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ABSTRACT

Data-intensive applications in diverse domains, including video

streaming, gaming, and health monitoring, increasingly require that

mobile devices directly share data with each other. However, devel-

oping distributed data sharing functionality introduces low-level,

brittle, and hard-to-maintain code into the mobile codebase. To

reconcile the goals of programming convenience and performance

efficiency, we present a novel middleware framework that enhances

the Android platform’s component model to support seamless and

efficient inter-device data sharing. Our framework provides a fa-

miliar programming interface that extends the ubiquitous Android

Inter-Component Communication (ICC), thus lowering the learning

curve. Unlike middleware platforms based on the RPC paradigm,

our programming abstractions require that mobile application de-

velopers think through and express explicitly data transmission

patterns, thus treating latency as a first-class design concern. Our

performance evaluation shows that using our framework incurs

little performance overhead, comparable to that of custom-built

implementations. By providing reusable programming abstractions

that preserve component encapsulation, our framework enables

Android devices to efficiently share data at the component level, pro-

viding powerful building blocks for the development of emerging

distributed mobile applications.
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1 INTRODUCTION

The Android platform is inherently component-based, with mo-

bile apps comprising sets of interacting components. Each appli-

cation component encapsulates a distinct functionality that can

be accessed by external clients via a simple interface. However,

this component-based encapsulation breaks when devices need to
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share data with each other. Implementing data-sharing function-

ality requires application developers to write low-level network

communication code that directly manipulates the shared data. The

resulting communication code is not reusable and hard to maintain.

Mobile, IoT, and wearable devices generate massive amounts of

data, which needs to be transferred to other mobile devices. For

example, a health monitoring app, running on a smartwatch, is pe-

riodically reading its wearer’s vital signs, which are then displayed

on an app, running on the wearer’s smartphone or tablet. The vital

signs information can be transmitted either directly, peer-to-peer

or via a cloud-based server. However, the resulting information

flow is device-to-device, a common pattern for a growing number

of distributed mobile applications.

In this paper, we put forward a middleware framework that pre-

serves the encapsulation of the Android component model when

sharing data across devices. We evolve the ubiquitous Android

Inter-Component Communication (ICC) into Remote ICC (RICCi),

with the RICCi API mirroring that of ICC and also providing a

declarative interface for specifying how to transfer component data

(i.e., Intent objects) across the network. RICCi enables mobile ap-

plication developers to use components, hosted on remote devices,

through an API that resembles as close as possible that for using

components hosted on the same device. Unlike RPC-based middle-

ware platforms (e.g., CORBA [37], gRPC [13], Java RMI [15], etc.),

the RICCi programming model is not procedure-oriented but is

data-centric. That is, rather than modeling distributed communi-

cation as a procedure call, RICCi introduces the concept of remote

component data, which is transferred across devices in accordance

with a given data exchange pattern. In that way, RICCi bears similar-

ity to the RESTful architecture [8], albeit with strong encapsulation

and fine-grained control over how the data is transferred from the

source to the destination.

RICCi requires that latency be treated as a first-class design

concept. The RICCi API includes a declarative interface for spec-

ifying how and even whether remote component data should be

transferred across the network; a component’s data can be copied,

streamed, or remain remote. This way, RICCi makes it impossible

for the developer to “paper over the network”[16], disregarding the

differences in latency between the communication within the same

device and those across different devices over the network.

In addition to reusability and encapsulation, the reference imple-

mentation of RICCi provides all the necessary low-level networking

support and can route the distributed communication either directly,

peer-to-peer or via a broker. The role of a broker can be played by

either an edge server, connected to devices via a local area network,

or a cloud service, connected through a WAN. In addition, RICCi is
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fully portable, as it works with any standard Android installation,

without requiring any changes to the standard Android platform.

As an evaluation, we implemented two versions of distributed

benchmark applications: one using our reference implementation

of RICCi, and the other one using a custom-coded implementation

based on an existing RPC middleware platform. Based on our eval-

uation, RICCi is comparable in terms of the resulting performance

efficiency and energy consumption, while requiring fewer lines of

code of lower complexity. Despite our reference implementation

being Android-specific, the insights gained from this work can be

applied to other mobile platforms, enabling distributed devices to

efficiently interact with each other at the component level.

