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a b s t r a c t

A cascaded lattice Boltzmann (LB) approach based on central moments and multiple relaxation times to
simulate thermal convective flows, which are driven by buoyancy forces and/or swirling effects, in the
cylindrical coordinate system with axial symmetry is presented. In this regard, the dynamics of the axial
and radial momentum components along with the pressure are represented by means of the 2D Navier-
Stokes equations with geometric mass and momentum source terms in the pseudo Cartesian form, while
the evolutions of the azimuthal momentum and the temperature field are each modeled by an advection-
diffusion type equation with appropriate local source terms. Based on these, cascaded LB schemes involv-
ing three distribution functions are formulated to solve for the fluid motion in the meridian plane using a
D2Q9 lattice, and to solve for the azimuthal momentum and the temperature field each using a D2Q5 lat-
tice. The geometric mass and momentum source terms for the flow fields and the energy source term for
the temperature field are included using a new symmetric operator splitting technique, via pre-collision
and post-collision source steps around the cascaded collision step for each distribution function. These
result in a particularly simple and compact formulation to directly represent the effect of various geomet-
ric source terms consistently in terms of changes in the appropriate zeroth and first order moments.
Simulations of several complex buoyancy-driven thermal flows and including rotational effects in cylin-
drical geometries using the new axisymmetric cascaded LB schemes show good agreement with prior
benchmark results for the structures of the velocity and thermal fields as well as the heat transfer rates
given in terms of the Nusselt numbers. Furthermore, the method is shown to be second order accurate
and significant improvements in numerical stability with the use of the cascaded LB formulation when
compared to other collision models for axisymmetric flow simulations are demonstrated.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid motion in cylindrical coordinates with axial symmetry
that is driven by rotational effects and/or thermal buoyancy effects
arise widely in a number of engineering applications and
geophysical contexts (e.g., [1–5]). Some examples of technological
applications encountering heat and mass transfer effects in
axisymmetric flows include pipeline systems, heat exchangers,
solar energy conversion devices, crystal growth and material
processing systems, electronic cooling equipment and turboma-
chinery. Computational methods play an important role for both
fundamental studies of the fluid mechanics and heat transfer
aspects and as predictive tools for engineering design of such
systems. In general, fluid motion in cylindrical coordinates due to
swirling effects and buoyancy forces, and accompanied by thermal
and mass transport is three-dimensional (3D) in nature. Computa-
tional effort for such problems can be significantly reduced if axial
symmetry, which arise in various contexts, can be exploited; in
such cases the system of equations can be reduced to a set of
quasi-two-dimensional (2D) problems in the meridian plane,
where the simulations can be performed for broader ranges of
the parameter spaces more efficiently. Traditionally, numerical
schemes based on finite difference, finite volume or finite elements
were constructed to solve the axisymmetric Navier-Stokes (NS)
equations for the fluid flow along with the advection-diffusion
equation for the energy transport (e.g., [6,7]).

On the other hand, lattice Boltzmann (LB) methods, which arise
as minimal kinetic models of the Boltzmann equation, has
attracted much attention and application to a wide range of fluid
flows and heat and mass transfer problems [8–12]. They can be
characterized as mesoscopic computational approaches, which
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have the following unique features and advantages: Its streaming
step is linear and exact and all nonlinearity is modeled locally in
the collision step; by contrast, the convective term in the NS equa-
tion is nonlinear and nonlocal. As a result, the pressure field is
obtained locally in the LB methods, circumventing the need for
the solution of the time consuming elliptic Poisson equation as in
traditional methods. The exact-advection in the streaming step
combined with the collision step based on a relaxation model leads
to a second order accurate method with relatively low numerical
dissipation. The kinetic model for the collision step can be tailored
to introduce additional physics as necessary and its additional
degree of freedom can be tuned to improve numerical stability.
Various boundary conditions for complex geometries can be repre-
sented using relatively simple rules for the particle populations.
Finally, the locality of the method makes it amenable for almost
ideal implementation on parallel computers for large scale flow
simulations.

Following an approach for the solution of the Boltzmann equa-
tion in cylindrical coordinates [13], during the last two decades,
various LB schemes for athermal flows (i.e., without heat transfer
effects) have been introduced [14–22]. These approaches can be
categorized according to the following: (i) Coordinate transforma-
tion method [14–18], in which the axisymmetric mass and
momentum equations are reformulated as quasi-2D flow equa-
tions in the Cartesian forms with additional geometric source
terms and then solved using a LB scheme. (ii) Vorticity-stream
function approach [19], where LB models are introduced to simu-
late flows in the cylindrical coordinates written in terms of the vor-
ticity and stream function equations. (iii) Radius-weighted
formulation [20], in which a simplified LB method is derived from
a discretization of the continuous Boltzmann equation in cylindri-
cal coordinates recast in a radius-weighted form. An analysis of
these axisymmetric LB models were performed by [21]. Generally,
these approaches use a popular single relaxation time (SRT) model
for the representation of the collision step in the LB scheme.

Further progress in the LB methods for the simulation of
axisymmetric thermal flows have been reported in various studies
[23–32]. Earlier LB models in this regard [23,24] used an hybrid
approach, in which the energy equation was solved via a finite dif-
ference scheme. Later, [25,26] solved the axisymmetric equation
for the temperature field written in terms of a pseudo-2D
advection-diffusion equation with a source term using a LB scheme
based on a separation distribution function from that for the flow
field. On the other hand, [27,28] extended the radius-weighted for-
mulation approach for axisymmetric fluid flow [20] for the simula-
tion of thermal energy transport. A fractional-step based LB flux
solver for axisymmetric thermal flow was presented in [30]. All
these approaches were based on the common SRT model [33], in
which, during the collision step, the distribution functions relax
to their local equilibria using a single relaxation parameter. This
was further extended by the introduction of two tunable parame-
ters as coefficients to the additional gradient terms in the equilib-
rium distribution functions [32]. Generally, SRT based LB schemes
are known to be susceptible to numerical instabilities for
convection-dominated flows or fluids with relatively low values
of transport coefficients. In order to address this issue, the collision
step based on a multiple relaxation time (MRT) model [34] has
been constructed, in which raw moments of different orders relax
at different rates. Few MRT LB schemes for axisymmetric thermal
convective flows have recently been developed [26,29,30].

On the other hand, further improvements to the collision step
enhancing the flow and thermal transport modeling capabilities
can be achieved via the introduction of the cascaded collision
model [35]. In this approach, the effects of collisions are repre-
sented in terms of relaxation of different orders of central
moments, which are obtained by shifting the particle velocity, by
the local fluid velocity at different rates. As the collision model is
prescribed based on a local moving frame of reference, the relax-
ation steps for successive higher order moments exhibit a cascaded
structure. The cascaded collision formulation was shown to be
equivalent to considering relaxation to a generalized equilibrium
in the rest or lattice frame of reference [36], and was augmented
with forcing terms in 2D and 3D in [37,38]. Improvements in the
numerical properties achieved using such advanced cascaded colli-
sion models based on central moments were recently demon-
strated [39,40]. A modified formulation based on central
moments involving relaxation to discrete equilibria rather than
continuous Maxwellian equilibria was also proposed [41]. In order
to accelerate convergence of steady flows, a preconditioned cas-
caded LB method was constructed and studied in [42], and whose
Galilean invariance properties were significantly improved via cor-
rections to equilibria in [43]. The cascaded LB scheme has recently
been extended for simulating flows with heat transfer in 2D
[44,45] and in 3D in our recent work [46]. Some related recent
papers that discuss about the forcing schemes as well as thermal
sources are [47–50]. However, for axisymmetric thermal convec-
tive flows including rotational effects, no such advanced LB
schemes are available in the literature.

In this work, we present a new cascaded LB formulation for
thermal flows in cylindrical coordinates with axial symmetry,
and including rotational effects. The mass, momentum (i.e., for
the axial, radial and azimuthal components) and energy equations
rewritten in pseudo-2D Cartesian forms in the meridian plane con-
tain additional geometric source terms, which are included in the
respective cascaded LB schemes via a novel symmetric time-split
formulation that we developed recently [50]. In this approach,
three separate distribution functions are considered: one for the
density, axial and radial momentum components, the second for
the azimuthal momentum component and, finally, the third for
the temperature field. Each of the three distribution functions
evolves according to a cascaded LB scheme. For this triple distribu-
tion functions framework, a two-dimensional, nine velocity (D2Q9)
model is used to solve for the axisymmetric NS equations for the
axial and radial momentum components, while a two-
dimensional five velocity (D2Q5) model is employed to compute
the azimuthal momentum and the temperature field, both of
whose evolution are represented by advection-diffusion equations
with source terms. The use of symmetric operator split formula-
tions based on pre-collision and post-collision source steps with
a half time step in each case for incorporating the geometric source
terms for axisymmetric thermal flows including swirl effects leads
to a particulary simplified formulation. Such an approach is consis-
tent with the classical Strang splitting. As will be shown later in
this paper, the application of central moments based cascaded LB
schemes using MRT can significantly enhance the numerical stabil-
ity of axisymmetric LB simulations allowing broader range of
parameter spaces more efficiently, and the use of symmetric oper-
ator splitting yields a scheme that is second order accurate [50].
Such an axisymmetric cascaded LB formulation for the simulation
of thermally stratified and/or rotating flows in cylindrical geome-
tries can lead to reduced computational and memory costs when
compared to a 3D cascaded LB scheme. Several numerical axisym-
metric benchmark problems focusing on buoyancy-driven flows
and rotational effects are considered to validate our operator-
split axisymmetric cascaded LB schemes for thermal flows. These
include the Taylor-Couette flow, natural convection in an annulus
between two co-axial vertical cylinders, Rayleigh-Benard convec-
tion in a vertical cylinder, cylindrical lid-driven cavity flow, mixed
convection in a tall vertical annulus and melt flow during Czochral-
ski crystal growth in a vertical rotating cylinder.

