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Abstract

We study linear programming and general LP-type problems
in several big data (streaming and distributed) models. We
mainly focus on low dimensional problems in which the
number of constraints is much larger than the number of
variables. Low dimensional LP-type problems appear fre-
quently in various machine learning tasks such as robust
regression, support vector machines, and core vector ma-
chines. As supporting large-scale machine learning queries
in database systems has become an important direction for
database research, obtaining efficient algorithms for low di-
mensional LP-type problems on massive datasets is of great
value. In this paper we give both upper and lower bounds
for LP-type problems in distributed and streaming models.
Our bounds are almost tight when the dimensionality of the
problem is a fixed constant.
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1 Introduction

As machine learning becomes pervasive, how to effectively
support machine learning tasks in database systems has be-
come an imminent question. In a recent paper [31], Makryni-
oti et al observed that many machine learning problems
can be expressed by linear programs (LP). They designed a
level of abstraction called SolverBlox on top of a declarative
language LogiQL' as a framework for expressing linear pro-
gram formulations. The query in the format of SolverBlox
will then be translated to a format supported by an LP solver
for computing the solution. In this paper we consider the
algorithmic side of this research direction, that is, we focus
on the design of efficient LP solvers for large-scale datasets.
In particular, we propose algorithms for linear programming
in three popular “big data” models, namely, the coordina-
tor model [38], the streaming model [2, 37], and massively
parallel computation (MPC) [5, 23, 29]. We also provide al-
most matching lower bounds when the dimensionality of
the linear program is a fixed constant.

In the rest of the introduction we will start with the defini-
tion of the problem and the description of the computation
models, and then present our results and discuss previous
work.

Problem Definition. The basic linear programming prob-
lem can be described as follows: we have a set of d variables
(x1,...,xq) and a set of n linear constraints each of Which
(indexed by j) is in the form of Zflzl afx,- < b/, where af, b
are coeflicients and d is the dimension of the problem. We
also have an objective function Y%, ¢;x;. The goal is to find
an assignment for variables that minimizes the objective
function while satisfying all the constraints.

Linear programming is a special case of a more general
problem called LP-type problem [32], which we will discuss in
details in Section 2.1. Besides linear programming, LP-type
problems also include several other important problems in
machine learning, such as Linear Support Vector Machines
(SVM) [7], which is widely used in classification and regres-
sion analysis [10, 19, 22]), and Core Vector Machines [42],
which is used to speed up general SVM computation (or,

1 An extended version of Datalog [3].
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Linear SVM augmented by the kernel trick [7]). We will give
the formal definitions of these problems in Section 4. The al-
gorithms we propose in this paper work for general LP-type
problems.

In this paper we are interested in the scenario when the
dimension of the linear program (and LP-type problem in
general) is small compared to the number of constraints.
Various examples of linear programming and LP-type prob-
lems in machine learning are of this type: SVMs and regres-
sion problems (in particular, least absolute error regression
that can be modeled by linear programming) are often over-
constrained; in the problems of Chebyshev approximation
and linear separability, the number of variables are typically
small.

Computational Models. We study linear programming
and LP-type problems in the following big data models.

o The (multi-pass) streaming model. In this model, we have
a single machine which can make linear scans of the input
data sequence. The task is to compute some function de-
fined on the input data sequence. The goal is to minimize
the memory space usage and the number of passes needed.
This model captures data that cannot fit the memory, and
on which sequential scan is much more efficient than
random access.

e The coordinator model. In this model, we have k sites and
a central coordinator. Each site is connected by a two-way
communication channel with the coordinator. The input is
initially partitioned among the k sites. The task is for the
sites and coordinator to jointly compute some function
defined on the union of the k datasets. The computation
proceeds in rounds: At the beginning of each round, the
coordinator sends a message to each site, and then each
site replies with a message back to the coordinator. At
the end of the computation, the coordinator outputs the
answer. The goal is to minimize the total bits of the com-
munication and the rounds of the computation. This model
fits data that is inherently distributed or cannot fit the
storage of a single machine

o Massively parallel computation (MPC). In this model, we
have k machines interconnected in a network that allows
communication between any pairs of machines. Similar
to the coordinator model, the input is partitioned among
the k machines, and the task is for them to compute some
function defined on the union of the k datasets. The com-
putation is again in terms of rounds. At each round, the
machines communicate with each other over the network
by sending and receiving messages. The message sent by
a machine at each round is a function of its input data
and all messages it has received in previous rounds. Our
goal is to minimize the number of rounds of the computa-
tion, and the maximum bits of information sent or received

by a machine at any round (often called the load in the
literature). MPC has already become the model of choice
for studying parallel computation in computer clusters.

Description of the input. Since we are dealing with low-
dimensional problems, we assume that the memory on each
site/machine in each model is at least proportional to d, the
dimension of the problem, but is significantly smaller than n,
the number of constraints. As a result, the input is presented
by giving the constraints one by one to the algorithm in
the streaming model, or partitioning them across different
sites/machines in the coordinator and MPC models.

1.1 Our Contributions and Related Work

In the following, we present our results for linear program-
ming in the three big data models described above, and post-
pone the specifics of their generalization to LP-type problems
to later sections. Our main upper bound result is the follow-
ing.

Result 1. We give the following polynomial time al-
gorithms for d-dimensional linear programming with
n constraints. For any integer r > 1 and parameter
4 €(0,1):
o Streaming: An O(d - r)-pass streaming algorithm with
O(n'/7) - poly(d, log n) space.
e Coordinator: An O(d - r)-round distributed algorithm
with O(n'/" + k) - poly(d, log n) total communication.
e MPC: An O(d/&%)-round algorithm with
O(n®) - poly(d, log n) load per machine.
Our algorithms are randomized and output the correct
answer with probability 1 — 1/n¢ for any desired con-
stant ¢ > 1.

By Result 1 for r = logn and § = 1/4/logn, we obtain lin-
ear programming algorithms that use O(d log n) passes or
rounds, and have space, communication, or load require-
ments in each model that is almost independent of the num-
ber of constraints. For low-dimensional instances, this results
in a dramatic saving compared to direct implementations of
standard LP algorithms in these models.

Previously, Chan and Chen [13] proposed an O(r
pass streaming algorithm for linear programming that uses
O(n'/") - poly(d, log n) space. Result 1 improves upon this re-
sult by achieving an exponentially smaller pass-complexity
in terms of d.

In the coordinator model, Daumé et al. [26] gave an algo-
rithm using O(r?*°W . k - n!/7) communication based on an
adaptation of the algorithm of [13]. The round-complexity
and communication cost of this algorithm again depends
exponentially on d.

In the MPC model, very recently Tao [41] gave a d0U0g(1/9).
round MPC algorithm with load O(n®) when d = polylog(n)
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(for any § € (0, 1)). This algorithm is then used as a building
block for an interesting database application called entity
matching with linear classification. The round complexity of
our MPC algorithm in Result 1 improves that of [41] by an
exponential factor.

To summarize, Result 1 exponentially improves upon the
pass/round complexities of the state-of-the-art, while using
the same or smaller space, communication, or load, in the
considered big data models.

We complement our algorithms by giving almost tight
lower bounds for any fixed dimension (even d = 2) in the
streaming and coordinator model.

Result 2. We give the following lower bounds for 2-
dimensional linear programming with n constraints. For
any integer r > 1:

e Streaming: Any r-pass algorithm requires Q(n'/?")
space.

e Coordinator: Any r-round algorithm requires Q(n'/?")
communication even when number of sites is only
k=2

Our lower bounds hold even for randomized algorithms
that output the correct answer with probability at least
2/3.

A few remarks about Result 2: Firstly, it is easy to see
that linear programming in one dimension in the models we
consider is a trivial task. Result 2 thus proves the lower bound
for the smallest non-trivial dimension. We note that unlike
Result 1 that worked in all the three models, Result 2 does not
prove any lower bound for MPC algorithms. Proving lower
bounds for MPC algorithms is considered to be a challenging
task as it has serious implications for long standing open
problems in complexity theory [39]. Hence, no unconditional
lower bounds are known so far in the literature for any MPC
problem and Result 2 is of no exception.

Prior to our work, Chan and Chen [13] gave a lower bound
for 2-dimensional linear programming for a restricted fam-
ily of deterministic streaming algorithms in the decision tree
model (the only permitted operation of these streaming al-
gorithms is testing the sign of a function evaluated at the
coeflicients of a subset of stored hyperplanes). Their lower
bound states that this type of algorithms require Q(n'/")
space to compute the solution in r passes. Our lower bound
in Result 2 is much stronger in that it proves a similar pass-
space tradeoff for all streaming algorithms (even random-
ized). Finally, Guha and McGregor [24] showed that there
is a fixed dimensional optimization problem for which any
r-pass streaming algorithm requires Q(n'/") space. However,
it is not clear how to adapt their proof to linear program-
ming since their optimization problem involves quadratic
constraints [33].

Further Related Work. Special cases of linear program-
ming have been studied previously in the big data models.
In particular, Ahn and Guha gave multi-pass streaming al-
gorithms for (1 + ¢)-approximation of packing LPs [1] and
Indyk et al. [27] gave similar algorithms for covering LPs
(see also [4]). These results focus on high-dimensional linear
programs (non-constant d) and only packing/covering LPs,
and are hence quite different from our approach in this paper.

