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Abstract

We aim to design an analog-only beamforming scheme for downlink multi-user mmWave systems
to optimize the beamforming gain and the inter-user interference at the same time. Traditional analog
beamforming scheme, such as beam selection method, uses the array response vector corresponding to
the strongest path of the channel to generate a beam pointing to the user. In multi-user systems, such
schemes will lead to large inter-user interference, especially when the users are located closely. In this
paper, we formulate a multi-objective problem to strike a balance between the beamforming gain and
the inter-user interference. To solve the problem, we first use the weighted-sum method to transform
the multi-objective problem into a single-objective problem. Then, we use the semi-definite programing
technique to make the analog beamforming with constant-magnitude constraints tractable. Furthermore,
to alleviate the effects of the channel estimation and feedback quantization errors, we design a robust
beamforming scheme to provide robustness against imperfect channel information. We first develop a
channel error model for the scattering clustered channel model, which can serve as a general channel
error model for mmWave channels. Then, we formulate a multi-objective problem using the stochastic
approach to suppresse the interference and enhance the beamforming gain at the same time. Simulation
results show that our proposed non-robust multi-user analog beamformer outperforms the traditional
analog beamforming method when SNR is high and our proposed robust beamformer can provide up

to 109% improvement in the sum-rate compared to the beam selection method.

I. INTRODUCTION
Millimeter wave (mmWave) communication has been considered as a key technology for
future wireless communication systems because of the high data rates provided by the large
bandwidths at mmWave carrier frequencies. However, mmWave carrier frequencies suffer from
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relatively severe propagation losses, which reduce service coverage and impair communication
performance [1]. Thus, large antenna arrays are usually proposed to be implemented at both
transmitters and receivers to provide sufficient beamforming gain to mitigate the severe propa-
gation attenuation [2], [3]. The large antenna arrays, however, lead to high system complexity for
employing conventional full digital beamforming, where each antenna element is connected to
a separate radio-frequency (RF) chain [4]-[6]. Therefore, analog beamforming [7]-[9], where a
single RF chain is tied to the entire antenna array and the beamforming processing is performed
with the RF analog components, has been reignited in mmWave systems. To strike a balance
between the system complexity and the beamforming precision, a hybrid architecture [10] that
uses analog phase shifters in conjunction with a reduced number of RF chains is proposed for
single-user mmWave multi-input multi-output (MIMO) systems.

To further improve the system throughput, multi-user systems, where a base station (BS)
simultaneously serves a number of mobile stations, are often adopted. To cancel the interference
among mobile stations, precoding is usually applied at the BS. For conventional multi-user
systems, precoding is commonly done at the baseband, where each antenna element has a radio
frequency (RF) chain [4], [11]-[17]. This kind of precoding is called fully digital beamforming. In
[11], [12], [15], iterative beamforming algorithms that maximize the signal-to-interference-noise
ratio (SINR) for all users were proposed. Unfortunately, these exists no closed-form solution
for such iterative algorithms. Besides, the optimization problem is NP-complete, which means
that they cannot be solved in reasonable time [16]. In [4] and [17], zero-forcing schemes for
multi-user beamforming were proposed, which decoupled the multi-user beamforming problem
and perfectly cancel the interference. In [13], [14], [16], the signal-to-leakage-and-noise ratio
(SLNR) was chosen as the criterion of the optimization problem, which also leads to a de-
coupled optimization problem and provides an analytical closed-form solution. Also, in [16],
a semidefinite-programming-based algorithm was proposed, which aims to minimize the total
transmitted power with QoS requirements. However, similar to the single-user MIMO systems,
all mentioned fully digital beamforming schemes are not practical for large antenna arrays in
mmWave systems due to the high complexity and the large power consumption.

To address the difficulty of the limited number of RF chains in multi-user systems, two
approaches have been proposed. One is the hybrid multi-user beamforming, in which the beam-
former is constructed by the concatenation of a low-dimensional baseband (digital) beamformer

and an RF (analog) beamformer [18]-[20]. The RF beamformer provides a high-dimensional



phase-only control and is usually used to enhance the array gain. The baseband beamformer, on
the other hand, is usually used to cancel the interference. This method can achieve a performance
close to a conventional digital beamformer [18], [19]. However, a two-stage feedback for both
the RF beamforming and the baseband beamforming is needed. Such a two-stage feedback
requires a tremendous overhead for large antenna arrays. This may become a limitation for
mmWave MIMO systems and should be avoided if possible. The other approach is the analog
multi-user beamforming, where the beamforming processing is only performed with RF analog
components. Currently, many RF beamformers use discrete Fourier transform (DFT) vectors as
the RF beamformer [21]-[23]. Since the DFT vectors have a form similar to that of the array
response vectors of the arrays, such an RF beamformer will have the largest array gain [19], [21].
Additionally, in [24]-[26], an analog beam selection method for mmWave multi-user systems was
proposed, where both the BS and the users are equipped with an analog beamforming codebook.
The codebook consists of beamforming vectors which are the array response vectors with uniform
spacing. The BS chooses the best beamforming vector, which maximizes the beamforming gain,
from the codebook. This method performs well for line-of-sight (LOS) channels, because the
selected beamformer is the match filters for the LOS channels. However, considering a non-LOS
(NLOS) channel model, the performance of the beam selection method will be degraded due to
the interference among different paths and different users. Besides, the beam selection method
needs a training stage to find the best beam, whose overhead scales linearly with the number
of users. All of the previous work either uses DFT vectors as the analog beamformers or uses
the array response vectors as the analog beamformers. To the best of our knowledge, there is
no structure design for the analog beams in the literature.