This paper is organized as follows. In the next section
(Section 2), cascaded LB methods for axisymmetric thermal flows
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with swirl effects using a symmetric operator split formulation for
the various geometric sources and forces are presented. Numerical
results for various benchmark problems are presented and dis-
cussed in Section 3. Finally, the paper concludes with a summary
in Section 4.

2. Cascaded LB methods for axisymmetric thermal convective
flows with swirling effects: symmetric operator splitting
formulation

We will now present cascaded LB methods based on central
moments and MRT for the computation of thermal convective
flows in the cylindrical coordinates with axial symmetry, by also
taking into account azimuthal rotational/swirling effects. A triple
distribution functions based LB approach is considered, where
the geometric source terms arising in the pseudo-2D macroscopic
equations are represented using symmetric operator splitting
around the cascaded collision steps [50]. The solution of the result-
ing cascaded LB models then yields the local fluid flow variables
such as the radial, axial and azimuthal velocity fields, pressure
(or density) field, and the temperature field in the meridian plane.
First, we summarize the macroscopic governing equations for
axisymmetric thermal flows subjected to rotation/swirl.

2.1. Governing equations for thermal flows in cylindrical coordinates
with axial symmetry

For incompressible, axisymmetric thermal flows subjected to
rotational/swirling effects, the macroscopic governing equations
in the cylindrical coordinate system r; h; zð Þ can be written as
(e.g., [20,27])

@tqþ @r qurð Þ þ @z quzð Þ ¼ �qur
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; ð1aÞ
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Here, r; z and h represent the coordinates in the radial, axial and azi-
muthal directions, respectively; accordingly, ur; uz and uh denote the

fluid velocity components in the respective directions, and Fb
r and Fb

z

are radial and axial components of the external body forces, respec-
tively. q and p represent the density and pressure, respectively,
while m and l ¼ qm correspond to the kinematic and dynamic vis-
cosities of the fluid, respectively. / is the passive scalar variable,
which is the temperature field T in the present study (i.e., / ¼ T)
and D/ is the coefficient of diffusivity. Eqs. (1a)–(1c) represent the
axisymmetric NS equations for the axial and radial components of
the velocity field in the meridian plane. The structure of the evolu-
tion equations for the azimuthal momentum quhð Þ and the scalar
field (/) given in Eqs. (1d) and (1e) respectively, is similar in form,
viz., an advection-diffusion equation with a source, and hence they
can be solved using the same numerical procedures.

In order to represent the above macroscopic equations in cylin-
drical coordinates in a set of pseudo-2D Cartesian forms, we apply
the following coordinate/variable transformations:

r; zð Þ # y; xð Þ; ur ;uzð Þ# uy;ux
� �

; quh # w: ð2Þ
Then, the resulting equations in pseudo-Cartesian forms involve
additional terms when compared to the standard flow and thermal
transport equations in 2D, which can be regarded as geometric
source terms. The latter will be introduced via a symmetric operator
splitting technique in the respective cascaded LB formulation in the
following. Thus, the mass and momentum equations for the fluid
motion in the meridian plane (Eqs. (1a)–(1c)) can be written in
pseudo-2D Cartesian forms as
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where the geometric mass source MA and the geometric momen-

tum source vector F A ¼ F A
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can be represented as
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Then, the total force F ¼ Fx; Fy
� �

in this formulation becomes

Fx ¼ F A
x þ Fb

x ; Fy ¼ F A
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Here, the body force Fb ¼ Fb
x ; F

b
y

� �
could be a volumetric force such

as the buoyancy force or the Lorentz force. Similarly, the azimuthal
momentum equation for w ¼ quh can be written as
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and Dw is the coefficient of diffusivity, which is equal to the kine-
matic viscosity of the fluid m, i.e. Dw ¼ m. Finally, the axisymmetric
advection-diffusion equation for the scalar, i.e., the temperature
field (/ ¼ T) in the pseudo-2D cartesian coordinate system reads as

@t/þ @x ux/ð Þ þ @y uy/
� � ¼ @x D/@x/

� �þ @y D/@y/
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where the source term S/ is given as

S/ ¼ �uy/
y
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y
@y/: ð9Þ

Our goal, then, is to represent the evolution of the axial and
radial momentum components along with density or pressure
(Eqs. (3)–(5)) using a distribution function f a, azimuthal
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momentum (Eqs. (6) and (7)) using another distribution function
ga, and the scalar temperature field (Eqs. (8) and (9)) using a third
distribution function ha. We use a D2Q9 lattice for f a, while for
both ga and ha, a D2Q5 lattice would suffice since to represent
advection-diffusion type equations, the lattice is required to satisfy
only a lower degree of symmetry than the lattice used for the
Navier-Stokes equations. In each case, a cascaded LB scheme based
on a symmetric operator splitting will be constructed in the
following.

2.2. Cascaded LB scheme for axial and radial velocity fields: operator
splitting for mass and momentum source terms

In order to consistently include the geometric mass and
momentum sources along with any external body force given in
Eqs. (4) and (5) in a cascaded LB scheme, we will employ a sym-
metric operator splitting strategy with two half force steps around
its collision term [50]. First, we define the following components of
the particle velocities for the D2Q9 lattice:

exj i ¼ 0;1;0;�1;0;1;�1;�1;1ð Þy; ð10aÞ
ey


 � ¼ 0;0;1;0;�1;1;1;�1;�1ð Þy; ð10bÞ
where y is the transpose operator and their components for any par-
ticle direction a are denoted by eax and eay, where a ¼ 0;1; . . . ;8. We
also need the following 9-dimensional vector

1j i ¼ 1;1;1;1;1;1;1;1;1ð Þy ð11Þ
whose inner product with the distribution function f a defines its
zeroth moment. Here, and in the following, we have used the stan-
dard Dirac’s bra-ket notation to represent the vectors. The corre-
sponding nine orthogonal basis vectors may be represented by
(e.g., [37]):
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Here and henceforth, symbols such as e2x ey


 � ¼ exexey



 �
denote a vec-

tor that result from the elementwise vector multiplication of vec-
tors exj i; exj i and ey



 �
. The above set of vectors can be organized

by the following orthogonal matrix

K ¼ K0;K1;K2;K3;K4;K5;K6;K7;K8½ �; ð13Þ
which maps changes of moments under collisions due to a cascaded
central moment relaxation back to changes in the distribution func-
tion (see below). As the cascaded collision operator is built on the
moment space, we first define the central moments and raw
moments of order (mþ n) of the distribution function f a and its
equilibrium f eqa as
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respectively. Here, and in what follows, the prime (0) symbols
denote various raw moments. The central moments of the equilib-
rium are constructed to be equal to those for the Maxwellian, which
then serve as attractors during the cascaded collision represented as
a relaxation process [35]. In the following, an operator splitting
based cascaded LB scheme will be constructed to solve Eqs.
(3)–(5). First, we represent the solution of the mass and momentum
equations in the meridian plane (Eq. (3)) without the respective

source terms (i.e., MA; F
A
x ; F

b
x ; F

A
y ; F

b
y) by means of the evolution of

the distribution function f a using the usual collision and streaming
steps (C and S, respectively) as

Step C : f pa ¼ f a þ K � bp� �
a; ð16aÞ

Step S : f a x; tð Þ ¼ f pa x� eaDt; tð Þ; ð16bÞ

where ea ¼ eax; eay
� �

;Dt is the time step, f pa is the post-collision dis-
tribution function at a location x and time t. bp ¼ bp0; bp1; bp2 . . . bp8

� �
denotes the changes of different moments under collision based
on the relaxation of central moments to their equilibria in a cas-
caded fashion [35]. With the mass and momentum being conserved
during collision bp0 ¼ bp1 ¼ bp2 ¼ 0, and the changes in the higher
order non-conserved moments are given by [35–37]
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Here,x3;x4: � � �x8 are relaxation parameters, wherex3;x4 andx5

are related to the bulk and shear viscosities and the other xi influ-
ence the numerical stability of the method. In particular, the bulk

viscosity is given by n ¼ c2s
1
x3

� 1
2

� �
Dt and the shear viscosity by

m ¼ c2s
1
xj
� 1

2

� �
=Dt, where j ¼ 4;5, and c2s ¼ c2=3, with c ¼ Dx=Dt. In

this work, we consider the lattice units, where Dx ¼ Dt ¼ 1 and
hence the speed of sound cs ¼ 1=

ffiffiffi
3

p
, and the higher order relaxation

parameters x6;x7 and x8 are set to unity for simplicity. After the
streaming step (see Eq. (16b)), the output density field and the
velocity field components (designated with a superscript ‘‘o”) as
the zeroth and first moments of f a, respectively:

qo ¼
X8
a¼0

f a; qouo
x ¼

X8
a¼0

f aeax; qouo
y ¼

X8
a¼0

f aeay ð18Þ

and p ¼ c2sqo. We then introduce the influence of the mass source

MA in Eq. (3a) and the momentum sources F A
x ¼ F A

x þ Fb
x and

Fy ¼ F A
y þ Fb

y in Eqs. (3b) and (3c), respectively, as the solution of
the following two sub problems, referred to as the mass source step
M and momentum source step F, respectively:

Step M : @tq ¼ MA; ð19aÞ
Step F : @t quð Þ ¼ F ¼ FA þ Fb; ð19bÞ

where u ¼ ux;uy
� �

and FA ¼ F A
x ; F

b
y

� �
etc. In our previous work [50],

we constructed a symmetric operator splitting based approach to
incorporate a single momentum source in a cascaded LB method.
In the present work, we further extend this approach to symmetric
splitting of multiple operators related to mass and momentum
sources. In other words, we perform two symmetric steps of half
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time steps of length Dt=2 of M and F, one before and the other after
the collision step. The overall symmetrized operator splitting based
cascaded LB algorithm implementing all the four operators (C;S;M
and F) during the time interval t; t þ Dt½ � may be written as

f a x; t þ Dtð Þ ¼ M1=2 F1=2CF1=2M1=2S f a x; tð Þ; ð20Þ
where M1=2 and F1=2 represent solving Eqs. (19a) and (19b), respec-
tively, over time step Dt=2. Both of these steps introduce the effect
of geometric mass and momentum source and the body forces
directly into the moment space.

Solving Eqs. (19a) and (19b) for the first part of symmetric
sequence needed in Eq. (20) yields
q� qo ¼ MA Dt

2 ;qux � quo
x ¼ Fx

Dt
2 and quy � quo

y ¼ Fy
Dt
2 . Thus, we

have

Pre-collision Mass Source Step M1=2 : q ¼ qo þMA Dt
2

; ð21aÞ

Pre-collision Momentum Source Step F1=2 : qux ¼ quo
x þ Fx

Dt
2
; ð21bÞ

quy ¼ quo
y þ Fy

Dt
2
; ð21cÞ

where MA; Fx and Fy are given in Eqs. (4a)–(4c) and (5), and qo;uo
x

and uo
y are obtained using Eq. (18). Based on Eq. (20), the next step

is the collision step, which is performed using the updated density
and velocity fields (q;ux;uy) given in Eqs. (21a)–(21c) and then
determining the change of moments under collisionbpb b ¼ 3;4 . . .8ð Þ using Eq. (17). Then, implementing the other part
of the symmetrized mass and momentum steps with using a half
time step to solve Eqs. (19a) and (19b), we obtain the target density
and velocity field after collision represented as qp;up

x ; u
p
y

� �
via

qp � q ¼ MA Dt
2 ; qup

x � qux ¼ Fx
Dt
2 and qup

y � quy ¼ Fy
Dt
2 . Thus, we

have

Post-collision Momentum Source Step F1=2 : qup
x ¼ qux þ Fx

Dt
2
;

qup
y ¼ quy þ Fy

Dt
2
; ð22aÞ

Post-collision Mass Source Step M1=2 : qp ¼ qþMA Dt
2
: ð22bÞ

By rewriting the above results for the post-collision source steps in

terms of the output density qo and velocity field uo ¼ uo
x ;u

o
y

� �
via

Eqs. (21a)–(21c), we get

qp ¼ qo þMADt; qup
x ¼ quo

x þ FxDt; qup
y ¼ quo

y þ FyDt: ð23Þ

To effectively design the post-collision distribution function f pa in
the cascaded LB scheme so that Eq. (23) is precisely satisfied, we
consider f pa ¼ f a þ K � bp� �

a and taking its zeroth and first moments,
we obtain

qp ¼ Raf
p
a ¼ Raf a þ Rb Kb 1j ibpb; ð24aÞ


qup
x ¼ Raf

p
aeax ¼ Raf aeax þ Rb Kb exj ibpb; ð24bÞ


qup
y ¼ Raf

p
aeay ¼ Raf aeay þ Rb Kb ey



 �bpb: ð24cÞ

Since the orthogonal basis vectors Kb



 �
given in Eq. (12) satisfy

Rb Kb 1j i ¼ 9bp0;Rb Kb exj i ¼ 6bp1;Rb Kb ey


 � ¼ 6bp2





, Eqs. (24a)–(24c)

become

qp ¼ qo þ 9bp0; qup
x ¼ quo

x þ 6bp1; qup
y ¼ quo

y þ 6bp2: ð25Þ
Comparing Eqs. (23) and (25), it follows that the change of the zer-
oth moment bp0

� �
and the first moments bp1

�
and bp2Þ due to mass

and momentum sources can be written as

bp0 ¼ MA

9
Dt; bp1 ¼ Fx

6
Dt; bp2 ¼ Fy

6
Dt: ð26Þ
where MA follows from Eq. (4a), Fx and Fy are given in Eq. (5) and
(4b) and (4c). These expressions effectively provide the desired
post-collision states of the distribution function, i.e., f pa due to mass
and momentum sources.

The overall scheme presented above based on operator splitting
provides a consistent approach to represent mass and momentum
sources in the fluid motion. In particular, the pre-collision steps
each over a half time step length shown in Eqs. (21a)–(21c) intro-
duce the effect of mass source and the forces into the moment
equilibria of all orders before they undergo central moment relax-
ation (Eq. (17)). As a result, in particular, they eliminate the spuri-
ous terms such as Fiuj þ Fjui arising in the second order non-
equilibrium moments related to the viscous stress in the
Chapman-Enskog analysis and correctly recover the Navier-
Stokes equations [51,50]. In addition, the use of two half mass
source/force steps around the collision step is consistent with the
classical Strang splitting of multiple operators and is second order
accurate (see [51,50] for details and also [52] for its application to a
multiple relaxation formulation). An alternative approach to intro-
duce forcing terms based on an unsplit formulation for the cas-
caded LB method has been presented recently in [47,48].

Thus, finally expanding K � bp� �
a in Eq. (16a), the components of

the post-collision distribution functions read as

f p0 ¼ f 0 þ bp0 � 4 bp3 � bp8
� �� �

;

f p1 ¼ f 1 þ bp0 þ bp1 � bp3 þ bp4 þ 2 bp7 � bp8
� �� �

;

f p2 ¼ f 2 þ bp0 þ bp2 � bp3 � bp4 þ 2 bp6 � bp8
� �� �

;

f p3 ¼ f 3 þ bp0 � bp1 � bp3 þ bp4 � 2 bp7 þ bp8
� �� �

;

f p4 ¼ f 4 þ bp0 � bp2 � bp3 � bp4 � 2 bp6 þ bp8
� �� �

;

f p5 ¼ f 5 þ bp0 þ bp1 þ bp2 þ 2bp3 þ bp5 � bp6 � bp7 þ bp8
� �

;

f p6 ¼ f 6 þ bp0 � bp1 þ bp2 þ 2bp3 � bp5 � bp6 þ bp7 þ bp8
� �

;

f p7 ¼ f 7 þ bp0 � bp1 � bp2 þ 2bp3 þ bp5 þ bp6 þ bp7 þ bp8
� �

;

f p8 ¼ f 8 þ bp0 þ bp1 � bp2 þ 2bp3 � bp5 þ bp6 � bp7 þ bp8
� �

: ð27Þ

where bp0; bp1 and bp2 are obtained from Eq. (26) and bp3; bp4; � � � ; bp8

from Eq. (17).