Unlike the case for big data models, low-dimensional lin-
ear programming has been studied extensively in the RAM
model since the 1980s. Megiddo [34] gave an algorithm for
d-dimensional linear programming with time complexity
O(22d n), which is linear in terms of the number of constraints
n. This bound was consequently improved by a series of pa-
pers [8, 12, 15-17, 20, 21, 28, 32].

2 Preliminaries

Notations. For integers 1 < a < b, we define [a] as the
set {1,...,a}, [a : b] = {a,a+1,...,b}, and (a : b] :=
[a : b] \ {a} (we define [a : b) and (a : b) analogously).
We use capital letters for sets and random variables and
calligraphic letters for set families. We use the notation o( 1)
to denote a function of the form O(f - polylog(f)).

Throughout the paper, we say an event happens “with
high probability” if its probability can be lower bounded by
1 —1/n° for any desired constant ¢ > 1 (n is the number of
constraints).

We use the following standard variant of Chernoff bound.

PROPOSITION 2.1 (CHERNOFF BOUND). Suppose X1, . ..,X;
are t independent random variables taking value in [0, 1] and
X = ZleXi. Then, for any € > 0,

‘E[X]
3 )

Pr(IX - E[X]| > £ E[X]) Sz.exp(‘fz—

2.1 LP-type Problems

We consider a generalization of linear programming referred
to as LP-type problems?. An LP-type problem consists of a
pair (S, f), where S is a finite set of elements, and f : 25 — R
is a set function with a range R which is assumed to have a
total order. The function f satisfies two properties:

e Monotonicity: for any two sets X C Y C S, f(X) <
FOY) < (S).
o Locality: for any two sets X C Y C S, and any elements
e €S if f(X) = f(Y) = f(X U {e}), then f(Y) =
fY U {e}).
For an LP-type problem (S, f), we call aset B C S a basisof S
if f(B) = f(S), and for all B" C B we have f(B’) < f(B). The
goal is to compute a basis Bs C S such that f(Bs) = f(S). We

2LP-type problems is also known as abstract linear programming [6].



say an element e € S violates X C Sif f(X U {e}) > f(X). It
helps to think of an LP-type problem (S, f) as an optimization
problem in which elements of S are the constraints, and f(A)
computes the best feasible solution on the set of constraints
A. In the case when the optimal solution is not unique, we
just break the tie arbitrarily. Computing f(Bs) = f(S) hence
amounts to computing the optimal solution subject to all
the constraints (we will make this connection explicit in
the context of linear programming and other problems in
Section 4).

Combinatorial Dimension. Note that an LP-type problem
may have several bases which are of different sizes. We define
the combinatorial dimension of an LP-type problem to be the
maximum cardinality of a basis for S, denoted by vs (v for
short when S and f are clear from the context).

2.2 ¢-Nets and VC Dimension

We now define another important notion that we use in
designing our algorithms.

VC Dimension. A set-system is a tuple (H, U) consists of
a universe U and a set family H C 2U. Let C C U be a set.
Define the intersection between a set family and a set to be
the set family

HNC:={HNC|HeH}.

We say that a set C is shattered by H if H N C contains all
the subsets of C, i.e., [HNC| = 2ICl. The VC dimension of
set-system (H, U), denoted by A (or A for short when H is
clear in the context), is then the cardinality of the largest set
C that is shattered by H.

e-Net. Given a set-system (X,U), and a weight function
w:X - R forany Y C X, let w(Y) := Yycy w(Y). We
say a set N € X is an e-net of X with respect to w for
a parameter ¢ € (0, 1), iff for any point u € U such that
2xexuex WX) = e-w(X),itholdsthat {X e N |u ¢ X} #
0.

The notion of e-net is well-studied in the literature (partic-
ularly in the computational geometry community [9, 25, 36]),
and has been used in the algorithm design for many prob-
lems. We use the following simple randomized construction
of e-net for designing a distributed version of Clarkson’s
algorithm for LP-type problems.

LEMMA 2.2 (25]). Forany set-system (X, U) of VC dimension
A, any weight functionw : X — R, and ¢ € (0, 1), a set family
N C X obtained by randomly sampling
84 1 81 4 1 2 n
me 3,5 = max | — log —, —log —
A0 € & e ¢ & é
sets with probability proportional to their weights is an e-net

of X with probability at least 1 — 6.

3 Algorithms

In this section we present our algorithms for Result 1. We
will work with a special class of LP-type problems that con-
tains the most natural LP-type problems that we are aware
of, including linear programming, Linear SVMs, and Core
SVMs mentioned earlier. In particular, we require the LP-type
problem (S, f) to satisfy the following properties:

(P1) Each constraint X € S is associated with a set of
elements Sx C R (R is the range of f).
(P2) For any A < S, f(A) is the minimal element of
n X.
XeA
It is useful to think of R as the set of feasible solutions. For
example, in the case of linear programming, R = R¢ with the
natural ordering induced by scalar product with the vector ¢
in the objective function. Each constraint (inequality) X € S
corresponds to the subset of points Sx which satisfy the
constraint, and f(A) is equal to the point which satisfies all
constraints in A and has a minimal scalar product with c.
For convenience, we use X and Sy interchangeably.

For this special class of LP-type problems, we define the
VC dimension of the problem (S, f) as the VC dimension of
the set system (S, R).

In the following, we first give a general meta-algorithm for
solving LP-type problems with Properties (P1) and (P2), and
then show how to implement this meta-algorithm efficiently
in each model.

3.1 The Meta Algorithm for LP-Type
Problems

Our meta-algorithm follows Clarkson’s algorithm [16] for
linear programming, but we use a different sampling proce-
dure (by using e-net) which enables us to work with general
LP-type problems with bounded VC dimension; it also signif-
icantly simplifies the analysis and facilitates the implementa-
tion of our algorithm in the big data models we consider. We
further use a different weight increase rate after each itera-
tion, which is essential for reducing the number of passes in
the streaming, and the number of rounds in the coordinator
and MPC models.

The algorithm proceeds in iterations. We maintain a weight
function w : § — R throughout the algorithm which is ini-
tialized by setting w(S) = 1 for all S € S. In each iteration,
we first sample a set family N of m :=m, ,_ 2 sets from S
with probability proportional to their weights so as to obtain
an e-net N of S (according to Lemma 2.2). We then compute
a basis B of N, and the set V of constraints which violate
the basis B. If w(V) < ¢ - w(S), then we say this iteration
“succeeds”, and update the weights of all sets S € V by set-
ting w(S) « (n'/") - w(S). Otherwise, we say this iteration



ALGORITHM 1: A Meta-Algorithm for LP-Type
Problems
Input: An LP-type problem (S, f) satisfying
Properties (P1) and (P2) and integer r < Inn.
Output: f(S).

1 Lete:=

ﬁ, and A as the VC dimension of the
vs,fn

LP-type problem (S, f).
2 Set w(S) = 1forevery S € S.
3 repeat
4 Sample a family N C S of size m := Mg 22 by
picking each set in S with probability
proportional to w for the parameter m,, A2 in
Lemma 2.2.
5 Compute a basis 8 of N.
6 Let V ={S eS| f(BU{S}) > f(B)} be the
family of sets in S that violate 8.
7 if w(V) < ¢-w(S) then

8 ‘ Set w(S) = (n'/") - w(S) for every set S € V.
9 end
10 until V = 0;

11 return f(B).

“fails”, and continue to the next one without modifying the
weights. A pseudo-code is provided in Algorithm 1.

In the following, we first establish the correctness of the
meta-algorithm and then bound the number of iterations it
needs.

LEMMA 3.1. When Algorithm 1 stops, it correctly computes

f(S).

Proor. At the end of the algorithm, we have V = 0. This
means that for any S € S \ 8B, we have f(B U {S}) = f(B)
by the monotonicity property of f. By the locality property
and induction we obtain that f(8B) = f(B U (S\B)) = f(S),
finalizing the proof. |}

We now bound the number of iterations. We say that an
iteration of Algorithm 1 (at Lines 4 to 8) is successful iff
w(V) < & - w(S) in this iteration.

CramM 3.2. Each iteration of Algorithm 1 is successful with
probability at least 2/3.

Proor. Since the VC dimension of (S, R) is A, by Lemma 2.2,
with probability at least 2/3, the family N sampled in Line 4
is an e-net for (S, R) with respect to the weight function w.
In the following, we condition on this event.

Let x := f(8B). By Property (P2) of the LP-type problems
we consider, we know that x is the minimal element in the
intersection of all sets in 8 according to the ordering of R.
For any set S € S to violate B, we need to have x ¢ S;

otherwise f(8 U {S}) = x which is in contradiction with
f(BUA{S}) > f(B). Recall that V is the family of all sets
in S that violate 8. Suppose towards a contradiction that
w(V) > ¢ - w(8S). Since none of the sets in V contain x, and
N is an e-net, by definition there is a set S’ € N where S’
does not contain x. But this is in contradiction with B being
a basis. To see this, if f(8) = f(N), then x belongs to all
sets in NV, and consequently it should also be in S’. We thus
have w(V) < ¢ - w(8), finalizing the proof. ||

LEMMA 3.3. The number of iterations in Algorithm 1 is
O(v - r) with probability at least 1 — e"*V'"), where v denotes
the combinatorial dimension of (S, f).