In this paper, we aim to design an analog beamforming method in downlink multi-user systems
which not only enhances the beamforming gain but also cancels the inter-user interference. In our
method, the analog beams are not DFT structured vectors, but the objectives to be optimized. In
the first part of the paper, we propose an analog beamforming method based on perfect channel
state information (CSI). A multi-objective problem (MOP) is first established to maximize the
beamforming gain and minimize the inter-user interference at the same time. We transform the
MOP into a single-objective problem (SOP) by using the weighted-sum method. The semi-
definite programming (SDP) technique is then introduced to deal with the constant-magnitude
constraints for the analog beamforming. To further reduce the feedback overhead, we only use

the angle of departures/angle of arrivals (AoD/AoA) of the channel instead of the full channel



information.

Channel information is also critical for mmWave MIMO systems. Imperfect CSI will lead
to severe performance degradation. Some papers, such as [27], [28] and [29], analyzed the
performance of the imperfect CSI and proposed communication schemes for imperfect CSI in
traditional MIMO systems, i.e., fully digital MIMO systems. However, to the best of our knowl-
edge, there is no robust communication design for mmWave MIMO systems in the literature.

The second part of the paper considers imperfect CSI caused by channel estimation and
quantization in mmWave systems. We propose a robust design for the analog beamforming,
which not only suppresses the interference and enhances the beamforming gain, but also provides
robustness against imperfect CSI. We assume there exists angle errors in the AoD/AoA of the
channel and simplify the error model into an additive error model by using Taylor expansion.
Based on the statistical properties of the errors, a probabilistic objective similar to [30]-[32]
is formulated. We maximize the average beamforming gain while keeping the probability of
small leakage power as large as possible (i.e., we formulate a MOP to maximize the average
array gain and the probability of small leakage power at the same time). The probabilistic
objective is transformed into a deterministic one by applying Markov’s inequality, and then we
use the same technique as the proposed non-robust beamforming to deal with the MOP for robust
beamforming.

The contributions of our paper can be summarized as follows:

o We propose an analog beamforming scheme based on the path angle information in mmWave
systems. The scheme strikes a balance between beamforming gain and inter-user interference
only using partial channel information. Our proposed scheme outperforms the conventional
beam selection method due to the interference suppression.

o We consider the effects of the channel estimation and feedback quantization errors and
develop a channel error model for the scattering clustered channel model, which can serve
as a general channel error model for mmWave channels.

o We propose a robust analog beamforming scheme for mmWave systems to alleviate the
effects of the channel estimation and feedback quantization errors. The proposed robust
analog beamforming scheme brings about 109% improvement in sum-rate compared to the
conventional beam selection method.

The remaining sections are organized as follows. In Section II , we describe the system

model and the mmWave channel model. Section III formulates the proposed analog beamforming
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Fig. 1: System model

method based on perfect CSI. Section IV presents the proposed robust analog beamforming
design for imperfect CSI. Numerical examples are presented and discussed in Section V. We
provide concluding remarks in Section VI.

Notation: C™™" is the set of all m x n complex matrices with C” £ C"*! and C£ C!. I,
is the m x m identity matrix, and 0,,x, is the m x n all-zero matrix. CN(u,K) is a circularly-
symmetric complex Gaussian random vector with mean vector @ and covariance matrix K.
Matrices A7 and A are the transpose and the Hermite transpose of matrix A, respectively. Matrix
A =Ja;,a,,...,0;] represents the concatenation of the L vectors &;, and B = [A], Ay, ..., Ak]

represents the concatenation of the K matrices A;.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System model and zero-forcing schemes

We consider a multi-user system including a BS with N; antennas serving K single-antenna
users as Fig. 1 depicts. The number of RF chains Ngr is set to be K to enable the multi-user

transmission. In the case that the number of RF chains, Ngp, is less than the number of users,



one can select Ngr out of K users and serve them using our algorithm. One such a user selection
method is the proportional-fair (PF) method presented in [33]. Only analog beamforming is used
for each user. The BS generates the analog beamforming vector for User i based on the estimated
multi-path angles of the channels. We denote s; as the transmitted symbol intended for User i
with E[||s;||?] = 1 and w; € CV*! as the beamforming vector for s;. The channel between User

i and the BS is denoted by hfl € C™N:, The received signal at User i can be expressed as

vi=h'wisi+ Y. h'wisc+n;, (1)
k=T ki

K
where n; is the additive Gaussian noise with zero mean and o2 variance. The second term in
(1) is called the co-channel interference (CCI) caused by other users.

Intuitively, the optimal multi-user system is the one that maximizes the signal-to-interference-
plus-noise ratio (SINR) of every user. The SINR of User i is given by
H. 12
|hi" wil

—
02+ L5 i [ Wi 2

SINR; = ()

However, using SINR as the optimization criterion generally results in a challenging optimization
problem to deal with K coupled variables {wi}f: , (117, [12], [15].