2.3. Cascaded LB scheme for azimuthal velocity field: operator splitting
for source term

We now construct a novel cascaded LB scheme for the solution
of the equation of the azimuthal momentum component (w ¼ quh)
given in Eqs. (6) and (7) using a D2Q5 lattice [50]. First, defining
the vectors corresponding to particle velocity components and a
5-dimensional vector 1j i as
exj i ¼ 0;1;0;�1;0ð Þy; ð28aÞ
ey


 � ¼ 0;0;1;0;�1ð Þy; ð28bÞ
1j i ¼ 1;1;1;1;1ð Þy; ð28cÞ
where taking the inner product of the distribution function ga with
1j i defines its zeroth moment. Using these, the five orthogonal basis
vectors can be written as

L0 ¼ 1j i; L1 ¼ exj i; L2 ¼ ey


 �

;

L3 ¼ 5 e2x þ e2y



 E

� 4 1j i; L4 ¼ e2x � e2y



 E

; ð29Þ

which can be grouped together as the following transformation
matrix that converts the changes in moments to those in the distri-
bution functions:
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L ¼ L0; L1; L2; L3; L4½ �: ð30Þ
In order to design a cascaded collision operator to solve for the

azimuthal momentum, which acts as a passive scalar field w ¼ quh

described by an advection-diffusion equation under the action of a
local source term (Eqs. (6) and (7)), we define the following central
moments and raw moments of the distribution function ga and its
equilibrium geq

a as

ĵw
xmyn

ĵeq;w
xmyn

 !
¼
X
a

ga
geq
a

� 	
eax � uxð Þm eay � uy

� �n
; ð31Þ

and

ĵw0
xmyn

ĵeq;w0
xmyn

0@ 1A ¼
X
a

ga
geq
a

� 	
emaxe

n
ay: ð32Þ

respectively. The central moments of the equilibrium ĵeq;w
xmyn are

devised be equal to those for the Maxwellian after replacing the
density with the scalar field in its expression. Then the cascaded
collision step is written in terms of the relaxation of different cen-
tral moments to their equilibria. Similar to the previous section, a
symmetrized operator split scheme will now be developed to solve
Eqs. (6) and (7) in the cascaded LB formulation. First, we represent
the solution of Eq. (6) without the source term (Eq. (7)) through the
collision and streaming steps of the distribution function ga as

Step C : gp
a ¼ ga þ L � bq� �

a; ð33aÞ
Step S : ga x; tð Þ ¼ gp

a x� eaDt; tð Þ: ð33bÞ
where gp

a is the post-collision distribution function andbq ¼ bqo; bq1; � � � bq4
� �

represents the changes of different moments
under a cascaded collision prescribed as a relaxation process in
terms of central moments, which reads as [50]

bq1 ¼ xw
1

2
wux � bjw0

x

h i
;

bq2 ¼ xw
2

2
wuy � bjw0

y

h i
;

bq3 ¼ xw
3

4
2c2sw � bjxx

w0
þ bjw0

yy

� �
þ 2 ux bjw0

x þ uy bjw0
y

� �h
þ u2

x þ u2
y

� �
w
i
þ uxbq1 þ uybq2;

bq4 ¼ xw
4

4
� bjxx

w0
� bj0w

yy

� �
þ 2 ux bjw0

x � uy bjw0
y

� �
þ u2

x � u2
y

� �
w

h i
þ uxbq1 � uybq2; ð34Þ

where xw
1 ;x

w
2 ;x

w
3 and xw

4 are the relaxation parameters. Since w is
conserved during collision, bqo ¼ 0. The relaxation parameters for
the first order moments (xw

1 and xw
2 ) are related to diffusivity

Dw ¼ m ¼ c2sw
1
xw

j

� 1
2

� 	
Dt; j ¼ 1;2 where c2sw is a free parameter, which

is set to 1=3. The relaxation parameters for the higher order
moments, which influence numerical stability, are taken to be unity
in this study. After the streaming step in Eq. (33b), the output pas-
sive azimuthal momentum field wo is computed as the zeroth
moment of ga as

wo ¼
X4
a
ga: ð35Þ

The source term Sw, which was eliminated in the above, will
now be introduced by appropriately combining its effect after solu-
tion of the following such problem:

Step R : @tw ¼ Sw ð36Þ
Its solution will now be combined with the split solution obtained
in the absence of the source term in Eqs. (33a) and (33b) via a sym-
metric operator splitting technique over a time interval t; t þ Dt½ �,
analogous to that considered in the previous subsection. This can
be represented as

ga x; t þ Dtð Þ ¼ SR1=2CR1=2ga x; tð Þ; ð37Þ

The pre-collision source step R1=2 is executed via a solution of Eq.
(36) over a duration Dt=2, which yields w� wo ¼ Sw Dt

2 , and hence

Pre-collision Source Step R1=2 : w ¼ wo þ Sw
Dt
2
: ð38Þ

Based on this updated scalar field, the changes of different moments
under collision bqb;b ¼ 1;2;3;4, given in Eq. (34) can be computed.
Similarly, the other part of the source step R1=2 with half time step
following collision can be performed by solving Eq. (36), which can
be expressed as

Post-collision Source Step R1=2 : wp ¼ wþ Sw
Dt
2
; ð39Þ

where wp is the target scalar field after collision. By rewriting it in
terms of the output scalar field wo using Eq. (38), we have

wp ¼ wo þ SwDt: ð40Þ
In order for the post-collision distribution function
gp
a ¼ ga þ L � bq� �

a to satisfy Eq. (40), we write its zeroth moment as

wp ¼ Ragp
a ¼ Raga þ Rb Lb 1j ibqb:


 ð41Þ

Since Rb Lb 1j iqb ¼ 5bqo



via orthogonal of basis vectors (see Eq. (29)),

it follows from Eqs. (35) and (41) that wp ¼ wo þ 5bq0. Comparing
this with Eq. (40), we get the change of the zeroth moment bqo

due to the presence of the source term Sw as

bq0 ¼ Sw
5
Dt: ð42Þ

The modeling of the source term for the transport of a scalar
field via the above operator splitting approach provides a consis-
tent representation of their effect in the convection-diffusion equa-
tion. This is due to the fact that the use of the pre-collision source
step over a half time step (Eq. (38)) introduces the effect of the sca-
lar source term into the moment equilibria of all orders before they
participate in the collision step via the relaxation of various central
moments (Eq. (34)). Moreover, the symmetric application of pre-
and post-collision source steps over a half time step length in each
case makes it consistent with the Strang splitting [50]. Similar con-
siderations hold for the strategy for including the local heat
sources presented in the next section. Another equivalent
approach based on an unsplit formulation to incorporate the
source term for the scalar field is discussed in [49].

Finally, the components of the post-collision distribution func-
tion in Eq. (33a) can be expressed after expanding L � bq� �

a as

gp
0 ¼ g0 þ bq0 � 4bq3

� �
;

gp
1 ¼ g1 þ bq0 þ bq1 þ bq3 þ bq4

� �
;

gp
2 ¼ g2 þ bq0 þ bq2 þ bq3 � bq4

� �
;

gp
3 ¼ g3 þ bq0 � bq1 þ bq3 þ bq4

� �
;

gp
4 ¼ g4 þ bq0 � bq2 þ bq3 � bq4

� �
; ð43Þ

where bqo (i.e., the change of the zeroth moment due to source) is
given in Eq. (42) and bqb; b ¼ 1;2;3;4 (i.e., the changes of the higher,
non-conserved, moments under collision) is obtained from Eq. (34).
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2.4. Cascaded LB scheme for temperature field: operator splitting for
source term

As in the previous section, we consider a D2Q5 lattice, and use
the orthogonal basis vectors Lb and the transformation matrix L

given in Eqs. (29) and (30), respectively, to design a cascaded LB
scheme for the solution of the temperature field / ¼ T. Its evolu-
tion is presented by the advection-diffusion equation with a source
term given in Eqs. (8) and (9). The various central moments and
raw moments of the corresponding distribution function ha and
its equilibrium heq

a are defined as

ĵ/
xmyn

ĵeq;/
xmyn

 !
¼
X
a

ha
heq
a

� 	
eax � uxð Þm eay � uy

� �n
; ð44Þ

and

ĵ/0
xmyn

ĵeq;/0
xmyn

 !
¼
X
a

ha
heq
a

� 	
emaxe

n
ay: ð45Þ

As before, we use the symmetrized operator splitting to include the
source term S/ in the cascaded LB scheme, which can be presented
as:

ha x; t þ Dtð Þ ¼ SR1=2CR1=2ha x; tð Þ; ð46Þ
where C and S denote the collision and streaming steps, respec-
tively, of ha used to solve Eq. (8) (without S/)

Step C : hp
a ¼ ha þ L � br� �

a; ð47aÞ
Step S : ha x; tð Þ ¼ hp

a x� eaDt; tð Þ: ð47bÞ
Here, hp

a is the post-collision distribution function andbr ¼ bro;br1;br2;br3;br4� �
is the change of different moments under col-

lision, with bro ¼ 0 due to / being a collision invariant. In the above,
after the streaming step, the solution of the output scalar field /o is
computed via the zeroth moment of ha as

/o ¼
X4
a¼0

ha: ð48Þ

The operator R1=2 applied twice in Eq. (46) represents the split solu-
tion of the scalar field due to the source term of the evolution equa-
tion @t/ ¼ S/ before and after collision over a half time step Dt=2.
Thus, the pre-collision source step can be expressed as

Pre-collision Source Step R1=2 : / ¼ /o þ S/
2
Dt: ð49Þ

This updated scalar field / is then used to compute the changes of
different moments under collision brb;b ¼ 1;2;3;4, which can be
written as

br1 ¼ x/
1

2
/ux � bj/0

x

h i
;

br2 ¼ x/
2

2
/uy � bj/0

y

h i
;

br3 ¼ x/
3

4
2c2s/� bjxx

/0
þ bj/0

yy

� �
þ 2 ux bj/0

x þ uybj/0
y

� �
þ u2

x þ u2
y

� �
/

h i
þ uxbr1 þ uybr2;

br4 ¼ x/
4

4
� bj/0

xx � bj0/
yy

� �
þ 2 uxbj/0

x � uy bj/0
y

� �
þ u2

x � u2
y

� �
/

h i
þ uxbr1 � uybr2; ð50Þ

where the relaxation parameters x/
1 and x/

2 are related to the ther-

mal diffusivity D/ via D/ ¼ c2s/
1
x/

j

� 1
2

� 	
Dt; j ¼ 1;2, where c2s/ ¼ 1

3 and
x/
3 ¼ x/

4 ¼ 1 in this work. Following this, the post-collision source
step R1=2 can be represented as

