activity consistent with GPP patterns, whereas EVI and PRI did not capture early-season photosyn-
thetic activity (Figure S6).

Mediterranean Mid subregions included two sites comprising one oak-pine forest (SCF) and one chamise
chaparral (SOB) site at 1,500 to 1,700 m elevation (Table S1). GPP at these sites typically peaks in May and
is sustained through the summer months given sufficient winter soil moisture stores and/or summer rainfall
(Biederman et al., 2017). SIFGOME2 and PRI were found to accurately capture peak GPP (Figure 2 and Table S2),
whereas EVI peaked relatively earlier in the season (Figure 2).

The Monsoon High subregion included only one evergreen forest site (VCM) at ~3,000 m elevation (Table S1).
Seasonal GPP at this site is typically sustained by snowmelt from roughly May to June, and monsoon preci-
pitation from roughly July to August, resulting in a single GPP peak (Biederman et al., 2017). EVI and
SIFGOME2 both captured these single peaks in GPP (Figure 2 and Table S2).

The Monsoon Low subregion included desert grassland (AUD, SEG, SRG, and WKG), shrubland (RAY, SES, SRC,
and WHS), and savanna (SRM and TES) at 500 to 1,600 m elevation (Table S1). Seasonal GPP at these sites is
dominated by a single late summer peak driven by monsoonal precipitation (Biederman et al., 2017). EVI,
SIFGOME2, and PRI all captured these single peaks in GPP (Figure 2 and Table S2).

Figure 2. Mean monthly (±1 standard deviation) GPP, EVI, SIFGOME2, and PRI based on a 0.5° coarse-resolution site
footprint. (a–e) Subregional aggregations of EC sites based on similarity in seasonal climatic and ecological dynamic.
Site-level and subregional-level statistics can be found in Table S2.
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The Mediterranean Low subregion included one evergreen pinyon-juniper (SCW) and one chaparral (SCC)
site at ~1,300 m elevation (Table S1). Seasonal GPP at these sites typically peaks in the early spring
(March–April), followed by an early summer dry-down (Biederman et al., 2017). A second smaller GPP peak
sometimes occurs in the summer months, depending on summer precipitation (Biederman et al., 2017).
EVI, SIFGOME2, and PRI were found to capture the early season peak in GPP. Notably, SIFGOME2 appears to bet-
ter capture the late season smaller peak in GPP (Figure 2).

3.2. Interannual GPP Dynamics

SIFGOME2 was found to most consistently capture the within-site slope of interannual GPP observations (tem-
poral slope = 0.87, p < 0.001), indicating that SIF better captures interannual variability in GPP (Figure 3). By
contrast, EVI (temporal slope = 0.61, p < 0.001) and PRI (temporal slope = 0.20, p = 0.44) showed relatively
reduced sensitivity to interannual variability in GPP (Figure 3 and Table S3). We observed these trends across
all subregions of the Southwest, although trends in the Monsoon High and Mediterranean Mid subregions
were nonsignificant due largely to the limited number of observation years (Figure 3 and Table S3).
Surprisingly, utilizing the 3 km fine-resolution site footprint significantly decreased the sensitivity of EVI to
GPP interannual variability (slope = 0.38; p < 0.05) (Figure S7).

We evaluated the 2016 GPP anomaly at the SRM savanna site to further explore differences in interannual
GPP sensitivities (Figure 4). In 2016, due to the previous year’s above average precipitation, SRM GPP
increased by 63% relative to the decadal mean (2007–2016) (Figure 4). Both SIFGOME2 and SIFOCO2 observa-
tions were able to roughly capture the pattern and magnitude of the 2016 GPP anomaly. In contrast, EVI
and PRI were largely insensitive to the 2016 GPP anomaly. Notably, both EVI and PRI appear to miss the large
increase in springtime GPP that is a defining feature of the 2016 GPP anomaly. Utilizing the 3 km fine-
resolution site footprint did not improve the interannual sensitivity of EVI or PRI (Figure 4).

