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Abstract—In this paper we address the problem of subspace
averaging, with special emphasis placed on the question of
estimating the dimension of the average. The results suggest that
the enumeration of sources in a multi-sensor array, which is a
problem of estimating the dimension of the array manifold, and
as a consequence the number of radiating sources, may be cast
as a problem of averaging subspaces. This point of view stands
in contrast to conventional approaches, which cast the problem
as one of identifiying covariance models in a factor model. We
present a robust formulation of the proposed order fitting rule
based on majorization-minimization algorithms. A key element
of the proposed method is to construct a bootstrap procedure,
based on a newly proposed discrete distribution on the manifold of
projection matrices, for stochastically generating subspaces from
a function of experimentally-determined eigenvalues. In this way,
the proposed subspace averaging (SA) technique determines the
order based on the eigenvalues of an average projection matrix,
rather than on the likelihood of a covariance model, penalized by
functions of the model order. By means of simulation examples,
we show that the proposed SA criterion is especially effective in
high-dimensional scenarios with low sample support.

Keywords—Array processing, dimension, Grassmann manifold,
order estimation, source enumeration, subspace averaging

I. INTRODUCTION

In many applications of statistical signal processing, high-
dimensional data exhibits a low dimensional structure that
admits a subspace representation. In pattern recognition and
machine learning, for instance, discriminative features are
typically obtained after a principal component analysis (PCA)
stage that selects a subspace to explain a large fraction of the
variance in the original data [1]. In computer vision, the set
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of images under different illuminations can be represented by
a low-dimensional subspace [2]. And subspaces appear also
as invariant representations of signals geometrically deformed
under a set of affine transformations [3]. There are many more
applications where low-dimensional subspaces capture the in-
trinsic geometry of the problem, ranging from array processing
[4], motion segmentation [5], subspace clustering [6], spectrum
sensing for cognitive radio [7], or noncoherent multiple-input
multiple-output (MIMO) wireless communications [8], [9].

When input data are modeled as subspaces, possibly of
different dimensions, a fundamental problem is to compute
an average or central subspace and, more importantly, to
determine the dimension of the average. When all subspaces
have the same dimension, they are formally represented as
points on the Grassmann manifold. Geodesic, or intrinsic,
distances on the Grassmannian are measured by the arc length
(lo-norm of the vector of principal angles), and the average
subspace according to this canonical distance metric is the
Riemannian center of mass, also known as the Karcher mean
[10]. The Karcher mean is typically found by iterative algo-
rithms that map the subspaces to and from the tangent plane
at a given point (using Exp and Log maps), which make them
computationally costly [11], and in fact not computable if some
subspaces lie outside the injectivity radius of a provisional
average, in which case the log map is undefined. Another
drawback of the intrinsic distance metric is that a unique
optimal Karcher mean is not always guaranteed to exist [12].

As an alternative to the intrinsic mean of the manifold,
Srivastava and Klassen proposed the extrinsic mean in [13],
which uses a chordal distance metric in the ambient vector
space defined as the squared Frobenius norm of the difference
between projection matrices. Unlike the intrinsic mean, the
extrinsic mean of a collection of subspaces is always unique,
it is easy to compute, and can be used for subspaces that
have different dimensions and therefore live in a union of
Grassmannians. For these reasons, in this paper as in [14],
we focus on the extrinsic distance to compare subspaces that
might not live in the same manifold.

We address the problem of determining the optimal or-
der of the low-dimension average subspace that minimizes
an extrinsic distance measure between subspaces and their
average. The solution to this problem provides the simple
order fitting rule derived in [14] for minimizing the extrinsic
mean-squared error between a collection of subspaces and their
average. The order fitting rule uses a threshold test on the
eigenvalues of the average projection matrix, and thus it is free
of penalty terms or other tuning parameters commonly used
by other model order estimation techniques. The proposed rule
appears to be particularly well suited to problems involving



high-dimensional data and low sample support, such as the
determination of the number of sources with a large array of
sensors [15]-[17]: the so-called source enumeration problem.
In this paper we generalize this result by showing that it may
also be applied to minimization of the mean-squared error
between subspaces and their average, even when the extrinsic
distance between two subspaces is replaced by a monotone
function of the distance. This makes the resulting order fitting
rule robust to outliers in the sequence of projections to be
averaged.

In multi-sensor signal processing, temporal snapshots are
typically used to estimate a second-order spatial covariance
matrix. The eigenvalues of this sample covariance matrix are
used for detection and localization, using methods that are
inspired variations on factor analysis. But the use of these
eigenvalues for source enumeration is fraught with difficulties,
as they scale with source powers and background noise levels,
and this fact conflicts with the fact that the dimension of
an array manifold is invariant to scale. So the fundamental
problem is to extract from a sample covariance matrix a scale
invariant subspace. In summary, our approach to find this sub-
space is this. We replace a large sensor array by an overlapping
sequence of subarrays, as inspired by [18], [19], and extract a
collection of subspaces from the measurements made in each
such subarray. These subspaces are then averaged, and from
this average the dimension of the array manifold is determined.
We propose a method for extracting subspaces based on a
bootstrap sampling for subspaces drawn from a distribution
determined by eigenvalues. This method is quite different
in philosophy from previously published methods, based on
asymptotic formulas for the distribution of the eigenvalues of
the sample covariance matrix.

The order fitting rule for subspace averaging (SA) was
first published in [14], and an unrefined application to source
enumeration was presented in [20]. In this paper, we extend
and refine these papers to provide a common framework
for SA and its application to source enumeration. The main
contributions of this paper may be summarized as follows:

e We consider continuous and discrete distributions on the
manifold of projection matrices as underlying distribu-
tions from which the measured collection of subspaces
is a random draw. From this standpoint, the eigenvalues
of the average projection matrix admit a probabilistic
interpretation that enables a better understanding of the
proposed order estimation rule.

e We propose a robust formulation of the problem to ac-
count for outliers within the set of measured subspaces.
The standard extrinsic mean distance is replaced by a
smooth concave function such as the [; norm or the
Huber loss function that limits the effect of subspaces
far away from the average. A majorization-minimization
(MM) algorithm [21] is then used to find the minimizer
of this robust distance measure, which, in turn, provides
a robust order fitting rule.

e The application of SA techniques to source enumeration
in [20] is enhanced by including a sampling mechanism
to generate random subspaces based on the eigenstruc-
ture of the sample covariance matrix. When exploited

jointly with the shift invariance property of uniform
linear arrays (ULAs), this random sampling scheme
enhances the performance of SA in high-resolution sce-
narios in comparison to the preliminary results presented
in [20]. Further, the method is proven to provide a
consistent estimate of the number of sources as the
number of samples or the signal-to-noise-ratio grow.

