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Abstract
We study linear programming and general LP-type problems

in several big data (streaming and distributed) models. We

mainly focus on low dimensional problems in which the

number of constraints is much larger than the number of

variables. Low dimensional LP-type problems appear fre-

quently in various machine learning tasks such as robust

regression, support vector machines, and core vector ma-

chines. As supporting large-scale machine learning queries

in database systems has become an important direction for

database research, obtaining efficient algorithms for low di-

mensional LP-type problems on massive datasets is of great

value. In this paper we give both upper and lower bounds

for LP-type problems in distributed and streaming models.

Our bounds are almost tight when the dimensionality of the

problem is a fixed constant.
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1 Introduction
As machine learning becomes pervasive, how to effectively

support machine learning tasks in database systems has be-

come an imminent question. In a recent paper [31], Makryni-

oti et al. observed that many machine learning problems

can be expressed by linear programs (LP). They designed a

level of abstraction called SolverBlox on top of a declarative

language LogiQL1 as a framework for expressing linear pro-

gram formulations. The query in the format of SolverBlox

will then be translated to a format supported by an LP solver

for computing the solution. In this paper we consider the

algorithmic side of this research direction, that is, we focus

on the design of efficient LP solvers for large-scale datasets.

In particular, we propose algorithms for linear programming

in three popular “big data” models, namely, the coordina-
tor model [38], the streaming model [2, 37], and massively
parallel computation (MPC) [5, 23, 29]. We also provide al-

most matching lower bounds when the dimensionality of

the linear program is a fixed constant.

In the rest of the introduction we will start with the defini-

tion of the problem and the description of the computation

models, and then present our results and discuss previous

work.

Problem Definition. The basic linear programming prob-

lem can be described as follows: we have a set of d variables

(x1, . . . ,xd ) and a set of n linear constraints each of which

(indexed by j) is in the form of

∑d
i=1 a

j
ixi ≤ b j , where aji ,b

j

are coefficients and d is the dimension of the problem. We

also have an objective function

∑d
i=1 cixi . The goal is to find

an assignment for variables that minimizes the objective

function while satisfying all the constraints.

Linear programming is a special case of a more general

problem called LP-type problem [32], which we will discuss in

details in Section 2.1. Besides linear programming, LP-type

problems also include several other important problems in

machine learning, such as Linear Support Vector Machines
(SVM) [7], which is widely used in classification and regres-

sion analysis [10, 19, 22]), and Core Vector Machines [42],
which is used to speed up general SVM computation (or,

1
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Linear SVM augmented by the kernel trick [7]). We will give

the formal definitions of these problems in Section 4. The al-

gorithms we propose in this paper work for general LP-type

problems.

In this paper we are interested in the scenario when the

dimension of the linear program (and LP-type problem in

general) is small compared to the number of constraints.

Various examples of linear programming and LP-type prob-

lems in machine learning are of this type: SVMs and regres-

sion problems (in particular, least absolute error regression

that can be modeled by linear programming) are often over-

constrained; in the problems of Chebyshev approximation

and linear separability, the number of variables are typically

small.

Computational Models. We study linear programming

and LP-type problems in the following big data models.

• The (multi-pass) streaming model. In this model, we have

a single machine which can make linear scans of the input

data sequence. The task is to compute some function de-

fined on the input data sequence. The goal is to minimize

the memory space usage and the number of passes needed.
This model captures data that cannot fit the memory, and

on which sequential scan is much more efficient than

random access.

• The coordinator model. In this model, we have k sites and

a central coordinator. Each site is connected by a two-way

communication channel with the coordinator. The input is

initially partitioned among the k sites. The task is for the

sites and coordinator to jointly compute some function

defined on the union of the k datasets. The computation

proceeds in rounds: At the beginning of each round, the

coordinator sends a message to each site, and then each

site replies with a message back to the coordinator. At

the end of the computation, the coordinator outputs the

answer. The goal is to minimize the total bits of the com-
munication and the rounds of the computation. This model

fits data that is inherently distributed or cannot fit the

storage of a single machine

• Massively parallel computation (MPC). In this model, we

have k machines interconnected in a network that allows

communication between any pairs of machines. Similar

to the coordinator model, the input is partitioned among

the k machines, and the task is for them to compute some

function defined on the union of the k datasets. The com-

putation is again in terms of rounds. At each round, the

machines communicate with each other over the network

by sending and receiving messages. The message sent by

a machine at each round is a function of its input data

and all messages it has received in previous rounds. Our

goal is to minimize the number of rounds of the computa-
tion, and the maximum bits of information sent or received

by a machine at any round (often called the load in the

literature). MPC has already become the model of choice

for studying parallel computation in computer clusters.

Description of the input. Since we are dealing with low-

dimensional problems, we assume that the memory on each

site/machine in each model is at least proportional to d , the
dimension of the problem, but is significantly smaller than n,
the number of constraints. As a result, the input is presented

by giving the constraints one by one to the algorithm in

the streaming model, or partitioning them across different

sites/machines in the coordinator and MPC models.

1.1 Our Contributions and Related Work
In the following, we present our results for linear program-

ming in the three big data models described above, and post-

pone the specifics of their generalization to LP-type problems

to later sections. Our main upper bound result is the follow-

ing.

Result 1. We give the following polynomial time al-
gorithms for d-dimensional linear programming with

n constraints. For any integer r ≥ 1 and parameter

δ ∈ (0, 1):

• Streaming: AnO(d ·r )-pass streaming algorithmwith

O(n1/r ) · poly(d, logn) space.
• Coordinator: AnO(d · r )-round distributed algorithm
withO(n1/r +k) · poly(d, logn) total communication.

• MPC: An O(d/δ 2)-round algorithm with

O(nδ ) · poly(d, logn) load per machine.

Our algorithms are randomized and output the correct

answer with probability 1 − 1/nc for any desired con-

stant c ≥ 1.

By Result 1 for r = logn and δ = 1/
√
logn, we obtain lin-

ear programming algorithms that use O(d logn) passes or
rounds, and have space, communication, or load require-

ments in each model that is almost independent of the num-

ber of constraints. For low-dimensional instances, this results

in a dramatic saving compared to direct implementations of

standard LP algorithms in these models.

Previously, Chan and Chen [13] proposed an O(rd−1)-
pass streaming algorithm for linear programming that uses

O(n1/r ) · poly(d, logn) space. Result 1 improves upon this re-

sult by achieving an exponentially smaller pass-complexity

in terms of d .
In the coordinator model, Daumé et al. [26] gave an algo-

rithm using O(rd+O (1) · k · n1/r ) communication based on an

adaptation of the algorithm of [13]. The round-complexity

and communication cost of this algorithm again depends

exponentially on d .
In theMPCmodel, very recently Tao [41] gave adO (log (1/δ ))-

round MPC algorithm with loadO(nδ ) when d = polylog(n)



(for any δ ∈ (0, 1)). This algorithm is then used as a building

block for an interesting database application called entity
matching with linear classification. The round complexity of

our MPC algorithm in Result 1 improves that of [41] by an

exponential factor.

To summarize, Result 1 exponentially improves upon the

pass/round complexities of the state-of-the-art, while using

the same or smaller space, communication, or load, in the

considered big data models.

We complement our algorithms by giving almost tight
lower bounds for any fixed dimension (even d = 2) in the

streaming and coordinator model.

Result 2. We give the following lower bounds for 2-

dimensional linear programming withn constraints. For
any integer r ≥ 1:

• Streaming: Any r -pass algorithm requires Ω(n1/2r )
space.

• Coordinator:Any r -round algorithm requiresΩ(n1/2r )
communication even when number of sites is only

k = 2.

Our lower bounds hold even for randomized algorithms

that output the correct answer with probability at least

2/3.

A few remarks about Result 2: Firstly, it is easy to see

that linear programming in one dimension in the models we

consider is a trivial task. Result 2 thus proves the lower bound

for the smallest non-trivial dimension. We note that unlike

Result 1 that worked in all the three models, Result 2 does not
prove any lower bound for MPC algorithms. Proving lower

bounds for MPC algorithms is considered to be a challenging

task as it has serious implications for long standing open

problems in complexity theory [39]. Hence, no unconditional
lower bounds are known so far in the literature for any MPC

problem and Result 2 is of no exception.

Prior to our work, Chan and Chen [13] gave a lower bound

for 2-dimensional linear programming for a restricted fam-

ily of deterministic streaming algorithms in the decision tree
model (the only permitted operation of these streaming al-

gorithms is testing the sign of a function evaluated at the

coefficients of a subset of stored hyperplanes). Their lower

bound states that this type of algorithms require Ω(n1/r )
space to compute the solution in r passes. Our lower bound
in Result 2 is much stronger in that it proves a similar pass-

space tradeoff for all streaming algorithms (even random-

ized). Finally, Guha and McGregor [24] showed that there

is a fixed dimensional optimization problem for which any

r -pass streaming algorithm requires Ω(n1/r ) space. However,
it is not clear how to adapt their proof to linear program-

ming since their optimization problem involves quadratic

constraints [33].

Further Related Work. Special cases of linear program-

ming have been studied previously in the big data models.

In particular, Ahn and Guha gave multi-pass streaming al-

gorithms for (1 + ε)-approximation of packing LPs [1] and

Indyk et al. [27] gave similar algorithms for covering LPs

(see also [4]). These results focus on high-dimensional linear

programs (non-constant d) and only packing/covering LPs,

and are hence quite different from our approach in this paper.

Unlike the case for big data models, low-dimensional lin-

ear programming has been studied extensively in the RAM

model since the 1980s. Megiddo [34] gave an algorithm for

d-dimensional linear programming with time complexity

O(22
d
n), which is linear in terms of the number of constraints

n. This bound was consequently improved by a series of pa-

pers [8, 12, 15–17, 20, 21, 28, 32].

