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ABSTRACT

Data-intensive applications in diverse domains, including video
streaming, gaming, and health monitoring, increasingly require that
mobile devices directly share data with each other. However, devel-
oping distributed data sharing functionality introduces low-level,
brittle, and hard-to-maintain code into the mobile codebase. To
reconcile the goals of programming convenience and performance
efficiency, we present a novel middleware framework that enhances
the Android platform’s component model to support seamless and
efficient inter-device data sharing. Our framework provides a fa-
miliar programming interface that extends the ubiquitous Android
Inter-Component Communication (ICC), thus lowering the learning
curve. Unlike middleware platforms based on the RPC paradigm,
our programming abstractions require that mobile application de-
velopers think through and express explicitly data transmission
patterns, thus treating latency as a first-class design concern. Our
performance evaluation shows that using our framework incurs
little performance overhead, comparable to that of custom-built
implementations. By providing reusable programming abstractions
that preserve component encapsulation, our framework enables
Android devices to efficiently share data at the component level, pro-
viding powerful building blocks for the development of emerging
distributed mobile applications.
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1 INTRODUCTION

The Android platform is inherently component-based, with mo-
bile apps comprising sets of interacting components. Each appli-
cation component encapsulates a distinct functionality that can
be accessed by external clients via a simple interface. However,
this component-based encapsulation breaks when devices need to
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share data with each other. Implementing data-sharing function-
ality requires application developers to write low-level network
communication code that directly manipulates the shared data. The
resulting communication code is not reusable and hard to maintain.

Mobile, IoT, and wearable devices generate massive amounts of
data, which needs to be transferred to other mobile devices. For
example, a health monitoring app, running on a smartwatch, is pe-
riodically reading its wearer’s vital signs, which are then displayed
on an app, running on the wearer’s smartphone or tablet. The vital
signs information can be transmitted either directly, peer-to-peer
or via a cloud-based server. However, the resulting information
flow is device-to-device, a common pattern for a growing number
of distributed mobile applications.

In this paper, we put forward a middleware framework that pre-
serves the encapsulation of the Android component model when
sharing data across devices. We evolve the ubiquitous Android
Inter-Component Communication (ICC) into Remote ICC (RICCi),
with the RICCi API mirroring that of ICC and also providing a
declarative interface for specifying how to transfer component data
(i-e., Intent objects) across the network. RICCi enables mobile ap-
plication developers to use components, hosted on remote devices,
through an API that resembles as close as possible that for using
components hosted on the same device. Unlike RPC-based middle-
ware platforms (e.g., CORBA [37], gRPC [13], Java RMI [15], etc.),
the RICCi programming model is not procedure-oriented but is
data-centric. That is, rather than modeling distributed communi-
cation as a procedure call, RICCi introduces the concept of remote
component data, which is transferred across devices in accordance
with a given data exchange pattern. In that way, RICCi bears similar-
ity to the RESTful architecture [8], albeit with strong encapsulation
and fine-grained control over how the data is transferred from the
source to the destination.

RICCi requires that latency be treated as a first-class design
concept. The RICCi API includes a declarative interface for spec-
ifying how and even whether remote component data should be
transferred across the network; a component’s data can be copied,
streamed, or remain remote. This way, RICCi makes it impossible
for the developer to “paper over the network”[16], disregarding the
differences in latency between the communication within the same
device and those across different devices over the network.

In addition to reusability and encapsulation, the reference imple-
mentation of RICCi provides all the necessary low-level networking
support and can route the distributed communication either directly,
peer-to-peer or via a broker. The role of a broker can be played by
either an edge server, connected to devices via a local area network,
or a cloud service, connected through a WAN. In addition, RICCi is
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fully portable, as it works with any standard Android installation,
without requiring any changes to the standard Android platform.

As an evaluation, we implemented two versions of distributed
benchmark applications: one using our reference implementation
of RICCi, and the other one using a custom-coded implementation
based on an existing RPC middleware platform. Based on our eval-
uation, RICCi is comparable in terms of the resulting performance
efficiency and energy consumption, while requiring fewer lines of
code of lower complexity. Despite our reference implementation
being Android-specific, the insights gained from this work can be
applied to other mobile platforms, enabling distributed devices to
efficiently interact with each other at the component level.

The contributions of this paper are as follows:

(1) We describe the design and implementation of RICCi — a
novel middleware framework for intuitive and efficient shar-
ing of component data across Android devices; unlike exist-
ing RPC-based middleware platforms, RICCi is structured
around the concept of remote component data.

(2) We empirically evaluate the RICCi programming model in
terms of performance and expressiveness.

(3) We present guidelines for application developers on how
to use RICCi effectively in the development of emerging
distributed mobile applications.

The rest of this paper is structured as follows. In Section 2, we
present three motivating use cases for our solution; in Section 3, we
present the technical background required to understand our contri-
butions; in Section 4, we present the design of RICCi programming
interface, its architecture, middleware and broker systems. In Sec-
tion 5, we explain the implementation insights of our solution. In
Section 6, we explain how RICCi streamlines the implementation of
the motivation scenarios. In Section 7, we evaluate the performance
and software engineering characteristics of RICCi. In Section 8, we
discuss the applicability of our solution. In Section 9, we discuss
the related state the art. Finally, in Section 10, we outline future
work directions and present concluding remarks.

2 DISTRIBUTED DATA SHARING SCENARIOS

In this section, we present three examples of mobile distributed
applications to demonstrate the need for a middleware platform
that can streamline their implementation.