The structure of the paper is as follows. In Section II we
derive the order estimation rule for the average subspace using
an extrinsic distance measure. As reported in [12], [14], an
average of projection matrices, not itself a projection matrix, is
the key quantity summarizing all information needed to solve
this problem. We also present in this section a robust version
of the SA problem and solve it using MM algorithms. Sec. III
reviews uniform and non-uniform distributions on the Grass-
mannian, and proposes a new discrete distribution motivated by
interpretating the eigenvalues of the average projection matrix
as probabilities. The application of the SA technique to source
enumeration in large uniform linear arrays is discussed in detail
in Section IV. Section V evaluates the performance of the
order fitting rule through numerical simulations, paying special
attention to the application to source enumeration. Finally, the
main conclusions are summarized in Section VI.

Notation: In this paper we use (A) to denote a subspace
of the complex vector space C™ spanned by the unitary frame
A, and P5 = AAH denotes the orthogonal projection onto
(A). The superscripts ()7 and (-)¥ denote transpose and
Hermitian, respectively. The trace and Frobenius norm of a
matrix B will be denoted, respectively, as tr(B) and ||B||F.
diag(a) denotes a diagonal matrix whose diagonal is a, and
I,, denotes the identity matrix of size n. CA(0,1) denotes
a complex Gaussian distribution with zero mean and unit
variance, x ~ CN,,(0,R) denotes a complex Gaussian vector
in C™ with zero mean and covariance R. S(g,n) denotes
the complex Stiefel manifold of orthonormal g-frames in
C™, G(g,n) denotes the complex Grassman manifold of g-
dimensional linear subspaces of the n-dimensional complex
vector space C", and P(g,n) denotes the set of all projection
matrices of rank q.

II. ORDER ESTIMATION VIA SUBSPACE AVERAGING
A. Distances Between Subpaces

Let us consider two subspaces (V) € G(gy,n) and (U) €
G(qu,n). Let V € C"*% be a matrix whose columns form a
unitary basis for (V). Then VIV =1, and Py = VV#
is the idempotent orthogonal projection onto (V). Notice
that Py is a unique representation of (V), whereas V is
not unique, because if G is an arbitrary unitary gy X qv
matrix, then VG will be another representation of (V) with
orthonormal columns. In a similar way, we define U and Py
for the subspace (U).

To measure the distance between two subspaces we need
the concept of principal angles, which is introduced in the
following definition [22].

Definition 2.1: Let (V) and (U) be subspaces of C" whose
dimensionality satisfy dim ((V)) = gy > dim ((U)) = qu >



1. The principal angles 61,...,0,, € [0,7/2] between (V)
and (U) are defined recursively by

cos(f) = max max u’v =ulv;
ue(U) ve(V)

subject to [lu]| = |v]| =1,
uHu,L-:O’ i:l,,,,,k—l,
vilv, =0, i=1,...,k—1,

fork=1,2,...,qu.

Assume that U and V are unitary basis for the
two subspaces, then the singular values of UHV are
(cos(61),...,cos(fq,)) [23]. The principal angles induce sev-
eral distance metrics, from which the most widely used are the
geodesic or intrinsic distance [10], [24]

dgeo ((U), (V)2 =02,

and the extrinsic distance, which is given by the Frobenius
norm of the difference between the respective projection
matrices [12], [13],
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The second term in the right hand side of Eq. (1) measures
the chordal distance defined by the principal angles, whereas
the first term accounts for projection matrices of different
ranks.

There are arguments in favor of the extrinsic distance (1),
among them, its uniqueness and its computational simplicity
in contrast to the intrinsic distance that needs to compute the
singular values of VHU. Also, the extrinsic distance is related
to the squared error in resolving the standard basis for the
ambient space, {e;}"_;, onto the subspace (V) as opposed to
the subspace (U),

ZeiT(PU — Pv)H(PU — Pv)ei
i=1

=tr [(Py — Py)"(Py — Pv)]
= [Py — P2 = 2d((U), (V).

B. Order Selection Rule [14], [25]

Let us consider a collection of measured subspaces
{(V,,>}f:1 of C", each with respective dimension
dim((V,)) = ¢ < n. To simplify the notation, we
denote the orthogonal projection matrix onto the rth subspace
as P,.. Each subspace (V,) is a point on the Grassmann
manifold G(g,,n), and the collection of subspaces lives on a
disjoint union of Grasmannians. Without loss of generality,

the dimension of the union of all subspaces is assumed to be
the ambient space dimension n.

Using the extrinsic distance metric between subspaces, an
order estimation criterion for the central subspace that “best
approximates” the collection is

(s*,P:) = argmin

s€{0,1,...,n}

R
1 2
e S 2 ARG
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where P(s,n) denotes the set of all idempotent projection
matrices of rank s. For completeness, we also accept solutions
P = 0 with rank s = 0, meaning that there is no a central
“signal subspace” shared by the collection of input subspaces.

Expanding the cost function in (2) we obtain the equivalent
problem

1 _ —
min ~tr (P(I-2P)+P), 3)
s€{0,1,...,n} 2

P cP(s,n)

where P is an average of orthogonal projection matrices

1 R
P=— P, 4
R; : 4)

with compact eigendecomposition P = FKF¥ | where K =
diag(kl,...,kn) with 1 Z kl 2 kQ Z Z kn
Now, discarding constant terms and writing the projection
matrix as P = UUH, where U is a unitary n X § matrix,
problem (3) can be rewritten as
min tr (U(I-2P)U),
UeS(s,n)

where S(s,n) denotes the complex Stiefel manifold of or-
thonormal s-frames in C™. Hence, the optimal order s* is the
number of negative eigenvalues of the matrix

S=1-2P,

or, equivalently, the number of eigenvalues of P larger than
1/2, which is the order fitting rule proposed in [14]. The
proposed rule can be written alternatively as

S

s = argmin Z(l—ki)—l—iki.

s€{0,1,...,n} i=1 s+1

A similar rule was developed in [25] for the problem of
designing optimum time-frequency subspaces with a specified
time-frequency pass region.

Once the optimal order s* is known, a basis for the average
subspace can be obtained as the solution of the following
optimization problem
tr (UYFKF7U),

max

UeS(s*,n)
whose solution is given by any unitary matrix whose column
space is the same as the subspace spanned by the s* principal
eigenvectors of F

U* :(flaf27"'afs*) :FS*;



and P* = U*(U*). So the average subspace is constructed
by quantizing the eigenvalues of the average projection matrix
at 0 or 1.