The contributions of this paper are as follows:

(1) We describe the design and implementation of RICCi — a

novel middleware framework for intuitive and efficient shar-

ing of component data across Android devices; unlike exist-

ing RPC-based middleware platforms, RICCi is structured

around the concept of remote component data.

(2) We empirically evaluate the RICCi programming model in

terms of performance and expressiveness.

(3) We present guidelines for application developers on how

to use RICCi effectively in the development of emerging

distributed mobile applications.

The rest of this paper is structured as follows. In Section 2, we

present three motivating use cases for our solution; in Section 3, we

present the technical background required to understand our contri-

butions; in Section 4, we present the design of RICCi programming

interface, its architecture, middleware and broker systems. In Sec-

tion 5, we explain the implementation insights of our solution. In

Section 6, we explain how RICCi streamlines the implementation of

the motivation scenarios. In Section 7, we evaluate the performance

and software engineering characteristics of RICCi. In Section 8, we

discuss the applicability of our solution. In Section 9, we discuss

the related state the art. Finally, in Section 10, we outline future

work directions and present concluding remarks.

2 DISTRIBUTED DATA SHARING SCENARIOS

In this section, we present three examples of mobile distributed

applications to demonstrate the need for a middleware platform

that can streamline their implementation.

2.1 Sharing Documents Across Mobile Devices

Figure 1: Copying files from smartphone to tablet

Mobile applications are often used in environments with lim-

ited network connectivity. Business professionals on the move

often find themselves in locations, in which they cannot connect

to cloud-based services for availability, bandwidth, or security rea-

sons. Users can take notes on one device but edit them on another

device that runs a proprietary document editing application (e.g.,

MS Word). Consider having to develop a document management

application that synchronizes documents across multiple mobile de-

vices (Figure 1). In the presence of a reliable network connection, a

cloud-based solution can satisfy the requirements. However, in the

absence of the standard network infrastructure, devices should be

able to communicate with each other directly or possibly brokered

by a LAN-connected edge server. Mobile application developers

would like to be able to design and implement such applications

without having to write special-purpose logic that addresses the

aforementioned dissimilar network conditions. In addition, since

Android uses components to access disk files, developers are likely

to find it advantageous to retain the component-based representa-

tion for the documents when transferring them across the network.

2.2 Reading Input from IoT Devices

Private residences routinely feature several IoT devices installed

in different locations. These sensors monitor temperature, noise,

humidity, as well as provide video feeds and check for package

deliveries. A house resident can use a mobile device to receive

periodic readings from these IoT devices.

Figure 2: Streaming video data from IoT cameras to phone

If the Internet bandwidth is plentiful and readily available, a

cloud-based service can be used to mediate the interaction (Fig-

ure 2). However, if the bandwidth is limited or expensive, devel-

opers should be able to express that the application is to use an

edge server, connected via a local network, or that the devices are

to communicate with each other directly peer-to-peer. Despite the

complexity of having to support multiple network environments,

developers may still prefer to follow a component-based design

for such applications, with both the media data and its presenta-

tion logic represented as separate components. In other words, the

application’s business logic should not be polluted with low-level

system functionality that selects the appropriate communication

mechanism based on the network conditions in place. That is, the

logic required to select the most suitable distributed communication

pattern should be separate from the application’s business logic.

2.3 Reading Properties of Temporal Data

In complex industrial environments, mobile devices are often used

tomonitor different complex processes and aggregate readings from

various sensors. Due to the data accumulating rapidly and being of

relevance only temporarily, it may be disadvantageous to transfer

this temporal data to remote servers for storage, thus deeming the
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Figure 3: Gauging the production process by remotely ac-

cessing properties of immovable data

data unmovable. However, various interested parties within the

company may still want to query the accumulated data for some

of its real-time properties, and they want to do so remotely from

their mobile devices. For example, an employee can be carrying a

tablet that receives input from the sensors installed throughout a

manufacturing floor (Figure 3). A factory manager may want to in-

quire about some real-time aspect of the production process, while

at a meeting in a different office. Notice, that the data is intended

to be available to multiple users, as the mobile device collecting

sensory data is not for personal use. The employee carrying the

device around the manufacturing floor assumes that the collected

sensory data from the floor will be accessible to the management

at any time. To that end, consider having to develop an app capable

of querying the unmovable data on the employee’s tablet without

having to transfer the data itself, with the manager’s mobile de-

vice providing a viewing interface. Furthermore, developers would

prefer to follow a component-based design, with the immovable

data and presentation logic implemented as separate components,

communicating with each other over the local network.