2 Preliminaries

Notations. For integers 1 ≤ a ≤ b, we define [a] as the
set {1, . . . ,a}, [a : b] := {a,a + 1, . . . ,b}, and (a : b] :=
[a : b] \ {a} (we define [a : b) and (a : b) analogously).
We use capital letters for sets and random variables and

calligraphic letters for set families. We use the notation Õ(f )
to denote a function of the form O(f · polylog(f )).
Throughout the paper, we say an event happens “with

high probability” if its probability can be lower bounded by

1 − 1/nc for any desired constant c ≥ 1 (n is the number of

constraints).

We use the following standard variant of Chernoff bound.

Proposition 2.1 (Chernoff bound). Suppose X1, . . . ,Xt
are t independent random variables taking value in [0, 1] and
X :=

∑t
i=1Xi . Then, for any ε > 0,

Pr
(
|X − E [X ]| > ε · E [X ]

)
≤ 2 · exp

(
−ε2 · E [X ]

3

)
.

2.1 LP-type Problems
We consider a generalization of linear programming referred

to as LP-type problems
2
. An LP-type problem consists of a

pair (S, f ), where S is a finite set of elements, and f : 2
S → R

is a set function with a range R which is assumed to have a

total order. The function f satisfies two properties:

• Monotonicity: for any two sets X ⊆ Y ⊆ S , f (X ) ≤
f (Y ) ≤ f (S).
• Locality: for any two setsX ⊆ Y ⊆ S , and any elements

e ∈ S , if f (X ) = f (Y ) = f (X ∪ {e}), then f (Y ) =
f (Y ∪ {e}).

For an LP-type problem (S, f ), we call a set B ⊆ S a basis of S
if f (B) = f (S), and for all B′ ⊂ B we have f (B′) < f (B). The
goal is to compute a basis BS ⊆ S such that f (BS ) = f (S). We

2
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say an element e ∈ S violates X ⊆ S if f (X ∪ {e}) > f (X ). It
helps to think of an LP-type problem (S, f ) as an optimization

problem in which elements of S are the constraints, and f (A)
computes the best feasible solution on the set of constraints

A. In the case when the optimal solution is not unique, we

just break the tie arbitrarily. Computing f (BS ) = f (S) hence
amounts to computing the optimal solution subject to all

the constraints (we will make this connection explicit in

the context of linear programming and other problems in

Section 4).

Combinatorial Dimension. Note that an LP-type problem

may have several bases which are of different sizes.We define

the combinatorial dimension of an LP-type problem to be the

maximum cardinality of a basis for S , denoted by νS,f (ν for

short when S and f are clear from the context).

2.2 ε-Nets and VC Dimension
We now define another important notion that we use in

designing our algorithms.

VC Dimension. A set-system is a tuple (H ,U ) consists of
a universe U and a set family H ⊆ 2

U
. Let C ⊆ U be a set.

Define the intersection between a set family and a set to be

the set family

H ∩C := {H ∩C | H ∈ H}.

We say that a set C is shattered byH ifH ∩C contains all

the subsets of C , i.e., |H ∩C | = 2
|C | . The VC dimension of

set-system (H ,U ), denoted by λH (or λ for short whenH is

clear in the context), is then the cardinality of the largest set
C that is shattered byH .

ε-Net. Given a set-system (X,U ), and a weight function

w : X → R, for any Y ⊆ X, let w(Y) :=
∑
Y ∈Y w(Y ). We

say a set N ⊆ X is an ε-net of X with respect to w for

a parameter ε ∈ (0, 1), iff for any point u ∈ U such that∑
X ∈X:u<X w(X ) ≥ ε ·w(X), it holds that {X ∈ N | u < X } ,
∅.

The notion of ε-net is well-studied in the literature (partic-

ularly in the computational geometry community [9, 25, 36]),

and has been used in the algorithm design for many prob-

lems. We use the following simple randomized construction

of ε-net for designing a distributed version of Clarkson’s

algorithm for LP-type problems.

Lemma 2.2 ([25]). For any set-system (X,U ) of VC dimension
λ, any weight functionw : X → R, and ε ∈ (0, 1), a set family
N ⊆ X obtained by randomly sampling

mε,λ,δ = max

(
8λ

ε
log

8λ

ε
,
4

ε
log

2

δ

)
(1)

sets with probability proportional to their weights is an ε-net
of X with probability at least 1 − δ .

3 Algorithms
In this section we present our algorithms for Result 1. We

will work with a special class of LP-type problems that con-

tains the most natural LP-type problems that we are aware

of, including linear programming, Linear SVMs, and Core

SVMsmentioned earlier. In particular, we require the LP-type

problem (S, f ) to satisfy the following properties:

(P1) Each constraint X ∈ S is associated with a set of

elements SX ⊆ R (R is the range of f ).
(P2) For any A ⊆ S, f (A) is the minimal element of⋂

X ∈A
X .

It is useful to think of R as the set of feasible solutions. For

example, in the case of linear programming, R = Rd with the

natural ordering induced by scalar product with the vector c
in the objective function. Each constraint (inequality) X ∈ S
corresponds to the subset of points SX which satisfy the

constraint, and f (A) is equal to the point which satisfies all

constraints in A and has a minimal scalar product with c .
For convenience, we use X and SX interchangeably.

For this special class of LP-type problems, we define the

VC dimension of the problem (S, f ) as the VC dimension of

the set system (S,R).
In the following, we first give a general meta-algorithm for

solving LP-type problems with Properties (P1) and (P2), and

then show how to implement this meta-algorithm efficiently

in each model.

3.1 The Meta Algorithm for LP-Type
Problems

Our meta-algorithm follows Clarkson’s algorithm [16] for

linear programming, but we use a different sampling proce-

dure (by using ε-net) which enables us to work with general

LP-type problems with bounded VC dimension; it also signif-

icantly simplifies the analysis and facilitates the implementa-

tion of our algorithm in the big data models we consider. We

further use a different weight increase rate after each itera-

tion, which is essential for reducing the number of passes in

the streaming, and the number of rounds in the coordinator

and MPC models.

The algorithm proceeds in iterations.Wemaintain aweight

functionw : S → R throughout the algorithm which is ini-

tialized by setting w(S) = 1 for all S ∈ S. In each iteration,

we first sample a set family N ofm :=mε,λS, 23
sets from S

with probability proportional to their weights so as to obtain

an ε-netN of S (according to Lemma 2.2). We then compute

a basis B of N , and the setV of constraints which violate

the basis B. If w(V) ≤ ε ·w(S), then we say this iteration

“succeeds”, and update the weights of all sets S ∈ V by set-

ting w(S) ← (n1/r ) ·w(S). Otherwise, we say this iteration



ALGORITHM 1: A Meta-Algorithm for LP-Type

Problems

Input: An LP-type problem (S, f ) satisfying
Properties (P1) and (P2) and integer r ≤ lnn.

Output: f (S).

1 Let ε := 1

10·νS, f ·n1/r , and λ as the VC dimension of the

LP-type problem (S, f ).
2 Setw(S) = 1 for every S ∈ S.

3 repeat
4 Sample a family N ⊆ S of sizem :=mε,λ, 2

3

by

picking each set in S with probability

proportional tow for the parametermε,λ, 2
3

in

Lemma 2.2.

5 Compute a basis B of N .

6 LetV = {S ∈ S | f (B ∪ {S}) > f (B)} be the
family of sets in S that violate B.

7 if w(V) ≤ ε ·w(S) then
8 Setw(S) = (n1/r ) ·w(S) for every set S ∈ V .

9 end
10 untilV = ∅;
11 return f (B).

“fails”, and continue to the next one without modifying the

weights. A pseudo-code is provided in Algorithm 1.

In the following, we first establish the correctness of the

meta-algorithm and then bound the number of iterations it

needs.

Lemma 3.1. When Algorithm 1 stops, it correctly computes
f (S).

Proof. At the end of the algorithm, we haveV = ∅. This

means that for any S ∈ S \ B, we have f (B ∪ {S}) = f (B)
by the monotonicity property of f . By the locality property

and induction we obtain that f (B) = f (B ∪ (S\B)) = f (S),
finalizing the proof.

We now bound the number of iterations. We say that an

iteration of Algorithm 1 (at Lines 4 to 8) is successful iff
w(V) ≤ ε ·w(S) in this iteration.

Claim 3.2. Each iteration of Algorithm 1 is successful with
probability at least 2/3.

Proof. Since the VC dimension of (S,R) is λ, by Lemma 2.2,

with probability at least 2/3, the familyN sampled in Line 4

is an ε-net for (S,R) with respect to the weight functionw .

In the following, we condition on this event.

Let x := f (B). By Property (P2) of the LP-type problems

we consider, we know that x is the minimal element in the

intersection of all sets in B according to the ordering of R.
For any set S ∈ S to violate B, we need to have x < S ;

otherwise f (B ∪ {S}) = x which is in contradiction with

f (B ∪ {S}) > f (B). Recall that V is the family of all sets

in S that violate B. Suppose towards a contradiction that

w(V) > ε ·w(S). Since none of the sets inV contain x , and
N is an ε-net, by definition there is a set S ′ ∈ N where S ′

does not contain x . But this is in contradiction with B being

a basis. To see this, if f (B) = f (N), then x belongs to all

sets in N , and consequently it should also be in S ′. We thus

havew(V) ≤ ε ·w(S), finalizing the proof.

Lemma 3.3. The number of iterations in Algorithm 1 is
O(ν · r ) with probability at least 1 − e−Ω(ν ·r ), where ν denotes
the combinatorial dimension of (S, f ).

Proof. Recall that the weight function w(·) is updated
only when an iteration is successful, and each iteration suc-

ceeds with probability at least 2/3 by Claim 3.2. By Chernoff

bound (Proposition 2.1), we have that if the algorithm termi-

nates in t iterations, then with probability at least 1 − e−Ω(t ),
at least t/2 of these iterations are successful.
We now focus on successful iterations. Let wi (·) be the

weight function w(·) after the i-th successful iteration. Ini-

tially, for any S ∈ S we havew0(S) = 1 (and thusw0(S) = n).
We claim that for any integer t ≥ 1, if Algorithm 1 reaches

the t-th successful iteration, then

nt/νr ≤ wt (S) ≤ et/10ν · n. (2)

We establish Eq (2) in the following two claims.