2.1 Sharing Documents Across Mobile Devices

Figure 1: Copying files from smartphone to tablet

Mobile applications are often used in environments with lim-
ited network connectivity. Business professionals on the move
often find themselves in locations, in which they cannot connect
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to cloud-based services for availability, bandwidth, or security rea-
sons. Users can take notes on one device but edit them on another
device that runs a proprietary document editing application (e.g.,
MS Word). Consider having to develop a document management
application that synchronizes documents across multiple mobile de-
vices (Figure 1). In the presence of a reliable network connection, a
cloud-based solution can satisfy the requirements. However, in the
absence of the standard network infrastructure, devices should be
able to communicate with each other directly or possibly brokered
by a LAN-connected edge server. Mobile application developers
would like to be able to design and implement such applications
without having to write special-purpose logic that addresses the
aforementioned dissimilar network conditions. In addition, since
Android uses components to access disk files, developers are likely
to find it advantageous to retain the component-based representa-
tion for the documents when transferring them across the network.

2.2 Reading Input from IoT Devices

Private residences routinely feature several IoT devices installed
in different locations. These sensors monitor temperature, noise,
humidity, as well as provide video feeds and check for package
deliveries. A house resident can use a mobile device to receive
periodic readings from these IoT devices.

Figure 2: Streaming video data from IoT cameras to phone

If the Internet bandwidth is plentiful and readily available, a
cloud-based service can be used to mediate the interaction (Fig-
ure 2). However, if the bandwidth is limited or expensive, devel-
opers should be able to express that the application is to use an
edge server, connected via a local network, or that the devices are
to communicate with each other directly peer-to-peer. Despite the
complexity of having to support multiple network environments,
developers may still prefer to follow a component-based design
for such applications, with both the media data and its presenta-
tion logic represented as separate components. In other words, the
application’s business logic should not be polluted with low-level
system functionality that selects the appropriate communication
mechanism based on the network conditions in place. That is, the
logic required to select the most suitable distributed communication
pattern should be separate from the application’s business logic.

2.3 Reading Properties of Temporal Data

In complex industrial environments, mobile devices are often used
to monitor different complex processes and aggregate readings from
various sensors. Due to the data accumulating rapidly and being of
relevance only temporarily, it may be disadvantageous to transfer
this temporal data to remote servers for storage, thus deeming the
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Figure 3: Gauging the production process by remotely ac-
cessing properties of immovable data

data unmovable. However, various interested parties within the
company may still want to query the accumulated data for some
of its real-time properties, and they want to do so remotely from
their mobile devices. For example, an employee can be carrying a
tablet that receives input from the sensors installed throughout a
manufacturing floor (Figure 3). A factory manager may want to in-
quire about some real-time aspect of the production process, while
at a meeting in a different office. Notice, that the data is intended
to be available to multiple users, as the mobile device collecting
sensory data is not for personal use. The employee carrying the
device around the manufacturing floor assumes that the collected
sensory data from the floor will be accessible to the management
at any time. To that end, consider having to develop an app capable
of querying the unmovable data on the employee’s tablet without
having to transfer the data itself, with the manager’s mobile de-
vice providing a viewing interface. Furthermore, developers would
prefer to follow a component-based design, with the immovable
data and presentation logic implemented as separate components,
communicating with each other over the local network.

3 BACKGROUND

In this section, we introduce the technical background required to
understand our conceptual contributions. The reader knowledge-
able with key Android APIs and distributed programming concepts
can safely skip this section.

3.1 Android Components

Each installed application in Android (i.e., “.apk file) typically runs
in a separate process and can be composed of Activities, Services,
Content Providers, and Broadcast Receivers. These four components
communicate through messages called Intents, which are routed by
the Android runtime. Activities are graphical components that pro-
vide a user interface to the client. The main Activity is instantiated
upon the user launching an application. Services run in the back-
ground to execute long-running tasks. Content Providers manage
access to persistent data. Broadcast Receivers receive and react to
event notifications.

3.2 Inter-Component Communication (ICC)

Android applications are structured as a collection of components,
each of which represents a reusable unit of functionality. An appli-
cation can also use components of other applications, both within
the same process or across processes, as long as the permission
scheme in place allows it. Loosely coupled components interact
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with each other via ICC messages, represented as reusable Intent!
objects [21, 26]. When interacting via ICC, Android components
can operate both within the same application and across different
ones. To render a component accessible to other applications, a
developer sets its exported attribute to true in the manifest file?.

3.3 Remote Method Invocation

Remote Method Invocation (RMI) provides remote procedure call
(RPC [25]) functionality to Java applications. It enables any Java
object on one JVM to invoke methods of an object running on
another JVM [39]. The RMI abstractions render local and remote in-
vocations almost identical to each other. The only difference is that
remote methods must be declared as throwing RemoteException,
thus requiring that the developer provide logic for handling partial
failures, which are omnipresent in distributed computing.

4 DESIGN OVERVIEW

This section provides an overview of RICCi and discusses how it
enhances ICC for inter-device component data sharing. In addition,
this section also explains how RICCi works at runtime.

Our design requirements are two-fold. First, we aim at provid-
ing an inter-device programming abstraction that can be quickly
mastered and put into practice by developers familiar with the An-
droid abstractions for component interaction on the same device.
Second, we want to ensure that the new abstraction sufficiently
accommodates for the differences between the same-device and
device-to-device computing environments, with a particular em-
phasis on recognizing the presence of latency, which is known to
increase by orders of magnitude when switching from local to dis-
tributed computing environments. This recognition is essential to
ensure that the resulting distributed mobile application maintains
the required quality of service.