Proor. Recall that the weight function w(-) is updated
only when an iteration is successful, and each iteration suc-
ceeds with probability at least 2/3 by Claim 3.2. By Chernoff
bound (Proposition 2.1), we have that if the algorithm termi-
nates in t iterations, then with probability at least 1 — e~ QD)
at least t/2 of these iterations are successful.

We now focus on successful iterations. Let w;(-) be the
weight function w(-) after the i-th successful iteration. Ini-
tially, for any S € S we have wy(S) = 1 (and thus wy(S) = n).
We claim that for any integer ¢ > 1, if Algorithm 1 reaches
the t-th successful iteration, then

nt"r < wy(S) < €1 . p, (2)
We establish Eq (2) in the following two claims.
Craiv 3.4. For any integert > 1, we have n'/"" < wy(S).

Proor. Fix an arbitrary basis 8* = {By, ..., Br} of S for
some k < v (recall that by definition, v is size of the largest
basis). Since 8* C S, we have w;(8*) < w;(S) for any ¢ > 0.
We thus only need to show n/"" < w;(8*).

The first observation is that in any iteration, if V # 0
then we must have V N B8* # 0. Indeed, if V N B* = 0,
then f(8) = f(B U B*) = f(S), where the first equality is
by the locality property of f and induction, and the second
equality holds since B* is a basis for S. However, this is in
contradiction with the fact that V # 0.

Let us now define B; as the basis of the e-net computed
in the i-th successful iteration. For any j € [k], let a; be the
number of iterations i such that B; € 8* violates $;. That is,

aj =|{i € [t]| f(B;) < f(B: U{B;H}.
Since V N B* # 0 in each of the first ¢ successful iterations,
there must exist at least one B; which violates 8; for each
Jj € [t]. We thus have 2;‘:1 aj > t. Moreover, by the weight
update rule of the algorithm, we can write the weight of 8*
as wy(B*) = ;_<=1 (nl/')aj . By combining these and Jensen’s
inequality we have

ko,
wi(B") > k (nl/r)Zj:1 /K > (nl/’)t/k > nt/vr,



since k < v. This concludes the proof of Claim 3.4. |}

CraIM 3.5. For any integert > 1, we have
wi(S) < et/ ..

Proor. For any iteration t > 1, the weight update proce-
dure at Line 8 of Algorithm 1 gives

wes1(S) = wi(S)+ (1" = 1) wi(V) < wi(S)+ (/") wi (V).

(3)
Moreover, by the condition at Line 7 of the algorithm, we
have,

W) S e w(S) = ——— (S @

by the choice of ¢ in the algorithm. Combining (3) and (4)
we have

1\
wi(S) < (1 + m) - wo(8S) < e/ . |

We get back to the analysis of the number of iterations. By

t/vr t/10v t 10rlnn :
Eq(2) wehaven <e n, hence, v < Tolmne - Sincer <

In n, we have % < %Or. Therefore the number of successful

iterations cannot exceed %vr, and hence the total number

of iterations is bounded by 2—90vr with probability 1 — e~

Remark 3.6. We can easily turn our Las-Vegas algorithm
in this section (Algorithm 1) into a Monte-Carlo algorithm
by the following modifications: First we pick an &e-net of
size M, 4 1/(nv), and second, the algorithm return “FAIL”
whenever w(V) > ew(S), which will not happen in the
first O(vr) = O(vlog n) iterations with probability at least
1—-vlogn-1/(nv) > 1-0(1).

3.2 Implementation in the Streaming
Model

Starting from this section, we show how to implement Algo-
rithm 1 in the three big data models considered in the paper.
We start with the streaming algorithm. In the multi-pass
streaming model the elements of S arrive one by one, and
f(-) is known to the algorithm at the beginning. We allow
the algorithm to make multiple linear scans of the input.
The main challenge in the streaming implementation of
Algorithm 1 is that we cannot afford to store the weights of
all elements in S which are needed in the e-net sampling. To
resolve this issue, we instead store the set of bases computed
at all the successful iterations — these are the only iterations
that we change the weight function - in a collection B, using
which we can compute the weight of each element of S on
the fly. In particular, the weight of a set S; € S in iteration
Jj of the algorithm, namely, w;(S;), is computed as w;(S;) :=
(nV/7)% where a; := |{B € B | f(BU{S:}) > f(B)}]. Itis

immediate to verify that this indeed implements the same
weight function in Algorithm 1. It is also easy to see that
having access to these weights, we can sample each set with
probability proportional to its weight using the weighted
version of reservoir sampling [14], and hence implement
each iteration of Algorithm 1 in one pass over the stream.

The rest of Algorithm 1 can be implemented in the stream-
ing model in a straightforward way. Let T,(m) be the time
complexity of computing a basis for a set of size m, and
T,(t, b) be the time complexity of finding all elements in a
set 7~ C S of size t which violate a set B of size b, i.e., all
S € S such that f(BUS) > f(8B). This allows us to prove
the following theorem.

THEOREM 1. Suppose (S, f) is an LP-type problem with
combinatorial dimension v, VC dimension A, and bit-complexity
bit(S) for each element of S. For any integerr < Inn, we can
compute f(S) with high probability in the streaming model,
using O(vr) passes, and O(An'/" - v + v?) - bit(S) space. The
total running time of the algorithm is also O(vr - T,(n,v) +
vr - Ty(An'" - v)).

Proor. The correctness of the algorithm follows from
Lemma 3.1. As each iteration of Algorithm 1 can be imple-
mented in one pass, the total number of passes needed by
our streaming algorithm is O(vr) with high probability by
Lemma 3.3.

Recall that the size of each e-net NV sampled in Algorithm 1
ism=m, ;= O (Avn!'") | by the choice of ¢ in the algo-
rithm and M 22 in Lemma 2.2. The space needed by the
algorithm to store N in each iteration is O(m) - bit(S),
which is equal to 5(/1vn1/’) - bit(S) bits. We also need
to store all bases in successful iterations, which requires
O(v-r)-O(v) - bit(S) = O(?) - bit(S) (since r = O(log n))
as each basis requires O(v) - bit(S) bits to represent and
there are total of O(vr) such bases.

Each pass of the algorithm involves performing a viola-
tion test over the n elements of S, which takes O(T,(n, v))
time. And computing a basis of m elements which takes
O(Ty(m)) times. The running time follows by multiplying
these numbers by the number of passes, and by the choice
ofm. |

3.3 Implementation in the Coordinator
Model

Recall that in the coordinator model the input set S is arbi-
trarily partitioned among k sites Py, ..., Py such that for
any i € [k], the site P; receives the elements S;. The k
sites and the coordinator want to jointly compute f(S) =
f(S1U---USk) via communication. The function f is a pub-
lic knowledge, that is, all parties know how to evaluate the



function f(7) for any 7~ € 25 assuming 7~ resides entirely
on that machine.

Similar to the streaming model, the main step here is also
the implementation of the ¢-net sampling procedure in Al-
gorithm 1. We show in Appendix A.1 how this step can be
performed efficiently, leading to the following theorem.

THEOREM 2. Suppose (S, f) is an LP-type problem with
combinatorial dimension v, VC dimension A, and bit-complexity
bit(S) for each element of S. For any integerr < Inn, we can
compute f(S) with high probability in the coordinator model
with k > 2 machines, using O(vr) rounds, and O(An/" - v? +
k - v®) - bit(8) communication in total. The local computation
time of the coordinator is O(vr - (Ty(An"/" - v) + kv)) and the
local computation time of the i-th site is O(vr - Ty,(n;, v)) where

ni == |Sil.

3.4 Implementation in the MPC Model

The implementation of Algorithm 1 in the MPC model can
be done similarly as that in the coordinator model, by choos-
ing one of the machines to play the role of coordinator. The
only problem is that when the number of machines is large,
the machines cannot simply send all the messages to the
coordinator directly, as it will blow up the load in the coordi-
nator. In Appendix A.2 we show how to get around this using
standard primitives in MPC model. We have the following
theorem.

THEOREM 3. Suppose (S, f) is an LP-type problem with
combinatorial dimension v, VC dimension A, and bit-complexity
bit(S) for each element of S. For any § € (0,1), we can
compute f(S) with high probability in the MPC model using
O(v/8%) rounds with O(An® - v2) - bit(S) load per machine.

4 Examples and Applications

We now give examples of the application of our algorithms
for general LP-type problems. We will discuss several funda-
mental optimization problems in machine learning, namely,
linear programming, Linear SVM, and Core SVM. Recall that
when implementing our meta algorithm in each model, we
have left two functions T,(-) (the time needed for perform-
ing the violation test) and T3 (-) (the time for computing the
basis) unspecified. In this section we will provide concrete
bounds for these functions in the context of the concrete
problems we study. Throughout this section, we assume that
the bit-complexity of each number in the input is O(log n)
bits.