Claim 3.4. For any integer t ≥ 1, we have nt/νr ≤ wt (S).

Proof. Fix an arbitrary basis B∗ = {B1, . . . ,Bk } of S for

some k ≤ ν (recall that by definition, ν is size of the largest

basis). Since B∗ ⊆ S, we havewt (B
∗) ≤ wt (S) for any t > 0.

We thus only need to show nt/νr ≤ wt (B
∗).

The first observation is that in any iteration, if V , ∅
then we must have V ∩ B∗ , ∅. Indeed, if V ∩ B∗ = ∅,
then f (B) = f (B ∪ B∗) = f (S), where the first equality is

by the locality property of f and induction, and the second

equality holds since B∗ is a basis for S. However, this is in

contradiction with the fact thatV , ∅.
Let us now define Bi as the basis of the ε-net computed

in the i-th successful iteration. For any j ∈ [k], let aj be the
number of iterations i such that Bj ∈ B

∗
violates Bi . That is,

aj =
��{i ∈ [t] | f (Bi ) < f (Bi ∪ {Bj })}

�� .
SinceV ∩ B∗ , ∅ in each of the first t successful iterations,
there must exist at least one Bj which violates Bi for each

j ∈ [t]. We thus have

∑k
j=1 aj ≥ t . Moreover, by the weight

update rule of the algorithm, we can write the weight of B∗

aswt (B
∗) =

∑k
j=1

(
n1/r

)aj
. By combining these and Jensen’s

inequality we have

wt (B
∗) ≥ k

(
n1/r

)∑k
j=1 aj /k

≥

(
n1/r

)t/k
≥ nt/νr ,



since k ≤ ν . This concludes the proof of Claim 3.4.

Claim 3.5. For any integer t ≥ 1, we have

wt (S) ≤ et/10ν · n .

Proof. For any iteration t ≥ 1, the weight update proce-

dure at Line 8 of Algorithm 1 gives

wt+1(S) = wt (S)+(n
1/r−1)·wt (V) ≤ wt (S)+(n

1/r )·wt (V).
(3)

Moreover, by the condition at Line 7 of the algorithm, we

have,

wt (V) ≤ ε ·wt (S) =
1

10ν · n1/r
·wt (S), (4)

by the choice of ε in the algorithm. Combining (3) and (4)

we have

wt (S) ≤

(
1 +

1

10ν

)t
·w0(S) ≤ et/10ν · n.

We get back to the analysis of the number of iterations. By

Eq (2) we havent/νr ≤ et/10νn, hence, tν ≤
10r lnn
10 lnn−r . Since r ≤

lnn, we have t
ν ≤

10

9
r . Therefore the number of successful

iterations cannot exceed
10

9
νr , and hence the total number

of iterations is bounded by
20

9
νr with probability 1 − e−Ω(νr ).

Remark 3.6. We can easily turn our Las-Vegas algorithm

in this section (Algorithm 1) into a Monte-Carlo algorithm

by the following modifications: First we pick an ε-net of
size mε,λS,1/(nν ), and second, the algorithm return “FAIL”

whenever w(V) > εw(S), which will not happen in the

first O(νr ) = O(ν logn) iterations with probability at least

1 − ν logn · 1/(nν ) ≥ 1 − o(1).

3.2 Implementation in the Streaming
Model

Starting from this section, we show how to implement Algo-

rithm 1 in the three big data models considered in the paper.

We start with the streaming algorithm. In the multi-pass

streaming model the elements of S arrive one by one, and

f (·) is known to the algorithm at the beginning. We allow

the algorithm to make multiple linear scans of the input.

The main challenge in the streaming implementation of

Algorithm 1 is that we cannot afford to store the weights of

all elements in S which are needed in the ε-net sampling. To

resolve this issue, we instead store the set of bases computed

at all the successful iterations – these are the only iterations

that we change the weight function – in a collectionB, using

which we can compute the weight of each element of S on
the fly. In particular, the weight of a set Si ∈ S in iteration

j of the algorithm, namely,w j (Si ), is computed asw j (Si ) :=

(n1/r )ai where ai := |{B ∈ B | f (B ∪ {Si }) > f (B)}|. It is

immediate to verify that this indeed implements the same

weight function in Algorithm 1. It is also easy to see that

having access to these weights, we can sample each set with

probability proportional to its weight using the weighted

version of reservoir sampling [14], and hence implement

each iteration of Algorithm 1 in one pass over the stream.

The rest of Algorithm 1 can be implemented in the stream-

ing model in a straightforward way. Let Tb (m) be the time

complexity of computing a basis for a set of size m, and

Tv (t ,b) be the time complexity of finding all elements in a

set T ⊆ S of size t which violate a set B of size b, i.e., all
S ∈ S such that f (B ∪ S) > f (B). This allows us to prove

the following theorem.

Theorem 1. Suppose (S, f ) is an LP-type problem with
combinatorial dimensionν , VC dimension λ, and bit-complexity
bit(S) for each element of S. For any integer r ≤ lnn, we can
compute f (S) with high probability in the streaming model,
using O(νr ) passes, and Õ(λn1/r · ν + ν2) · bit(S) space. The
total running time of the algorithm is also O(νr · Tv (n,ν) +
νr ·Tb (λn

1/r · ν)).

Proof. The correctness of the algorithm follows from

Lemma 3.1. As each iteration of Algorithm 1 can be imple-

mented in one pass, the total number of passes needed by

our streaming algorithm is O(νr ) with high probability by

Lemma 3.3.

Recall that the size of each ε-netN sampled in Algorithm 1

ism = mε,λ, 2
3

= Õ
(
λνn1/r

)
, by the choice of ε in the algo-

rithm and mε,λ, 2
3

in Lemma 2.2. The space needed by the

algorithm to store N in each iteration is O(m) · bit(S),

which is equal to Õ
(
λνn1/r

)
· bit(S) bits. We also need

to store all bases in successful iterations, which requires

O(ν · r ) ·O(ν) · bit(S) = Õ(ν2) · bit(S) (since r = O(logn))
as each basis requires O(ν ) · bit(S) bits to represent and

there are total of O(νr ) such bases.

Each pass of the algorithm involves performing a viola-

tion test over the n elements of S, which takes O(Tv (n,ν ))
time. And computing a basis of m elements which takes

O(Tb (m)) times. The running time follows by multiplying

these numbers by the number of passes, and by the choice

ofm.

3.3 Implementation in the Coordinator
Model

Recall that in the coordinator model the input set S is arbi-

trarily partitioned among k sites P1, . . . , Pk such that for

any i ∈ [k], the site Pi receives the elements Si . The k
sites and the coordinator want to jointly compute f (S) =
f (S1∪· · ·∪Sk ) via communication. The function f is a pub-

lic knowledge, that is, all parties know how to evaluate the



function f (T ) for any T ∈ 2S assuming T resides entirely

on that machine.

Similar to the streaming model, the main step here is also

the implementation of the ε-net sampling procedure in Al-

gorithm 1. We show in Appendix A.1 how this step can be

performed efficiently, leading to the following theorem.

Theorem 2. Suppose (S, f ) is an LP-type problem with
combinatorial dimensionν , VC dimension λ, and bit-complexity
bit(S) for each element of S. For any integer r ≤ lnn, we can
compute f (S) with high probability in the coordinator model
with k ≥ 2 machines, using O(νr ) rounds, and Õ(λn1/r · ν2 +
k ·ν2) · bit(S) communication in total. The local computation
time of the coordinator is O(νr · (Tb (λn1/r · ν ) + kν )) and the
local computation time of the i-th site isO(νr ·Tv (ni ,ν)) where
ni := |Si |.

3.4 Implementation in the MPC Model

The implementation of Algorithm 1 in the MPC model can

be done similarly as that in the coordinator model, by choos-

ing one of the machines to play the role of coordinator. The

only problem is that when the number of machines is large,

the machines cannot simply send all the messages to the

coordinator directly, as it will blow up the load in the coordi-

nator. In Appendix A.2 we show how to get around this using

standard primitives in MPC model. We have the following

theorem.

Theorem 3. Suppose (S, f ) is an LP-type problem with
combinatorial dimensionν , VC dimension λ, and bit-complexity
bit(S) for each element of S. For any δ ∈ (0, 1), we can
compute f (S) with high probability in the MPC model using
O(ν/δ 2) rounds with Õ(λnδ · ν2) · bit(S) load per machine.

4 Examples and Applications

We now give examples of the application of our algorithms

for general LP-type problems. We will discuss several funda-

mental optimization problems in machine learning, namely,

linear programming, Linear SVM, and Core SVM. Recall that

when implementing our meta algorithm in each model, we

have left two functions Tv (·) (the time needed for perform-

ing the violation test) and Tb (·) (the time for computing the

basis) unspecified. In this section we will provide concrete

bounds for these functions in the context of the concrete

problems we study. Throughout this section, we assume that

the bit-complexity of each number in the input is O(logn)
bits.

4.1 Linear Programming
A linear program is an optimization problem of the type:

min

x ∈Rd

d∑
i=1

cixi subject to

d∑
i=1

ajixi ≤ b j for all j ∈ [n].

(5)

A d-dimensional linear program can be modeled as an

LP-type problem as follows. Let S be a set family of size n
such that for every constraint in (5), there exists a unique

element S ∈ S which is the half-space in the d-dimensional

Euclidean space Rd containing the points that satisfy this

single constraint. We define the function f over subsets of

S such that for every A ⊆ S, f (A) is the lexicographically
smallest point that minimizes the objective value of LP while

satisfying only the constraints in A. The linear program (5)

now corresponds to the LP-type problem (S, f ) (we use S
as opposed to our previous notation S , since each element

of S is now itself a subset of Rd , and hence S forms a set

family). We refer the interested readers to [32] for more

details on connection between linear programming and LP-

type problems.