By designing RICCi, we want to enable Android developers
to use the abstraction to build efficient distributed applications,
while reasoning at the component level. Without properly designed
programming abstractions, typical components sharing scenarios,
such as the aforementioned, would require developers to write low-
level code for each piece of the distributed functionality (e.g., net-
work data exchange patterns, data marshaling, handling faults, etc.).
Even though the actual exchanged data is naturally represented as
Android components, the attendant encapsulation benefits would
quickly disappear if these components’ data is transferred across the
network without proper abstractions. In contrast, RICCi enables
developers to continue reasoning at the component level when
implementing inter-device interactions.

4.1 General Design

RICCi evolves the built-in Android ICC programming paradigm,
whose overriding design principle is to enable developers to in-
tegrate ready-made components into their applications, thereby
reducing the programming effort and streamlining the develop-
ment process. Hence, our design objective is to retain the software
engineering benefits afforded by ICC, but also to extend them to
environments that comprise multiple Android devices. In other

!https://developer.android.com/reference/android/content/Intent html
Zhttp://developer.android.com/guide/topics/manifest/manifest-intro.html
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words, we would like to enable Android developers to leverage
their familiarity with ICC to easily implement distributed applica-
tions capable of accessing components hosted by other Android
devices.

Figures 4 and 5 show two code snippets, in which an application
requests a document stored by an Android device. Figure 4 shows
the code that uses the built-in ICC to request a document stored on
the same device. Meanwhile, Figure 5 shows an equivalent RICCi
implementation that requests a document stored on another device.
As one can observe these code snippets are remarkably similar.
In fact, the only difference is that the RICCi version uses type-
compatible RemoteIntent objects (line 3 of Figure 5) instead of
Intent objects (line 3 of Figure 4). The RemoteIntent’s constructor
take an additional parameter, Transfer.COPY, thus declaratively
specifying the by-copy semantics for the document component’s
data. We have elided the required handling of remote exceptions
that the distributed runtime would raise in response to detecting
various failures.

1 public void getDocument() {

2 Intent intent = new Intent (

3 Action .OPEN_DOCUMENT ) ;

4 intent.addCategory (CATEGORY_OPENABLE ) ;
5 intent.setType("text/plain");
6 startActivityForResult (intent, code);

Figure 4: Accessing document information with ICC

1 public void getDocument () {

2 Remotelntent intent = new Remotelntent (
3 Action .OPEN_DOCUMENT, Transfer.COPY);

4 intent.addCategory (CATEGORY_OPENABLE ) ;
5 intent.setType ("text/plain");

6 startActivity (intent);

Figure 5: Accessing document information using RICCi

Of course, the original ICC mechanism cannot be reused as is in
a distributed setting. As mentioned above, distributed applications
typically experience higher latencies than centralized applications.
To accommodate the increased latency, our design requires that
the developer specify how the component data is to be transferred
across the network. Specifically, depending on the properties of
component data, it can be either copied, streamed, or retained in
place to be accessed remotely. Intent objects, encapsulating small
data volumes, can be copied across the network efficiently; Intents
representing media files can be streamed to be played on remote
devices; while Intents with platform-specific dependencies are
“anchored” to their devices, accessed by means of remote callbacks
from the accessing devices. The RICCi API includes remote excep-
tions that reflect various partial failure conditions, likely to occur
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in different deployment environments. The developer using RICCi
will have to handle these failures in an application-specific manner.

Naturally, when information is transferred across the network,
the issue of security comes to the fray, and the developer must make
appropriate provisions. Because RICCi enables component-level
distributed programming, it promotes the encapsulation principle.
Encapsulated functionality is easier to systematically enhance with
additional properties than scattered functionality. In the RICCi
architecture, it is known exactly when distributed interactions com-
mence and end, and in which patterns the data is exchanged. This
foreknowledge simplifies the provisioning of various security en-
hancements, such as adding encryption and following secure net-
work transfer protocols.

| Android Device 1 Android Device 1

1
RICCi
Remotelntent 1

I icc !
Intent

|
Component Component . 1 Component

Figure 6: ICC vs. RICCi

Figure 6 shows a system diagram demonstrating the differences
between ICC and RICCi.

4.2 System Architecture

Figure 7 shows an overview of a distributed mobile application
developed using RICCi. In this application, the Source Device is
the device that is making a request to access a component on an-
other device. To that end, the Source Device declares and sends a
RemoteIntent object. The Target Device is the device that receives
and handles the request to access the component in question. The
Broker Server is responsible for handling the connection between
Source Device and Target Device. In addition, depending on the Bro-
ker Server’s location (LAN or WAN), the broker is also responsible
for relaying all the transmission between the connected Source
and Target devices. We provide additional details about the Bro-
ker Server below. When devices are to communicate peer-to-peer,
RICCi assumes that the devices have been properly configured for
such interactions. Under these scenarios, the RICCi runtime handles
all requests and responses without the aid of a broker.

Device LAN ® LAN Target
@ Device
Source
Device
WAN @ WAN

Figure 7: RICCi Architecture
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RICCi Dataflow. When sharing component data across devices
using RICCi, the process comprises three main phases: 1) The Source
device creates a RemoteIntent (with the desired target informa-
tion and data exchange patterns) and sends it to the Target device
through a network. 2) The Target device receives the RemoteIntent,
executes its defined action, and returns the results, following the
specified data exchange pattern to the Source device. 3) The Source
device receives the results, in a fashion prescribed by the specified
exchange pattern.

4.3 System Architecture Components

RICCi runtime includes both the functionality executing on each
of the participating devices as well as the distributed logic required
for interacting with broker servers.