C. Properties of the average projection matrix

The average of projection matrices in (4) is not a projection
matrix itself, and therefore is not idempotent. However, it has
the following properties:

1) It is symmetric and positive semidefinite.

2) Its eigenvalues are real and satisfy 0 < k; < 1.

1) is trivially proved by noticing that P is an average of sym-
metric and positive semidefinite projection matrices. To prove
2) let us take without loss of generality the ith eigenvalue-
eigenvector pair (k;, f;), then we have

R

— 1
ki = 1P = > TP,
r=1
(@) 1 & Hp?2 1 & 2
= EZfi PrfiZEZHPTfiH <1,
r=1 r=1

where (a) holds because all P, are idempotent, and the
inequality follows from the fact that each term ||P.,.f;||? is the
squared norm of the projection of a unit norm vector, f;, onto
the subspace (V,.) and therefore ||P,.f;||*> < 1 with equality
only if the eigenvector belongs to the subspace.

Assuming that V, = [v,1,...,Vyq.| is a unitary basis for
the rth subspace, the eigenvalues of the average projection
matrix can be further expressed as

ZZIIV £ill%,

lel

and hence they can be interpreted as the squared norm of the
average projection along the direction f;. It is important to
remark, however, that the eigenvalues of P are invariant to
a common change in the basis of all subspaces. That is, we
can apply an arbitrary change of basis V.. = V,.Q for r =
1,..., R with Q unitary, and the eigenvalues k; do not change.

D. Robust version

In some applications there is a need to account for outliers
within our collection of measured or extracted subspaces. To
this end, we discuss in this section a robust formulation of the
proposed order fitting rule based on majorization-minimization
(MM) algorithms [21].

The simplest robust formulation of Problem (2) is

R
. 1 )
s € {ror,lll,I.l..,n} E Z P (dr (P)) (5)
P cP(s,n) r=1
where
2 1 5
d; (P) = 5 [P = Pl

and p (-) is a smooth concave increasing function that saturates
so that outliers or subspaces far away from the average have
a limited effect. Examples of robust functions are [26]:

e /,-norm:
p(t)=t"? 6)

where 0 < p < 2 with the nonrobust ¢5-norm formula-
tion recovered for p = 2.
e Huber: for 7' > 0,

[ t/NT t<T,
pH(t){\/i t>T.

For T' = 0 we obtain the median estimator pg(t) = v/%.
o Log-loss:

@)

pLL(t):Gln(9+t),

where 6 > 1.
e Logistic:
(t) = —
PL) ==t
e Geman-McClure estimator [27], [28]: for 6 > 0,
t
t) = ——.
pou (t) = 57

The idea of the MM algorithm [21] is, at each iteration,
to find a majorizer of the objective function. Since the robust
function p(-) is a smooth concave function, we can easily
majorize at some point simply by linearizing:

p(t) < p(to) + ¢ (to) (t —to).

In the context of our problem, the problem at iteration &
(where a central subspace P(*) of dimension s(*) is available)
is

R
o 7 (4 (P0))
() (1 ()

or, removing unnecessary constant terms,

o 3 (6 (P)) )

Let us now define the normalized weights that define a
simplex

i o (d7 (P™))
@) = R (1 (pk)) Zw(k) =1
o P (d7 (PH))

With this definition we can obtain the next iterate P(*+1) ag
the solution to

oF) >0,

. —(k
s€e {Ic}.lll,r.l,.,n) Z |P P ”F (8)
P cP(s,n)

Expanding the cost function (8), we obtain

w

1 p— —
min St (P(I 9Py 4 P(k)) )



where we have used the fact that Zf’:l ot tr(P) = tr(P)

and ﬁff ) is the weighted average projection matrix given by
. R
Y = > aP,.
r=1

Writing the projection matrix in (9) as P = UU¥ and
discarding constant terms, the optimization problem can be
rewritten as

min  tr (UH (I- ﬁff))U) .
UesS(s,n)
Then, the optimal order at iteration k+1, s(**+1) is the number
of negative eigenvalues of the matrix
(k)

sk —1-2P 7. (10)

While the non-robust average projection matrix in (4)
equally weights all subspaces in the collection by uiﬁk) =1/R,
the robust version uses different weights at each iteration. It is

also clear that fff ) is symmetric with real eigenvalues bounded
above by one, like its non-robust version P = 3 P,./R. A

unitary basis for the central subspace at iteration k+1 is given
by the s(**1) largest eigenvectors of pr

w » Where recall that
s(*+1) is the number of non-negative eigenvalues of S(*) in
(10).

Notice that the objective function (5) is bounded below
and that the sequence of objective values at each iteration
is non-increasing. Then, the convergence of the sequence of
robust order estimates s(1), s(2), ... to a stationary point s*
is guaranteed. For a more detailed study of the convergence
of MM algorithms, the reader is referred to [21].

III. DISTRIBUTIONS ON THE MANIFOLD OF PROJECTION
MATRICES

In many problems it is useful to assume that the measured
subspaces {(VT>}f:1 are random samples drawn from an
underlying distribution. Uniform and non-uniform distributions
on the Grassmann manifold G(k,n) or, equivalently, on the
manifold of projection matrices of rank = k, P(k,n), have
been extensively discussed in [29]. For uniform distributions
the basic experiment is this: generate X as a random n X k
matrix with i.i.d CN(0,1) random variables. Perform a QR
decomposition of this random matrix as X = QR, then, QH
where H € U(k) is any unitary matrix independent of X,
is uniformly distributed on G(k,n), and QQ* is uniformly
distributed on P(k,n). Remember that points on G(k,n) are
equivalence classes of n x k matrices, where Q; ~ Qs if
Q1 = Q2H for some H € U(k).

If P is uniformly distributed on P(k, n), it is immediate to
prove that (see [29], pp. 29)

BP] = F1,,
n

so all eigenvalues of the mean projection matrix when the
subspaces are uniformly distributed are identical to k; = k/n,
i = 1,...,n, indicating no preference for any particular

direction. In this way, for uniformly distributed subspaces the
proposed order fitting rule will return 0 if ¥ < n/2, and n
otherwise, in both cases suggesting there is no central low-
dimensional subspace.