It is known that the combinatorial dimension ν of this

particular LP-type problem (S, f ) is at most d + 1 [32]. The
VC dimension λ is also at most d+1 [43]. Finding the basis of
any given set of constraints and the violating constraints can

also be done easily using standard results (see Appendix B.1

for details). We can thus prove the following theorem using

Theorems 1, 2, and 3.

Theorem 4. We give the following randomized algorithms
for d-dimensional linear programming with n constraints. For
any r ≥ 1 and δ ∈ (0, 1):

• Streaming: An O(d · r )-pass algorithm with Õ(d3 · n1/r )

space in Õ(n) · poly(d) time.
• Coordinator: AnO(d · r )-round algorithm with Õ(d4n1/r +
d3k) total communication in which the coordinator and
each site i ∈ [k] spend Õ(n1/r + k) · poly(d) time and
Õ(ni ) · poly(d) time, respectively, where ni is the number
of constraints on site i .
• MPC: An O(d/δ 2)-round algorithm with Õ(d3nδ ) load per
machine and Õ(n) · poly(d) time in total.

4.2 Linear Support Vector Machine
In Linear Support Vector Machine (SVM) problem [7], we

have a set of tuples {(x1,y1), . . . , (xn ,yn)} such that for each

index j ∈ [n], x j ∈ R
d
and yj ∈ {−1,+1}. The goal is to

compute a hyperplaneu = (u1, . . . ,ud )which is the outcome

of the following quadratic optimization problem [7]:

min

u ∈Rd
∥u∥2

2
s.t. yj · ⟨u,x j ⟩ ≥ 1 for all j ∈ [n]. (6)



From a geometrical point of view, the problem (6) corre-

sponds to finding a hyperplane which separates the set of

point {x1, . . . ,xn} according to their labels with the maxi-

mum margin value (if possible); see, e.g., [7] for more infor-

mation on this fundamental problem.
3
Note that the prob-

lem (6) is not a linear program. However, one can show that

it is an LP-type problem (S, f ) where S is a set family in Rd

in which every set contains the points that satisfy a particu-

lar constraint, and f (A) for A ⊆ S computes the optimal

solution of (6) given only the constraints to A [32] (unlike

linear programming, the optimal solution to (6) under any

set of constraints is unique and hence we do not need the

lexicographically first constraint).

The combinatorial dimension of (S, f ) is ν ≤ d + 1 [32],
and the VC dimension of (S,Rd ) is λ ≤ d + 1 [43]. One can
again use standard results to find a basis of any given set of

constraints and all violating constraints of a given basis for

this problem (see Appendix B.2). This allows us to prove the

following theorem using Theorems 1, 2, and 3.

Theorem 5. We give the following randomized algorithms
for d-dimensional linear support vector machine problem with
n constraints. For any r ≥ 1 and δ ∈ (0, 1):

• Streaming: An O(d · r )-pass algorithm with Õ(d3 · n1/r )

space in Õ(n) · poly(d) time.
• Coordinator: AnO(d · r )-round algorithm with Õ(d4n1/r +
d3k) total communication in which the coordinator and
each site i ∈ [k] spend Õ(n3/r + k) · poly(d) time and
Õ(ni ) · poly(d) time, respectively, where ni is the number
of constraints on site i .
• MPC: An O(d/δ 2)-round algorithm with Õ(d3nδ ) load per
machine and Õ(n + n3δ ) · poly(d) time in total.

4.3 Core Vector Machine
Tsang at el. [42] proposed core vector machines as a way of

speeding up kernel methods in SVM training (see [7]). This

is achieved by reformulating the original kernel method as

an instance of the minimum enclosing ball (MEB) problem,

defined as follows: Given a set of points P := {p1, . . . ,pn}
in Rd , find a center p and a minimum radius r such that all

the points in P are within a d-dimensional sphere of radius

r centered at p. MEB can be formulated as the following

optimization problem:

min

r ∈R,p∈Rd
r subject to



p − pj


2
≤ r for all j ∈ [n]. (7)

This problem is also an LP-type problem (S, f ) formulated

similarly to linear programming and Linear SVM [32]. The

3
Our algorithm works effectively for the hard-margin Linear SVM. In the

case of the soft-margin Linear SVM, the optimization problem can also

be formulated in the form of LP-type problem, but the dimension of such

formulation is large – proportional to the size of input.

combinatorial dimension of (S, f ) is ν ≤ d + 1 [32] and the

VC dimension of (S,Rd ) is λ ≤ d + 1 [44]. We obtain the

following theorem for this problem using Theorems 1, 2,

and 3 (see Appendix B.3).

Theorem 6. We give the following randomized algorithms
for d-dimensional core vector machine problem with n con-
straints. For any integer r ≥ 1:
• Streaming: An O(d · r )-pass algorithm with Õ(d3 · n1/r )

space in Õ(n + n3/r ) · poly(d) time.
• Coordinator: AnO(d · r )-round algorithm with Õ(d4n1/r +
d3k) total communication in which the coordinator and
each site i ∈ [k] spend Õ(n3/r + k) · poly(d) time and
Õ(ni ) · poly(d) time, respectively, where ni is the number
of constraints on site i .
• MPC: An O(d/δ 2)-round algorithm with Õ(d3nδ ) load per
machine and Õ(n + n3δ ) · poly(d) time in total.

5 Lower Bounds
In this section we prove information-theoretic lower bounds

for linear programming that hold against any algorithm. We

obtain our lower bounds by establishing the communication
complexity for 2-dimensional linear programming, and then

translating it to lower bounds in the big data models. In the

following, we first give some background on communication

complexity and then present an intermediate problem, called

two-curve intersection problem (TCI), that we consider en
route to proving our result for linear programming. We then

prove a lower bound for TCI and present its implications

for linear programming in the streaming and coordinator

models.

5.1 Background
Communication Complexity. We focus on the standard

two-party communication complexity model of Yao [45]. In

this model, Alice and Bob receive an input X ∈ X and Y ∈
Y, respectively. In an r -round protocol, Alice and Bob can

communicate up to r messages with each other. In particular,

for an even r , Bob first sends a message to Alice, followed by

a message from Alice to Bob, and so on, until Bob receives

the last message and outputs the answer. For an odd r , the
only difference is that Alice starts first and then the players

continue like before until Bob outputs the answer.

The communication complexity of a problem P : X×Y →

Z, denoted by CC(P), is the minimum worst-case communi-

cation cost of any protocol (possibly randomized) that can

solve P with probability at least 2/3. The r -round commu-

nication complexity of P , denoted by CCr (P), is similarly

defined with respect to protocols that are allowed at most r
rounds of communication.

Augmented Indexing. In the Augmented Indexing Prob-

lem, denoted by Aug-Indexn , Alice is given a binary string



x ∈ {0, 1}n , and Bob is given an index i ∈ {0, 1} plus the first
i−1 bits of the string x , i.e., x1, . . . ,xi−1. The goal is for Bob to
output the bit xi . It is well-known that 1-round communica-

tion complexity of this problem is CC1(Aug-Indexn) = Ω(n)
(see, e.g. [35]).

Information Theory. Throughout this section, we use

bold-face fonts, say A, to denote random variables, and nor-

mal font, say A, to denote their realizations. For a random

variable A, supp(A) denotes its support and dist(A) its dis-
tribution. We sometimes abuse the notation and use A and

dist(A) interchangeably. Furthermore, for a t-tuple (X1, . . . ,Xt )

and any integer i ∈ [t], we define X <i
:= (X1, . . . ,Xi−1) and

X >i
:= (Xi+1, . . . ,Xt ).

For random variablesA,B, letH(A) and I(A ;B) denote the
Shannon entropy and mutual information, respectively. We

use D(A | | B) and ∥A − B∥tvd to denote the KL-divergence

and total variation distance between A and B, respectively.
Appendix C.1 provides formal definitions and basic proper-

ties of these functions.

5.2 The Two-Curve Intersection Problem
(TCI)

We consider the following problem, whose lower bound

implies a lower bound for linear programming in the two-

dimensional Euclidean space (as we show shortly).

Alice and Bob are given sequences of n numbers A :=

⟨a1, . . . ,an⟩ and B := ⟨b1, . . . ,bn⟩ in Q
n
, respectively, such

that:

(1) Monotonicity: A is monotonically increasing and B is

monotonically decreasing.

(2) Convexity: For any i ∈ [n], in A we have ai − ai−1 ≤
ai+1 − ai and conversely in B we have bi − bi−1 ≥
bi+1 − bi .

The goal is to find the smallest index i∗ ∈ [n] such that

ai∗ ≤ bi∗ but ai∗+1 > bi∗+1, under the promise that such an

index always exists. We can interpret the sequence A as a

two-dimensional curve in R2 that goes through the points

(1,a1), (2,a2), · · · (n,an) (similarly for B). We refer to this

problem as the two-curve intersection problem and denote it

by TCIn for sequences of length n (or TCI in general). See

Figure 1a for an illustration of this problem.

Connection to 2-Dimensional Linear Programming.We

can reduce the two-curve intersection problem to an instance

of 2-dimensional linear programming as follows (see Fig-

ure 1b). Extend each segment of the curve in Alice’s and

Bob’s input to obtain a line that defines a constraint in which

all points above this line are feasible (blue region for Alice

and green region for Bob in Figure 1b). The feasible region

of this linear program is the set of points in R2 that lie above
both of Alice’s and Bob’s curve. By minimizing the y-axis on

(a) The answer here is i = 4 (dashed line).

(b) Linear programming formulation.

Figure 1: An illustration of the two-curve intersection
problem and its connection to linear programming.

the feasible region, we obtain the first “fractional” point in

which Alice’s curve goes above Bob’s curve, and by rounding

down the x-axis of this point, we obtain the index i∗ of TCI.