4. Discussion
4.1. Seasonal GPP Dynamics

We found that SIFGOME2 is an improved proxy for seasonal GPP dynamics relative to EVI and PRI for the
Southwest (Figure 2 and Table S2). SIFGOME2 showed the best performance of the three proxies examined
for sites within the Monsoon and Mediterranean Mid subregions—subregions at relatively higher

Figure 3. Linear fit (±SD) between the interannual variability of GPP and EVI, SIFGOME2, and PRI based on a 0.5° coarse-
resolution site footprint. (a) Linear fit through annual anomalies from all sites. (b–d) Linear fit for all annual anomalies
for a given subregion. The solid lines indicate a linear fit significant at the 0.05 significance level, whereas the dashed
lines indicate a linear fit significant at the 0.125 significance level. Linear fits with an associated significance level greater
than 0.125 are not shown. PRI not included due to significance level greater than 0.125 across all subregions. Monsoon
High subregion not included due to limited site years. The dashed black lines show the axis origins as well as the ideal
1:1 relationship. Site-level statistics can be found in Table S3.
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elevations and with higher proportions of evergreen forests and woodlands (Table S1). For these sites,
SIFGOME2 was able to capture early-season photosynthesis that was not captured by either EVI or PRI
(Figure S5 and Table S2). A likely explanation for this result is that proxies based on changes in vegetation
greenness (i.e., EVI and PRI) fail to capture seasonal photosynthetic activity of evergreen trees, since
greenness and photosynthesis are often decoupled for this vegetation type (Verma et al., 2014; Vicca et al.,
2016; Walther et al., 2016), whereas SIF is a direct measure of photosynthetic activity (Manish Verma et al.,
2017; Walther et al., 2016; Yang et al., 2017). We suspect that EVI and PRI seasonality in these subregions is
more likely tracking changes in greenness of intermixed (e.g., subcanopy) annual and deciduous
vegetation (Manish Verma et al., 2017; Verma et al., 2014; Vicca et al., 2016). This finding is supported by
the 2016 GPP anomaly at the VCP site, for which both SIFGOME2 and SIFOCO2 time series were found to
capture early season photosynthetic activity, whereas EVI and PRI did not (Figure S6). Our results are
consistent with previous studies that have demonstrated similar potential for SIF as an improved GPP
proxy (Manish Verma et al., 2017; Perez-Priego et al., 2015; Sanders et al., 2016; Wood et al., 2016; Yang
et al., 2017; Zarco-Tejada et al., 2016; Zhang et al., 2014), although few to our knowledge have evaluated
dryland, water-limited ecosystems such as these.

SIFGOME2 was well correlated with seasonal GPP for Monsoon and Mediterranean Low sites, but to a roughly
equal or slightly lesser degree than EVI (Figure 2 and Table S2). EVI is likely an equally useful GPP proxy for
low-elevation sites since they are dominated by ephemerally green vegetation (dryland shrubs and grasses)
that “green up” and “brown down” in synchronization with seasonal GPP dynamics (Biederman et al., 2017;
Ma et al., 2014; Manish Verma et al., 2017; Verma et al., 2014). SIFGOME2 captured these seasonal GPP
dynamics as well, but likely suffered from a relatively low signal-to-noise ratio (Joiner et al., 2013, 2016).
PRI was also correlated with seasonal GPP for these sites, yet with consistently lowest correlation

Figure 4. The 2016 anomaly for the Santa Rita Experimental Range Mesquite (SRM) EC flux tower site. Monthly (a) GPP,
(b) EVI, (c) SIFGOME2 and SIFOCO2, and (d) PRI. Reported on each plot are the integrated annual change (Δ) and the linear
temporal slope (slope) between a given satellite index and GPP for both the 30 min coarse (C) and 3 km fine (F)-resolution
site footprints. See Figure 1c for a map of the SRM site and SIFOCO2 observations.
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coefficients across subregions. This is likely due to the relatively low reflectance ratio of the data input
MODIS Band 13, which causes substantial information loss over high-reflectance deserts and sparsely vege-
tated ecosystems of the Southwest (He et al., 2016). The limitations associated with SIFGOME2 and PRI data
highlight the need for more field-level studies for which spatiotemporal resolution and the signal-to-noise
ratio can be improved, thus enabling a more complete and unbiased evaluation of the information con-
tained in these indices.