The matrix Langevin (or von Mises-Fisher) has been
suggested as a non-uniform distribution on the Stiefel and
Grassman manifolds [29]—-[31]. For real matrices, the matrix
Langevin, as defined by Downs in [32], has an exponential
distribution of the form £(X) oc exp {tr(BTX)}, where
B = UDV7 is a matrix that parameterizes the distribution
with U € S(k,n), V € U(k) and D a k x k diagonal matrix
with positive entries. Matrices U and V are interpreted as
orientations, while the diagonal elements of D are concentra-
tion parameters along the k directions determined by U and
V. The matrix Langevin £(X) is unimodal and the density is
maximized at UV, which is the central k-frame or subspace
of the distribution. Note that when B = 0 we recover the
uniform distribution. As suggested in [29], to generate samples
from £(X) we might use a rejection sampling mechanism
with the uniform as proposal density. This rejection sampling,
however, can be very inefficient for large n and k > 1. More
efficient sampling algorithms have been proposed in [33].

The uniform and the matrix Langevin are continuous dis-
tributions on the manifold of projection matrices of fixed
rank = k. To deal with subspaces or projection matrices that
do not live on the same manifold we would need distributions
defined over unions of Grassmannians, which, to the best
of our knowledge, have not been studied. Nevertheless, it
is possible to define the following discrete distribution that
will be useful for the application of the proposed subspace
averaging technique to array processing in Section IV.

Definition 3.1: Let U = [u; u,] € U(n) be an
arbitrary unitary basis of the ambient space, and let o =
(a1,...,ap) with 0 < a; < 1; the «; are ordered from
largest to smallest, but they need not sum to 1. We define a
discrete distribution D on the set of random projection matrices
P = VV (or, equivalently, the set of random subspaces (V),
or set of frames V) with parameter vector v and orientation
matrix U. The distribution of P will be denoted P ~ D(U, «)
or V~DU, a).

To shed some light on this distribution, let us explain
the experiment that determines D. Draw 1 includes u; with
probability «;, and excludes it with probability (1 — «1);
draw 2 includes uy with probability s, and excludes it with
probability (1—asz); continue in this way until draw n includes
u,, with probability «,, and excludes it with probability
(1 — ay). We may call the string i1, 43, . .., i,, the indicator
sequence for the draws; that is, i, = 1, if ui is drawn on
draw k, and i, = O otherwise. In this way Pascal’s triangle
shows that the probability of drawing the subspace (V) is
p((V)) = [[; i [I7(1 — ), where the index set I is the
set of indices k for which i; = 1 in the construction of V.
This is also the probability law on frames V and projections
P. For example, the probability of drawing an empty frame is
[T} (1— ), the probability of drawing the dimension-1 frame
wu is o [] .4i(1 —a;), and so on. It is clear from this pdf
on the 2™ frames that all probabilities lie between 0 and 1,



and that they sum to 1.

Let P, ~ D(U,a), r = 1,..., R, be a sequence of i.i.d.
draws from the distribution D, and let P = " P,./R be its
sample mean with eigenvalues (k1,...,k,). Then, we have
the following properties:

1) E[P,] = Udiag(a)U¥, that is, the mean is not

generally a projection.

2) Eltr(P)] =301, o

These properties follow directly from the definition of
D(U, ).

Remark 1: The «;’s control the concentrations or probabil-
ities in the directions determined by the unitary basis U. For
instance, if a; = 1 all random subspaces contain direction
u;, whereas if «; = 0 the angle between u; and all random
subspaces drawn from that distribution will be 7/2.

Example 1: Suppose U = [uy, ug, ug] is the standard basis
in R® and let o = (3/4,1/4,1/4). The discrete distribution
P ~ D(U, ) has an alphabet of 2 = 8 subspaces with the
following probabilities:

e Pr(P=0)=9/64

Pr (P = wyul!) = 27/64
Pr (P = upull) = 3/64
Pr (P = uzufl) = 3/64

Pr (P = wjull + wpull) =9/64

Pr (P = wyull + uzull) =9/64

Pr (P = woull + uzufl) = 1/64
e Pr(P=1I=3/64

The distribution is unimodal with mean

E[P] = Udiag(a)U".

and expected dimension E[tr(P)] = 5/4. Given R draws from
the distribution P ~ D(U, «), the eigenvalues of the sample
average projection P = Zil P,./R converge to k; — «; as
R grows, and the proposed order fitting rule will return s* = 1
as the dimension of the central subspace for this example. It
is easy to check that the probability of drawing a dimension-1
subspace for this example is 33/64.

IV. SUBSPACE AVERAGING FOR SOURCE ENUMERATION

In this section we apply the proposed order fitting rule for
subspace averaging to the problem of estimating the number
of signals received by a sensor array, which is referred to
as source enumeration. This is a classic and well-researched
problem in radar, sonar, and communications [34], [35], and
numerous criteria have been proposed over the last decades to
solve this problem, most of which are given by functions of
the eigenvalues of the sample covariance matrix [15], [36]-
[42]. These methods tend to underperform when the number
of antennas is large and the number of snapshots is relatively
small in comparison to the number of antennas, the so-called
small-sample regime [17], which is the situation of interest to
this paper.

For instance, [43] showed that the penalty term used by
the MDL criterion is effective in preventing overestimation of
the number of sources, but it causes a considerable increase

in the probability of underestimation when the number of
snapshots (in relation to the number of antennas) is low. Other
perfomance studies of classic information-theoretic criteria can
be found in [44], [45], where similar conclusions are drawn.

To overcome this limitation of classic information-theoretic
criteria, our method is to construct a collection of subspaces
based on the array geometry and a random sampling procedure
from a specifically designed distribution D, and then use the
order fitting rule for averages of projections to enumerate
the sources. This SA method is particularly effective when
the dimension of the input space is large (high-dimensional
data) and we have few snapshots, which is when the sample
eigenvalues are poorly estimated and all classic methods fail.

The conventional approach to order determination is to com-
pute likelihoods for a sequence of rank-k plus diagonal covari-
ance models to multivariate normal measurements [55], [37],
and then to penalize likelihoods for large ranks k. The resulting
formulas use sums and products of sub-dominant eigenvalues
of a sample covariance matrix in what amount to tests of
whiteness of the trailing sequence of eigenvalues. In these
methods, the scale of the rank-%k and diagonal components are
implicitly estimated in the estimation of the covariance model.
In our approach the eigenvalues of the sample covariance
matrix are used only to determine a distribution on a space
of subspaces that could have produced the sample covariance.
A bootstrap draws subspaces from this distribution, averages
them, and returns an order for the average. This is the estimated
number of sources. The procedure is scale-invariant.