3 BACKGROUND

In this section, we introduce the technical background required to

understand our conceptual contributions. The reader knowledge-

able with key Android APIs and distributed programming concepts

can safely skip this section.

3.1 Android Components

Each installed application in Android (i.e., *.apk file) typically runs

in a separate process and can be composed of Activities, Services,

Content Providers, and Broadcast Receivers. These four components

communicate through messages called Intents, which are routed by

the Android runtime. Activities are graphical components that pro-

vide a user interface to the client. The main Activity is instantiated

upon the user launching an application. Services run in the back-

ground to execute long-running tasks. Content Providers manage

access to persistent data. Broadcast Receivers receive and react to

event notifications.

3.2 Inter-Component Communication (ICC)

Android applications are structured as a collection of components,

each of which represents a reusable unit of functionality. An appli-

cation can also use components of other applications, both within

the same process or across processes, as long as the permission

scheme in place allows it. Loosely coupled components interact

with each other via ICC messages, represented as reusable Intent1

objects [21, 26]. When interacting via ICC, Android components

can operate both within the same application and across different

ones. To render a component accessible to other applications, a

developer sets its exported attribute to true in the manifest file2.

3.3 Remote Method Invocation

Remote Method Invocation (RMI) provides remote procedure call

(RPC [25]) functionality to Java applications. It enables any Java

object on one JVM to invoke methods of an object running on

another JVM [39]. The RMI abstractions render local and remote in-

vocations almost identical to each other. The only difference is that

remote methods must be declared as throwing RemoteException,

thus requiring that the developer provide logic for handling partial

failures, which are omnipresent in distributed computing.

4 DESIGN OVERVIEW

This section provides an overview of RICCi and discusses how it

enhances ICC for inter-device component data sharing. In addition,

this section also explains how RICCi works at runtime.

Our design requirements are two-fold. First, we aim at provid-

ing an inter-device programming abstraction that can be quickly

mastered and put into practice by developers familiar with the An-

droid abstractions for component interaction on the same device.

Second, we want to ensure that the new abstraction sufficiently

accommodates for the differences between the same-device and

device-to-device computing environments, with a particular em-

phasis on recognizing the presence of latency, which is known to

increase by orders of magnitude when switching from local to dis-

tributed computing environments. This recognition is essential to

ensure that the resulting distributed mobile application maintains

the required quality of service.

By designing RICCi, we want to enable Android developers

to use the abstraction to build efficient distributed applications,

while reasoning at the component level. Without properly designed

programming abstractions, typical components sharing scenarios,

such as the aforementioned, would require developers to write low-

level code for each piece of the distributed functionality (e.g., net-

work data exchange patterns, data marshaling, handling faults, etc.).

Even though the actual exchanged data is naturally represented as

Android components, the attendant encapsulation benefits would

quickly disappear if these components’ data is transferred across the

network without proper abstractions. In contrast, RICCi enables

developers to continue reasoning at the component level when

implementing inter-device interactions.

4.1 General Design

RICCi evolves the built-in Android ICC programming paradigm,

whose overriding design principle is to enable developers to in-

tegrate ready-made components into their applications, thereby

reducing the programming effort and streamlining the develop-

ment process. Hence, our design objective is to retain the software

engineering benefits afforded by ICC, but also to extend them to

environments that comprise multiple Android devices. In other

1https://developer.android.com/reference/android/content/Intent.html
2http://developer.android.com/guide/topics/manifest/manifest-intro.html
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words, we would like to enable Android developers to leverage

their familiarity with ICC to easily implement distributed applica-

tions capable of accessing components hosted by other Android

devices.