Geometric Notations. We work in the two-dimensional

Euclidean space R2. We use p ∈ R2 to denote a point, and

p.x and p.y to denote its x and y coordinates respectively.

Throughout, all the points used have rational coordinates

(i.e., in Q2
). For two points p1,p2 and integers a ≤ b, we

define LineSegment(p1,p2,a,b) as the sequence of b − a + 1
numbers ⟨za , za+1, . . . , zb ⟩ such that for all i ∈ [a : b], (i, zi )
belongs to the unique line in R2 that passes through the

points p1 and p2. We use the following elementary geometric

facts.

Fact 5.1. Let ⟨za , . . . , zb ⟩ := LineSegment(p1,p2,a,b).
(1) For every i ∈ (a : b], zi − zi−1 :=

p2 .y−p1 .y
p2 .x−p1 .x

.
(2) For every i ∈ [a : b], zi =

p2 .y−p1 .y
p2 .x−p1 .x

· (i − p1.x) + p1.y =
p2 .y−p1 .y
p2 .x−p1 .x

· (i − p2.x) + p2.y.

We also define a notion called step curve. For a string

X = (x1, . . . ,xm) ∈ {0, 1}
m
and a parameter α ≥ 1,

StepCurve(X ,α) is the sequence ofm + 1 numbers zi such
that z0 = 0 and for all i ∈ [m], zi := zi−1 + α + i + xi .

5.3 Communication Complexity of TCI
Our goal is to prove the following theorem.

Theorem 7. For any r ≥ 1, CCr (TCIn) = Ω( 1r 2 · n
1/r ).



The proof of Theorem 7 is based on an inductive argument,

following the general round-elimination approach in commu-

nication complexity (see, e.g. [35, 40]). In this approach, one

proves the lower bound for r -round problems by showing

that a “too good” r -round protocol will imply a too good

(r − 1)-round protocol, by reducing the r -round problem to

multiple instances of the (r − 1)-round problem. Following

this argument inductively, we will end up with a protocol

using only 1 round. We then directly prove that such a too

good 1-round protocol cannot exist.

5.3.1 Base Case: One-Round Protocols As a warm-up, we

first prove Theorem 7 for r = 1, i.e., 1-round protocols.

Lemma 5.2. CC1(TCIn) = Ω(n).

Proof. We prove this lemma using a reduction from the

Augmented Indexing Problem on a universe of size n − 1.

Given an instance of Aug-Indexn−1 with input x ∈ {0, 1}n−1

to Alice and i∗ ∈ [n − 1] plus x1, . . . ,xi∗−1 to Bob, the play-

ers construct the following instance of TCIn (without any

communication):

(1) Alice creates A := ⟨a1, . . . ,an⟩ := StepCurve(x , 0).
(2) Bob creates

B := ⟨b1, . . . ,bn⟩ = LineSegment(p1,p2, 1,n) ,

where p1 := (n, 1) and p2 := (i
∗,ai∗ + i

∗ + 1).

The players then run the protocol for TCIn on this in-

stance and Bob outputs xi∗ = 1 (in answer to the Aug-Index
instance) iff i∗ is returned by the protocol for TCIn as the

answer on this instance.

Correctness of the reduction. We first verify that the se-

quences A and B constructed by Alice and Bob satisfy the

promise of the TCIn input. By Fact 5.1, B is both monotone

and convex. It is also easy to see that A is monotonically in-

creasing: for all i ≥ 2, ai ≥ ai−1 + i ≥ ai−1. Finally, to verify

the convexity of A, notice that ai − ai−1 = i + xi−1 ≤ i + 1
while ai+1 − ai = i + 1 + xi ≥ i + 1.

We now prove the correctness of the output in the re-

duction. Suppose first that xi∗ = 0. In this case, ai∗+1 =
ai∗ + i∗ + 1 + xi∗ = ai∗ + i∗ + 1 = bi∗ by definition. On

the other hand, ai∗+2 > bi for all i > i∗ as bi < bi∗ and
ai∗+2 > ai∗+1 = bi∗ . As a result, the correct index in TCIn is

i∗ + 1. Now suppose xi∗ = 1. In this case, ai∗+1 > bi∗ while
ai∗ < bi∗ . As such, the correct index in TCIn is i∗, finalizing
the proof of the correctness of the reduction.

Communication cost of the reduction. The instance of TCIn
can be created with no communication. As such,

CC1(TCIn) ≥ CC1(Aug-Indexn−1) = Ω(n).

5.3.2 General Lower Bound: The Outline We now switch to

the main part of the argument in which we prove Theorem 7

for all integers r ≥ 1. In this section we outline our high

level approach. In this section, we will oversimplify many

details, and the discussions will be informal for the sake of

intuition.

We design a family of distribution D1,D2, . . ., where Dr
is hard distribution for r -round protocols. Distribution D1

is the distribution of hard instances obtained in Lemma 5.2

(from the hard distribution of Aug-Index). Each instance I in
the distribution Dr is then constructed roughly as follows:

we sample n1/r instances from the distribution Dr−1 each

over n(r−1)/r points. Let us call these instances I1, . . . , In1/r .

We embed these instances inside I so that the following two

properties are satisfied: (i) the answer to TCIn on instance

I is the same as the answer to TCIn(r−1)/r on instance Iz⋆ for

some z⋆ ∈ [n1/r ] chosen uniformly at random, and (ii) the
first player to speaks (namely Alice for odd r and Bob for

even r ) is oblivious to the identity of z⋆.
The proof of the communication lower bound then goes

as follows. Using information-theoretic arguments, we can

argue that if the first message of the protocol is of size o(n1/r ),
then it only revealso(1) bits of information about an “average”

embedded instance Ii for i ∈ [nr ] ofDr−1. In particular, since

the sender of the first message is oblivious to the identity of

the z⋆ (by property (ii)), the first message only reveals o(1)
bits of information about the instance Iz⋆ . This effectively
means that the distribution of the instance Iz⋆ is essentially

the same as Dr−1 even after the first round. However, by

property (i), the players now need to solve the instance

Iz⋆ on n(r−1)/r elements sampled from distribution Dr−1 in

r − 1 rounds. By induction, this requires Ω(
(
n(r−1)/r

)1/r−1
) =

Ω(n1/r ) bits, which implies the desired lower bound for r -
round protocols.

The outline above is arguably the most straightforward

application of round-elimination (see, e.g. the tree-pointer-

jumping problem in [11]). Unfortunately however, this ap-

proach does not work directly in our application. In partic-

ular, in the discussion above, we left the specifics of how

the (r − 1)-round instances I1, . . . , In1/r are embedded to-

gether to form I . For the above information-theoretic ar-

guments to work, these instances need to be sampled in-
dependently of each other. On the other hand, for us to be

able to embed them together in a valid instance of TCI, we
need to ensure that they collectively preserve monotonic-

ity and convexity properties of TCI. This requires correlat-
ing the instances I1, . . . , In1/r , impeding the use of previous

information-theoretic argument.

We get around this challenge by carefully “revealing ex-

tra information” about the inputs of the players to each

other (similar to the reduction fromAug-Index in Lemma 5.2),



which allows to “control” the correlation between different

instances I1, . . . , In1/r in terms of these revealed information.

We then show that even with this extra information, the

two properties above for embedded instances continue to

hold, and at the same time, we have enough independence in

the instances to make the information-theoretic arguments

outlined above work.

We comment that this construction of hard instances of

TCI and the proof of the corresponding communication lower

bound is one of the main technical contributions of this paper.

5.3.3 General Lower Bound: The Hard Input Distribution
We use an integer N ≥ 1 as a parameter in defining all

other parameters of our hard distribution. In particular, for

r -round instances, nr = N r
is the number of points given to

Alice and Bob, andmr := N is the number of (r − 1)-round
instances “embedded” inside the r -round instance. We also

define the following two operators on instances that are used

in our lower bound construction (their roles will become

more evident once we give the proper definition of the hard

distribution).

• Slope-Shift Operator: In any instance I of our hard
distributionDr , the input to Alice is constructed using

several (potentially different) StepCurve functions. By
applying slope-shift operator on instance I with pa-

rameter α , we increase the second parameter in every

application of StepCurve in constructing Alice’s input

by an additive factor of α . As a result, any segment

in Alice’s input constructed with StepCurve(∗, β) be-
comes StepCurve(∗,α+β).We ensure that the operator

also changes the slope of Bob’s input by α .
• Origin-Shift Operator: By applying the origin-shift

operator with point pA ∈ R
2
from Alice’s side in an

instance I of Dr , we shift all points in the instance I
along the same line so that the left-most point of Alice’s
input will be on the point pA. Similarly, by applying

the origin-shift operator with pB ∈ R
2
from Bob’s side,

we shift all points along the same line so that the right-
most point of Bob’s input will be on pB . This operator
clearly does not change the slope of any line segment

in players’ inputs.

We are now ready to describe our hard input distribution.

Distribution Dr : The Hard Distribution for r -round
Protocols of TCI. We define the procedure Instance that

given a parameter r , construct an instance of TCI.

Instance(r ).

(1) If r = 1, sample (A,B) from the distri-

bution of Lemma 5.2; otherwise, define

(A,B) := EvenInstance(r ) for even r and
(A,B) := OddInstance(r ) for odd r .

(2) Return the points (A,B) as the r -round instance.

We nowdefine the EvenInstance procedure inside Instance.

EvenInstance(r ).

(1) Sample mr instances (Ci ,Di ) independently from

Instance(r − 1).
(2) For i =mr down to 1 do:

(a) Let pi+1B be the left-most point of Bob’s input in

(Ci+1,Di+1) (define p
mr+1
B := (nr , 0)). Apply the

origin-shift operator with point pi+1B from Bob’s

side on the instance (Ci ,Di ).

(b) Let α i+1r be the largest slope of any segment in

(Ci+1,Di+1). Apply the slope-shift operator with

slope α i+1r on (Ci ,Di ).