4.1 Linear Programming
A linear program is an optimization problem of the type:

d d

min cix; subject to
x€R4 =

a]l:x,- <V forallje [n].
i=1
(5)

A d-dimensional linear program can be modeled as an
LP-type problem as follows. Let S be a set family of size n
such that for every constraint in (5), there exists a unique
element S € S which is the half-space in the d-dimensional
Euclidean space R containing the points that satisfy this
single constraint. We define the function f over subsets of
S such that for every A C S, f(A) is the lexicographically
smallest point that minimizes the objective value of LP while
satisfying only the constraints in A. The linear program (5)
now corresponds to the LP-type problem (S, f) (we use S
as opposed to our previous notation S, since each element
of S is now itself a subset of R?, and hence S forms a set
family). We refer the interested readers to [32] for more
details on connection between linear programming and LP-
type problems.

It is known that the combinatorial dimension v of this
particular LP-type problem (S, f) is at most d + 1 [32]. The
VC dimension A is also at most d + 1 [43]. Finding the basis of
any given set of constraints and the violating constraints can
also be done easily using standard results (see Appendix B.1
for details). We can thus prove the following theorem using
Theorems 1, 2, and 3.

THEOREM 4. We give the following randomized algorithms
for d-dimensional linear programming with n constraints. For
anyr = 1andd € (0,1):

o Streaming: An O(d - r)-pass algorithm with 6(d3 -nt/")
space in O(n) - poly(d) time.

e Coordinator: An O(d - r)-round algorithm with O(d*n/" +
d3k) total communication in which the coordinator and
each site i € [k] spend omn" +k) - poly(d) time and
O(n;) - poly(d) time, respectively, where n; is the number
of constraints on site i.

e MPC: An O(d/52)-round algorithm with O(d*n®) load per
machine and O(n) - poly(d) time in total.

4.2 Linear Support Vector Machine

In Linear Support Vector Machine (SVM) problem [7], we
have a set of tuples {(x1,y1), . . ., (Xn, yn)} such that for each
index j € [n], x; € R4 and y; € {-1,+1}. The goal is to
compute a hyperplane u = (uy, . . . , ug) which is the outcome
of the following quadratic optimization problem [7]:

min [lul; st yj - (u,x;) =1 forallje[n]. (6)
ueRd



From a geometrical point of view, the problem (6) corre-
sponds to finding a hyperplane which separates the set of
point {xi,...,x,} according to their labels with the maxi-
mum margin value (if possible); see, e.g., [7] for more infor-
mation on this fundamental problem.? Note that the prob-
lem (6) is not a linear program. However, one can show that
it is an LP-type problem (S, f) where S is a set family in R?
in which every set contains the points that satisfy a particu-
lar constraint, and f(A) for A € S computes the optimal
solution of (6) given only the constraints to A [32] (unlike
linear programming, the optimal solution to (6) under any
set of constraints is unique and hence we do not need the
lexicographically first constraint).

The combinatorial dimension of (S, f)isv < d + 1 [32],
and the VC dimension of (S,R%) is A < d + 1 [43]. One can
again use standard results to find a basis of any given set of
constraints and all violating constraints of a given basis for
this problem (see Appendix B.2). This allows us to prove the
following theorem using Theorems 1, 2, and 3.

THEOREM 5. We give the following randomized algorithms
for d-dimensional linear support vector machine problem with
n constraints. For anyr > 1 and § € (0,1):

e Streaming: An O(d - r)-pass algorithm with O(d® - n'/")
space in O(n) - poly(d) time.

o Coordinator: An O(d - r)-round algorithm with O(d*n'/" +
d3k) total communication in which the coordinator and
each site i € [k] spend om’" + k) - poly(d) time and
O(n;) - poly(d) time, respectively, where n; is the number
of constraints on site i.

e MPC: An O(d/5?)-round algorithm with O(d®n®) load per
machine and O(n + n®%) - poly(d) time in total.

4.3 Core Vector Machine

Tsang at el. [42] proposed core vector machines as a way of
speeding up kernel methods in SVM training (see [7]). This
is achieved by reformulating the original kernel method as
an instance of the minimum enclosing ball (MEB) problem,
defined as follows: Given a set of points P := {p1,...,pn}
in RY, find a center p and a minimum radius r such that all
the points in P are within a d-dimensional sphere of radius
r centered at p. MEB can be formulated as the following
optimization problem:

min r subject to

B lp=pill, < forallje[nl. (7)

This problem is also an LP-type problem (S, f) formulated
similarly to linear programming and Linear SVM [32]. The

30ur algorithm works effectively for the hard-margin Linear SVM. In the
case of the soft-margin Linear SVM, the optimization problem can also
be formulated in the form of LP-type problem, but the dimension of such
formulation is large — proportional to the size of input.

combinatorial dimension of (S, f)is v < d + 1 [32] and the
VC dimension of (S,R%) is A < d + 1 [44]. We obtain the
following theorem for this problem using Theorems 1, 2,
and 3 (see Appendix B.3).

THEOREM 6. We give the following randomized algorithms
for d-dimensional core vector machine problem with n con-
straints. For any integerr > 1:

e Streaming: An O(d - r)-pass algorithm with O(d® - n'/")
space in O(n + n*") - poly(d) time.

e Coordinator: An O(d - r)-round algorithm with O(d*n/" +
d%k) total communication in which the coordinator and
each site i € [k] spend om*" + k) - poly(d) time and
O(n;) - poly(d) time, respectively, where n; is the number
of constraints on site i.

e MPC: An O(d/52)-round algorithm with O(d*n®) load per
machine and O(n + n3%) - poly(d) time in total.

5 Lower Bounds

In this section we prove information-theoretic lower bounds
for linear programming that hold against any algorithm. We
obtain our lower bounds by establishing the communication
complexity for 2-dimensional linear programming, and then
translating it to lower bounds in the big data models. In the
following, we first give some background on communication
complexity and then present an intermediate problem, called
two-curve intersection problem (TCI), that we consider en
route to proving our result for linear programming. We then
prove a lower bound for TCI and present its implications
for linear programming in the streaming and coordinator
models.

5.1 Background

Communication Complexity. We focus on the standard
two-party communication complexity model of Yao [45]. In
this model, Alice and Bob receive an input X € X and Y €
Y, respectively. In an r-round protocol, Alice and Bob can
communicate up to r messages with each other. In particular,
for an even r, Bob first sends a message to Alice, followed by
a message from Alice to Bob, and so on, until Bob receives
the last message and outputs the answer. For an odd r, the
only difference is that Alice starts first and then the players
continue like before until Bob outputs the answer.

The communication complexity of a problem P : X XY —
Z, denoted by CC(P), is the minimum worst-case communi-
cation cost of any protocol (possibly randomized) that can
solve P with probability at least 2/3. The r-round commu-
nication complexity of P, denoted by CC"(P), is similarly
defined with respect to protocols that are allowed at most r
rounds of communication.

Augmented Indexing. In the Augmented Indexing Prob-
lem, denoted by Aug-Index,,, Alice is given a binary string



x € {0,1}", and Bob is given an index i € {0, 1} plus the first
i—1bits of the string x, i.e., x1, . . ., x;—;. The goal is for Bob to
output the bit x;. It is well-known that 1-round communica-
tion complexity of this problem is CC!(Aug-Index,,) = Q(n)
(see, e.g. [35]).

Information Theory. Throughout this section, we use
bold-face fonts, say A, to denote random variables, and nor-
mal font, say A, to denote their realizations. For a random
variable A, supp(A) denotes its support and dist(A) its dis-
tribution. We sometimes abuse the notation and use A and

dist(A) interchangeably. Furthermore, for a ¢t-tuple (X3, . . ., X;)

and any integer i € [t], we define X~" := (X;,...,X;_1) and
X7i= (Xig1, -+, Xo).

For random variables A, B, let H(A) and I(A ; B) denote the
Shannon entropy and mutual information, respectively. We
use D(A || B) and ||A — B||,,,4 to denote the KL-divergence
and total variation distance between A and B, respectively.
Appendix C.1 provides formal definitions and basic proper-

ties of these functions.

5.2 The Two-Curve Intersection Problem
(TCI)

We consider the following problem, whose lower bound
implies a lower bound for linear programming in the two-
dimensional Euclidean space (as we show shortly).

Alice and Bob are given sequences of n numbers A :=
{ai,...,anyand B := (by, ..., b,) in Q", respectively, such
that:

(1) Monotonicity: A is monotonically increasing and B is
monotonically decreasing.

(2) Convexity: For any i € [n], in A we have a; — a;_;
a;+1 — a; and conversely in B we have b; — b;_4
biv1 —bi.

The goal is to find the smallest index i* € [n] such that
a;» < b but aj+41 > b=y, under the promise that such an
index always exists. We can interpret the sequence A as a
two-dimensional curve in R? that goes through the points
(1,a1),(2,az), - - (n,ap) (similarly for B). We refer to this
problem as the two-curve intersection problem and denote it
by TClI,, for sequences of length n (or TCI in general). See
Figure 1a for an illustration of this problem.

<
>

Connection to 2-Dimensional Linear Programming. We
can reduce the two-curve intersection problem to an instance
of 2-dimensional linear programming as follows (see Fig-
ure 1b). Extend each segment of the curve in Alice’s and
Bob’s input to obtain a line that defines a constraint in which
all points above this line are feasible (blue region for Alice
and green region for Bob in Figure 1b). The feasible region
of this linear program is the set of points in R? that lie above
both of Alice’s and Bob’s curve. By minimizing the y-axis on
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(a) The answer here is i = 4 (dashed line).