Device components: RICCi runtime is responsible for processing
the component data sharing requests within a device. The runtime
is also responsible for setting up a connection to Broker servers,
which route the requests between the devices. We provide additional
details on how RICCi connects to broker servers in Section 5. RICCi
activities in both Source and Target devices comprise two threads
responsible for managing incoming requests: a Messenger Thread
and a Handler Thread. The Messenger Thread interacts with a
transmission channel by sending and receiving data. The incoming
data is transmitted to the Handler Thread. The Handler Thread is
responsible for processing incoming requests and generating the
appropriate responses, which are then retransmitted to the intended
device by the Messenger Thread.

The Broker Server: The Broker server is responsible for delivering
component data to the intended destination. Broker servers are
divided into two categories: edge (LAN) and WAN brokers. A broker
server is responsible for keeping track of the connected devices,
resources and the component data that these devices have available
for sharing. A broker server maintains a list of devices currently
connected, and it analyzes the transferred messages, specifically
the Bundle objects of the RemoteIntent, in order to determine
their destination and data exchange patterns. RICCi runtime uses a
priority queue, explained in Section 5, to determine to which broker
a given device should connect at any given time. Broker servers
connected via local networks are responsible for pairing up devices
and setting a peer-to-peer connection between the paired devices.
Each pair of devices has a Requester (making the requests) and
a Provider (providing the resources). In terms of behavior, LAN
brokers are slightly different from WAN brokers. LAN brokers are
only responsible for pairing up the communicating devices. RICCi
establishes direct connections for streaming and accessing data
remotely. WAN brokers also pair up the communicating devices.
In addition, they are also responsible for acting as a gateway that
relays all the data transferred between any two interacting devices.

5 IMPLEMENTATION

In this section, we present additional technical details of the refer-
ence implementation of RICCi.
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5.1 Data Exchange Logic

In abstract terms, RICCi facilitates the development of distributed
Android applications. To that end, RICCi manages the connection
between the interacting devices and the specifics of how the compo-
nent data is transferred across the network. RICCi runtime transfers,
serializes, and compresses component data, while handling the con-
nection setup between the devices.

RemoteIntent objects are used by the reference implementation
to transport component data in a way prescribed by a given data
exchange pattern. RemoteIntent and its contents are serialized
using GSON 3 to be represented as JSON objects. When created, a
RemoteIntent can receive a data exchange pattern and an action.
Actions define what kind of operations the RemoteIntent will
perform, while data exchange patterns define how the results will
be transmitted. Figure 8 shows the declaration of a RemoteIntent
with an action (Intent.ACTION_PICK) line 2 and a data exchange
pattern Transfer.Stream line 3. Developers can choose between
three data exchange patterns: COPY, REMOTE or STREAM. The created
RemoteIntent can be transmitted to a Target device by calling the
RICCi implementation of the startActivity() method, which
processes and sends RemoteIntents across the network by means
of the sockets APIL.

1 Remotelntent rIntent = new Remotelntent (
2 Intent . ACTION_PICK, Transfer .STREAM);
3 startActivity (rIntent);

Figure 8: Remotelntent declaration

The Target device (i.e., providing the resources) receives the
RemoteIntent and tags it as an incoming message and forwards it
to an IntentService. Developers are required to add the Intent-
Service extending RICCiIntentService as a service in the man-
ifest file, so the Android system would allow RICCi runtime to
run. This service is responsible for determining how to handle
RemoteIntents according to their data exchange patterns. After
determining how to transfer the requested component data, the
IntentService sends the contents of the RemoteIntent to a mod-
ified BroadcastReceiver, which calls the method startActivity
ForResult() with the contents of the RemoteIntent, and then
returns standard return codes. The results are returned to the
IntentService, which follows the specified data exchange pat-
tern to transmit the results back to the Target Device.

5.2 Data Exchange Patterns

This subsection provides additional details on the usage of data
exchange patterns.

When specifying the Copy data exchange pattern, the developer
creates a RemoteIntent with parameter Transfer.COPY. This pa-
rameter is used by RICCi runtime and by the Broker server in
order to handle the requests. The Copy data exchange pattern sig-
nals RICCi runtime to return an exact copy of the data from the
resulting operation of a component in the target device. The con-
tents of the resulting Intent are placed inside a Bundle object in

3https://github.com/google/gson
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a RemotelIntent, which is sent back to the Source device. For ex-
ample, RICCi runtime collects the data Intent resulting from the
onActivityResult, which references context-specific information
stored at the target device. RICCi then uses the reference stored at
the data Intent to directly access all the information that describes
the user contact, such as number, email, etc., and it sends a copy to
the Source device.

When specifying the Stream data exchange pattern, the devel-
oper creates a RemoteIntent with parameter Transfer.STREAM.
This parameter is used by both RICCi runtime and Broker server
as metadata, to determine how data should be accessed. In case of
a WAN broker, this metadata also signifies that the server needs
to gateway the incoming data stream. The Stream data exchange
pattern signals the Target’s RICCi runtime that it needs to access a
file and stream its contents. For example, if the resulting Intent
is a reference to a media file, the Target’s RICCi runtime locates
the file, creates a ServerSocket, and sends its IP and port to the
Source device. The Source device then connects to the server and
requests the file transmission. Finally, the Target device serializes
the accessed media file and starts the process of transmitting it to
the Source device.

When specifying the Remote data exchange pattern, the devel-
oper creates a RemoteIntent with parameter Transfer.REMOTE
and a RemoteAssistant object. The RemoteAssistant is used by
RICCi runtime to execute the defined remote operations, while
the RemoteIntent identifies the Target device’s component. The
Target device specifies a port number and waits for the Source de-
vice to interact with the object. RICCi runtime provides a gateway
to perform remote operations.