One way to avoid solving the coupled problem is to focus on canceling the CCI by using zero-
forcing (ZF) schemes [34]. As [4] and [17] did, the ZF schemes choose beamforming vectors

w; by enforcing the conditions
hiw; =0, Vi, k=1,...K,k#1i. (3)

This solution results in good performance since it completely cancels the CCI at every receiver.
However, ZF does not optimize the beamforming gain, and thus is not optimal for SINR.
Moreover, for analog beamforming, the elements of vector w; have constant magnitudes, i.e.,
|W?| = constant where w denotes the n'" element in vector w;. We call these constraints,
the constant-magnitude constraints. For a system with constant-magnitude constraints, the ZF
conditions in (3) may not be feasible. To remedy these issues, we relax the ZF conditions in (3)
and take the beamforming gain into account when choosing w;. The details will be explained in
subsequent sections. In the next section, we will introduce the mmWave channel model which
is very different from the traditional Rayleigh fading channel model. Based on the mmWave

channel model, we will formulate our analog multi-user beamforming problem for mmWave



systems.

B. Channel model

MmWave channels are expected to have limited scattering characteristic [35], which means
the assumptions of a rich scattering environment become invalid. This is called sparsity in the
literature and leads to the unreliability of traditional channel models, such as the Rayleigh fading
channel model. To characterize the limited scattering feature, we adopt the clustered mmWave
channel model in [10] and [36] with L; scatters for the channel of User i. Each scatter is assumed
to contribute a single propagation path between the BS and the user. For our single-antenna user

system, the channel is modeled as a vector described by
hi = Z ) e (6))7, 4)

where at(Oli) is the antenna array response vectors of the BS for path / with departure angle 9;.
Parameter (af)* is the complex path gain of path / modeled by a complex Gaussian distribution
such as CN(0,1). While the algorithms and results in the paper can be applied to arbitrary
antenna arrays, we use uniform linear arrays (ULAS) in the simulations for simplicity. The array

response vectors take the following form

1
VN

where A is the signal wavelength, and d is the distance between antenna elements. The departure

[1’ej2/1—”dsin(9;),m’ JN—1)ZE dsm(el)]

at(eli) =

; (&)

angle 6] is assumed to have a uniform distribution over [0,27].

To simplify the expression of the channels, we denote

A= [at(ef)aal(6£)7"'7al(91i)]7 (6)
h; =[d},d),...,a}]". (7)

Matrix A; € CN*Li contains all the array response vectors from the BS to User i and vector
h; € CL*! contains the complex gain of all the paths from the BS to User i. The channel hfl

can be expressed as the product of Hermitian h; and Hermitian A,

h = Al (8)

1



We call A; the AoD matrix of User i. In fact, to estimate the mmWave channels is to estimate
the AoDs and the complex gains. In this paper, to further reduce the feedback overhead, we

assume the BS only knows the AoD of the channels (i.e., the BS only knows A;).

C. Problem formulation

As we mentioned in the previous section, ZF schemes may not be effective for multi-user
analog beamforming since the constant-magnitude constraints on w; may cause the ZF conditions
in (3) infeasible. To deal with this problem, we relax the equality condition in (3) and try to

minimize the leakage interference. To be specific, we denote the leakage interference matrix as
L=[A,..,Ai_,A; Agl? ©)
i Ty eeey X2i—15 82415, AK]

where I; € szzl-k#‘ LixNt i a matrix that contains the AoD matrices from the BS to all the users
except User i. Originally, I; should contain the channel vectors from the BS to all the users
except User i. Since we assume we only know the AoDs of the channels, we use AoD matrices
to represent the channels.

The traditional ZF schemes are basically forcing the w; to lie in the null space of I; so as to
avoid the interference from User i to other users. The null space of I; can be obtained through

singular-value decomposition (SVD). We define the SVD of I; as

L =05V v (10)
where \751) holds the first Zszl, k-+i Lk right singular vectors and \750) holds the last N; — Zszl’ eoti L
right singular vectors. We assume that we implement a large antenna array at the BS, which
means V; is very large. Note that the mmWave channels have limited scattering characteristic,
which means L; is usually small. Normally, N; > L;. Therefore, we assume N; > Zszl,k 2iLi to
ensure that the null space of I Ge. \750)) exists.

For the multi-user analog beamforming, where ZF conditions may be infeasible, we want to
minimize the leakage interference of w;. That is actually minimizing the projection from w; to
I;, which means w; should have the largest projection on the null space of I;. In other words,
we are trying to find the w; that has the largest projection on the null space of I;. The projected

vector from w; to the null space of I; is

w? = VO VO, (11)



where \750) (VEO))H is the projector matrix onto the the null space of I,. For simplicity, we

maximize the square of the norm of wf which is

P[> = wi VO (VOGO (GO Ay, — Wiy O (GO Hy, (12)

i i

To obtain an optimal SINR, only to minimize the leakage interference is not enough, since it
ignores the beamforming gain. The beamforming gain refers to the improvement of the receive
power which results from beamforming and we define the beamforming gain for w; under our

partial channel information assumption as
BG = wi A AT w,. (13)

Taking both the beamforming gain and the leakage interference into account, we formulate a

multi-objective optimization problem (MOP) as follows:

w!?" = argmax{w/ VEO) (V,(O) ) wi, wi AT w;}

(14)
s.it. w, €W,

where W is the set of all constant-magnitude vectors with each element having a magnitude of

1
VN
In the next section, we will solve this problem by the weighted sum method and the SDP

Problem (14) is a multi-objective problem with non-convex constraints, which is intractable.

technique.