(b) Linear programming formulation.

Figure 1: An illustration of the two-curve intersection
problem and its connection to linear programming.

the feasible region, we obtain the first “fractional” point in
which Alice’s curve goes above Bob’s curve, and by rounding
down the x-axis of this point, we obtain the index i* of TCI.

Geometric Notations. We work in the two-dimensional
Euclidean space R2. We use p € R? to denote a point, and
p.x and p.y to denote its x and y coordinates respectively.
Throughout, all the points used have rational coordinates
(ie., in Q?). For two points py, p, and integers a < b, we
define LineSegment(ps, p2, a, b) as the sequence of b —a + 1
numbers {(z4, Zq+1, - - - » 2p) such that for all i € [a : D], (i, z;)
belongs to the unique line in R? that passes through the
points p; and p,. We use the following elementary geometric
facts.

Fact 5.1. Let(zg,...,2p) := LineSegment(p, p2, a, b).

(1) Foreveryie (a:bl,z; —zj_1 := %-

(2) Foreveryie[a:b),z; = % (i=p1x) +pry =
P2 Yy=pr-y s
Pz-TPi-x (i — p2.x) + p2.y.

We also define a notion called step curve. For a string
X =(x1,...,%xm) € {0,1}" and a parameter « > 1,
StepCurve(X, ) is the sequence of m + 1 numbers z; such
that zgo = 0and foralli € [m],z; ;== zi_1 + @ + i + x;.

5.3 Communication Complexity of TCI

Our goal is to prove the following theorem.

THEOREM 7. Foranyr > 1, CC"(TCl,) = Q(% - n'/7).



The proof of Theorem 7 is based on an inductive argument,
following the general round-elimination approach in commu-
nication complexity (see, e.g. [35, 40]). In this approach, one
proves the lower bound for r-round problems by showing
that a “too good” r-round protocol will imply a too good
(r — 1)-round protocol, by reducing the r-round problem to
multiple instances of the (r — 1)-round problem. Following
this argument inductively, we will end up with a protocol
using only 1 round. We then directly prove that such a too
good 1-round protocol cannot exist.

5.3.1 Base Case: One-Round Protocols As a warm-up, we
first prove Theorem 7 for r = 1, i.e., 1-round protocols.

LEMMA 5.2. CCY(TCI,) = Q(n).

Proor. We prove this lemma using a reduction from the
Augmented Indexing Problem on a universe of size n — 1.
Given an instance of Aug-Index, _, with input x € {0,1}""!
to Alice and i* € [n — 1] plus xy, . . ., x;+—1 to Bob, the play-
ers construct the following instance of TCl, (without any
communication):

(1) Alice creates A := {(ay, . .
(2) Bob creates

.,an) := StepCurve(x, 0).

B:=(b1,...,b,) = LineSegment(ps, p2, 1,n),

where p; := (n,1) and p; := (i*, a;+ +i* + 1).

The players then run the protocol for TCl,, on this in-
stance and Bob outputs x;+ = 1 (in answer to the Aug-Index
instance) iff i* is returned by the protocol for TCl, as the
answer on this instance.

Correctness of the reduction. We first verify that the se-
quences A and B constructed by Alice and Bob satisfy the
promise of the TCl,, input. By Fact 5.1, B is both monotone
and convex. It is also easy to see that A is monotonically in-
creasing: for all i > 2, a; > a;—; + i > a;_;. Finally, to verify
the convexity of A, notice thata; —a;—y =i +x;-1 <i+1
while gj41 —a; =i+1+x; > i+ 1.

We now prove the correctness of the output in the re-
duction. Suppose first that x;+ = 0. In this case, a;+41 =
ap +i*+1+4+x+ = a; +i*+1 = b+ by definition. On
the other hand, a;+,2 > b; for alli > i* as b; < b;» and
a;+42 > a;+41 = by, As a result, the correct index in TCl,, is
i* + 1. Now suppose x;+ = 1. In this case, a;+11 > b;» while
aj- < bi-. As such, the correct index in TCl,, is i*, finalizing
the proof of the correctness of the reduction.

Communication cost of the reduction. The instance of TCl,
can be created with no communication. As such,

CC!(TCl,) > CC'(Aug-Index,_,) = Q(n). 1

5.3.2  General Lower Bound: The Outline We now switch to
the main part of the argument in which we prove Theorem 7
for all integers r > 1. In this section we outline our high
level approach. In this section, we will oversimplify many
details, and the discussions will be informal for the sake of
intuition.

We design a family of distribution Dy, Ds, .. ., where D,
is hard distribution for r-round protocols. Distribution 9,
is the distribution of hard instances obtained in Lemma 5.2
(from the hard distribution of Aug-Index). Each instance I in
the distribution D, is then constructed roughly as follows:
we sample n'/" instances from the distribution 9,_; each
over nr=D/r points. Let us call these instances I, . .., L.
We embed these instances inside I so that the following two
properties are satisfied: (i) the answer to TCl,, on instance
I is the same as the answer to TCl 1, on instance I« for
some z* € [n'/"] chosen uniformly at random, and (ii) the
first player to speaks (namely Alice for odd r and Bob for
even r) is oblivious to the identity of z*.

The proof of the communication lower bound then goes
as follows. Using information-theoretic arguments, we can
argue that if the first message of the protocol is of size o(n'/"),
then it only reveals o(1) bits of information about an “average”
embedded instance I; for i € [n,] of D,_;. In particular, since
the sender of the first message is oblivious to the identity of
the z* (by property (ii)), the first message only reveals o(1)
bits of information about the instance I,«. This effectively
means that the distribution of the instance I« is essentially
the same as D,_; even after the first round. However, by
property (i), the players now need to solve the instance
L« on n"=D/7 elements sampled from distribution D,_; in
r — 1 rounds. By induction, this requires Q((n(’_l)/’)l/r_l) =
Q(n'/7) bits, which implies the desired lower bound for r-
round protocols.

The outline above is arguably the most straightforward
application of round-elimination (see, e.g. the tree-pointer-
jumping problem in [11]). Unfortunately however, this ap-
proach does not work directly in our application. In partic-
ular, in the discussion above, we left the specifics of how
the (r — 1)-round instances I, ..., I,;- are embedded to-
gether to form I. For the above information-theoretic ar-
guments to work, these instances need to be sampled in-
dependently of each other. On the other hand, for us to be
able to embed them together in a valid instance of TCI, we
need to ensure that they collectively preserve monotonic-
ity and convexity properties of TCI. This requires correlat-
ing the instances I, . . ., I,1/-, impeding the use of previous
information-theoretic argument.

We get around this challenge by carefully “revealing ex-
tra information” about the inputs of the players to each
other (similar to the reduction from Aug-Index in Lemma 5.2),



which allows to “control” the correlation between different
instances I, . . ., I,iy» in terms of these revealed information.
We then show that even with this extra information, the
two properties above for embedded instances continue to
hold, and at the same time, we have enough independence in
the instances to make the information-theoretic arguments
outlined above work.

We comment that this construction of hard instances of
TCl and the proof of the corresponding communication lower
bound is one of the main technical contributions of this paper.

5.3.3 General Lower Bound: The Hard Input Distribution
We use an integer N > 1 as a parameter in defining all
other parameters of our hard distribution. In particular, for
r-round instances, n, = N” is the number of points given to
Alice and Bob, and m, := N is the number of (r — 1)-round
instances “embedded” inside the r-round instance. We also
define the following two operators on instances that are used
in our lower bound construction (their roles will become
more evident once we give the proper definition of the hard
distribution).

o Slope-Shift Operator: In any instance I of our hard
distribution D, the input to Alice is constructed using
several (potentially different) StepCurve functions. By
applying slope-shift operator on instance I with pa-
rameter a, we increase the second parameter in every
application of StepCurve in constructing Alice’s input
by an additive factor of a. As a result, any segment
in Alice’s input constructed with StepCurve(x, f) be-
comes StepCurve(x, a+f3). We ensure that the operator
also changes the slope of Bob’s input by «.

o Origin-Shift Operator: By applying the origin-shift
operator with point p4 € R? from Alice’s side in an
instance I of D,, we shift all points in the instance I
along the same line so that the left-most point of Alice’s
input will be on the point p4. Similarly, by applying
the origin-shift operator with pg € R? from Bob’s side,
we shift all points along the same line so that the right-
most point of Bob’s input will be on pg. This operator
clearly does not change the slope of any line segment
in players’ inputs.

We are now ready to describe our hard input distribution.

Distribution D,: The Hard Distribution for r-round
Protocols of TCI. We define the procedure Instance that
given a parameter r, construct an instance of TCI.

Instance(r).
(I r = 1, sample (A B) from the distri-
bution of Lemma 5.2; otherwise, define

(A, B) := Evenlnstance(r) for even r and
(A, B) := OddlInstance(r) for odd r.
(2) Return the points (A, B) as the r-round instance.

We now define the Evenlnstance procedure inside Instance.

Evenlnstance(r).

(1) Sample m, instances (C;, D;) independently from
Instance(r — 1).