For the implementation of this feature we used LipeRMI [1]
as the current version of Java RMI is not supported by Android
OS. LipeRMI is a plug-in replacement for the native Java RMI fa-
cility for the Android platform. The RemoteAssistant object is
used by the Source device’s RICCi runtime to perform the remote
method invocations. The results of those operations are placed in a
RemoteResultsHolder object, which is made available for access
after the interaction is completed. By default the contents of the
transmission are placed in a temporary file for streaming, however,
the developers can modify RICCi’s implementation to save the file
in the device.

We are aware that developers may modify and enhance their ap-
plications to provide greater functionality and flexibility for usage
of the remote pattern. To that end, RICCi features a code gen-
erator that synthesizes code compatible with the RICCi remote
data exchange pattern, including both classes and the manifest file.
The code generator enables developers to explore the features of
RICCi to a greater extent to provide the desired method invocations.
The code generator receives as input an ImmovableIntent object
and generates a stub and skeleton classes that serve as client and
server-side proxies, respectively. Their methods provide the logic
required to dispatch a remote callback method on the Source De-
vice and dispatch them to the Target Device. The generator needs
to be rerun every time the number or type of methods in a given
ImmovableIntent class changes.
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5.3 Network Topology Selection

One of the features of RICCi runtime is to select the most advan-
tageous network topology for two Android devices to exchange
component data. Recall that the devices can interact either directly
peer-to-peer or via a broker, provided by either a LAN-connected
edge server or a WAN-connected cloud-based service. To deter-
mine which of the three topologies to select for a given inter-device
component sharing, RICCi follows a predetermined set of customiz-
able priorities. However, developers can change and customize the
network selection logic at will. To that end, RICCi provides class
RicciAppCompatActivity that developers can extend, providing
a custom implementation of method connectWebSocket (). This
method receives an array of IP addresses of the available servers as
input, from which it initially connects its device either directly to an-
other device or to a broker server. In the reference implementation
of the method, connectWebSocket () sequentially checks over each
provided IP for the first server available to serve as a broker. De-
velopers using RICCi are required to call the connectWebSocket ()
within the method onCreate() in the MainActivity class of their
distributed mobile application.

The RICCi runtime sets up the connection topology between a
device and a broker as follows. First the device calls the connect-
WebSocket () method to check the list of possible available servers
(1 & 2). If the server is available, RICCi performs a handshake op-
eration and connects to the broker server (3), in which it provides
its current device information, IP address, and possible capabilities
to the server. The server receives the setup requests and persists
the device’s information (4). Finally, the server concludes the setup
process and starts awaiting requests (5). In case of a request, the
server goes over the list of connected devices and creates a pair re-
quester (device making a request) and provider (device providing
the information). Based on the server’s location, the devices either
communicate directly peer-to-peer or through a gateway.

One alternate system design would be to integrate Service Dis-
covery (SD) [22] as a more flexible way for clients and servers to
locate each other. In fact, there are several SD implementations (e.g.,
[14]) that can be integrated with the reference implementation of
RICCi. One can also develop a simpler discovery component based
on multicast. We plan to explore these alternate designs as a future
work direction.

5.4 Broker Implementation

The RICCi broker system was implemented following the defined
architecture presented in Section 4.3. In order to successfully man-
age messages and connected devices, the system stores each device
information in Device objects and stores the connection informa-
tion in Session objects. When a device makes a request, the broker
system pairs it with an available second device and keeps the in-
formation regarding requester (device making data request) and
provider (device providing data). All messages transmitted between
connected devices have their metadata checked, in order to de-
termine data exchange pattern, place of origin, and destination.
Depending on the information being carried, the broker will be-
have differently. In case of remote or stream messages, LAN broker
servers transfer the local network IP from the requester device to
the provider device, so that devices can use RICCi to establish the
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device-to-device connection. In case of copy, the broker acts as a
gateway. For WAN broker servers, the broker acts as a gateway by
relaying all messages between connected devices.

6 MOTIVATING SCENARIOS REVISITED

In this section we, revisit the motivating scenarios from Section 2
and explain how RICCi facilitates their implementation.

6.1 Sharing Documents Across Mobile Devices

In this scenario, users have to be able to share text documents be-
tween their mobile devices without relying on having an Internet
connection. To that end, RICCi can be used to implement an appli-
cation that copies documents between devices by building on the
ICC logic for accessing files within the same device. Because RICCi
mirrors the ICC interfaces, the developer would have to indicate
that the documents need to be copied across the network by using
the RICCi’s Copy data exchange pattern. RICCi automatically de-
termines which communication mode to select by analyzing the
current network conditions and available resources (more details in
Section 4.3). For example, in the absence of any Internet connectiv-
ity, the devices would talk to each other via WiFi Direct; if no WiFi
Direct connection is established, but both devices are connected to
the Internet, they would share the documents over a cloud-based
service; finally, if both devices are configured to talk to a local edge
server, they would use it to broker their communication as well.

The issue in hand is that using RICCi enables mobile application
developers to keep the same application logic for sharing the doc-
uments under any of the aforementioned network environments.
Furthermore, the logic for opening a document component on an-
other device is almost identical to that of opening a document on
the same device. Any Android programmer, familiar with the ubig-
uitous ICC abstraction, should be able to quickly become productive
when using RICCi.