(3) Sample z⋆r ∈ [mr ] uniformly at random.

(4) Define A := (A1, . . . ,Amr ) where Az⋆r = Cz⋆r ; the

remainingAi ’s for i , z⋆r are constructed by extend-

ing the curve in Az⋆r on both its endpoints along

straight lines.

(5) Define B := (B1, . . . ,Bmr ) where Bi = Di for all

i ∈ [mr ].

We refer to instances (Ci ,Di ) as sub-instances. Several re-
marks are in order about these sub-instances. Firstly, even

though they were originally sampled independently, by ap-

plying the origin-shit and slope-shift operators, we have cor-

related these instances. In particular, each instance (Ci ,Di )

depends on instances (C j ,D j ) for j > i . Moreover, note that

not all the points in these instances appear in the final in-

stance (A,B). In particular, we only use the points in Cz⋆r
to define Az⋆r ; the remaining points in A \Az⋆r are obtained

differently from C1, . . . ,Cmr (the points in B are however

identical to the points in D1, . . . ,Dmr ). Nevertheless, the

remaining instances still play a marginal role in the defini-

tion of the players’ inputs because these points define the

starting point and starting slope of each sub-instance. In the

following, we refer to (A,B) as the actual input of Alice and
Bob, and refer to the points in (C1,D1), . . . , (Cmr ,Dmr ) that

are not part of (A,B) as fooling inputs. Figure 2a gives an

illustration of EvenInstance.
We use the term sub-instance for both (Ai ,Bi ) and (Ci ,Di )

pairs. For any i ∈ [mr ], we use Ai := (ai,1, . . . ,ai,nr−1 ) and
Bi := (bi,1, . . . ,bi,nr−1 ) to denote the points in sub-instance

(Ai ,Bi ). The following proposition ensures that instances

sampled by EvenInstance do not violate the monotonicity



(a) An Illustration of EvenInstance.

(b) An Illustration of OddInstance.

Figure 2: An illustration of EvenInstance and
OddInstance. Thick blue and green curves denote
the actual inputs of Alice and Bob. Similarly, light
blue and green curves denote the fooling inputs. Each
red dashed rectangle denotes one sub-instance (thick
ones show the special sub-instance).

and convexity properties of TCI across sub-instances (proof
appears in Appendix C.2).

Proposition 5.3. For (A,B) sampled from EvenInstance,
assuming each sub-instance (Ai ,Bi ) satisfies monotonicity and
convexity of TCI, then (A,B) also satisfies monotonicity and
convexity.

We refer to the instance (Az⋆r ,Bz⋆r ) = (Cz⋆r ,Dz⋆r ) as the

special sub-instance of (A,B). The next proposition signi-

fies the role of the special sub-instance in EvenInstance (see
Appendix C.2).

Proposition 5.4. For instances (A,B) sampled from
EvenInstance, the answer to TCI(A,B) is the same as the an-
swer to TCI(Cz⋆r ,Dz⋆r ).

The definition of OddInstance procedure is similar to

EvenInstance by switching the role of Alice and Bob. Due to

space constraints, we postpone this description to Appen-

dix C.3 (the odd-round analogues of the lemmas and claims

also appear in Appendix C.3).

Actual vs Fooling Inputs. As we already observed in the

proof of Lemma 5.2, providing the players with extra infor-

mation about the input of the other player (i.e., giving Bob

the first i∗ points in Alice’s input) facilitates the proof of the

lower bound. This is also the case for our hard instances for

r > 1 round protocols. In the following observations, we

state several properties of this extra information which is

crucial for our information-theoretic lower bound for TCI
(the observations for odd rounds appear in C.3).

Observation 5.5. In EvenInstance, there is a one-to-one

mapping between (Az⋆r ,Bz⋆r ) and the original (Cz⋆r ,Dz⋆r ) (be-

fore applying any operator), assuming we are given

(C>z⋆r ,D>z⋆r ).

The reason behind Observation 5.5 is simply the opera-

tors applied to each (Ci ,Di ) are functions of (C
>i ,D>i ) in

EvenInstance and the special sub-instance is just a “copy” of
(Cz⋆r ,Dz⋆r ).

Observation 5.5 implies that if players have access to

(C>z⋆r ,D>z⋆r ) in EvenInstance as an extra input, then they

can determine the original distribution of their special sub-

instance. This is the main reason that we provide the players

with this extra input in our reduction.

Observation 5.6. In EvenInstance, the index z⋆r ∈ [mr ] is

chosen independently of B and (C1,D1), . . . , (Cmr ,Dmr ) .

This observation follows directly from the construction

of the instances. Observation 5.6 implies that even given the
extra input, the player that sends the first message is oblivious

to the identity of the special sub-instance.

5.3.4 General Lower Bound: The Communication Complexity
We prove Theorem 7 by induction on the number of rounds,

with Lemma 5.2 forming the base of the induction. We have

the following lemma.

Lemma 5.7. For any r ≥ 1 and any (1/3)-error protocol
πr for instances of TCI sampled from the distribution Dr , the
communication cost of πr is Ω(N /r 2).

From now on we fix a deterministic protocol πr for TCI on
Dr ; we later use Yao’s minimax principle [46] to extend the

lower bound to randomized protocols. We use Π to denote

the random variable formessages communicated in the proto-

col, and write Π = (Π1, . . . ,Πr ), where Πℓ denotes the mes-

sage communicated in round ℓ. We further use Z to denote

the index z⋆r , which corresponds to the index of the special

sub-instance. Let (A1, . . . ,Amr ) and (B1, . . . ,Bmr ) denote

the random variables for the points A and B and their par-

titioning into sub-instances respectively, and (C1, . . . ,Cmr )

and (D1, . . . ,Dmr ) for C and D.
We start with the following lemma that formalizes our

intuition that players cannot reveal information about the

special sub-instance in their first round. We first consider



even-round protocols (see Appendix C.3 for the lemma for

odd-round protocols). .

Lemma 5.8. For any even integer r , and any r -round protocol
πr with worst-case message length ℓ on instances of Dr ,

I((AZ ,BZ ) ;Π1 | C
>Z ,D>Z ,Z ) ≤ ℓ/N .

Proof. We start by expanding the LHS:

I((AZ ,BZ ) ;Π1 | C
>Z ,D>Z ,Z )

= E
z∈[mr ]

[
I((Az ,Bz ) ;Π1 | C

>z ,D>z ,Z = z)
]

(definition of conditional mutual information)

=
1

mr

mr∑
z=1

I((Az ,Bz ) ;Π1 | C
>z ,D>z ,Z = z)

(distribution of Z is uniform over [mr ])

=
1

mr

mr∑
z=1

I((Cz ,Dz ) ;Π1 | C
>z ,D>z ,Z = z)

(by Observation 5.5)

=
1

mr

mr∑
z=1

I((Cz ,Dz ) ;Π1 | C
>z ,D>z ),

where the last equality is due to the fact that the joint dis-

tribution of all random variables (Cz ,Dz ),Πr ,C>z ,D>z
is

independent of the event Z = z. Indeed, for even r , the
message Π1 sent by Bob is a function of (B1, . . . ,Bmr ) and

(C1,D1), . . . , (Cmr ,Dmr ), and by Observation 5.6, these ran-

dom variables are all independent of z⋆r . As such, removing

the conditioning on the event Z = z does not change the

distribution of variables above. Finally,

1

mr

mr∑
z=1

I((Cz ,Dz ) ;Πr | C
>z ,D>z )

=
1

mr
· I(C1, . . . ,Cmr ,D1, . . . ,Dmr ;Π1)

(chain rule of mutual information)

≤
1

mr
· H(Π1) ≤

ℓ

mr
. (H(Π1) ≤ ℓ)

The lemma follows by noting thatmr = N .

To continue, we need the following definition.

Distribution µe for even r : For an assignment

(Π1,C
>z ,D>z , z) (denoted by E for short) to

(Π1,C>Z ,D>Z ,Z ), we define µe (E) as the distribution
of (Az ,Bz ) in Dr conditioned on Πr = Πr ,Z = z,
C>z = C>z ,D>z = D>z

.

Using Lemma 5.8, we have the following claim (see Ap-

pendix C.3 for the claim for odd-round protocols).

Claim 5.9. For any even integer r and any r -round protocol
πr with worst-case message length o(N /r 2),

E
E=(Π1,C>z,D>z,z)

[
∥µe (E) − Dr−1∥tvd

]
= o(1/r ).

Proof. By the connection between mutual information

and KL-divergence (Fact C.1), we have,

I((AZ ,BZ ) ;Π1 | C
>Z ,D>Z ,Z ) =

E
E=(Π1,C>z,D>z,z)

[D(dist(AZ ,BZ | E \ Π1) | | dist(AZ ,BZ | E))]

= E
E=(Π1,C>z,D>z,z)

[D(Dr−1 | | µe (E))] ;

Conditioned on Z = z, distribution of (AZ ,BZ ) is the same

as the original distribution of (CZ ,DZ ) by Observation 5.5.

Furthermore,

E
E=(Π1,C>z,D>z,z)

[D(Dr−1 | | µe (E))]

≥ E
E=(Πr ,C>z,D>z,z)

[
2 · ∥Dr−1 − µe (E)∥

2

tvd

]
(Pinsker’s inequality (Fact C.3))

≥ 2 ·

(
E

E=(Πr ,C>z,D>z,z)

[
∥Dr−1 − µe (E)∥tvd

] )2
.

(Jensen’s inequality)

By Lemma 5.8, I((AZ ,BZ ) ;Πr | C>Z ,D>Z ,Z ) = o(1/r 2),
implying that,

E
E=(Πr ,C>z,D>z,z)

[
∥Dr−1 − µe (E)∥tvd

]
= o(1/r ).

This finalizes the proof.

Define the recursive function δ (k) = δ (k −1)−o(1/r )with
base case δ (1) = 1/4 (here r is the number of rounds).

Lemma 5.10. Any deterministic δ (r )-error protocol πr on
Dr requires Ω(N /r 2) communication.