A. Problem Statement

Let us consider K narrowband signals impinging on a large,
uniform, half-wavelength linear array with M antennas (cf.
Fig. 1). The received signal is

x[t] = [a(61) a(fk)] s[t] + e[n] = As[t] + e[t], (11)

where s[t] = [s1[t],...,sx[t]T is the vector of complex
gains si[t] for M x 1 complex array response a(f;) =

1 e % o d0(M _1)]T to the kth source whose direction-
of-arrival (DOA) 6y, is unknown. The signal and noise vectors
are modeled as s[t] ~ CN'k(0,S) and e[t] ~ CN p(0,0°1),
respectively. The dimensions are these: x € CM, A ¢
CMxK g ¢ CK and e € CM. From the signal model (11),
the theoretical covariance matrix is

R = E [x[t]x"[t]] = ASA" + o°L

We assume there are /N snapshots collected in the data ma-
trix matrix X = [x[1] x[N]]. The source enumeration
problem consists of estimating /K from X.

B. Subspace Generation

A key ingredient of the proposed technique is the method of
generating the collection of subspaces from which to estimate
the average projection matrix and its dimension. In some
applications, such as image or video processing, the collection
of subspaces might be given, but in array processing the signal
subspace is an array manifold, to be estimated from array



Source 1

Fig. 1: Source enumeration problem in large scale arrays:
estimating the number of sources K in a ULA with a high
number of antenna elements M.

snapshots. For instance, when a uniform linear array (ULA) is
used, we can exploit the shift-invariance property to estimate a
subspace from the data acquired by a subarray of the sensors.
The subspaces could also be estimated from subsets of L < N
snapshots randomly selected from the original dataset, which
would be appropriate for cyclostationary snapshots, or using
any other bootstrapping scheme.

For the SA method to be effective, it is important that the
subspaces to average overlap as much as possible with the true
signal subspace. In fact, as long as each extracted subspace
contains a large common portion of the signal subspace and
(more or less) independent portions of the noise subspace, then,
the averaging procedure enhances signal coordinates while
averaging out noise coordinates. As we will see, this translates
into a better performance for the proposed order estimation rule
compared to the state-of-the-art.

In the following, we describe a subspace generation pro-
cedure that has proven to be effective for this particular
application. It generates random subspaces by randomly sam-
pling from the distribution D(U, ), whose orientations U
and concentrations « are determined by the eigenvectors and
eigenvalues of the sample covariance matrix. Moreover, it
exploits the shift invariance property of ULAs. A preliminary
version of this method that only exploited the shift-invariance
property was presented in [20].

1) Shift invariance: When uniform linear arrays are used, a
property called shift invariance holds, which forms the basis
of the ESPRIT method [46], [47] and its many variants. Let
A be the L x K matrix with rows s,...,s+ L — 1 extracted
from the steering matrix A. This steering matrix for the sth
subarray is illustrated in Fig.2.

Then, from (11) it is readily verified that

A diag(e ™ . e %)= Ay, s=1,...,M —L+1,

which is the shift invariance property. In this way, A, and

A1 are related by a nonsingular rotation matrix,
Q = diag(e %, ... %K),

and therefore they span the same subspace. That is, (A;) =
(Asy1), with dim((A;)) = K < L. In ESPRIT, two sub-

M antennas

L elements
>

subarray 1
-

subarray 2

Fig. 2: L-dimensional subarrays extracted from a uniform
linear array with M > L elements.

arrays of dimension L = M — 1 are considered, and thus we
have A;Q = Ay, where A; and As select, respectively, the
first and the last M — 1 rows of A.

There is an interesting characterization of the shift invari-
ance property. Let x;[t] be an L x 1 vector containing the noise-

free observations acquired by sensors s, ...,s+ L —1 of x[t],
and let 8" denote a shift operator, so that S"x[t] = Xst.[t].
Then, in the noise-free model x;[t] = Ajss[t], this shift

invariance produces
S"x4[t] = STAs[t] = Agis[t] = AQs[t].

The source signal Q"s|t] is distributed as s[t] is distributed,
provided slt] is complex normal with diagonal covariance
matrix, making Q a measure-preserving transformation. So
shift on x,[t] is measure-preserving on s. This property leaves
second-order matrices invariant.

When noise is present, however, the shift-invariance prop-
erty does not hold for the main eigenvectors extracted from
the sample covariance matrix. The Optimal Subspace Estima-
tion (OSE) technique proposed by Vaccaro et al. obtains an
improved estimate of the signal subspace with the required
structure (up to the first order) [48]. The OSE has recently been
used with the subspace averaging of [14] to improve DOA
estimation [19], [49], [50]. Nevertheless, the OSE technique
requires the dimension of the signal subspace to be known in
advance and, therefore, does not apply directly to the source
enumeration problem.

From the L x 1 (L > K) sub-array snapshots x[t] we can
estimate an L x L sample covariance as

R, — 2 3 tx ¢
S*N;XSHXsH-

Note that each R, block corresponds to an L x L submatrix of
the full sample covariance R extracted along its diagonal, that
is, in Matlab notation Ry =R(s:s+ L —1,s:s+ L —1).

Due to the shift invariance property of uniform linear arrays
the noiseless signal subspaces of the theoretical R are identi-
cal. Since there are M sensors and we extract L-dimensional
spbarrays, there are S = MA— L + 1 different submatrices
Rg, s =1,...,5. For each Rg we compute its eigendecom-
position Ry = U,A, U, where A, = diag (A\s1,-.., A1),
)\s,l Z o Z )\S,L~



For each R, we can define a distribution D(Uj, o) from
which to draw random subspaces: P,k = 1,..., K. Ob-
viously a key point for the success of the SA method is to
determine a good distribution D(Uy, ats) and a good sampling
procedure to draw random subspaces. This is described in the
next subsection.

2) Random generation of subspaces: To describe the ran-
dom sampling procedure for subspace generation, let us take
for simplicity the full M x M sample covariance matrix R =
UAU?, where A = diag (A1,..., ), A1 > ... > g

Each random subspace (V) has dimension dim((V)) =
kmaz, Where kpq, < min(M, N) is an overestimate of the
maximum number of sources that we expect in our problem.
The subspace is iteratively constructed as follows:

1) Initialize (V) = ()

2) While rank(V) < k4. do

a) Generate a random draw (G) ~ D(U, ), ac-
cording to the sampling description in Definition
3.1

b) (V) =WV)U(G)

The orientation matrix U of the distribution D is given by
the eigenvectors of the sample covariance matrix. On the other
hand, the concentration parameters should be chosen such that
the signal subspace directions are selected more often than the
noise subspace directions, and, consequently, they should be
a function of the eigenvalues of the sample covariance Ag.
In this work we propose to use the following concentration
parameters for D(U, «)

AN
;= S AN’ (12)
i i
where
AAZ-:{ Y A E)