(2) Fori = m, down to 1 do:

(a) Let pi! be the left-most point of Bob’s input in
(Cis1, Dis1) (define pi™*' = (n,,0)). Apply the
origin-shift operator with point p&*! from Bob’s
side on the instance (C;, D;).

(b) Let a/*! be the largest slope of any segment in
(Cit+1, Dis1). Apply the slope-shift operator with
slope a*! on (C;, D;).

(3) Sample z* € [m,] uniformly at random.

(4) Define A := (Ay,...,Ap,) where A » = C,x; the
remaining A;’s for i # z} are constructed by extend-
ing the curve in A,» on both its endpoints along
straight lines.

(5) Define B := (By, ..
i€[m,].

., Bm,) where B; = D; for all

We refer to instances (C;, D;) as sub-instances. Several re-
marks are in order about these sub-instances. Firstly, even
though they were originally sampled independently, by ap-
plying the origin-shit and slope-shift operators, we have cor-
related these instances. In particular, each instance (C?, DY)
depends on instances (C/, D/) for j > i. Moreover, note that
not all the points in these instances appear in the final in-
stance (A, B). In particular, we only use the points in C,«
to define A, +; the remaining points in A\ A, are obtained
differently from Cy, . ..,Cp,, (the points in B are however
identical to the points in Dy, ..., Dy, ). Nevertheless, the
remaining instances still play a marginal role in the defini-
tion of the players’ inputs because these points define the
starting point and starting slope of each sub-instance. In the
following, we refer to (A, B) as the actual input of Alice and
Bob, and refer to the points in (Cy, D1), . . ., (Cp,, D, ) that
are not part of (A, B) as fooling inputs. Figure 2a gives an
illustration of Evenlnstance.

We use the term sub-instance for both (A4;, B;) and (C;, D;)
pairs. For any i € [m,], we use A; := (@ 1,...,4in, ) and
B; := (bi1,...,bin, ) to denote the points in sub-instance
(A;, B;). The following proposition ensures that instances
sampled by Evenlnstance do not violate the monotonicity
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(b) An Illustration of OddInstance.

Figure 2: An illustration of Evenlnstance and
Oddlnstance. Thick blue and green curves denote
the actual inputs of Alice and Bob. Similarly, light
blue and green curves denote the fooling inputs. Each
red dashed rectangle denotes one sub-instance (thick
ones show the special sub-instance).

and convexity properties of TCI across sub-instances (proof
appears in Appendix C.2).

PROPOSITION 5.3. For (A, B) sampled from Evenlnstance,
assuming each sub-instance (A;, B;) satisfies monotonicity and
convexity of TCl, then (A, B) also satisfies monotonicity and
convexity.

We refer to the instance (A x,B,x) = (C.x, D x) as the
special sub-instance of (A, B). The next proposition signi-
fies the role of the special sub-instance in Evenlnstance (see
Appendix C.2).

PRrROPOSITION 5.4. For instances (A, B) sampled from
Evenlnstance, the answer to TCI(A, B) is the same as the an-
swer to TCI(Cx, D x).

The definition of OddInstance procedure is similar to
Evenlnstance by switching the role of Alice and Bob. Due to
space constraints, we postpone this description to Appen-
dix C.3 (the odd-round analogues of the lemmas and claims
also appear in Appendix C.3).

Actual vs Fooling Inputs. As we already observed in the
proof of Lemma 5.2, providing the players with extra infor-
mation about the input of the other player (i.e., giving Bob
the first i* points in Alice’s input) facilitates the proof of the
lower bound. This is also the case for our hard instances for
r > 1 round protocols. In the following observations, we
state several properties of this extra information which is
crucial for our information-theoretic lower bound for TCI
(the observations for odd rounds appear in C.3).

Observation 5.5. In Evenlnstance, there is a one-to-one
mapping between (A,x, B,») and the original (C,x, D,x) (be-
fore applying any operator), assuming we are given

(C>z;’ D>z ).

The reason behind Observation 5.5 is simply the opera-
tors applied to each (C;, D;) are functions of (C~%, D) in
Evenlnstance and the special sub-instance is just a “copy” of
(Cz;* > Dz;‘ )

Observation 5.5 implies that if players have access to
(C>Zr*, D>Z:) in Evenlnstance as an extra input, then they
can determine the original distribution of their special sub-
instance. This is the main reason that we provide the players
with this extra input in our reduction.

Observation 5.6. In Evenlnstance, the index z} € [m,] is
chosen independently of B and (Cy, D1), . . ., (Cm,, Dm,) -

This observation follows directly from the construction
of the instances. Observation 5.6 implies that even given the
extra input, the player that sends the first message is oblivious
to the identity of the special sub-instance.

5.3.4  General Lower Bound: The Communication Complexity
We prove Theorem 7 by induction on the number of rounds,
with Lemma 5.2 forming the base of the induction. We have
the following lemma.

LEMMA 5.7. For anyr > 1 and any (1/3)-error protocol
7t for instances of TC| sampled from the distribution D,, the
communication cost of 7, is Q(N/r?).

From now on we fix a deterministic protocol r, for TCI on
D,; we later use Yao’s minimax principle [46] to extend the
lower bound to randomized protocols. We use IT to denote
the random variable for messages communicated in the proto-
col, and write IT = (I1y, . . ., IT,), where I1, denotes the mes-
sage communicated in round ¢. We further use Z to denote
the index z¥, which corresponds to the index of the special
sub-instance. Let (Ay,..., A, ) and (By,..., B, ) denote
the random variables for the points A and B and their par-
titioning into sub-instances respectively, and (Cy, . ..,Cpn,)
and (D4, ...,Dp,,) for C and D.

We start with the following lemma that formalizes our
intuition that players cannot reveal information about the
special sub-instance in their first round. We first consider



even-round protocols (see Appendix C.3 for the lemma for
odd-round protocols). .

LEMMA 5.8. For any even integerr, and any r-round protocol
7T with worst-case message length € on instances of D,

I(Az,Bz);T, | C*%,D7%,Z) < (/N.
Proor. We start by expanding the LHS:
I(Az,Bz):T, | C*%,D7%,Z)
= E ][]I((AZ,BZ);HI | C**,D7*,Z = z)]

z€[m,
(definition of conditional mutual information)

1 &
= — >'I(A.B.): I | €77, D77, Z = 2)
mr z=1

(distribution of Z is uniform over [m,])

1 <
= — 3 I(C..D.): Iy | C7%, D%, Z = 2)
my z=1

(by Observation 5.5)
1
= — > 1(C:.D): My | €77, D7),
my z=1

where the last equality is due to the fact that the joint dis-
tribution of all random variables (C,, D,),I1,,C”*,D”% is
independent of the event Z = z. Indeed, for even r, the
message IT; sent by Bob is a function of (B, ..., By, ) and
(C1,D4),...,(Cwm,,Dp,), and by Observation 5.6, these ran-
dom variables are all independent of z}. As such, removing
the conditioning on the event Z = z does not change the
distribution of variables above. Finally,

1 &
— > I(C2.D2):1, | C7%.D7F)
" z=1

1
= -I(Cy,...,Cm,,Dy,...,Dp, ;I1;)
-
(chain rule of mutual information)
1 £
< — -H(II) < —. (H(ITy) < ¢)
my m,

The lemma follows by noting that m, = N. |}

To continue, we need the following definition.

Distribution . for even r: For an assignment
(I1;,C>#,D”%, z) (denoted by E for short) to
(I1,,C>%,D>%, Z), we define ,(E) as the distribution
of (A;,B,) in D, conditioned on IT, = II,,Z = z,
C>Z = C>Z’ D>Z — D>Z.

Using Lemma 5.8, we have the following claim (see Ap-
pendix C.3 for the claim for odd-round protocols).

CraIM 5.9. For any even integer r and any r-round protocol
7T, with worst-case message length o(N /r?),

E E)-D,_ =o(1/r).

e B [Me® = D] = o1/r)

Proor. By the connection between mutual information
and KL-divergence (Fact C.1), we have,

I((Az,Bz);II, | C7%,D7%,7) =

E [D(dist(Az,Bz | E\ILy) || dist(Az,Bz | E))]
E=(I;,C>%,D>%, 2)

= E D(D, - E)];
Bl Coe o 2y [(D(Dy-1 || pe(E))]
Conditioned on Z = z, distribution of (Az, Bz ) is the same
as the original distribution of (Cz, Dz) by Observation 5.5.
Furthermore,

E D(Dy_1 || e (E
Ez(HI’C”’D)Z’Z)[ (Dr-1 | pe(E))]

> E 2 |Dy_i — u(E)||?
E:(Hr,C>Z,D>Z,z)[ 1Dr—1 = pe(E)II, 4]

(Pinsker’s inequality (Fact C.3))
2

>2- E _1— Ue(E
> E:(n,,c>z,D>z,z)[”D” pe(E)l 10q]

(Jensen’s inequality)

By Lemma 5.8, [((Az,Bz);II, | C>%,D>%,Z) = o(1/r?),
implying that,

E Dr— - He E = 1 .
E=(I,,C>%,D>%,z) [” 1 H ( )”tvd] O( /r)

This finalizes the proof. ||

Define the recursive function §(k) = §(k—1)—o(1/r) with
base case 6(1) = 1/4 (here r is the number of rounds).