Proof. The proof is by induction on the number of rounds.

The base case for r = 1 follows from Lemma 5.2. We now

prove the induction step.

Suppose the lemma holds for all integers up to r − 1, we
prove it for r -round protocols. Given a r -round protocol πr
for Dr that violates the induction hypothesis, we construct

a (r − 1)-round protocol πr−1 for Dr−1 that also violates the

induction hypothesis, a contradiction. The protocol πr−1 is
constructed in two steps: we first construct a randomized

protocol π ′ from πr , and then fix the randomness of the

protocol to achieve a deterministic protocol.

We now describe π ′. For simplicity, we only give the pro-

tocol for even choices of r ; the extension to odd values is

straightforward. Given an instance (A,B) ∼ Dr−1, protocol

π ′ works as follows:



(1) Using public randomness, the players sample

(Π1,C
>z ,D>z , z⋆r ) from the distribution Dr .

(2) Bob samples remaining coordinates (Cj ,D j ) for

j < z⋆r using private randomness from distribution

Dr | (Π1,C
>z ,D>z , z⋆r ) .

(3) Alice sets Az⋆r = A and Bob sets Bz⋆r = B by ap-

plying the appropriate slope-shift and origin-shift

operators based on C>z ,D>z
which is known to

both Alice and Bob.

(4) The players then fill the rest of their input in

(A1, . . . ,Amr ) and (B1, . . . ,Bmr ); Bob knows all

of (C1,D1), . . . , (Cmr ,Dmr ) and can perform the

needed slope-shift and origin-shift operators, and

Alice simply needs to extend Az⋆r across straight

lines.

(5) The players run πr on these new points from the

second round onwards, assuming that the first com-

municated message was Π1. They output the index

returned by πr .

Communication cost of π ′ is clearly at most as the com-

munication cost of πr . We now prove the correctness of π ′.

Claim 5.11. Assuming πr is a δ (r )-error protocol for Dr ,
π ′ will be a (δ (r ) + o(1/r ))-error protocol for Dr−1.

Proof. We have,

Pr
Dr−1
(π ′ errs) = E

E=(Π1,C>z,D>z,z⋆r )

[
Pr
Dr−1
(πr errs | E)

]
(by Proposition 5.4)

≤ E
E=(Π1,C>z,D>z,z⋆r )

[
Pr
µe (E)
(πr errs) + ∥µe (E) − Dr−1∥tvd

]
(by Fact C.2)

≤ δ (r ) + o(1/r 2),
(πr is a (δ (r ))-error protocol, and by Claim 5.9)

finalizing the proof.

We are now ready to complete the proof of Lemma 5.10. By

Claim 5.11, π ′ is a (δ (r )+o(1/r ))-error protocol forDr−1. π
′
is

a randomized protocol. However, by an averaging argument,

we can fix the randomness of π ′ to obtain a deterministic

(δ (r ) + o(1/r ))-error protocol for Dr−1 with the same com-

munication cost o(N /r 2). As δ (r ) + o(1/r ) = δ (r − 1), this

contradicts the induction hypothesis. We thus have that the

communication cost of πr is Ω(N /r
2), proving the induction

step. This concludes the proof.

Lemma 5.7 now follows immediately from Lemma 5.10 as

δ (r ) = 1/4+
∑r

k=1 o(1/r ) = 1/4+o(1) < 1/3, and by the easy

direction of Yao’s minimax principle [46].

5.3.5 Proof of Theorem 7

Proof of Theorem 7. By Lemma 5.7, any (1/3)-error r -
round protocol for TCIn requiresΩ(N /r 2) communication on

instances of Dr . In these instances, n = N r
by the construc-

tion of Dr . Plugging in N = n1/r , we obtain CCr (TCIn) =
Ω( 1r 2 · n

1/r ).

We conclude this proof by making the following remark:

A r -round instance of our problem consists of at most N r−1

applications of StepCurve, each having a larger slope than

the previous one by an additive factor of N . As a result, the

largest slope using in our construction is NO (r )
. This implies

that the bit-complexity of the numbers we use is bounded

by log (NO (r )) = O(logn).

As a corollary of Theorem 7, using the connection between

two-curve intersection problem and linear programming

outlined in Section 5.2, we obtain the following.

Corollary 8. For any integer r ≥ 1, any two-player r -
round protocol for 2-dimensional linear programming with n
constraints requires Ω( 1r 2 · n

1/r ) communication.

5.4 Lower Bounds for Linear Programming
in Big Data Models

We now give some straightforward applications of our com-

munication complexity lower bound for linear programming

to streaming and coordinator models, and formalize Result 2.

The Streaming Model. It is well-known that communica-

tion complexity lower bounds imply space lower bounds on

the space complexity of streaming algorithms (see, e.g. [2,

24]). Using this connection in conjunction with Corollary 8,

we have, to establish the following theorem.

Theorem 9. For any integer r ≥ 1, any streaming algorithm
that makes r passes over the constraints of a 2-dimensional lin-
ear program with n constraints and finds the optimal solution
with probability at least 2/3 requires Ω( 1r 3 · n

1/2r ) space.

The CoordinatorModel.Any r -round distributed proto-
col implies a 2r -round protocol in our communication model.

Hence,

Theorem 10. For any integer r ≥ 1, any r -round algo-
rithm that finds the optimal solution of a 2-dimensional linear
program with n constraints partitioned across k ≥ 2 sites in
the coordinator model with probability at least 2/3 requires
Ω( 1r 2 · n

1/2r ) communication.
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A Missing Details from Section 3

A.1 Implementation in the Coordinator
Model

The main step is to perform the sampling of ε-net which is

captured by the following lemma.

Lemma A.1. The coordinator can sample a subset N ⊆
S of size m according to the weight function w : S → R
using 2 rounds and O(m · bit(S) + k(ℓ/r + 1) logn) bits of
communication, where ℓ is the number of times the weight
functionw(·) has been updated when simulating Algorithm 1
in the coordinator model.

Proof. The sampling algorithm is as follows. In the first

round each site Pi sendsw(Si ) to the coordinator. Note that

w(Si ) for any i ∈ [k] can be described in log(1 + n1/r )ℓ =
O(ℓ/r · logn) bits.

In the second round the coordinator generates m i.i.d.

random numbers x1, . . . ,xm from [k] from the distribution

Pr[i is sampled] =
w (Si )
w (S) , and sends the i-th site the num-

ber yi =
��{j | x j = i}��. After obtaining yi , site Pi samples yi

elements from its local set Si according to the distribution

Pr[S is sampled] =
w (S )
w (Si )

, and sends the sampled elements

to the coordinator. Note that yi ≤ m ≤ n for any i ∈ [m],
and thus the communication cost of this round is bounded

by O(k) ·O(ℓ/r · logn) +O(m) · bit(S) bits.
Finally, the sampling is indeed with respect to the weight

functionw(·), since Pr[S is sampled] =
w (Si )
w (S) ·

w (S )
w (Si )

=
w (S )
w (S) .

This concludes the proof.

In order to implement Algorithm 1, each site should also

be able to determine the set of violating elements in its input.

This can be done easily by asking the coordinator to share

the basis computed in each iteration with every site. The

proof of Theorem 2 follows directly from that of Theorem 1

by plugging in Lemma A.1.

A.2 Implementation in the MPC Model
Our general strategy is to simulate our implementation of

the meta-algorithm for the coordinator model in the MPC

model for r = 1/δ round protocols. The main challenge in

implementing this is that once we require the load of roughly

nδ per machine, we need to start with k = n1−δ machines

to begin with to fit the whole input across all machines.

This means that the number of sites in the simulation is k .
But then, if all these machines need to send even one bit

to the designated coordinator machine (or vice versa), this

requires a load of n1−δ on the coordinator machine which is

prohibitively large for any δ < 1/2.

In order to fix this, we are going to use the by now stan-

dard approach of [23]. There are only two steps that the

coordinator and the machines need to communicate with

each other: (1) when the machines need to send a sample of

the ε-net, and (2) when the coordinator needs to send the

basis to the machines. The latter can be done easily inO(1/δ )
MPC rounds on machines of memoryO(nδ ): the coordinator
first shares this information with nδ other machines in one

round; each of these machines next shares this information

with another set of nδ machines (unique to each original ma-

chine). InO(1/δ ) rounds all the n1−δ machines would receive

this information (see [23] for more details).

To handle the part when the machines need to send the

ε-net N to the coordinator, we do as follows. Recall that the

size ofN is at most Õ(λnδν2), and thus it will fit the memory

of the coordinator. However, we first need to sample this

according to the correct distribution. In order to do this, we

use our approach for implementing the streaming algorithm.

Since by the previous part we managed to share the basis

computed in each iteration with every machine, as in the

case of streaming algorithms, the machines can compute

the weights of every constraint they have. The total weight

of the constraints can also be computed in O(1/δ ) rounds
using the sort and search method of [23]. As a result, each

machine can locally perform the sampling of N and send

this information to the coordinator.

To summarize, we can implement each round of the algo-

rithm in the coordinator model for r = 1/δ in O(1/δ )MPC

rounds, hence proving Theorem 3.

B Missing Details from Section 4

B.1 Linear Programming
Let TLP (m, t) denotes the time needed to solve a linear pro-

gram with Θ(m) constraints and Θ(t) variables.

Proposition B.1. For any linear programwithn constraints
and dimension d :
• The time needed to compute a basis of m ≥ d given
constraints is Tb (m) = O(d · TLP (m,d)).
• The time needed to compute all constraints that violate
a given basis of size b = O(d) among t constraints is
Tv (t ,b) = O(t · d + d · TLP (d,d)).