6.2 Reading Input from IoT Devices

In this scenario, data must be streamed from IoT devices to a smart-
phone. To that end, developers can use RICCi to implement an
application that uses the Stream data exchange pattern to stream
the sensory data from the collecting devices to the ones displaying
the information to the user. The RICCi runtime would determine
which communication mode to select, based on the current net-
work and server availability. If the user is in the vicinity of the
IoT sensors (i.e., inside the house), the data would be streamed
directly from device to device. If the user stepped outside into the
yard, RICCi would leverage the house’s edge server to mediate the
communication. Finally, if the user tries to access the streamed data
from a remote location, a cloud-based service would mediate the
streaming session.

6.3 Reading Properties of Temporal Data

In this scenario, factory managers must be able to access data mod-
els on their subordinates’ tablets, albeit without copying the models,
which cannot be transferred across the network efficiently. To that
end, the immovable collected sensory data can be represented as an
Android component, exposing several remotely invocable methods
that provide access to the data’s various properties. Developers
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can use the Remote data exchange pattern to remotely access these
methods, which are implemented as so-called remote callbacks. In
other words, in this case, RICCi moves the code to the data, with
the provided, automatically generated query interface mirroring
the methods of the Android component that encapsulates the im-
movable data.

7 EVALUATION

This section describes the research questions, methodology, and
experiments we conducted to evaluate RICCi.

7.1 Empirical Study

For the empirical evaluation, we deployed RICCi on a Google Nexus
6 and a Huawei KIW-L24 devices, with the target OS Android
Marshmallow 6.0.1. For power measurements, we deployed RICCi
on a LG Volt LS740 and used a Monsoon power monitor? to gather
the energy consumption information.

Our evaluation objectives are to evaluate the differences between
RICCi-based and hand-coded applications in terms of their respec-
tive software engineering metrics (i.e., lines of code, complexity)
and runtime performance (i.e., time and energy consumption).

Therefore, our evaluation is driven by the following two research
questions:

e RQ1: When sharing component data across devices, how do
the Software Engineering metrics of a RICCi-based solution
compare to that of a hand-coded solution?

e RQ2: When sharing component data across devices, how do
the runtime performance and energy efficiency of a RICCi-
based solution compare to that of a hand-coded solution?

The purpose of RQ1 is to determine how a hand-coded solution
compares to RICCi while performing the same set of operations,
in terms of software metrics. To answer RQ1, we implemented
three distributed mobile applications that exchange component
data. Each application was implemented in two versions: (1) using
one of RICCi data exchange patterns, (2) hand-coding the same
functionality. We collected software engineering metrics for both
versions of each application and then compared and contrasted
them.

The rationale behind RQ2 is to determine whether a RICCi-based
or a hand-coded solution more efficient with respect to runtime
performance and energy consumption. To answer RQ2, our three
subject applications implement the functionality required to copy,
stream, and remotely access data. For each subject, we implemented
aRICCi-based and a hand-coded versions. To measure the streaming
operations, we used a media file 3.64MB in size.

For copy, we implemented an application for sharing contact
data. For stream, we implemented an application for streaming
audio files. For remote access, we implemented an application that
access methods of a Intent object containing contact information.

7.2 Evaluation Design

To measure the total number of lines of code (LoC) and code com-
plexity, we used the Android Studio plug-in MetricsReloaded [20].
To measure runtime performance, we collected the total time taken

“https://www.msoon.com/LabEquipment/PowerMonitor/



MOBILESoft’18, May 2018, Gothenburg, Sweden

Breno Dantas Cruz and Eli Tilevich

Energy in Joules

60.00

48.38)

50.00

40.00
33.13)
30.52)

30.00
25.84)
23.31) 24.46)

20.27)

20.00
15.01)

14.76)

10.00

21.82)

Remote WAN

38.30) 39.96)

35.49) 36.82)

29.81)
27.57)

23.29)

Stream LAN

21.82)

Remote LAN

20.09)

Stream Direct Stream WAN

Provider ~====Device using ICC

Figure 9: Average energy consumption in Joules

Copy Direct Copy WAN Copy LAN Remote Direct
[ Requester
Table 1: Metrics
Exchange .
Pattern Version LoC v(G)avg v(G)tot
Co Hand Written 4819 2.14 506
Py RICCi 3730 1.9 306
Stream Hand Written 6735 2.25 755
RICCi 3719 1.91 303
Remote Hand Written 7791 2.06 882
RICCi 3874 1.83 322

by system operations and measured energy used by a device when
executing a given component data sharing scenario. In order to
measure energy consumption, we used the Monsoon power mon-
itor to collect the idle power and the average power of a LG Volt
LS740, while performing each of the data exchange patterns. We
then subtracted the idle power from the measured power during
the experiments to determine the actual energy consumed by the
distributed functionality. We calculated the energy consumption
for a time interval of 70 seconds.

7.3 Results

Table 1 presents the numbers of lines of code (LoC), average cy-
clomatic complexity (v(G)avg), and total complexity (v(G)tot) for
the total of all non-abstract methods in each project. These values
show that the hand-coded versions for copy, stream, and remote
are larger and more complex than their RICCi-based counterparts.

Table 2 shows the performance values of a RICCi-based applica-
tion in terms of the time it took to complete all requests as required
by different data exchange patterns under three dissimilar net-
work environments. These results show that the time required to
complete the component sharing requests is closely related to the
amount of data transferred and latency of the underlying network.