Here is a motivating example for this choice. Consider
the wide-sense stationary time series {z[n]} with covariance
rlk] = Elz[n]z*[n + k]] = sin(S7k)/(nk) for all k, where
0 < B < 1 determines the signal bandwidth. A snapshot
x = [z[0],...,z[M — 1]] has symmetric Toeplitz covariance
matrix R with entries 7[k] on its k-th diagonal. This covariance
matrix may be written

B
RzEt/ D s 0y 01" (0)

B 2

where ¢ = [1,e/7, ... e M=UJT and S(f) = 1. The
trace of this matrix is SM, so the sum of its eigenvalues is
this trace. The eigenvalue decomposition of the covariance R
is R = FKF7, where the columns of F are the discrete
prolate spheroidal wave functions, or Slepian sequences [51].
The first |3M | eigenvalues )\; are approximately 1, and the
trailing M — | BM | are approximately 0. Moreover, the matrix
FKF7T is approximately a rank |SM | projection onto the
subspace spanned by the first |SM | columns of the matrix
FKF7T'. An estimator of this rank is argmax; (\;11—\;), which
returns the integer part of SM. This suggests that the function

Algorithm 1: Generation of a Random Subspace.

Input: R = UgAU, kpao

Output: Unitary basis for a random subspace V
Initialization: U = Uy, A = diag(A), and V =0
while rank(V) < kg, do

/* Generate concentration

parameters « */
M = ||
a; = ﬁ i=1,..., M with A)\; given by (13)
/+ Sample from D(U, a) */
g=(9gi,-..,9m) with g; ~U(0,1)
I={i|gi<a}
G=U(,7)
/+ Append new subspace */
V=[V G]
/+ Eliminate selected directions

*/
U=U(,7)
A= XD

a; = \i11— A, after proper normalization, would be a suitable
function of the eigenvalues to use in a sequence of stochastic
draws of subspaces, as outlined previously.

With this choice for D(U, a), the probability of picking the
ith direction from U is proportional to A\; — \;11, thus placing
more probability on jumps of the eigenvalue profile. Notice
also that whenever \; = \;y; then «; = 0, which means
that u; will never be chosen in any random draw. We take
the convention that if A); = 0, Vi, then we do not apply
the normalization in Eq. (12) and hence the concentration
parameters are also all zero: a; = 0, Ve.

A summary of the proposed algorithm is shown in Algo-
rithm 1.

3) Subspace averaging (SA) criterion: For each subarray
sample covariance matrix we can generate 7’ random subspaces
according to the procedure described in the previous section.
Since we have S subarray matrices, we get a total of R = ST
subspaces. The SA approach simply finds the average projec-

tion matrix
B 1 ST
P=ond D Pu

s=1t=1

to which the order estimation method described in Sec. II
can be applied. Notice that the only parameters in the method
are the dimension of the subarrays, L, the dimension of the
extracted subspaces, k;,qz, and the number T of random
subspaces extracted from each subarray. For large-scale arrays
(M > 50), we have found that L = M — 5, ke = | M/5],
and 7" = 20 provide in general good performance for many
scenarios.

A summary of the proposed algorithm is shown in Algo-
rithm 2.

Regarding the computational complexity of the method, the
proposed SA technique requires (S+1)O(L?3) operations since
we need to perform S+ 1 EVDs of L x L matrices: S for the



Algorithm 2: Subspace Averaging (SA) Criterion.

Input: R, L, T and k:mag;
Output: Order estimate kg4
for s=1,...,5 do

Extract R, from R and obtain R, = U, %, UY

Generate 71" random subspaces from R using
Algorithm 1
Compute the projection matrices Py = Vsth

Compute P and its eigenvalues (k1,...,kr)

Estimate IACS 4 as the number of eigenvalues of P larger
than 1/2

subarray sample covariance matricesilis, s=1,...,5 and
one for the average projection matrix P. For large scale arrays
with L =~ M so that resolution is not significantly reduced,
the computational complexity of the SA method is roughly
S + 1 times higher than that of standard methodAs, which have
a complexity of O(M?3) due to the EVD of R. Thus, with
the aforementioned choice for L, the number of subarrays is
S =6.

C. Consistency of the SA method

In this section we show that the SA criterion equipped with
the proposed subspace generation procedure is consistent in
the classic asymptotic regime (fixed M, N — 00).

Theorem 1: Let R = ASAH + 0?1 be an M x M
theoretical covariance matrix with eigenvalues o1 > g9 >
2O > OK41 =" =0M, cqrresponding to an scenario
with K uncorrelated sources. Let R be the sample covariance
matrix formed by N snapshots and let us denote its eigenvalues
as A;, i =1,..., M. Then, if M > L > kpar > K, kga is a
consistent estimator of K as N — oo.

Proof: Let us take without loss of generality the case M =
L, that is, we only generate subspaces from the full sample
covariance matrix. In the classic fixed system-size M, large
sample-size asymptotic regime N — oo, the eigenvalues of
the sample covariance estimated from independent snapshots
converges to the theoretical ones \; — o4, ¢ = 1,..., M.
Then, in the first draw to construct each random subspace we
sample from D(U, ) where the orientation matrix U contains
the eigenvectors of R and the concentration parameters are

o, 0,...,0). (14)

In (14), the M — K trailing concentration values are zero
because they are constructed from (normalized) differences of
eigenvalues, whose M — K smallest values are identical in the
asymptotic regime: o041 = ... = 0.

Therefore, the first draw samples exclusively from the
signal directions. Since we sample until the dimension of the
subspace is Kz, Or until all concentration parameters are
zero, then, as long as k4, > K, all random subspaces will
be the true signal subspace. Consequently, for any number of
generated subspaces the average projection matrix has exactly
K eigenvalues equal to 1 and M — K eigenvalues equal to

a=(a,..

zero, and the SA criterion returns l%m,w = K, thus proving
the result. ]

Notice that this consistency results also holds as the noise
variance 02 — 0, unlike the minimum description length
(MDL) criterion which, as shown in [52], is inconsistent with
increasing signal-to-noise ratio.

V. SIMULATION RESULTS

In this section we evaluate the performance of the proposed
order fitting rule by means of numerical examples. Firstly,
we study the performance of the order fitting rule, as well
as its robust version. Secondly, we consider the application
of subspace averaging techniques as a method of enumerating
sources in large linear arrays, under conditions of low sample
support.