Post-collision Source Step R1=2 : /p ¼ /þ S/
2
Dt; ð51Þ

where /p is the target scalar field following collision, which via Eq.
(49) reads as /p ¼ /o þ S/Dt. The post-collision distribution func-
tion hp

a ¼ ha þ L � br� �
a can be made to satisfy this condition using

Eq. (48) and using Rb Lb 1j ibrb ¼ 5br0

after taking its zeroth moment,

i.e., /p ¼Pah
p
a. This provides the following zeroth moment change

due to S/ after collision

br0 ¼ S/
5
Dt: ð52Þ

Finally, the post-collision distribution function hp
a can be explicitly

written after expanding L � br� �
a in Eq. (47a) as follows:

hp
0 ¼ h0 þ br0 � 4br3� �

;

hp
1 ¼ h1 þ br0 þ br1 þ br3 þ br4� �

;

hp
2 ¼ h2 þ br0 þ br2 þ br3 � br4� �

;

hp
3 ¼ h3 þ br0 � br1 þ br3 þ br4� �

;

hp
4 ¼ h4 þ br0 � br2 þ br3 � br4� �

; ð53Þ

where bro is obtained form Eq. (52) and brb;b ¼ 1;2;3 and 4, follows
from Eq. (50) due to various non-conserved moment changes under
collision.

3. Results and discussion

In this section, the cascaded LB schemes described above will be
applied to and studied for different complex flow benchmark prob-
lems to validate them for simulations of axisymmetric flows with
heat transfer and including rotational/swirling effects. These
include the following: (a) Taylor-Couette flow between two rotat-
ing circular cylinders, (b) natural convection in an annulus
between two stationary coaxial vertical cylinders, (c) Rayleigh-
Benard convection inside vertical cylinder heated at the bottom
and cooled at the top, (d) cylindrical cavity flow driven by the
motion of the top lid, (e) mixed convection in a slender vertical
annulus subjected to the inner cylinder rotation, and (f) melt flow
in a cylinder during Czochralski crystal growth process.

3.1. Taylor-Couette flow

As the first test problem, the classical shear-driven circular Cou-
ette flow between two circular cylinders is considered [53]. This
problem is used to assess the cascaded LB scheme for the azi-
muthal velocity component uh given in Section 2.3, whose evolu-
tion is represented by Eqs. (6) and (7). The radii of the inner and
outer cylinders are defined as Ri and Ro, respectively. Let the angu-
lar velocities of the inner and outer cylinders be Xi and Xo, respec-
tively, which induce an azimuthal flow within their annulus gap.
The analytical solution for such a cylindrical Couette flow is given
in terms of the radial variation of the azimuthal velocity as follows:

uh rð Þ ¼ Ar þ B
r
;

where A ¼ XoR2o�XiR
2
i

R2o�R2i
;B ¼ Xi�Xoð ÞR2i R2o

R2o�R2i
. Here, r is the radial distance from

the cylindrical axis. For ease of representation, this can be written in
a non-dimensional form as

uh rð Þ
uo

¼ 1
1� b2 j� b2� � r

Ri
þ Ri

r
1� jð Þ

� �
;
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where uo ¼ XiRi; b is the radius ratio given by b ¼ Ri=Ro and j
denotes the angular velocity ratio, i.e., j ¼ Xo=Xi.

In our simulation, periodic boundary conditions are applied in
the axial direction and the values of the azimuthal velocities
at the inner and outer cylinder are prescribed as uh r ¼ Rið Þ ¼
XiRi ¼ uo and uh r ¼ Roð Þ ¼ XoRo ¼ j

b uo, respectively using the

Dirichlet boundary condition implementation scheme associated
with the advection-diffusion equation representing the dynamics
of uh [54]. The outer cylinder radius is resolved by 200 lattice nodes
and the lattice location for the inner cylinder is fixed using Ri ¼ bRo

for different choices of b. The periodic axial direction is discretized
using 3 lattice nodes. The relaxation times in the cascaded LB
scheme representing the kinematic shear viscosity are set as
xj ¼ 1=s; j ¼ 4;5, where s ¼ 0:6, and uo is chosen such that the
rotational Reynolds number Re ¼ uoRi=m becomes 5. Fig. 1 presents
a comparison of the velocity profiles computed using the
cascaded LB scheme against the analytical solution at the angular
velocity ratio j ¼ 0:1 for various values of the radius ratio b
b ¼ 0:103;0:203;0:303ð and 0:503Þ. It is clear that the agreement
between the numerical and analytical solution is very good.
Fig. 2. Evaluation of order of accuracy for Taylor-Couette flow with a constant
Reynolds number Re ¼ 5, radius ratio b ¼ 1=3 and relaxation time s ¼ 0:6 at
different grid resolutions computed using the axisymmetric cascaded LB scheme.
3.1.1. Order of accuracy
We will now examine our new axisymmetric cascaded LB

scheme for this benchmark problem to establish its order of accu-
racy. In this regard, we consider the diffusive scaling, i.e., an
increase in the grid resolution is accompanied by a proportional
decrease in the Mach number at a fixed viscosity or a fixed relax-
ation time, which corresponds to an asymptotic convergence to
the incompressible flow limit. For this purpose, the global relative
error (Eg;u) is defined as follows:

Eg;u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R uc � uað Þ2
R uað Þ2

s
; ð54Þ

where uc is the numerical velocity field computed using the axisym-
metric cascaded LB scheme and ua is the analytical solution given
above, and the summation is carried out for the whole domain.
We consider fixed values of the Reynolds number Re ¼ 5, radius
ratio b ¼ 1=3, relaxation time that determines the momentum
diffusivity, i.e., the viscosity, to be s ¼ 0:6. Four different grid
Fig. 1. Comparison between the analytical velocity profile (solid lines) and the cascaded
an angular velocity ratio j ¼ 0:1 and for various values of the radius ratio b.
resolutions of 24� 3;48� 3;96� 3, and 192� 3 are considered
and the corresponding relative errors are computed. As displayed
in Fig. 2, the global relative errors have a slope of �2:0 in the
log-log scale, and thus evidently our axisymmetric cascaded LB
scheme is second order accurate.

3.2. Natural convection in an annulus between two coaxial vertical
cylinders

In order to validate our cascaded LB schemes for axisymmetric
flows with heat transfer, we simulate a buoyancy-driven flow
between two coaxial stationary cylinders, which is a prototype
problem of both fundamental and practical interest. Since the flow
field is coupled to the temperature field via the buoyancy force in
view of Eqs. (3a)–(3c), (4a)–(4c), (5), (8) and (9), this problem
LB solution (symbols) for the Taylor-Couette flow between two circular cylinders at



Fig. 3. Schematic illustration of the geometry and boundary conditions for natural
convection in a vertical annulus.
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facilitates a thorough examination of the efficacy of the coupling
between the cascaded LB schemes presented in Section 2.2 and
2.4. A schematic of this problem is depicted in Fig. 3, where
Ri;Ro;H and g are the radii of the inner cylinder and the outer cylin-
der, the height of the cylinder and the gravitation acceleration,
respectively.

For the velocity field, no-slip boundary conditions are consid-
ered on all four walls involving the inner and outer cylindrical sur-
faces, and top and bottom walls. The inner and outer walls of the
lateral cylindrical side walls are maintained at temperatures of
TH and TL, respectively, where TH > TL, while the top and bottom
walls are considered to be thermally insulated (adiabatic). As a
Fig. 4. Streamlines and isotherms for the natural convection between two co-axial ve
computed using cascaded LB schemes. Top row presents streamlines and the bottom ro
result, this generates a body force due to buoyancy in the axial
direction, which under the Boussinesq approximation, can be writ-
ten as gb T � Toð Þ, where b is the thermal expansion coefficient, and
To ¼ TH þ TLð Þ=2. This body force component is added to the geo-

metric source terms in Eq. (5) for Fb
x , which then sets up natural

convection within the annulus of the axisymmetric geometry. This
thermally driven flow problem is characterized by two dimension-
less numbers, viz., the Rayleigh number Ra and Prandtl number Pr
defined as

Ra ¼ gb TH � TLð ÞL3
am

; Pr ¼ m
a
;

where L ¼ Ro � Ri is the annual gap serving as the characteristic
length, and m and a are the kinematic viscosity and thermal diffusiv-
ity, respectively. In addition, the geometric parameters influencing
this problem are the aspect ratio H=L and the radius ratio Ro=Ri, both
of which are set to 2 in the present study. The no-slip conditions for
the velocity field are implemented using the standard half-way
bounce back scheme in the cascaded LB method, while the imposed
temperature and no heat flux conditions on the boundaries are rep-
resented using the approach presented in [54]. All the spatial
derivatives needed in the source terms in Eqs. (4b), (4c) and (9)
are computed using a central difference scheme. The characteristic
velocity due to natural convection

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gb TH � TLð ÞRi

p
is kept small so

that the flow can be regarded as incompressible. We performed
simulations at Pr ¼ 0:7 and Ra ¼ 103;104 and 105 corresponding
to the parameter spaces considered in prior studies [55,56,29]. In
addition, we have also performed additional simulations at higher
rtical cylinders at Pr ¼ 0:7 and (a, d) Ra ¼ 103, (b, e) Ra ¼ 104 and (c, f) Ra ¼ 105

w the isotherms.