Figure 9 shows the values of the average energy consumed by
each of the data exchange patterns in joules. The information refers
to requesters devices (devices making the requests) and providers
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Table 2: Average time in milliseconds to perform operation
for different data exchange pattern

Network Exchange Total Time T¥ansmission
Pattern Time

Copy  2867.64ms 321ms

WAN Stream  8183.68ms 2578.28ms
Remote 2165.29ms 231ms

Copy  3851.64ms 306.33ms

LAN Stream  8522.64ms 330.66ms
Remote 3618.36ms 326.08ms

Copy  2616.68ms 3186.43ms

Direct Stream  5691.56ms 2490.18ms
Remote 3179.58ms 1204.42ms

(remote devices providing the resources). We also show average
energy consumption for a basic ICC operation while retrieving
contacts from one device. Figure 9 shows that for all cases, the
average energy consumption for RICCi requesters and providers
devices is lower than for performing an operation (accessing a
phone contact) using ICC 48.38]. We speculate that the higher
energy consumption for ICC is related to the necessity to perform
more operations than when operating within a single device, while
for RICCi the energy costs come from data transfer operations. In
addition, for most data exchange patterns, the provider device will
be consuming more energy than the requester counterpart. The
two exceptions are for the remote and stream transfers, which use
direct (peer-to-peer) communication.

7.4 Threats to Validity

As any study, our evaluation also carries threats to validity. We
identify the following sources of validity threats.

Internal Threats: We implemented all the applications used for
the experiments. It is possible that different hand-coded solutions
would show different performance characteristics. In addition, the
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size of the files transferred during the experiments can also impact
the performance.

External Threats: In terms of power consumption, Android phones
have background processes that may require additional energy. To
mitigate this threat, we ended all background processes, and per-
formed multiple runs, to properly estimate the amount of energy
consumed by each test. Android OS is being continuously updated,
so newer versions may be better optimized, particularly w.r.t. en-
ergy consumption, than the one that we used for our experiments,
thus improving the runtime performance results across the board.
In terms of time, different networks offer dissimilar transmission
latencies, and different devices with dissimilar hardware capabili-
ties can provide unequal response times. In terms of accuracy of
our power measurement procedures, our readings are directly re-
lated to the accuracy of the power monitoring devices used in the
experiments.

7.5 Summary of the Results

We derived several insights from our experimental study. First,
RICCi is not only comparable to hand-coded solutions in terms of
complexity and in terms of lines of code, but also can provide a
smaller code size and less complex solutions for mobile application
developers to maintain. Second, the runtime performance in terms
of the total time can vary, being affected by the latency of the
network in place and the amount of transferred data. Finally, we
found that RICCi operations on each of the participating devices
can consume less energy than the equivalent operations over ICC
within a single device, an insight motivating the use of distributed
processing to reduce the amount of energy consumed by individual
devices.

8 APPLICABILITY

In this section, we present guidelines for Android developers, with
the goal of helping them apply RICCi effectively to share component
data across devices.

8.1 Usage Guidelines

RICCi can be quite effective in those scenarios, in which component
data type and size may constantly change during the development
process. For example, in the initial development stages, data being
transferred was in small volumes and in plain-text form. However,
after some iterations, the nature of the requirements changed, now
requiring that the application stream large video files between
devices. With RICCi, developers will be relieved from the necessity
to re-implement from scratch the functionality required to stream
larger files. Instead, the required change in component data sharing
semantics can be accomplished by changing a couple of lines of
code, due to the declarative nature of the RICCi programming
model. Based on the changed data exchange pattern, RICCi runtime
can automatically handle the changes in the component data’s
size and transmission procedure. In terms of maintainability, our
measurements show that the distributed functionality implemented
using RICCi in most cases takes fewer lines of code. However, it is
always less complex, to implement than the corresponding hand-
coded version. In terms of security, our component-based design
preserves encapsulation, thus facilitating security enhancements.
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All the functionality is encapsulated in individual components,
which talk to each other using pre-defined data exchange patterns.

In addition, RICCi can be useful to a development team that
lacks sufficient time required to learn how to modify some legacy
code that handles data distribution over the network. Developers
may find that the similarities of RICCi to ICC make it easier to
understand how it works and how to interact with the required dis-
tributed component data. In terms of maintainability, RICCi allows
developers to override and modify the behavior of virtually every
piece of RICCi functionality. In other words, RICCi offers develop-
ers the ability to easily change the distributed functionality of a
mobile application, as required by changes in project requirements.

8.2 Limitations

RICCi may be inadequate to all projects. In some situations, the
requirements may render this programming mechanism inapplica-
ble. For instance, since RICCi facilitates the sharing of component
data across the network, its performance is closely related to the
available network’s capacities. Developers deeply experienced in
low-level networking and with rigid requirements in terms of se-
curity and access latencies would be advised to stay away from
using distributed abstractions, such as RICCi. Instead, they can
achieve comparable or even superior performance characteristics
if they manually implement their own low-level, hand-optimized
solutions.

9 RELATED WORK

Our work is related to numerous research efforts that focus on
facilitating distributed computing by means of programming frame-
works and abstractions. It would be unrealistic to compare and
contrast our work with all these prior efforts. Hence, we limit the
related work coverage to the most relevant or recent approaches.

The remote procedure call (RPC) [2] has been the foremost pro-
gramming mechanism for constructing distributed systems. RPC
provides programming abstractions and runtime support to make
invoking methods in a different address space as similar as pos-
sible to invoking those in the same address space. In distributed
computing, RPC transfers each remote call from a client to execute
on a server, while returning back the results. Examples of object-
oriented variants of RPC include DCOM [3], CORBA [37], and Java
RMI [15]. Mobile Plus [27] provides an RPC-based middleware to
enable Android devices to share resources; it does so by modifying
the Android OS, so as to properly support all the required func-
tionalities with adequate performance. Since one of the key design
objectives of RICCi is portability, our reference implementation
runs entirely in user space and requires no changes to the Android
platform.