4.2. Interannual GPP Dynamics

We found that SIFGOME2 is more sensitive to interannual GPP variability relative to EVI and PRI for the
Southwest (Figure 3 and Table S3). This is likely due to increased sensitivity of SIF to GPP during periods of
water stress (Perez-Priego et al., 2015; Walther et al., 2016), as well as to a lesser extent relative insensitivity
of SIF to background soil reflectance (Badgley et al., 2017). Increased SIF sensitivity to interannual variability
of GPP was surprisingly consistent across subregions of the Southwest, whereas EVI and PRI were both found
to have notably lower sensitivity to interannual variability of GPP (Figures 3 and S7). Interestingly, interannual
sensitivity of EVI was further reduced when analyzing a 3 km fine-resolution site footprint (Figure S7). We
posit again that the inclusion of more ephemerally green vegetation that “green up” and “brown down” in
synchronization with GPP dynamics when using the 0.5° coarse-resolution site footprint may have resulted
in relatively higher apparent EVI and PRI interannual sensitivity (Sims et al., 2014).

We further evaluated the 2016 GPP anomaly at the SRM EC site (Figure 4). We note that while the IGBP land
cover class for this site is shrub-dominated, the site is more accurately classed as a savanna ecosystem due to
an equal proportion of intermixed mesquite trees and understory shrubs and grasses (Scott et al., 2009). In
2016, SRM had the highest GPP for the 13-year site record due to continuous years of above average preci-
pitation. SIFGOME2 and SIFOCO2 captured seasonal dynamics and an overall magnitude increase comparable to
that of the EC GPP patterns, whereas EVI and PRI appeared relatively insensitive to the 2016 GPP anomaly,
particularly in the early spring (Figure 4). We interpret this finding as further evidence that among the vege-
tation indices evaluated here, SIF is most sensitive to interannual GPP variability since it is more directly
detecting actual changes in photosynthetic activity of both the mesquite trees and grasses, whereas EVI
may miss changes of photosynthetic activity, particularly for mesquite vegetation, which dominate the early
spring GPP signal (Scott et al., 2009).

5. Conclusions

Our findings show that satellite-based SIF could enhance our ability to capture both seasonal and interannual
GPP dynamics across dryland ecosystems. SIF appears to better capture seasonal periods of water stress and
early season GPP dynamics, particularly for evergreen forest sites. In addition, SIF appears to more accurately
capture the relative range of interannual variations in GPP across dryland gradients. Currently, most
satellite-based GPP estimates are derived from VI-based proxies (Ma et al., 2016; Sims et al., 2008; Smith
et al., 2016). Insights presented here suggest that SIF-based GPP estimates could contribute to improved
understanding of drylands and their role in driving interannual variability of the atmospheric CO2 growth rate
(Biederman et al., 2017). The limited spatiotemporal resolution of currently available satellite-based SIF obser-
vations remains a key challenge in our ability to fully evaluate the SIF-GPP relationship. Data downscaling
(Duveiller & Cescatti, 2016) and data assimilation (Lee et al., 2015) are promising approaches for dealing with
this challenge and should remain areas of research priority. Upcoming satellite missions including ESA
TROPOMI (Guanter et al., 2015) and NASA OCO-3 (Stavros et al., 2017) will continue to revolutionize
satellite-based monitoring of SIF.
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