III. MULTI-USER ANALOG BEAMFORMING

To solve Problem (14), we are actually facing two challenges: 1) how to deal with the multi-
objective problem; and 2) how to handle the non-convex constraints. For the MOP, we will use
the simplest yet effective method ( i.e., the weighted sum method ), to transform it into an SOP.
Then, through some algebraic transformation, we will transform the non-convex problem into

an SDP and solve it using convex optimization.

A. Transforming the MOP into an SOP

The solution to an MOP may not exist because a single point that optimizes all objectives
simultaneously usually does not exist. The idea of Pareto optimality is usually used to describe
solutions for MOPs. A solution point is Pareto optimal if it is not possible to move from that point

and improve at least one objective function without detriment to any other objective function.



Alternatively, a point is weakly Pareto optimal if it is not possible to move from that point
and improve all objective functions simultaneously. To solve an MOP, we need to ensure the
necessary and/or sufficient condition for Pareto optimality. In other words, to solve an MOP
is to find the Pareto optimal points. There are many ways to find the Pareto optimal points.
Two general methods are visualization and scalarization. A scalarization method specifies a goal
function f: RM — R that for any conceivable operating point, it produces a scalar describing
how preferable that point is (large value means high preference). To be specific, it means to
solve the optimization problem:

m)?Xf(gl(x), "'agM(xD
(15)

st. xeX
where g;(x) is the i’ objective function in the original MOP and X is the feasible region. For
the weighted-sum method, function f is a weighted summation of the objective functions. As
stated in [37], the weighted sum method can provide a sufficient condition for Pareto optimality
if all the weights are positive and the summation of the weights is equal to one. In other words,
the solution to the SOP formulated by the weighted summation is Pareto optimal for the MOP.

Applying the weighted sum method to our problem results in

ngpt = argmax{A; leVEO) (VEO) )HWi + le?AiA?Wi}

(16)

st. wieW
where A; +A; =1 and A; > 0,i € {1,2}. Parameter A; represents the importance of the "
component in the objective function. Different values for A;s will result in different solutions to
the problem. If we want to obtain a smaller leakage interference, we will set a larger A; for the
first objective function. If we want to obtain a larger beamforming gain, we will set a larger A,
for the second objective function. We will evaluate the performance under different values of

A;s in Section V.

B. SDP formulation

Although we have transformed Problem (14) into Problem (16), it is still hard to solve because
of the non-convex constraints. To make the problem tractable, we transform the problem into an

SDP through some algebraic transformation. For the objective function, we have

10



Mwl VO VO g 1 2wl A AT W,
= Tr(w? (VO VOV 1 2,AA )W) (17)
= Te(M VO (VIO L L, A AT ywwH).

We denote w,-wfl as W. Matrix W is a symmetric semi-definite matrix with rank one.

The constant-magnitude constraints of Problem (16) are transformed into
W : Vi=1,...,N, (18)
i=—, Vi=1,...,Ny,
u Nt ) ’ t

where W;; represents the ith diagonal element in W.

Then, Problem (17) is transformed into an SDP as follows:

SDP(W') = argmax{Tr((4, V" (VO)H + 1,A,AH )W)}
sit. W= i, Vi=1,...,N;
N (19)

W = 0;
Rank(W) = 1.

The rank-one constraint is still hard to deal with. In order to efficiently solve the optimization
problem, we introduce semidefinite programming relaxation (SDR) by dropping the rank-one

constraint in (19) to solve the optimization problem as (20) shows.

SDR(W°P") = argmaX{Tr((?LlVl(O) (VEO))H + ﬂ,zA,-AfI)W)}

.
st Wi =0 Vi=1,..,N; (20)

W= 0.

Problem (20) is the relaxed version of Problem (19). Its solution will be an upper bound for the

solution of the optimization problem in Problem (19).

C. Approximation

Problem (20) is a standard SDP. Its optimal solution SDR(W?") can be found by standard
tools of mathematical programming such as CVX [38]. Note that Problem (20) is the relaxed

version of Problem (19), which means we cannot guarantee SDR(WOI” ) is rank-one. In fact,

11



according to our simulation results, SDR(W?"") is not necessarily rank-one. When the rank of
SDR(W°P') is larger than one, we cannot recover wi” from SDR(WP') straightforwardly. In
[39], a randomization technique is used to make an approximation. Its basic idea is to generate
a set of candidate vectors {zm}f‘n”:1 based on SDR(W?P") and choose the best candidate as the
approximation of the w?p !, where M is the size of the set of the candidate vectors.