LEMMA 5.10. Any deterministic 5(r)-error protocol , on
D, requires Q(N [r?) communication.

Proor. The proofis by induction on the number of rounds.
The base case for r = 1 follows from Lemma 5.2. We now
prove the induction step.

Suppose the lemma holds for all integers up to r — 1, we
prove it for r-round protocols. Given a r-round protocol 7,
for D, that violates the induction hypothesis, we construct
a (r — 1)-round protocol z,_; for D,_; that also violates the
induction hypothesis, a contradiction. The protocol 7,_; is
constructed in two steps: we first construct a randomized
protocol 7’ from ,, and then fix the randomness of the
protocol to achieve a deterministic protocol.

We now describe ’. For simplicity, we only give the pro-
tocol for even choices of r; the extension to odd values is
straightforward. Given an instance (A, B) ~ D,_1, protocol
7’ works as follows:



(1) Using public randomness, the players sample
(I,,C>*,D>%, z¥) from the distribution D,.

(2) Bob samples remaining coordinates (C;, D;) for
J < z} using private randomness from distribution

D, | (I,,C7*,D7%,z)).

(3) Alice sets A,x = A and Bob sets B,» = B by ap-
plying the appropriate slope-shift and origin-shift
operators based on C>%, D% which is known to
both Alice and Bob.

(4) The players then fill the rest of their input in
(A1,...,Am,) and (By,...,By,); Bob knows all
of (C1,Dy),...,(Cm,,Dpm,) and can perform the
needed slope-shift and origin-shift operators, and
Alice simply needs to extend A,+ across straight
lines.

(5) The players run 7, on these new points from the
second round onwards, assuming that the first com-
municated message was I1;. They output the index
returned by 7.

Communication cost of 7’ is clearly at most as the com-
munication cost of 7. We now prove the correctness of z’.

CrLam 5.11. Assuming 7, is a §(r)-error protocol for D,,
7’ will be a (5(r) + o(1/r))-error protocol for D,_;.

Proor. We have,

Pr (7’ errs) = [ Pr (7, errs | E)]
Dr E=(I;,C>%,D>%,2}) | Dr-1
(by Proposition 5.4)
< E Pr (7, errs) + ||ue(E) — D,
E=(I1,,C>=,D>%,2}) [ueus)( r erts) + [|te(E) = Dy 1||tvd]

(by Fact C.2)

< 8(r) +o(1/r%),
(7, is a (8(r))-error protocol, and by Claim 5.9)

finalizing the proof. |

We are now ready to complete the proof of Lemma 5.10. By
Claim 5.11, ” isa (6(r)+0(1/r))-error protocol for D,_;. ' is
a randomized protocol. However, by an averaging argument,
we can fix the randomness of 7’ to obtain a deterministic
(8(r) + o(1/r))-error protocol for D,_; with the same com-
munication cost o(N/r?). As 8(r) + o(1/r) = 8(r — 1), this
contradicts the induction hypothesis. We thus have that the
communication cost of 7, is Q(N/r?), proving the induction
step. This concludes the proof.  JJ

Lemma 5.7 now follows immediately from Lemma 5.10 as
8(r)=1/4+ %, _, o(1/r) = 1/4+0(1) < 1/3, and by the easy
direction of Yao’s minimax principle [46].

5.3.5  Proof of Theorem 7

ProoF oF THEOREM 7. By Lemma 5.7, any (1/3)-error r-
round protocol for TCI,, requires Q(N/r?) communication on
instances of D,. In these instances, n = N” by the construc-
tion of D,. Plugging in N = n"/", we obtain CC"(TCl,) =
Q(% -nl/my.,

We conclude this proof by making the following remark:
A r-round instance of our problem consists of at most N7~
applications of StepCurve, each having a larger slope than
the previous one by an additive factor of N. As a result, the
largest slope using in our construction is N°"). This implies
that the bit-complexity of the numbers we use is bounded
by log (N°®)) = O(logn). i

As a corollary of Theorem 7, using the connection between
two-curve intersection problem and linear programming
outlined in Section 5.2, we obtain the following.

round protocol for 2-dimensional linear programming with n
constraints requires Q(# . nl/r) communication.

COROLLARY 8. For any integer r > 1, any two-player r-

5.4 Lower Bounds for Linear Programming
in Big Data Models

We now give some straightforward applications of our com-
munication complexity lower bound for linear programming
to streaming and coordinator models, and formalize Result 2.

The Streaming Model. It is well-known that communica-
tion complexity lower bounds imply space lower bounds on
the space complexity of streaming algorithms (see, e.g. [2,
24]). Using this connection in conjunction with Corollary 8,
we have, to establish the following theorem.

THEOREM 9. Forany integerr > 1, any streaming algorithm
that makes r passes over the constraints of a 2-dimensional lin-
ear program with n constraints and finds the optimal solution
with probability at least 2/3 requires Q(% - n'/?") space.

The Coordinator Model. Any r-round distributed proto-
col implies a 2r-round protocol in our communication model.
Hence,

THEOREM 10. For any integer r > 1, any r-round algo-
rithm that finds the optimal solution of a 2-dimensional linear
program with n constraints partitioned across k > 2 sites in
the coordinator model with probability at least 2/3 requires

Q(% - n'/*r) communication.
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A Missing Details from Section 3

A.1 Implementation in the Coordinator
Model

The main step is to perform the sampling of e-net which is
captured by the following lemma.

LEMMA A.1. The coordinator can sample a subset N C
S of size m according to the weight functionw : § — R
using 2 rounds and O(m - bit(S) + k(¢/r + 1)log n) bits of
communication, where { is the number of times the weight
function w(-) has been updated when simulating Algorithm 1
in the coordinator model.

Proor. The sampling algorithm is as follows. In the first
round each site P; sends w(S;) to the coordinator. Note that
w(S;) for any i € [k] can be described in log(1 + n'/")¢ =
O({/r - log n) bits.

In the second round the coordinator generates m ii.d.
random numbers xi, ..., X, from [k] from the distribution

Pr[i is sampled] = ‘;’,((‘?9")), and sends the i-th site the num-

ber y; = |{] | x; = i}\. After obtaining y;, site P; samples y;
elements from its local set S; according to the distribution
Pr[S is sampled] = ‘::'((;i)), and sends the sampled elements
to the coordinator. Note that y; < m < n for any i € [m],
and thus the communication cost of this round is bounded
by O(k) - O(£/r - log n) + O(m) - bit(S) bits.

Finally, the sampling is indeed with respect to the weight

function w(-), since Pr[S is sampled] = % . % = %

This concludes the proof. |}

In order to implement Algorithm 1, each site should also
be able to determine the set of violating elements in its input.
This can be done easily by asking the coordinator to share
the basis computed in each iteration with every site. The
proof of Theorem 2 follows directly from that of Theorem 1
by plugging in Lemma A.1.

A.2 Implementation in the MPC Model

Our general strategy is to simulate our implementation of
the meta-algorithm for the coordinator model in the MPC
model for r = 1/§ round protocols. The main challenge in
implementing this is that once we require the load of roughly
n¢ per machine, we need to start with k = n1~% machines
to begin with to fit the whole input across all machines.
This means that the number of sites in the simulation is k.
But then, if all these machines need to send even one bit
to the designated coordinator machine (or vice versa), this
requires a load of n' =% on the coordinator machine which is
prohibitively large for any § < 1/2.

In order to fix this, we are going to use the by now stan-
dard approach of [23]. There are only two steps that the

coordinator and the machines need to communicate with
each other: (1) when the machines need to send a sample of
the e-net, and (2) when the coordinator needs to send the
basis to the machines. The latter can be done easily in O(1/8)
MPC rounds on machines of memory O(n®): the coordinator
first shares this information with n® other machines in one
round; each of these machines next shares this information
with another set of n® machines (unique to each original ma-
chine). In O(1/8) rounds all the n'~® machines would receive
this information (see [23] for more details).

To handle the part when the machines need to send the
e-net N to the coordinator, we do as follows. Recall that the
size of N is at most O(An®v?), and thus it will fit the memory
of the coordinator. However, we first need to sample this
according to the correct distribution. In order to do this, we
use our approach for implementing the streaming algorithm.
Since by the previous part we managed to share the basis
computed in each iteration with every machine, as in the
case of streaming algorithms, the machines can compute
the weights of every constraint they have. The total weight
of the constraints can also be computed in O(1/8) rounds
using the sort and search method of [23]. As a result, each
machine can locally perform the sampling of N and send
this information to the coordinator.

To summarize, we can implement each round of the algo-
rithm in the coordinator model for r = 1/ in O(1/§) MPC
rounds, hence proving Theorem 3.

B Missing Details from Section 4

B.1 Linear Programming

Let T p(m, t) denotes the time needed to solve a linear pro-
gram with ©(m) constraints and ©(t) variables.

ProposiTION B.1. For any linear program with n constraints
and dimension d:

e The time needed to compute a basis of m > d given
constraints is Ty(m) = O(d - Ty p(m, d)).

o The time needed to compute all constraints that violate
a given basis of size b = O(d) among t constraints is
T,(t,b) =0(t-d+d-Trp(d,d)).