A. Performance of the order fitting rule

Experiment 1: In the first example, we generate a collection
of R subspaces, (V) € G(k,n), r = 1,..., R, as follows:
we first generate

G, =[Vo | Opxnoi)] +0Zy, r=1,....R

where Vo € C"** is a matrix whose columns form an
orthonormal basis for a central subspace (Vy), Onx(n—k) 18
an n X (n — k) zero matrix, and Z, € C"*™ is a matrix
whose entries are independent and identically distributed com-
plex Gaussian random variables with zero mean and variance
=1 /n. The value of o determines the signal-to-noise-ratio,
which determines the spread of the subspaces around its mean
and is defined as SNR = 101log,, (-£5).

An orthogonal basis for the rth subspace, V,, is then
constructed from the first k orthonormal vectors of the QR
decomposition of G,.. For this example all subspaces in the
collection have exactly the same dimension.

Fig. 3 shows the estimated order as a function of the
SNR for different values of (k,n) and a total number of
R = 200 subspaces. The curves represent averaged results of
500 independent simulations. As we observe, the estimated
order coincides with the true one as the SNR grows, thus
showing the consistency of the method with increasing SNR.
Also, there is phase-transition behavior between s* = 0 (no
central subspace) and the correct order s* = k. Similar
phase-transition phenomena have been reported for the rank
estimation problem of a sample covariance matrix in the
asymptotic regime [53]. Based on random matrix arguments,
[53] provides a threshold, which depends on the SNR and
the ratio of sensors to snapshots, below which the sample
eigenvalues are unrelated to the true eigenvalues and hence
any order estimation rule based on sample eigenvalues provides
inconsistent results. The results of Fig. 3 seem to suggest that
a similar concentration-of-measure phenomenon happens for
the sample eigenvalues of an average projection matrix. This
phase transition apparently depends also on the SNR as well
as on the ratio k/n.

Experiment 2: In the second experiment we evaluate the
robust order fitting rule proposed in II-D. To this end, we create
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Fig. 3: Estimated order as a function of the SNR for different
values of (k,n). In all examples the number of measured
subspaces is R = 200.

a collection of subspaces contaminated by outliers as follows:
we first generate
G, = [VO | 0n><(n—k)] +Z,, r=1,...,R

where now the elements of Z, are drawn from a Gaussian
mixture Z,(i,5) ~ (1 — €)CN(0,0%2/n) + eCN(0,03/n),
where 03 > o%. In words, with probability (1 — ¢) the central
subspace is additively perturbed by a random matrix whose
entries are i.i.d. zero-mean Gaussians random variables with
variance o?/n, whereas with probability ¢ the entries of the
noise matrix are drawn from a Gaussian distribution with
variance 03 /n > o0?/n. Again, an orthogonal basis for the
rth subspace, V., is constructed from the first & orthonormal
vectors of the QR decomposition of G,. In this way, we
emulate a Gaussian mixture model for this problem. For low
values of o, with probability 1 — e the subspaces are well
clustered around V. On the other hand, with probability € the
subspaces are generated with a much higher variance 03 > o3
and hence they can be interpreted as outliers.

The signal-to-noise-ratio for the normal data (inliers) and

the outliers is defined as SNR; = 10log; ( 25 ) for i = 1,2.

7'7‘0'1
For this example, we estimate the order of the central subspace

using the extrinsic mean squared error distance, and the robust
versions using the /; norm (6) and the Huber loss function with
T = 0.5 (7). In all simulations, the MM algorithm converged in
less than 5 iterations. We consider a set of R = 100 subspaces
of dimension £ = 3 in an ambient space of dimension n =
20. The proportion of outliers is € = 0.5, and its signal-to-
noise ratio is SNRy = —20 dB. Fig. 4 shows the probability
of correct order estimation as the signal-to-noise-ratio for the
inliers, SNR{, varies, where increased robustness of both the
{1 and Huber cost functions are evident.
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== [; norm
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Fig. 4: Probability of correct order detection for robust and
non-robust methods (M = 100, k = 3, n = 40, SNRy, = —20
dB and ¢ = 0.5).

B. Application to source enumeration

We consider a scenario with K narrowband incoherent unit-
power signals and DOAs separated Ay impinging on a uniform
linear array with M antennas and half-wavelength element
separation (cf. Fig. 1). The number of snapshots is N. The
proposed SA method uses subarrays of size L = M — 5, so
the total number of subarrays is S = 6. From the sample
covariance matrix of each subarray we generate T' = 20
random subspaces of dimension k., = | M/5], which gives
us a total of 2 = 120 subspaces on the Grassmann manifold
G(kmaz, L) to compute the average projection matrix P. For
the examples in this section, we define the signal-to-noise-ratio
as SNR = 10log;,(1/0?), which is the input or per-sample
SNR. The SNR at the output of the array is 20log,,(M) dBs
higher.

Some representative methods for source enumeration with
high-dimensional data and few snaphots have been selected
for comparison. They exploit random matrix results and are
specifically designed to operate in this regime. Further, all
of them are functions of the eigqnvalues Al > 0 > Ay
of the sample covariance matrix R. We now present a brief
description of the methods under comparison.

e LS-MDL criterion in [54]: The standard MDL method

proposed by Wax and Kailath in [37], based on a
fundamental result of Anderson [55], is

i k
kypr = argmin (M — k)N log (a())
0<k<M-—1 g(k)
1
+5k(2M — k)log N, (15)
where a(k) and g(k) are the arithmetic and the geomet-

ric mean, respectively, of the M —k& smallest eigenvalues
of R. When the number of snapshots is smaller than the



number of sensors or antennas (N < M), the sample
covariance becomes rank-deficient and (15) can not be

applied directly.
The LS-MDL method proposed by Huang and So in [54]
replaces the noise eigenvalues \; in the MDL criterion

by a linear shrinkage (LS), calculated as
P = BMa(k) + (1 — RN, i=k+1,..., M,

where 3F) = min(1, a(®)), with

>N+ (M - k)a(k)’

i=k+1
M
>N = (M - k)a(k)?

(N+1) ( >
i=k+1

NE criterion in [17]: The method proposed by Nadaku-
diti and Edelman in [17], which we refer to as the NE

criterion, is given by

k)

al

. (1 Ntk)Q
kyg = argmin { — | — +2(k+1),
e ogkiMq {2 ( M ( )
where
M 2
A M
tr = [ Zz_k+1 LA (1 + N)] M.

a(k)2(M — k)

BIC method for large-scale arrays in [16]: The variant of
the Bayesian Information Criterion (BIC) [39] for large-

scale arrays proposed in [16] is

kpre = argmin 2(M—Fk)N log (a(kj)>+P(k7M7 N),
0<k<M-—1 g(k)
where
1 \i
P(k,M,N) = Mk <1og(2N) - ;log (a(k)>> .