To be specific, we first generate a set of complex Gaussian vectors X = {x,, € CN’XI}%:l. For
each x,, € X, we generate the vector randomly using the distribution N(0,SDR(W°"")), where
0 € CM*! is the mean vector and SDR(W°P') is the covariance matrix of the Gaussian random
vector. In this way, we will have E[x,,x1] = SDR(W?P"). However, x,, may not have constant
magnitudes for every element, thus it may not be a feasible solution for Problems (19) and (20).
To deal with this issue, for each x,,, we form z, € CV*! such that

n X
y=———, Vn=1,....,N, (21)
m \/]VJX%' ) g ey dVEy
where z7, is the n'* element of vector z,, and x is the n'" element of vector x,,. In this way, all
the generated z,,s satisfy the constant-magnitude constraints, and hence are feasible points for

Problems (19) and (20). Therefore, we have
Te(M VO (VIO 4 2,AA7)z,,28) < SDP(WOP') < SDR(W°P"). (22)
Since for all z,,s, Inequality (22) will hold, this means
Te(M VO (VOV 4 1, AAF)E[z,211]) < SDP(WP') < SDR(W°P"). (23)

Based on Inequality (23), we can choose the z, from the candidate set Z = {z,,}_, that
maximizes z/1 (11\750) (VEO))H + 22A;A)z,, as the approximation for w?”".

Up to now, we have proposed a multi-user analog beamforming method based on the precisely
estimated AoD. However, due to the limited feedback and imperfect estimation, we can not obtain
the accurate AoD for every path, which makes the proposed beamforming scheme unstable. To
deal with the uncertainty in the estimation of AoD, we further propose a robust beamforming

scheme in the next section.
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IV. ROBUST BEAMFORMING

To design the robust beamforming scheme, we first need to model the estimation errors.
For traditional Rayleigh fading channel models, the estimation errors is simply modeled as a
matrix consisting of i.i.d. complex Gaussian distributed entries, which is directly added to the
presumed channel. However, in the clustered mmWave channel model, the errors cannot be
simply modeled as the additive estimation errors, since the estimated angle errors appear in the
index of the exponential function in the array response vectors. Therefore, we need to simplify

the error model before designing a robust beamforming scheme.

A. Error model

In this section, we will develop an error model for the ULAs with an array response vector in
(5). We assume that for the angle 9} of the path / there exists an angle estimation/quantization
error AO; with mean O and variance Gli. A Gaussian distribution N(O,Gf) is a reasonable
assumption, although we only use the first and second order statistics and do not need the

distribution. Then, the array response vector with error A@[ can be expressed as

a6 +A6)) = ! [l’ejz)T”dsin(G;+A6;)7 . ej(N,fl)a—”dsin(G;+A6;)]T. (24)

NiA

To extract the error out of the exponential function in (24), we expand the exponential function

using the first-order Taylor expansion. To simplify the expression, we denote a—”d as K and the

equation (24) is expanded as
pInKsin(6/+A8])  ,jnxsin(6]) —I—jnKCOS(Qli)AQZiejnKSin(eli),Vn —0,...N,—1. (25)

We denoting eé’" as jnKcos(Bli)AQZiej""(Si“(ez’), which represents the error for the n'" element

i,n

I'" path of User i. Error e, can be written as:

in the response vector of the

e;"" = jnkcos(8])AB) cos(nk(sin(8;)) — nicos(6;)AB) sin(nk(sin(6})),vn =0,...,N, — 1. (26)

Defining the error vector e} £ L[e;’o,e;’] , ...,e;’N’_]]T as the error for the I'" path of User i,

VN

we now simplify the errors in the AoD into an additive random error as

@) =a(8 +A6))~ a(6) +e, 27)

13



where we denote & (91’) as the imperfect array response vector of the I/

path of User i. Based on
the mean and the variance of AG}, we can calculate the statistical characteristic of ef. First, we
calculate the statistical characteristic of each element eﬁ’" in the vector ef. Then, we calculate the
cross-covariance between different elements (i.e., ef’" and ei’m where m # n) so as to calculate
the covariance matrix of eé. The mean and variance of each element e;’” are calculated by the

following Egs. (28) and (29).

Ele)"] = E[A8]](jnx cos(6]) cos(nk(sin(6]))—

| | @8)
nkcos(6/)sin(nx(sin(6;)))) =0,Vvn=0,...,N; — 1.
D[eé’"] = E[(e;"")*e;’”] — E[(nkcos(6))AB})*(cos® (nk(sin(6})) + sin’(ni(sin(6})))] 29
= (anos(Bf))zE[(AOf)z] = (anos(Gli)Gli)z,‘v’n =0,....,N;— 1.
The cross-covariance between eé’" and eé’m is calculated as
E[(e?")*e;’m] = nmx? cos*(6])(c})?,Ym,n and m # n (30)
Based on Equations (29) and (30), we can calculate the covariance matrix of ef as
[0 0 0 ]
) (kcos(6])o))> o (N =T1)K*cos?(6))(0})?
C = _ _ (31
0 (N, —1)K?cos®(6))(o))> ... (N;—1)*k*cos*(6])(0})?]

Note that the first row and the first column of C; are all zeros. This is because the first element
of the array response vector (24) is always 1, which is independent of an error. In other words,
the first element of the array response vector (24) is deterministic and this leads to the zeros in
the first row and the first column of C;.