Proof. To find a basis B of a set N ofm constraints, we

first solve the LP only given the constraints inN to obtain a

point x∗ = (x∗
1
, . . . ,x∗d ) with optimal value c∗. Recall that in

our mapping of LP to an LP-type problem, we need to find a

lexicographically smallest optimal solution on constraints in

N , which may not be the point x∗ even though the objective

value is still c∗. We thus write another linear program:

min

x ∈Rd
x1

s.t.

d∑
i=1

cixi = c
∗

and

d∑
i=1

ajixi ≤ b j for all j ∈ N .



This allows us to find an optimal solution to the LP with

the minimum value of x1. Repeating this procedure for d
iterations and for i-th iteration fixing x1, ..,xi−1 computed

so far, and finding the minimum value for xi , allows us to
find the lexicographically smallest optimal solution. These

LPs all are d-dimensional with Θ(m) constraints, and hence

can be solved in O(d · TLP (m,d)) time in total, finalizing the

first part.

A basis of size b in a linear program consists of b con-

straints of the LP that are all tight by the assignment of the

variables. Hence, given the basis, we only need to solve the

linear program on a system of b linear inequalities to de-

termine a value of x∗ that is tight for all the constraints in
the basis. This can be done in O(dTLP (d,d)) time (as we do

before). After this, we can simply check the d-dimensional

vector x∗ against all the t constraints and add each one as a

violating set if x∗ does not satisfy the constraint in O(t · d)
time, finalizing the second part.

Plugging in the currently best known bound for linear

programming TLP (m,d) = Õ(
√
d
(
dm + d2.373

)
) ([30], Propo-

sition B.1), and the aforementioned bounds on ν , λ = O(d),
we can prove Theorem 4 using Theorems 1, 2, and 3.

B.2 Linear Support Vector Machine
In the following, let TSVM (m,d) denote the time needed to

solve an instance of Linear SVM problem withm constraints

and d variables. We show how to implement the basis com-

putation and violation test for Linear SVM in the following

proposition.

Proposition B.2. For any Linear SVM problem with n con-
straints and dimension d :
• The time needed to compute a basis of m ≥ d given
constraints is Tb (m) = O(TSVM (m,d)).
• The time needed to compute all constraints that violate
a given basis of size b among t constraints is Tv (t ,b) =
O(t · d + TSVM (d,d)).

Proof. To find a basis B of a set N of m constraints,

we simply need to solve another instance of Linear SVM,

i.e., (6), only on the given constraints. This can be done in

O(TSVM (m,d)) by definition. The second part can also be

solved by solving a linear equation exactly as in the case in

Proposition B.1.

Plugging in the currently best known bound for Linear

SVM TSVM (m,d) = O((m + d)
3) ([47], Proposition B.2), and

the aforementioned bounds on ν , λ = O(d), we can prove

Theorem 5 using Theorems 1, 2, and 3.

B.3 Core Vector Machine
Let TMEB (m,d) denote the time needed to solve an instance

of MEB problem with m constraints and d variables. The

following proposition show how to implement the basis

computation and violation test for MEB (the proof is identical

to Proposition B.2 and is hence omitted).

Proposition B.3. For any Linear SVM problem with n con-
straints and dimension d :
• The time needed to compute a basis of m ≥ d given
constraints is Tb (m) = O(TMEB (m,d)).
• The time needed to compute all constraints that violate
a given basis of size b among t constraints is Tv (t ,b) =
O(t · d + TMEB (d,d)).

As MEB can be cast as a convex quadratic program, we

have TMEB (m,d) = O((m + d)3) by [47] as before. Hence,

Theorems 1, 2, and 3 imply the following result.

C Missing Details from Section 5

C.1 Background on Information Theory
Our proof relies on basic concepts from information theory,

which we review briefly here. For a broader introduction, we

refer the interested reader to the excellent text by Cover and

Thomas [18].

Entropy and Mutual Information. The Shannon entropy

is defined as H(A) :=
∑

A∈supp(A) Pr (A = A) · log
(

1

Pr(A=A)

)
.

The conditional entropy of A on random variable B is de-

fined as H(A | B) := EB∼B [H(A | B = B)]. The (conditional)
mutual information betweenA and B is I(A ;B | C) := H(A |
C) −H(A | B,C). We shall use the following basic properties

of entropy and mutual information throughout.

Measures of Distance Between Distributions. For two
distributions µ and ν , the Kullback-Leibler divergence be-

tween µ and ν is denoted by D(µ | | ν ) and defined as:

D(µ | | ν ) := E
a∼µ

[
log

Prµ (a)
Prν (a)

]
. (8)

We have the following relation between mutual information

and KL-divergence.

Fact C.1. For random variables A,B,C ,

I(A ;B | C) =

E
(b,c)∼(B,C )

[
D(dist(A | C = c) | | dist(A | B = b,C = c))

]
.

We denote the total variation distance between two dis-

tributions µ and ν on the same support Ω by ∥µ − ν ∥tvd ,
defined as:

∥µ − ν ∥tvd := max

Ω′⊆Ω
(µ(Ω′) − ν(Ω′)) =

1

2

·
∑
x ∈Ω

|µ(x) − ν(x)| .

(9)

We use the following basic properties of total variation dis-

tance.



Fact C.2. Suppose µ and ν are two distributions for E, then,
Prµ (E) ≤ Prν (E) + ∥µ − ν ∥tvd .

The following Pinskers’ inequality bounds the total varia-

tion distance between two distributions based on their KL-

divergence,

Fact C.3 (Pinsker’s ineqality). For any distributions µ

and ν , ∥µ − ν ∥tvd ≤
√

1

2
· D(µ | | ν ).

C.2 Missing Proofs of Section 5.3
Proposition (Restatement of Proposition 5.3). For
(A,B) sampled from EvenInstance, assuming each sub-instance
(Ai ,Bi ) satisfies monotonicity and convexity of TCI, then (A,B)
also satisfies monotonicity and convexity.

Proof. For Bi ’s, the monotonicity and convexity follow

from the origin-shift operator and slope-shift operator, re-

spectively. For Ai ’s, different sub-instances are obtained by

extending two line segments in Az⋆r , and hence A trivially

satisfies the properties.

Proposition (Restatement of Proposition 5.4). For
instances (A,B) sampled from EvenInstance, the answer to
TCI(A,B) is the same as the answer to TCI(Cz⋆r ,Dz⋆r ).

Proof. Since (Az⋆r ,Bz⋆r ) = (Cz⋆r ,Dz⋆r ), and (Cz⋆r ,Dz⋆r ) form

a valid instance of TCI, clearly A and B also only cross each

other between the points in (Az⋆r ,Bz⋆r ).

C.3 OddInstance and Odd-Round Protocols
We now turn to the definition of the OddInstance procedure
inside Instance.

OddInstance(r ).

(1) Sample mr instances (Ci ,Di ) independently from

Instance(r − 1).
(2) For i = 1 tomr do:

(a) Let pi−1A be the right-most point of Alice’s input in

(Ci−1,Di−1) (define p
0

A := (0, 0)). Apply the origin-

shift operator with point pi−1A from Alice’s side on

instance (Ci ,Di ).

(b) Let α i−1r be the largest slope of any segment in

(Ci−1,Di−1). Apply the slope-shift operator with

slope α i−1r on (Ci ,Di ).

(3) Sample z⋆r ∈ [mr ] uniformly at random.

(4) Define A := (C1, . . . ,Cmr ).

(5) Define B := (B1, . . . ,Bmr ) where Bz⋆r := Dz⋆r ; the

remaining Bi ’s for i , z⋆r are constructed by extend-

ing the curve in Bz⋆r on both its endpoints along

straight lines.

Similar to EvenInstance, instances of OddInstance also

consists ofmr sub-instances amongwhich (Cz⋆r ,Dz⋆r ) is called

the special sub-instance. Figure 2b gives an illustration of

instances sampled by OddInstance.

Analogues of Even-Round Results.We list the following

results as odd-round analogues of the bounds in the paper for

even-round protocols. Their proofs all follow immediately

from the proof of their even-round counter part.

The following two properties are analogous to Proposi-

tions 5.3 and 5.4 for EvenInstance.

Proposition C.4. For (A,B) sampled from OddInstance,
assuming each sub-instance (Ai ,Bi ) satisfies monotonicity and
convexity of TCI, then (A,B) also satisfies monotonicity and
convexity.

Proposition C.5. For instances (A,B) sampled from
OddInstance, the answer to TCI(A,B) is the same as the an-
swer to TCI(Cz⋆r ,Dz⋆r ).

The following two observations are analogous to Obser-

vations 5.5 and 5.6 for EvenInstance.

Observation C.6. In OddInstance, there is a one-to-one

mapping between (Az⋆r ,Bz⋆r ) and the original sub-instance

(Cz⋆r ,Dz⋆r ) (before applying any operator), assuming we are

given (C<z⋆r ,D<z⋆r ).

Observation C.7. In OddInstance, the index z⋆r ∈ [mr ] is

chosen independently of A = (A1, . . . ,Amr ) and

(C1,D1), . . . , (Cmr ,Dmr ) .

The following lemma for odd-round protocols is analogous

to Lemma 5.8 for even-round ones (but note the change in

the order of conditioning).

Lemma C.8. For any odd integer r and any r -round protocol
πr with worst-case message length ℓ on instances of Dr ,

I((AZ ,BZ ) ;Π1 | C
<Z ,D<Z ,Z ) ≤ ℓ/N .

The following definition is analogous to definition of µe .

Distribution µo for odd r : For an assignment

(Πr ,C
<z ,D<z , z)

(denoted by O for short) to (Π1,C<Z ,D<Z ,Z ), we de-
fine µo(O) as the distribution of (Az ,Bz ) in Dr condi-

tioned on Πr = Πr ,Z = z,C<z = C<z ,D<z = D<z
.

The following claim for odd-round protocols is analogous

to Claim 5.9 for even-round ones (again note the change in

the order of conditioning and the distribution).

Claim C.9. For any odd integer r and any r -round protocol
πr with worst-case message length o(N /r 2),

E
O=(Π1,C<z,D<z,z)

[
∥µo(O) − Dr−1∥tvd

]
= o(1/r ).
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