Experiment 3: In this example we consider an array with
M = 100 antennas receiving K = 3 sources separated Ag =
10°, and N = 60 snapshots, thus yielding a rank-deficient
sample covariance matrix. The Rayleigh limit for this scenario
is 2m/M =~ 3.6°, so in this example the sources are well
separated.

Fig. 5 shows the probability of correct detection vs. the
signal-to-noise-ratio (SNR) for all methods under comparison.
Increasing the number of snapshots to NV = 150 and keeping
fixed the rest of the parameters, we obtain the results shown
in Fig. 6. For this scenario, where source separations are
roughly 3 times the Rayleigh limit, the SA method outperforms

competing methods.

Experiment 4: To analyze the impact of the separation
between sources, we consider again a scenario with M = 100
antennas, and K = 3 sources but now separated at angles of
Ay = 2°, which is within the Rayleigh limit of approximately

3.6°. The results for N = 150 and N = 60 snapshots are
shown in Figs. 7 and 8, respectively. In comparison to the
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Fig. 5: Probability of correct detection vs. SNR for all methods.
In this experiment, there are K = 3 sources separated Ay =
10°, the number of antennas is M = 100, the number of
snapshots is N =60 and L = [M — 5].

1
=)
2
2 08f
[«
<
S 06F
=
S
(-
S 04
2z == SA
3 F - LS-MDL ||
E 0.2 d -e- NE
& & =4 BIC
~ | I I
o 8§ —16 -14 -12 -10
SNR (dB)

Fig. 6: Probability of correct detection vs. SNR for all methods.
In this experiment, there are K = 3 sources separated Ay =
10°, the number of antennas is M = 100, the number of
snapshots is N = 150 and L = | M — 5].

previous examples with sources separated Ay = 10°, for
closely separated sources (below, or close to, the Rayleigh
limit), there is a requirement for higher SNRs and/or larger
sample support for the methods to perform satisfactorily.
Again, the SA method provides the best performance. Also,
the LS-MDL method seems to be more robust than NE and
BIC for very low sample support scenarios (/N = 60).
Experiment 5: In this experiment we compare the perfor-
mance for an increasing number of snapshots when the number
of antennas is fixed to M = 100 antennas, the signal-to-noise-
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Fig. 7: Probability of correct detection vs. SNR for all methods.
In this experiment, there are K = 3 sources separated
Ay = 2°, the number of antennas is M = 100, the number of
snapshots is N = 150 and L = | M — 5].
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Fig. 8: Probability of correct detection vs. SNR for all methods.
In this experiment, there are K = 3 sources separated
Ay = 2°, the number of antennas is M = 100, the number of
snapshots is N =60 and L = |[M — 5].

ratio is SNR = —16 dB, and there are K = 3 uncorrelated
sources separated Ay = 10°. As Fig. 9 shows, the SA method
provides very competitive results with only a few snapshots,
while the other methods require a much higher number of
snapshots to consistently estimate the right number of sources.

Experiment 6: In the last experiment we consider an array
with M = 120 antennas, the signal-to-noise-ratio is SNR =
—16 dB, and there are K = 6 uncorrelated sources now with
separation of Ay = 12°. As Fig. 10 shows, the SA method
starts performing well with very few snapshots.
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Fig. 9: Probability of correct detection vs. number of snapshots
for all methods. In this experiment, there are K = 3 sources

separated Ay = 10°, the number of antennas is M = 100,
SNR=-16dBand L = | M —5].
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Fig. 10: Probability of correct detection vs. number of snap-
shots for all methods. In this experiment, there are K = 6
sources separated Ay = 12°, the number of antennas is
M =120, SNR=-16dB and L = |[M —5].

Discussion: It may be said that the method NE uses asymp-
totic results, based on large random matrix theory, to derive
an order fitting rule. The rule is then applied to randomly
generated eigenvalues computed from finite samples of finite
matrices, as if these eigenvalues behaved as the eigenvalues
for a large random matrix. The methods LS-MDL (based on
MDL), and BIC use geometric and arithmetic means of sub-
dominant eigenvalues, derived from likelihood formulas, to
determine the likelihood of a factor model of a fixed order.



In fact, in the computation of likelihood, it is the likelihood
of a signal covariance matrix FAFH, of order k, plus a
diagonal noise covariance o1 of unknown variance o that
is computed. So, in a very real sense, all these methods
are based on the likelihood of a full covariance model for
multivariate normal data, and likelihoods of different models
are rank- ordered after penalties for large order are applied.
This rank ordering depends critically on the scales of the
components FAF and o2 that are identified in the likelihood
computation. The method SA, treats eigenvalues computed
from finite samples of finite matrices as variables that only
indicate which model subspace could have produced these
eigenvalues as the eigenvalues of a corresponding covariance
matrix, consisting of a rank k& component. Importantly, all
eigenvalues are used in a bootstrap, and not only the sub-
dominant eigenvalues. Perhaps more importantly, scale is re-
moved from consideration. That is, the methods NE, LS-MDL,
BIC account for scale in the fitting of a covariance model to the
data, whereas the method of SA is entirely scale-invariant, as it
computes scale-invariant probabilities from the eigenvalues and
then produces draws of randomly-generated, scale-invariant,
subspaces. Subspace modeling seems better matched to the
problem of order determination for an array manifold than
does covariance modeling. The experiments in this section
indicate that this normalization with respect to scale is useful
for estimating model order in experiments where the scales of
the signal covariance and the noise covariance are unknown,
and the SNR and/or sample support are small.

VI. CONCLUSIONS

In this paper we have studied the problem of source
enumeration from measurements in a uniform linear array.
The approach is to extract a subspace from each of several
subarrays, and then average these subspaces for a subspace
whose dimension is the estimated number of far-field sources.
A key element of the method is the automatic order-fitting
rule for extracting the dimension of the average subspace
that minimizes the mean-squared error between the average
and each individual subspace. The net of this procedure is
that eigenvalues of a sample covariance matrix determine
a distribution on subspaces that could have produced the
measured covariance matrix. This procedure normalizes scale
by replacing scale-dependent covariance models by scale-
invariant subspace models. The method requires no penalty
terms for controlling the estimated order.

Simulations indicate performance that is superior to other
published methods, over a range of signal-to-noise ratios,
sample supports, and source separations. The results suggest
that the problem of source enumeration may be viewed as
a problem of identifying an approximating subspace, and its
dimension, from a set of subspaces estimated from measure-
ments. This point of view stands in contrast to methods that
compute likelihood for covariance models, where scale is re-
tained, and then penalize these likelihoods for large dimension.
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