Proor. To find a basis B of a set N of m constraints, we
first solve the LP only given the constraints in N to obtain a
point x* = (x{, ..., x}) with optimal value c¢*. Recall that in
our mapping of LP to an LP-type problem, we need to find a
lexicographically smallest optimal solution on constraints in
N, which may not be the point x* even though the objective
value is still ¢*. We thus write another linear program:

min x;

xeRd

d d
s.t. Zc,—x,— =c¢" and Zajix,- <V foralljeN.

i=1 i=1



This allows us to find an optimal solution to the LP with
the minimum value of x;. Repeating this procedure for d
iterations and for i-th iteration fixing x, .., x;—; computed
so far, and finding the minimum value for x;, allows us to
find the lexicographically smallest optimal solution. These
LPs all are d-dimensional with ©(m) constraints, and hence
can be solved in O(d - Ty p(m, d)) time in total, finalizing the
first part.

A basis of size b in a linear program consists of b con-
straints of the LP that are all tight by the assignment of the
variables. Hence, given the basis, we only need to solve the
linear program on a system of b linear inequalities to de-
termine a value of x* that is tight for all the constraints in
the basis. This can be done in O(dTp(d, d)) time (as we do
before). After this, we can simply check the d-dimensional
vector x* against all the ¢ constraints and add each one as a
violating set if x* does not satisfy the constraint in O(t - d)
time, finalizing the second part. ||

Plugging in the currently best known bound for linear
programming Tpp(m,d) = O(Vd (dm + d*37)) ([30], Propo-
sition B.1), and the aforementioned bounds on v, A = O(d),
we can prove Theorem 4 using Theorems 1, 2, and 3.

B.2 Linear Support Vector Machine

In the following, let Tsy p(m, d) denote the time needed to
solve an instance of Linear SVM problem with m constraints
and d variables. We show how to implement the basis com-
putation and violation test for Linear SVM in the following
proposition.

ProrosITION B.2. For any Linear SVM problem with n con-
straints and dimension d:

e The time needed to compute a basis of m > d given
constraints is Tp(m) = O(Tsypm(m, d)).

o The time needed to compute all constraints that violate
a given basis of size b among t constraints is T,,(t,b) =
O(t - d + Tsym(d, d)).

Proor. To find a basis B of a set N of m constraints,
we simply need to solve another instance of Linear SVM,
i.e., (6), only on the given constraints. This can be done in
O(Tsy p(m, d)) by definition. The second part can also be
solved by solving a linear equation exactly as in the case in
Proposition B.1. |}

Plugging in the currently best known bound for Linear
SVM Tsym(m,d) = O((m + d)*) ([47], Proposition B.2), and
the aforementioned bounds on v,A = O(d), we can prove
Theorem 5 using Theorems 1, 2, and 3.

B.3 Core Vector Machine

Let Tpep(m, d) denote the time needed to solve an instance
of MEB problem with m constraints and d variables. The

following proposition show how to implement the basis
computation and violation test for MEB (the proof is identical
to Proposition B.2 and is hence omitted).

ProrosiTiON B.3. For any Linear SVM problem with n con-
straints and dimension d:

e The time needed to compute a basis of m > d given
constraints is Tp(m) = O(Tpep(m, d)).

o The time needed to compute all constraints that violate
a given basis of size b among t constraints is T, (t,b) =
O(t -d+ TMEB(da d))

As MEB can be cast as a convex quadratic program, we
have Tygp(m,d) = O((m + d)®) by [47] as before. Hence,
Theorems 1, 2, and 3 imply the following result.

C Missing Details from Section 5

C.1 Background on Information Theory

Our proof relies on basic concepts from information theory,
which we review briefly here. For a broader introduction, we
refer the interested reader to the excellent text by Cover and
Thomas [18].

Entropy and Mutual Information. The Shannon entropy
is defined as H(A) := Y scsupp(a) Pr(A = A) - log (m»
The conditional entropy of A on random variable B is de-
fined as H(A | B) := Eg.g [H(A | B = B)]. The (conditional)
mutual information between A and BisI(A;B | C) := H(A |
C) —H(A | B,C). We shall use the following basic properties
of entropy and mutual information throughout.

Measures of Distance Between Distributions. For two
distributions p and v, the Kullback-Leibler divergence be-
tween y and v is denoted by D(i || v) and defined as:
Pr,(a)
D(ullv) = E [log " (a)]. (®)
We have the following relation between mutual information
and KL-divergence.

Fact C.1. For random variables A, B, C,
[(A;B|C) =

B |owistalc=olldisa] B=bC=c)l
(b,c)~(B,C)

We denote the total variation distance between two dis-
tributions p and v on the same support Q by ||g —v|l,,4
defined as:

1
5 2 e = vl

xeQ
9)

We use the following basic properties of total variation dis-
tance.

It = Vil o = masx (4(©) = V() =



Fact C.2. Suppose i and v are two distributions for &, then,
Pr, (&) < Pr (&) + |l = Vll;pq -

The following Pinskers’ inequality bounds the total varia-
tion distance between two distributions based on their KL-
divergence,

Fact C.3 (PINSKER’S INEQUALITY). For any distributions yi

and v, It = Vil ;uq < /1 - D |l ).

C.2 Missing Proofs of Section 5.3

PROPOSITION (RESTATEMENT OF PROPOSITION 5.3). For
(A, B) sampled from Evenlnstance, assuming each sub-instance
(A;, B;) satisfies monotonicity and convexity of TCI, then (A, B)
also satisfies monotonicity and convexity.

Proor. For B;’s, the monotonicity and convexity follow
from the origin-shift operator and slope-shift operator, re-
spectively. For A;’s, different sub-instances are obtained by
extending two line segments in A_x, and hence A trivially
satisfies the properties. ||

PROPOSITION (RESTATEMENT OF PROPOSITION 5.4). For
instances (A, B) sampled from Evenlnstance, the answer to
TCI(A, B) is the same as the answer to TCI(C,x, D).

PRrOOF. Since (A,x, B,») = (C,x, D,x),and (C,x, D » ) form
a valid instance of TCI, clearly A and B also only cross each
other between the points in (A_x, B,»). |

C.3 OddlInstance and Odd-Round Protocols

We now turn to the definition of the OddInstance procedure
inside Instance.

OddInstance(r).

(1) Sample m, instances (C;, D;) independently from
Instance(r — 1).

(2) For i = 1to m, do:

(a) Let p’;" be the right-most point of Alice’s input in
(Ci—1, Di—1) (define pY := (0,0)). Apply the origin-
shift operator with point p" from Alice’s side on
instance (C;, D;).

(b) Let &/~ be the largest slope of any segment in
(Ci—1,Dj—1). Apply the slope-shift operator with
slope /™! on (C;, D;).

(3) Sample z¥ € [m,] uniformly at random.

(4) Define A := (Cy,...,Cp,).

(5) Define B := (By, ..., Bm,) where B,» := D,x; the
remaining B;’s for i # z} are constructed by extend-
ing the curve in B,x on both its endpoints along
straight lines.

Similar to Evenlnstance, instances of OddInstance also
consists of m, sub-instances among which (C,x, D x ) is called
the special sub-instance. Figure 2b gives an illustration of
instances sampled by OddInstance.

Analogues of Even-Round Results. We list the following
results as odd-round analogues of the bounds in the paper for
even-round protocols. Their proofs all follow immediately
from the proof of their even-round counter part.

The following two properties are analogous to Proposi-
tions 5.3 and 5.4 for Evenlnstance.

ProrosiTioN C.4. For (A, B) sampled from OddInstance,
assuming each sub-instance (A;, B;) satisfies monotonicity and
convexity of TCI, then (A, B) also satisfies monotonicity and
convexity.

ProrosiTiON C.5. For instances (A, B) sampled from
OddlInstance, the answer to TCI(A, B) is the same as the an-
swer to TCI(Cx, D x ).

The following two observations are analogous to Obser-
vations 5.5 and 5.6 for Evenlnstance.

Observation C.6. In Oddlnstance, there is a one-to-one
mapping between (A,x, B,+) and the original sub-instance
(C.x, Dx) (before applying any operator), assuming we are
given (C<# ,D<#).

Observation C.7. In OddInstance, the index z} € [m,] is
chosen independently of A = (Ay,...,Ap,) and

(C1,D4),...,(Cm,, D, ).

The following lemma for odd-round protocols is analogous
to Lemma 5.8 for even-round ones (but note the change in
the order of conditioning).

LemmA C.8. For any odd integer r and any r-round protocol
7 with worst-case message length ¢ on instances of D,

I((Az,Bz);1I, | C<*,D~%,Z) < ¢/N.

The following definition is analogous to definition of .
Distribution yi, for odd r: For an assignment
(Hrs C<Zs D<Zs Z)
(denoted by O for short) to (IT;, C<4,D<%, Z), we de-
fine 11,(0O) as the distribution of (A,, B;) in D, condi-
tionedonIl, =1I,,Z = z,C<* = C<*,D<%* = D<%,
The following claim for odd-round protocols is analogous

to Claim 5.9 for even-round ones (again note the change in
the order of conditioning and the distribution).

Cramm C.9. For any odd integer r and any r-round protocol
7T, with worst-case message length o(N /r?),

E o O —Z)r_ = 1 .
O0=(11;,C<?,D<%,z) [”ﬂ ( ) 1||tvd] 0( /I’)
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