Since we have simplified the AoD error of each path for each user into an additive error,
we can further model the errors for the whole AoD matrix as an additive error. Denoting the

presumed AoD matrix of User i as AY, the AoD matrix of User i with errors can be modeled as
A=A+ E, (32)

where E; = [}, €}, ...,e}] € CN*L is a matrix that contains all the error vectors for User i. Based

14



on the assumption that the paths are independent [10] [36], we can assume that the errors of

different paths and users are independent, which means
Elej(e})"] = Onxn,, VI#q. (33)

In (33), Oy, <N, represents the zero square matrix with dimension of N;. Therefore, the covariance

matrix of E; is

L; '
Ci=) C. (34)
=1

The imperfect leakage interference matrix of User i could also be modeled in the same way
as the imperfect AoD matrix. We denote the presumed leakage interference matrix of User i as

17 = [A?,. AP | AP

i1 AL ...,A%]T. The imperfect leakage interference matrix of User i with errors

can be modeled as

L =1"+E, (35)
where E; = [Eq,....E;_1,E;11,....Ex]T € CXiA LN s 3 matrix that contains all the error matrices
for all the users except User i. We assume the errors of different users are independent, which
means

E[EE]=0nxn,, Vi#j. (36)
Therefore, the covariance matrix of E; is

K
Ci=) C. (37)
ki

Now, we have simplified both the errors in the AoD matrix and the leakage interference matrix
into the additive error. Based on this error model, we will propose a robust beamforming scheme

to confront the uncertainty in the channel information.

B. Robust beamforming

The leakage interference matrix is random due to the uncertainty of errors. This means we
cannot find a valid null space of I;. Therefore, the beamforming method proposed in the previous
sections cannot be applied here. To deal with this problem, we use a probabilistic approach to
restrict the leakage interference (i.e., we maximize the outage probability). The outage probability
can be expressed as

Poutage = PI'{W{Ii{IiiWi < %}7 (38)
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where ¥ denotes a pre-specified leakage power level. Besides the leakage power, we also want

to maximize the average beamforming gain of User i, which is defined as
BG gy = EW! A AT w;]. (39)

We want to maximize the outage probability and the average beamforming gain at the same

time. Therefore, a multi-objective optimization problem is constructed as

wi? = argmax {E[w! A, AT w,], Pr{w! T/ Tw; < %}}

(40)
st.wi €W,

where W is the set of all constant-magnitude vectors with each element having a magnitude
of \F Problem (40) is an MOP with a constant-magnitude constraint and a probabilistic
objective function. We first use Markov’s inequality to transform the probabilistic objective
into the expectation objective. Then, similar to the beamforming scheme we proposed in the
previous part, we use the weighted-sum method and the SDP to deal with the multi-objective

and constant-magnitude constraint, respectively.
Based on Markov’s inequality, we have the following inequality as a foundation for our

simplification of the probabilistic objective.

E|Z
Pr{Zgy}:l—Pr{ZZy}Zl—L. 41)
Then the probabilistic objective can be simplified as
Pr{w/ T/ Tw; <y} = Pe{w (I + E)" (I + E)w: < %} (42a)
Ewl (I’ +E; Ip
S wi' (17 + ;( E)wi] (42b)
E[Tr((I? +E)A (17 + E)ww!
1 BT+ B0+ ) e
_1 E[Te(@)HTPwwl + EF TP wwl + (I))PE)wiwH + EFEww!)] (424)
Yi
| TCELO) | + BB pwow!? 4 E{(E) "Bt + EEIEwwt’)
=1- e
Yi
Tr(((IP)ETP Dwiwt
T+ Cowwl) o
Yi
Tr((I)PTY + C))W
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In (42e), we exchange the operation order of the expectation and the Tr. Matrix W = wiwfl is
a symmetric semi-definite matrix with rank one. Equations in (42) transform the probabilistic
objective function into a deterministic and convex function of W.

The average beamforming gain for User i is an expectation over the instant beamforming
gain, which is not easy to deal with. To make the problem tractable, we perform some algebraic

transformation and convert it into a deterministic and convex function of W as below.

E[w?AATw)] (43a)
= E[w(A? +E;)(AY + E)w|] (43b)
= E[Tr((A7 + E:) (A7 + E)" wiw{] (43¢)
= Tr(E[(A] +E:)(A} + E)" wiw(']) (43d)
=Tr(E[A] (A)) wiw('| + E[E(AD)" + ATE! lwiw!' + E[EE[ wiw]") (43e)
=Tr((A](AD)" + Co)wiw]") (430)
= Tr((A?(AD)? + C)W). (439)

The introduction of matrix W will transform the non-convex constraints on w; into

1 .
Wii:ﬁ, Vi=1,...,N, 44)

where W;; represents the ith diagonal element in W. This constraints are convex constraints and
are easy to deal with.
Based on the above three simplifications, using the weighted-sum method, we can reformulate

Problem (40) into

Te((I)HTP + €)W
SD e (W) = argma { i Te (A (D) + C)W) 4 (1= FH IR ) |
1
S.t. W” = e VZ = 1,...7N[;
N
W > 0;
Rank(W) =1,
(45)

where A; + A, = 1. Parameter A; represents the importance of the i’ component in the cost

function.
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To deal with the rank-one constraint, we introduce the SDR by dropping the rank constraint

in (45). Therefore, an upper bound of Problem (45) can be achieved.

SDR s (WOP') = argmax {Al Tr((AP(AD)H +CHW) + 4 (1 _ (D7 + Ci>W>) }

Y
.

st. Wiij=— Vi=1,...,N;
N,

t
W= 0.
(46)

The optimal solution SDR,,p,s (W) can be found by standard tools of mathematical program-
ming [38]. Using the same approximation method as in the non-robust case, we can obtain the

. !
analog beamforming vector w;”".