Fig. 5. Streamlines and isotherms for the natural convection between two co-axial
vertical cylinders at Pr ¼ 0:7 and (a, c) Ra ¼ 106, (b, d) Ra ¼ 107 computed using
cascaded LB schemes. Top row presents streamlines and the bottom row the
isotherms. Grid resolution used is 300� 300.

Table 1
Grid convergence study given in terms of the average Nusselt number Nu for Ra ¼ 104

for natural convection in a cylindrical annulus computed using axisymmetric
cascaded LB schemes.

Grid Resolution Nu

100� 100 3.172
200� 200 3.199
250� 250 3.202
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Rayleigh numbers of Ra ¼ 106 and Ra ¼ 107 that could serve as pos-
sible reference results for future research work in this area. The
computational domain is resolved using a grid resolution of
200� 200 in the axial and radial directions, respectively, for the
lower Rayleigh number cases (i.e., Ra ¼ 103;104 and 105) and using
300� 300 for higher Rayleigh number considered (i.e., Ra ¼ 106 and
Ra ¼ 107).

Fig. 4 presents the computed streamlines and isotherms for
three different Ra ¼ 103;104 and 105. It is clear that as Ra increases,
the vortical patterns turn to be progressively more complex,
with the Ra ¼ 105 case generating additional pairs of vortices
around the middle of the annulus. Furthermore, as Ra increase,
the isotherms are greatly distorted, and the velocity and thermal
boundary layers become thinner near the hot and cold lateral walls
signifying the strengthened convection mode of heat transfer. It
may be noted that all these observations are consistent with prior
studies based on other numerical methods (e.g., [55,56,29]).
Furthermore, the results for the computed streamlines and the iso-
therms at the higher Ra ¼ 106 and Ra ¼ 107 are presented in Fig. 5.
It can be seen that the streamline patterns become more complex,
with the resulting buoyancy-driven convection becoming more
intense. Also, as can be expected from scaling arguments, the ther-
mal boundary layers near the cylinder walls become thinner
thereby monotonically increasing the heat transfer rate for these
higher Ra cases.

Then in order to quantify the rates of heat transfer on the lateral
walls, the overall Nusselt numbers Nui and Nuo on the inner and
outer cylinders can be defined as

Nui ¼ �Ri

H TH � TLð Þ
Z H

o
@yT
� �

idx; Nuo ¼ �Ro

H TH � TLð Þ
Z H

o
@yT
� �

odx;

and hence the average Nusselt number Nu ¼ Nui þ Nuoð Þ=2.
First, we have conducted grid sensitivity analysis to identify the

minimum grid resolution necessary to provide converged heat
transfer rate results for each Rayleigh number. For example, Table 1
reports the results of a grid convergence test in terms of the aver-
age Nusselt number Nu for a typical Ra ¼ 104 by repeating the sim-
ulations for three different mesh resolutions of
100� 100;200� 200;250� 250. From this table, it can be seen
that for this benchmark problem, while the Nu results between
the grid resolution cases 100� 100 and 200� 200 cases vary
appreciably, that between 200� 200 and 250� 250 show rela-
tively negligible variations. Hence, the results with using
200� 200 can be deemed to have shown grid convergence for
Ra ¼ 104. In a similar manner, we have performed a sensitivity
study and established the grid convergence for various Ra for dif-
ferent benchmark problems.

Table 2 shows a comparison of the average Nusselt number
computed using the cascaded LB scheme for Ra ¼ 103;104, and
105 against prior numerical benchmark results [55,56,29]. It can
be seen that our predictions for the average Nusselt numbers agree
well with those obtained by other methods. In addition, this table
also includes new results for the higher Ra of 106 and 107. It is evi-
dent that increasing the Rayleigh number increases the average
Nusselt number. For example, the heat transfer rate increases by
about six times when Ra increases from 104 to 107. The new quan-
titative data for Nu for Ra ¼ 106 and 107, in particular, could serve
as possible benchmark results for future research work.

3.3. Rayleigh-Benard convection in a circular vertical cylinder

We now demonstrate the ability of our axisymmetric cascaded
LB schemes to simulate Rayleigh-Benard convection in a vertical
cylinder, which is classical thermally-driven flow and has been
well studied experimentally and using conventional numerical
methods (e.g. [57,5]). Here, the fluid is heated from below, where
the bottom wall is at a temperature TH while the top wall is kept
at a lower temperature TL and the lateral wall of a cylinder of
radius R and height H is maintained to be adiabatic (see Fig. 6).
As a result of the buoyancy force generated, this sets up natural
convection currents, whose dynamics is governed by the Rayleigh



Table 2
Comparison of the average Nusselt number Nu for different Ra for natural convection
in a cylindrical annulus computed using axisymmetric cascaded LB schemes with
other reference numerical solutions and new results for Ra ¼ 106 and 107.

Ra Cascaded LB schemes Ref. [55] Ref. [56] Ref. [29]

103 1.688 – – 1.692

104 3.199 3.037 3.163 3.215

105 5.781 5.760 5.882 5.798

106 10.421 – – –

107 18.411 – – –

Fig. 6. Schematic illustration of Rayleigh-Benard Convection in a vertical cylinder.

Table 3
Comparison of the dimensionless maximum velocity obtained using the scaleffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbH TH � TLð Þp

for Rayleigh-Benard convection in a vertical cylinder at Ra ¼ 5� 103

computed using axisymmetric cascaded LB schemes with reference data.

Ra Reference Up-flow Down-flow

Ref. [27] 0.353 0.351

5� 103 Ref. [5] 0.353 0.353

Present work 0.353 0.351
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number Ra ¼ gb TH � TLð ÞH3= amð Þ, Prandtl number, Pr ¼ m=a and
the cylinder aspect ratio RA ¼ H=R. For the purpose of validating
the novel LB schemes presented in this work, we set
Pr ¼ 0:7;Ra ¼ 5� 103 and RA ¼ 1 and the domain is resolved by
100� 100 lattice nodes by using the relaxation times
xj ¼ 1=s; j ¼ 4;5, where s ¼ 0:85. No slip, and constant tempera-
ture and adiabatic boundary conditions are represented by using
the same approaches are mentioned earlier, and the axis of sym-
metry is taken into account by using the mirror boundary condi-
tions for the particle distribution functions in the LB schemes.

Fig. 7 show the steady isotherms and velocity vectors. Interest-
ingly, it can be seen that based on the initial conditions for temper-
ature, different flow patterns and isotherms are observed. In
particular, if the initial temperature is set to TL everywhere, an
up flow draft around the center of the cylinder is observed, while
if a higher buoyancy force is prescribed by the initial conditions,
a down flow convective current around the center of the cylinder
is set up. These reversal in flow patterns are consistent with find-
ings based on other numerical schemes [27,5].

In addition, Table 3 presents a comparison of the maximum
velocity in dimensionless form using the natural convection veloc-
Fig. 7. Isotherms and velocity vectors for Rayleigh-Benard convection in a vertical cylinde
Down-flow pattern.
ity scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbH TH � TLð Þp

obtained using axisymmetric cascaded LB
approach with the results from the work of [27,5]. Evidently, the
computed results agree very well with those reported in the
literature.

3.4. Swirling flow in a lid-driven cylindrical container

In this section, we investigate the ability of the axisymmetric
cascaded LB schemes to accurately simulate the dominant role
played by the swirling motion and its coupling with the complex
radial and axial flow induced in the meridian plane. In this regard,
we consider the symmetry breaking flow in a cylindrical container
of radius R and height H driven by a rotating top end wall at angu-
lar velocity X (see Fig. 8).

The dynamics of this flow is presented by Eqs. (3a)–(3c), (4a)–
(4c), (6) and (7), whose solution scheme via our cascaded LB for-
mulation is presented in Section 2.2 and 2.3. Briefly, as the fluid
in the vicinity of the top lid gains azimuthal motion, it is ejected
radially outward, and then downward due to the constraining
effect of the side wall. Subsequently as the fluid reaches the bottom
it is pushed radially inward, and when it is closer to the axis, it
travels upward, thereby completing flow circulation in the merid-
ian plane. The details of the physics and the flow pattern depend
on the aspect ratio RA ¼ H=R and the rotational Reynolds number
Re ¼ R2X=m. Various experiments (e.g., [58,59]) and numerical sim-
ulations (e.g., [60–62]) have revealed that for certain combinations
of the characteristic parameters RA and Re, distinct recirculation
region around the cylinder axis, designated as the vortex break-
down bubble, may occur. For example, Refs. [59,63] show that
for cases (RA;Re) equal to (1.5, 990) and (2.5,1010), no vortex
breakdown bubbles occur whereas for (1.5, 1290), they do occur.