In Android, each process runs in a separate address space. To
enable processes to communicate with each other within the same
device, Android features the Binder framework, which provides
RPC-based communication between client and server processes.
Binder passes data to remote method calls, returning the results to
the client’s calling thread. Android even offers Android Interface
Definition Language (AIDL)®, similar to CORBA IDL, for developers

Shttps://developer.android.com/guide/components/aidl.html
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to define a set of remote methods to be invoked between client and
server processes [11, 12, 34].

Despite the ubiquity of RPC, this distributed programming para-
digm has been critiqued as not realistically reflecting the actual dif-
ferences between the local and remote computing models [38]. In a
way, the RPC abstraction may be too powerful, making remote calls
look indistinguishable from local calls, and thus encouraging the
questionable “papering over the network” designs for distributed
applications [16]). Because remote calls can take orders of magni-
tude longer than local calls to execute, treating them uniformly is
only possible in low-latency distributed systems with high resource
availability. Perhaps, that is why RPC-based systems have been
particularly successful as a communication mechanism between
different processes on the same machine.

We have designed RICCi to support a distributed programming
model that is distinct from RPC. Instead, RICCi extends the Inter
Component Communication (ICC) framework, which is fundamen-
tally asynchronous and event-based. When implementing RICCi-
based applications, developers are required to take into account
the remote data’ properties (i.e. its size and privacy) in order to
determine how and whether to transfer it across the network. As
a result, RICCi is not an RPC-based but a remote data-based dis-
tributed programming abstraction. Internally, RICCi does make use
of RPC to implement its remote access data exchange pattern, in
which the data remains stationary and instead accessed by means
of remote callbacks, implemented using an extant RPC system.

Regarding related work on middleware approaches for resource
sharing, ShAir [7] is a latency-tolerant data sharing approach that
uses P2P communication for distribute mobile applications. While
similar in its objectives, RICCi maintains strong encapsulation for
P2P communication, in which the shared resources remain in the
form of components. RICCi also shares goals with Sip2Share [4],
which is an Android framework that extends parts of the built-in
mechanism for sharing services and activities. A distinguishing
characteristic of RICCi is the precise control over how remote data
is transferred across the network; it provides this control by means
of three declarative data exchange patterns, which specify how
exactly to transfer remote data. yMAIS [31] also focuses on sim-
ilar objectives, but unlike RICCi, it exports distributed resources
in the form of Web Services. Mist [35] follows a publish-subscribe
paradigm to provide a latency-tolerant middleware framework.
Similarly to RICCi, Mist focuses on delivering data elements across
the network. However, RICCi also differentiates its data delivery
policies based on the type and volume of the transferred data. Mo-
biClique [29] leverages nearby existing social network contacts
to form ad hoc networks for data sharing. Following an ad hoc
approach to form networks or to share component data can be an
interesting future work direction.

Another popular technique used for optimizing mobile appli-
cations is code offloading, which generally either relies on the
opportunistic execution of code by remote servers [9, 33] or on au-
tomated application partitioning [36]. With a network connecting
mobile and cloud resources, the potential of code offloading lies in
the ability to sustain energy-intensive applications by partitioning
their power-intensive functionality to run at a remote server (e.g.,
Jade [32], CloudAware [28]). Multiple offloading strategies have
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been proposed to enhance smartphone applications with cloud-
based resources [5, 6, 10, 17-19]. Massari et al. [23] propose to use
code-offloading techniques to use available computational power
from discarded cellphones. RICCi can serve as a middleware plat-
form for offloading local components to run on a remote device,
and idea we plan to explore as a future work direction.

In terms of network-aware applications, Pinte et al. [30] study
several major techniques and present examples of adding network-
awareness and distribution to mobile applications. To explore how
to access distributed Android resources, Nakao et al. [24] study
how feasible would it to be to use the inter-process communication
mechanism to invoke remote services.

10 CONCLUSIONS AND FUTURE WORK

We have presented the design and implementation of RICCi, a dis-
tributed framework for sharing component data across Android
devices. RICCi provides programming abstractions and runtime sup-
port to facilitate the implementation of inter-device component data
sharing for Android application by enhancing the Android ubiqui-
tous ICC mechanism. The RICCi declarative programming model
features a set of pre-defined data exchange patterns for developers
to specify the semantics for passing component data across the
network. By focusing on remote data rather than procedures, RICCi
treats distributed communication latency as a first class software
design parameter. Even with respect to possible security risks, the
encapsulation benefits of RICCi can streamline the implementation
of security enhancements. As an evaluation, we have compared the
performance, complexity, and code size of RICCi-based and hand-
coded versions of three distributed mobile applications that share
data between applications on different Android devices. We have
found that RICCi-based solutions provide comparable performance
and lower code complexity than their hand-coded counterparts.

We have identified several possible future work directions. First,
we would like to explore the possibility of extending RICCi to
add support for heterogeneous device-to-device environments, in
which, for example, Android devices can exchange components of
i0S devices and vice versa. Second, we would like to thoroughly ex-
plore the security threats to RICCi-based applications and possible
defenses. Third, we would like to explore how RICCi can facili-
tate the adaptation of distributed legacy code to be able to share
component data without breaking encapsulation. And lastly, we
would like to conduct controlled user studies with Android devel-
opers to determine how to improve and refine the usability and
expressiveness of RICCi.

AVAILABILITY

The reference implementation of RICCi as well as all the subject ap-
plications and benchmarks can be accessed via an online appendix
at: https://github.com/brenodan/ricci.
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