V. SIMULATION RESULTS

In this section, we evaluate the performance of the non-robust beamforming method in Section
IIT and the robust beamforming method in Section IV. Note that our objective in this paper is
not to optimize the sum-rate due to the intractability of doing so. In fact, we strike a balance
between maximizing the beamforming gain and minimizing the inter-user interference. Since the
A; represents the importance of each term in the objective function of the MOP, we expect to
find the best balance by evaluating different assignments of values of A;s. Therefore, we pick
the combination of A; and A, that achieve the highest sum-rate. We also compare our multi-
user analog beamforming with the beam selection method and other traditional fully-digital
beamforming methods. For the robust beamforming method, we compare our robust analog

beamforming with the non-robust ones to evaluate the improvement brought by our method.

A. Non-robust analog beamforming

In the simulation, we consider a multi-user MIMO system consisting of one BS equipped
with a large antenna array and K single-antenna users. The channels are realized using Eq. (4).
Due to the limited scattering characteristic of the mmWave channels, the number of paths should
be small. Here, we assume each channel has L = 6 paths. The large antenna array at the BS
is assumed to have N; = 64 antennas, which is the same number of antennas in [40]. To leave
enough dimension for the null space of the leakage interference, we assume the total number of

users K = 6. This will leave N; — KL = 28 dimensions for the null space. The 9[ of each path
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is assumed to be uniformly distributed in [0,27]. The results are averaged over 20,000 channel
realizations. The variance of AWGN noise per user is assumed to be the same for all users,
ie. 612 = ...= 02 = 02. And the large-scale fading path loss factor of all users are uniformly
distributed in [0.5,1.5] dB. We have used these parameters in all figures unless we specifically
mention otherwise.

Figs. 2 and 3 illustrate the sum-rate and the beamforming gain and interference of our
analog beamforming under different A; and A, values, respectively. We, in general, evaluate
21 combinations of A; and A;. To be specific, the A, ranges from 0 to 1 with step-size 0.05 and
A1 =1—A;. In Fig. 2, as A, increases from O to 1, the sum-rate first increases and then decreases,
which exhibits the tradeoff between the beamforming gain and the leakage interference. In Fig.
3, when A, =0, the leakage interference is minimized but the beamforming gain is quite low.
When A; = 1, the beamforming gain is maximized but the leakage interference is very high.
Fig. 2 shows that there is a tradeoff between leakage interference and beamforming gain and
as a result the MOP provides better performance than only optimizing beamforming gain or
interference. Note that there is no need to set different weights for different users because we
deal with a decoupled problem, i.e., the best A, for each user should be the same. For example,
when we fix the parameters for other users and change the weight the for User 1, the trend in the
plot should be similar to Fig. 2. Therefore, we will set A; =0.9 and A, = 0.1, which achieves
the best sum-rate, for all users in the follow-up simulations.

To further illustrate the relationship between the two objectives in Problem (14), we plot Fig.
4 to show the tradeoff between beamforming gain and the norm of the projection of w; onto the
null space. As the beamforming gain increases, the norm of the projection decreases. As such,
the use of multiple-objective optimization is justified.

In Fig. 5, the proposed analog non-robust beamforming method is compared with the analog
beam selection method in [24], the digital ZF beamforming [4], [17] and the digital SLNR
beamforming [13], [14], [16]. The analog beam selection method usually needs a hierarchical
search to find the best beam, which results in a high training overhead. In our simulation,
for simplicity, we directly use the array response vector of the strongest path of each user,
which is the best beam for each user, as the solution for the analog beam selection. This is
equivalent to a codebook with infinite vectors. As such, the performance of the beam selection
that we report is better than what presented in [24]-[26]. Fig. 5 shows the empirical cumulative

distribution function (CDF) of SINR when the SNR = 25dB for different methods. For a fixed
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Fig. 2: Sum-rate evaluation for different combinations of sum weights

SINR value a, the corresponding CDF value p implies that Pr(SINR < a) = p. At SINR =
0dB, the corresponding CDFs of the digital SLNR beamformer, the digital ZF beamformer, our
proposed analog ZF beamformer, and the beam selection method are around 0%, 2%, 2%, and
10%, respectively. At SINR = 15dB, the CDF numbers are around 0%, 10%, 30%, and 75%,
respectively. Generally speaking, the fully digital beamformers have CDF values that are lower
than those of the analog beamformers at every SINR while requiring a higher cost of RF chains.
Note that, the fully digital beamforming methods such as the zero-forcing method and the SLNR-
based method are only used as the benchmark. The analog beamforming cannot outperform the
fully digital beamforming. Besides, we only use the channel phase information, which will lead
to performance degradation. The main method we are comparing with is the beam selection
method, which is the main analog beamforming method adopted in mmWave systems and our
proposed method has a much lower CDF value at most SINRs compared to the beam selection
method. This is because we suppress the interference in our model while the beam selection

method only maximizes the beamforming gain.
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To have an overall observation of the performance of the three methods, we plot the average
sum-rate per user with SNR ranging from -15 dB to 30 dB in Fig. 6. The fully digital SLNR-
based beamforming method has the best performance at every SNR. When the SNR is low,
the beam selection method performs better compared to both the digital ZF beamformer and
the proposed analog beamformer. For example, when SNR is 0 dB, the sum-rate of the beam
selection is around 10, while the sum-rates of our proposed analog beamformer and the digital
ZF beamformer are around 6 and 5, respectively. Although our proposed analog beamformer
cannot beat the beam selection method at low SNR, it performs better than the digital ZF
beamformer. The reason why our proposed analog beamformer cannot beat the beam selection
method when SNR is low is because we only use partial channel information (AoD matrix), not
the entire channel in (4), to maximize the beamforming gain. When the SNR is low, the power
of interference can be ignored because the noise power is large, therefore, the method with the
largest beamforming gain will have the largest SINR thus the best sum-rate. Note that, in our