In order to asses and validate our cascaded LB schemes pre-
sented earlier to simulate such complex swirling flow, we consider
the following four test cases: Re ¼ 990 and Re ¼ 1290 with
RA ¼ 1:5 and Re ¼ 1010 and Re ¼ 2020 with RA ¼ 2:5. The compu-
tational domain is resolved using a mesh resolution of 100� 150
for RA ¼ 1:5 and 100� 250 for RA ¼ 2:5. No-slip boundary condi-
tions are used at bottom, lateral and top walls: uh ¼ ur ¼ uz ¼ 0
at z ¼ 0 and r ¼ R, and uh ¼ rX;ur ¼ uz ¼ 0 at z ¼ H. The streamli-
nes computed using the cascaded LB schemes for the above
four cases are in Fig. 9. It can be seen that no vortex break-down
r at Ra ¼ 5� 103; Pr ¼ 0:7; RA ¼ 1. Left column: Up-flow pattern and Right column:



Fig. 8. Schematic of swirling flow in a confined cylinder driven by a rotating top lid.

Fig. 9. Computed streamline patterns in the meridian plane due to swirling flow in a con
using the axisymmetric cascaded LB sachems: (a) RA ¼ 1:5 and Re ¼ 990, (b) RA ¼ 1:5 an
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bubbles appear for (RA;Re) equal to (1.5, 990) and (2.5, 1010). On
the other hand, one vortex break down bubble is seen at (1.5,
1290) and two break down bubbles occur in the vicinity of the
cylinder axis at (2.5, 2200). These distinct regimes in swirling flows
and the complex flow structure for different (RA;Re) cases are strik-
ingly consistent with prior numerical solution (e.g., [63,20,22,64]).
Quantitative comparison of the computed structure of the axial
velocities along the axis of symmetry obtained using the axisym-
metric cascaded LB schemes for the above four sets of the aspect
ratios RA and Reynolds numbers Re against the results from a NS-
based solver (given in [63]) are shown in Fig. 10. Here, the axial
velocity is scaled by the maximum imposed azimuthal velocity
uo ¼ XR on the rotating lid and the axial distance z by the cylinder
height H. The numerical results of our central moments based cas-
caded LB method for the axial velocity profiles are in very good
agrement with the NS-based solution approach [63]. Also, in par-
ticular, notice local negative values for the axial velocities for the
cases Re ¼ 1290 and RA ¼ 1:5 and Re ¼ 2200 and RA ¼ 2:5, which
is an indication of the presence of one or more vortex breakdown
bubbles. As such, both the magnitudes and the shapes of the axial
velocity distributions are well reproduced by our cascaded LB
approach using operator splitting to represent complex flows in
cylindrical coordinates.
fined cylinder driven by a rotating lid at various aspect ratios and Reynolds numbers
d Re ¼ 1290 (c)RA ¼ 2:5 and Re ¼ 1010 and (d)RA ¼ 2:5 and Re ¼ 2200.



Fig. 10. Dimensionless axial velocity profile uz=uo as a function of the dimensional axial distance z=H for (a) RA ¼ 1:5 and Re ¼ 990, (b) RA ¼ 1:5 and Re ¼ 1290 (c)RA ¼ 2:5 and
Re ¼ 1010 and (d)RA ¼ 2:5 and Re ¼ 2200: Comparison between axisymmetric cascaded LB scheme predictions and NS-based solver results ([63]).

Fig. 11. Schematic of the arrangement for mixed convection in a slender cylindrical
annulus with inner lateral wall rotation.
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3.5. Mixed convection in a slender vertical annulus between two
coaxial cylinders

We will now assess our new axisymmetric LB computational
approach based on central moments to simulate the combined
effects of rotation and buoyancy forces on the flow and heat trans-
fer in confined cylindrical spaces. In this regard, we investigate
mixed convection in a slender vertical annulus between two coax-
ial cylinders arising due to inner side wall rotation, which has
numerous applications related to rotating machinery and various
other heat transfer systems. This problem involving both natural
convection and forced convection due to rotation can test all the
three axisymmetric cascaded LB formulations (Sections 2.2–2.4)
in a unified manner.

A schematic arrangement of this axisymmetric thermal flow
problem is shown in Fig. 11. It consist of two coaxial cylinders of
height H, with an annular gap D ¼ Ro � Ri, where Ri and Ro are
the radii of the inner and outer cylinders, respectively. The lateral
walls of the inner and outer cylinders are maintained at tempera-
tures TH and TL, respectively, where TH > TL, and their bottom and
top ends are thermally insulated. The inner cylinder is subjected to
rotation at an angular velocity Xi, while the outer cylinder and the
end walls are considered to be rigidly fixed. As noted in a recent
study [31], this problem is governed by the following characteristic
dimensionless parameters: Prandtl number Pr ¼ m=a, radius ratio
Rio ¼ Ro=Ri slenderness ratio g ¼ H= Ro � Rið Þ, Reynolds number
Re ¼ XiRiD=m, Grashof number Gr ¼ gb TH � TLð ÞD3=m2, and
r ¼ Gr=Re2, where the parameter r is used to measure the strength
of the buoyancy force relative to the centrifugal force. Hence, r
characterizes the degree of mixed convection.

In the present study, we set Pr ¼ 0:7;Rio ¼ 2;g ¼ 10;Re ¼ 100,
and three cases of r are considered: r ¼ 0;0:01 and 0:05. The grid
resolution used for all the three cases is 40� 400, in which the
location of the inner cylinder from the axis Ri is at 40. Fig. 12 shows
the computed contours of the azimuthal velocity, temperature
field, vorticity and streamlines for the above three values of r.
When r ¼ 0, there is no buoyancy force and the flow and the tem-
perature fields are influenced by the centrifugal force and the
forced convection effects, which manifest in the form of five pairs
of counter-rotating cells, viz., the classical Taylor vortex cells aris-
ing from centrifugal flow instability between curved walls [2]. As r
is increased, the presence of buoyancy forces and the associated



Fig. 12. Contours of (a) azimuthal velocity, (b) temperature, (c) vorticity, and (d)
streamlines for mixed convection in a slender cylindrical annulus for three different
values of r computed using the axisymmetric cascaded LB schemes.

Table 4
Comparison of the mean equivalent thermal conductivity at the inner cylinder in a
slender vertical cylindrical annulus during mixed convection for Re ¼ 100; Pr ¼ 0:7;
Rio ¼ 2;g ¼ 10 at different values of r.

r Ref. [66] Ref. [65] Present work

0 1.473 1.393 1.395
0.01 1.370 1.383 1.378
0.05 1.324 1.323 1.321
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natural convective fluid currents alter the overall flow structure
and the temperature field by their complicated interactions with
primary vortex cells induced by the swirling effects from inner
wall rotation. For example, when r ¼ 0:05, a four-pairs based Tay-
lor vortex structure, rather than five-pair of vortex cells observed
for r ¼ 0, arises from the relative weakening effects of the centrifu-
gal forces in the presence of heating. The strength of the Taylor vor-
tex in the positive azimuthal direction h is seen to be enhanced,
while that negative h direction appear to be diminished and these
observations are consistent with the benchmarks results [65,66]
and recent numerical simulations [30]. In order to quantify the
heat transfer rate in the presence of mixed convection, a mean
equivalent thermal conductivity at the inner cylinder can be
defined as

keq i ¼ lnRio

l

Z H

o
�r

@T
@r






r¼Ri

 !
dr:







Table 4 presents a comparison of the equivalent thermal con-

ductively computed using the axisymmetric cascaded LB formula-
tions against the benchmark results [65,66] for different values of
r. Very good quantitative agrement is seen and this validates the
ability of the cascaded LB schemes in the cylindrical coordinate
system to represent complex flows with heat transfer.

3.6. Melt flow and convection during Czochralski crystal growth in a
rotating cylindrical crucible

As the last test problem, we simulate melt flow and convection
during Czochalski crystal growth, based on a configuration
reported by Wheeler [67], using our axisymmetric cascaded LB
schemes. This Wheeler’s benchmark problem involved both forced
convection due to the rotation of the crucible and the crystal and
natural convection arising from heating effects in the presence of
gravity. It has been studied by a variety of numerical schemes
(e.g., [68,69,23,31]). The geometric arrangement of this problem
is shown in Fig. 13.

Liquid melt in a cylindrical rotating crucible of radius Rc and
height H at an angular rotation rate of Xc undergoes stirred vortical
motion in the meridian plane, which is aided by the angular rota-
tion of the solid crystal of radius Rx at rate Xx. In addition, natural
convection is set up due to the buoyancy force generated from a
differential heating, where the bottom is insulated and its crucible
side is maintained at a temperature TH , while the crystal is at a
lower temperature TL i:e:; TL < THð Þ. These can be prescribed in
terms of the following boundary conditions, where the (x; z) coor-
dinates are scaled by Rc:

ur ¼ uh ¼ @uz
@r ¼ @T

@r ¼ 0 for r ¼ 0 0 6 z 6 a
ur ¼ uz ¼ 0; uh ¼ XcRc; T ¼ TH for r ¼ 1 0 6 z 6 a
ur ¼ uz ¼ 0; uh ¼ rXc;

@T
@z ¼ 0 for z ¼ 0 0 6 r 6 1

ur ¼ uz ¼ 0; uh ¼ rXx; T ¼ TL for z ¼ a 0 6 r 6 b
@ur
@r ¼ @uh

@z ¼ 0; uz ¼ 0; T ¼ TL þ r�b
1�b TH � TLð Þ for z ¼ a b 6 r 6 1

where a ¼ H=Rc;b ¼ Rx=Rc . This flow problem is characterized by
the following dimensionless parameters: Reynolds numbers due
to crucible and crystal rotations Rec ¼ R2

cXc=m and Rex ¼ R2
xXx=m,

and Prandtl number Pr ¼ m=a. We investigate the ability of the
axisymmetric cascaded LB schemes for the simulation of mixed
convection associated with the Wheeler’s benchmark problem
for the following two cases: (a) Rex ¼ 100;Rec ¼ �25 and (b)



Fig. 13. Geometric arrangement of melt flow and convection during Czochralski
crustal growth in a rotating crucible—Wheeler’s benchmark problem.

Fig. 14. Streamlines (upper row) and isotherms (bottom row) corresponding to two
Czochralshi crystal growth: Rex ¼ 100;Rec ¼ �25 (left) and Rex ¼ 1000;Rec ¼ �250 (righ
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Rex ¼ 1000;Rec ¼ �250, where the negative sign denotes that the
sense of rotation of the crystal is apposite to that of the crucible.
We take Pr ¼ 0:05;a ¼ 1, and b ¼ 1 and use a grid resolution of
100� 200 for the simulation of both the cases.

Fig. 14 shows the streamlines and isotherm contours in the
meridian plane of the liquid melt motion for the two cases. It can
be seen that a recirculating vortex appears around the upper left
region below the crystal in both cases in addition to the primary
vortex. The center of this secondary vortex is found to move to
the right at higher Reynolds numbers as a result of higher associ-
ated centrifugal forces. On the other hand, the forced convection
has modest effect on the temperature distribution, as they are lar-
gely alike for both the cases due to the relatively low Reynolds
numbers considered.

Table 5 shows the computed absolute maximum values of the
streamfunction wmax for the above two cases and compared with
prior numerical results presented in [23,68]. In the pseudo-2D
Cartesian coordinates, this is obtained by solving for w using
@w=@y ¼ �yux and @w=@x ¼ yuy. The good agreement confirms that
the new axisymmetric cascaded LB schemas presented in this
study can effectively simulate complex flow and heat transfer
problems in cylindrical geometries.
cases of the Wheeler’s benchmark problem of melt flow and convection during
t).



Table 5
Comparison of the maximum value of the stream function wmax computed using the
axisymmetric cascaded LB schemes with reference numerical solutions for the
Wheeler’s benchmark problem.

Reference Rex ¼ 102;Rec = �25 Rex ¼ 103;Rec = �250

Present work 0.1183 1.123
Ref. [70] 0.1140 1.114
Ref. [68] 0.1177 1.148
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3.7. Comparison of single relaxation time and cascaded LB models for
axisymmetric flow simulations

We will now make a direct comparison between the perfor-
mance of the single relaxation time (SRT) LB scheme and the pro-
posed cascaded LB formulation based on central moments for
axisymmetric flow simulations. In particular, a study of the numer-
ical stability characteristics of these schemes for flow simulations
in the cylindrical coordinates represents a key aspect with impor-
tant practical implications. In this regard, we consider the compu-
tation of lid-driven swirling flow in a cylindrical container
discussed in Section 3.4, as the flow is set up by a shear in the pres-
ence of a geometric singularity between the stationary cylindrical
walls and the rotating lid.

For a fixed angular rotation rate X of the lid of the cylindrical
container of radius R and height H (see Section 3.4 for the nomen-
clature) at different aspect ratios RA ¼ H=A, we will now make a
comparison between the maximum attainable Reynolds number
Re ¼ R2X=m with the axisymmetric SRT [22] and cascaded LB
schemes. In this regard, we gradually reduce the viscosity, or
equivalently, the relaxation time s for a specific grid resolution
until the computation becomes numerically unstable. In the case
of the cascaded LB formulation, this is equivalent varying the relax-
ation times for the second order momentsxj ¼ 1=s, where j ¼ 4;5,
and the remaining relaxation times for the higher order moments
are set to unity for simplicity.

In particular, for two different grid resolutions of 101� 101 and
101� 151 corresponding to the aspect ratios RA of 1:0 and 1:5,
respectively, at a fixed angular velocity X ¼ 0:0014, simulations
are carried out using both these LB models by reducing the relax-
Fig. 15. Comparison of the maximum Reynolds number for numerical stability of single
swirling flow in a confined cylinder at different grid resolutions.
ation time s until the computation becomes unstable, which then
determines the maximum attainable Re in each case. Since the
radius R ¼ 100 for both these grid resolution cases, the maximum
imposed linear velocity of the cylindrical lid RX is 0:14. The onset
of instability is determined when the relative global error increases
rapidly as the simulation progress. Such a computational investiga-
tion is an extension of those considered for the LB models in the
Cartesian coordinates recently [40]. The results are displayed in
Fig. 15, which show significant improvements in numerical stabil-
ity with the use of the axisymmetric cascaded LB approach. It can
be seen that the cascaded LB computations can reach Reynolds
numbers that are about 7 times higher than those with using the
SRT LB scheme for the RA ¼ 1:0, i.e., when the grid resolution used
is 100� 100. As the cylindrical confined space for the fluid motion
undergoing shearing motion becomes narrower and slender
(RA ¼ 1:5) that is resolved using 101� 150 grid nodes, the maxi-
mum attainable Re with the central moments based cascaded LB
formulation becomes even higher, by as much as 10 times when
compared to the SRT model.

It may be noted that when the cascaded LB scheme is used to
solve the governing equations for axisymmetric flows, it incurs
about 20% additional computational effort, in terms of the CPU
time, when compared to the SRT-LB scheme similar to that
observed in the respective 2D Cartesian formulations [40]. On the
other hand, the cascaded LB formulation is seen to be much more
stable than the SRT scheme. As a result, for practical simulations of
axisymmetric flows including swirl effects, the central moments
based formulation holds important advantages over other collision
models. These significant improvements in numerical stability
with cascaded LB schemes, which allow efficient simulation of
axisymmetric flows with broader ranges of parameter spaces, for
a given resolution is consistent with the recent results obtained
for simulations of flows in the Cartesian coordinates [39,40].
4. Summary and conclusions

Thermally stratified fluid convection including rotational effects
within cylindrical confined spaces represents an important class of
flows with numerous engineering applications. Exploiting axial
relaxation time (SRT) and cascaded LB methods for simulation of the shear driven
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symmetry in such problems leads to their representation in terms
of a quasi-2D system of equations with geometric source terms in
the meridian plane, which can significantly reduce computational
and memory costs when compared to their full 3D modeling. For
example, full 3D solution of the fluid motion and the scalar trans-
port requires typical lattices such as D3Q19 and D3Q7/D3Q15,
respectively. On the other hand, axisymmetric LB formulations
would require significantly smaller lattice sets resulting in major
computational advantages. An important aspect of axial symmetry
based models is their suitability to represent reduced 3D problems.
In particular, they allow simulations of complex thermal convec-
tive flows for broader ranges of parameter spaces (e.g., Rayleigh
number/Richardson number/Prandtl number) more efficiently.

In this work, we have presented axisymmetric cascaded LB
schemes for convective flows with combined rotation and ther-
mal stratification effects in cylindrical geometries. A triple distri-
bution functions based approach is employed in this regard, in
which the axial and radial momentum as well as the pressure
field are solved using a D2Q9 lattice based cascaded LB scheme,
while the azimuthal momentum and the temperature field are
solved using the two other cascaded LB schemes, each based on
a D2Q5 lattice. The collision step in these three schemes is based
on the relaxation of different central moments at different rates
to represent the dynamics of the fluid motion as well as the
advection-diffusion transport of the passive scalar fields in a con-
sistent framework. The geometric mass, momentum and energy
source terms arising in the quasi-2D formulation are incorporated
using a simpler operator splitting based approach involving a
symmetric application of their effects given in terms of appropri-
ate change of moments for two half time steps around the colli-
sion step. This new computational approach is then used to
simulate a variety of complex axisymmetric benchmark thermal
flow problems including natural convection between two coaxial
cylinders, Rayleigh-Benard convection in a vertical cylinder,
mixed convection in a slender vertical annulus between two
cylinders under combined rotation and buoyancy forces, and con-
vective flow of a melt during Czochralski crystal growth in a
rotating cylindrical crucible. Comparison of the computed results
obtained using the axisymmetric cascaded LB schemes for such
thermal convective flows for the structures of the flow and ther-
mal fields, as well as the heat transfer rates given in terms of the
Nusselt number against prior benchmark numerical solutions
demonstrate their good accuracy and validity. Finally, our
approach is shown to be second order accurate in grid conver-
gence, and the use of central moments in the cascaded LB formu-
lation leads to significant improvements in numerical stability
when compared to other existing LB models for axisymmetric
flows.
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