simulations, we directly use the array response vector of the strongest path as the beam selected
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for User i, which is the best performance for the beam selection, without considering any beam
alignment loss. Therefore, as mentioned before, the beam selection method in our simulations
would perform better than what presented in [24]-[26]. However, when the SNR is large, for
example 25 dB, the performance of the beam selection is the worst among the four methods
due to the severe interference. When the SNR is 25 dB, our proposed analog beamformer can
achieve a sum-rate of about 35 while the sum-rate of the beam selection only reaches 21.
Although the beam selection method has a better performance in the low SNR region, it
needs a multi-stage training process to obtain the precise beam, which will result in a waste
of transmission resources. Our method, on the other hand, only needs one-stage feedback of
the AoD, thus saving transmission resources. Moreover, to increase the precision of the beam
direction for the beam selection method, one should increase the training overhead. However,
we have proposed a robust beamforming method to confront the estimation/quantization error

in the AoD. Our robust beamforming method can further reduce the feedback overhead since
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Fig. 5: CDF of SINR when SNR=25dB

we do not need to know a completely precise AoD as confirmed by the simulations in the next

section.

B. Robust analog beamforming

For the robust case, we evaluate the sum-rate performance with different levels of uncertainty,
i.e. the error variance 62,,, = {0.005,0}. The leakage power level is set to be ¥ = 0.1,Vi =
1,...,K. We compare the performance of the proposed robust analog beamfomer, the non-robust
digital ZF beamformer, the beam selection method, and the non-robust digital SLNR-based
beamformer. In the previous section, we assumed an infinite codebook for the beam selection
method, which avoids the quantization error. In this section, for the beam selection method, we
assume there exists an error in the beam alignment angle and this error has the same statistical
characteristic as the error in AoDs.

When the error variance 62, = 0, we will have the same results as in the non-robust case.

In fact, the ideas behind these two beamformers are the same. For the robust beamformer, when
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Fig. 6: Sum-rate comparison

the error variance is 0, we actually minimize Tr((I')?I'W), i.e., the leakage power of User i.
This is the same as maximizing the projection of w; onto the null space of if’ , which i1s what
we do for the non-robust beamformer.

Fig. 7 shows the SINR CDF of the three beamforming approaches when 2, = 0.005. We
set the SNR = 25dB. The proposed analog beamformer has a large improvement in performance
compared with the beam selection method and the non-robust ZF beamformer. For example, when
SINR = 0dB, the CDF values of the proposed robust analog beamformer, the beam selection
method, the non-robust digital ZF beamformer and the non-robust SLNR-based beamformer are
around 15%, 52%, 58% and 61%, respectively. When CDF is at 50%, the proposed robust analog
beamformer can provide 11 dB ,12 dB and 13 dB improvement in SINR compared with the beam
selection method, the non-robust ZF beamformer and the non-robust SLNR-based beamformer,
respectively.

Fig. 8 plots the averaged sum-rate per user of the three beamforming methods when the

SNR ranges from -15dB to 30dB with Gezrmr = 0.005. The proposed robust analog beamformer
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Fig. 7: CDF of SINR when SNR=25dB. The variance of error is 0.005

outperforms both the beam selection method and the non-robust ZF beamformer at every SNR.
When SNR is 25dB, the proposed beamformer provides an improvement of 109%, 188% and
254% of the averaged sum-rate with respect to that of the beam selection method, the non-robust
ZF beamformer and the non-robust SLNR-based beamformer, respectively.

Both Figs. 7 and 8 show that a slight estimation error will lead to severe system performance
degradation. However, and our robust beamforming scheme can provide large improvement for

imperfect CSI scenarios.

VI. CONCLUSION

In this paper, we proposed an analog beamforming scheme which strikes a balance between
the beamforming gain and the inter-user interference. We formulated an MOP that maximizes
the beamforming gain and minimizes the interference at the same time. The weighted-sum
method was used to transform the MOP into an SOP and the SDP was adopted to make the

constant-magnitude constraints for the analog beamforming tractable. Furthermore, to alleviate

25



25 T T T T T
—*— Proposed robust analog beamformer
— © —ZF beamformer

—-$-— Beam selection method

2 |~ & — SLNR beamformer

Sum rate(bits/Hz/s)

45 10 -5 0 5 10 15 20 25 30
SNR(dB)

Fig. 8: Averaged sum-rate per user. The variance of error is 0.005

the effects of the channel estimation and feedback quantization errors, we designed a robust
beamforming scheme to overcome the channel uncertainty. A probabilistic constraint was used
and an MOP similar with the non-robust beamforming scheme was formulated. For the non-robust
case, simulation results showed that the proposed beamformer provides a better balance between
the beamforming gain and the inter-user interference compared with other analog beamformers
in the high SNR region. For the robust case, the simulation results demonstrated the highest

robustness of our beamforming scheme against channel errors.
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