Figures 4 and 5 show two code snippets, in which an application

requests a document stored by an Android device. Figure 4 shows

the code that uses the built-in ICC to request a document stored on

the same device. Meanwhile, Figure 5 shows an equivalent RICCi

implementation that requests a document stored on another device.

As one can observe these code snippets are remarkably similar.

In fact, the only difference is that the RICCi version uses type-

compatible RemoteIntent objects (line 3 of Figure 5) instead of

Intent objects (line 3 of Figure 4). The RemoteIntent’s constructor

take an additional parameter, Transfer.COPY, thus declaratively

specifying the by-copy semantics for the document component’s

data. We have elided the required handling of remote exceptions

that the distributed runtime would raise in response to detecting

various failures.

1 public void getDocument ( ) {

2 I n t e n t i n t e n t = new I n t e n t (

3 Ac t ion .OPEN_DOCUMENT ) ;

4 i n t e n t . addCategory (CATEGORY_OPENABLE ) ;

5 i n t e n t . s e tType ( " t e x t / p l a i n " ) ;

6 s t a r t A c t i v i t y F o r R e s u l t ( i n t e n t , code ) ;

7 }

Figure 4: Accessing document information with ICC

1 public void getDocument ( ) {

2 Remote In t en t i n t e n t = new Remote In t en t (

3 Ac t ion .OPEN_DOCUMENT, T r an s f e r . COPY ) ;

4 i n t e n t . addCategory (CATEGORY_OPENABLE ) ;

5 i n t e n t . s e tType ( " t e x t / p l a i n " ) ;

6 s t a r t A c t i v i t y ( i n t e n t ) ;

7 }

Figure 5: Accessing document information using RICCi

Of course, the original ICC mechanism cannot be reused as is in

a distributed setting. As mentioned above, distributed applications

typically experience higher latencies than centralized applications.

To accommodate the increased latency, our design requires that

the developer specify how the component data is to be transferred

across the network. Specifically, depending on the properties of

component data, it can be either copied, streamed, or retained in

place to be accessed remotely. Intent objects, encapsulating small

data volumes, can be copied across the network efficiently; Intents

representing media files can be streamed to be played on remote

devices; while Intents with platform-specific dependencies are

“anchored” to their devices, accessed by means of remote callbacks

from the accessing devices. The RICCi API includes remote excep-

tions that reflect various partial failure conditions, likely to occur

in different deployment environments. The developer using RICCi

will have to handle these failures in an application-specific manner.

Naturally, when information is transferred across the network,

the issue of security comes to the fray, and the developer must make

appropriate provisions. Because RICCi enables component-level

distributed programming, it promotes the encapsulation principle.

Encapsulated functionality is easier to systematically enhance with

additional properties than scattered functionality. In the RICCi

architecture, it is known exactly when distributed interactions com-

mence and end, and in which patterns the data is exchanged. This

foreknowledge simplifies the provisioning of various security en-

hancements, such as adding encryption and following secure net-

work transfer protocols.
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Figure 6: ICC vs. RICCi

Figure 6 shows a system diagram demonstrating the differences

between ICC and RICCi.

4.2 System Architecture

Figure 7 shows an overview of a distributed mobile application

developed using RICCi. In this application, the Source Device is

the device that is making a request to access a component on an-

other device. To that end, the Source Device declares and sends a

RemoteIntent object. The Target Device is the device that receives

and handles the request to access the component in question. The

Broker Server is responsible for handling the connection between

Source Device and Target Device. In addition, depending on the Bro-

ker Server’s location (LAN or WAN), the broker is also responsible

for relaying all the transmission between the connected Source

and Target devices. We provide additional details about the Bro-

ker Server below. When devices are to communicate peer-to-peer,

RICCi assumes that the devices have been properly configured for

such interactions. Under these scenarios, the RICCi runtime handles

all requests and responses without the aid of a broker.
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Figure 7: RICCi Architecture
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RICCi Dataflow. When sharing component data across devices

using RICCi, the process comprises three main phases: 1) The Source

device creates a RemoteIntent (with the desired target informa-

tion and data exchange patterns) and sends it to the Target device

through a network. 2) The Target device receives the RemoteIntent,

executes its defined action, and returns the results, following the

specified data exchange pattern to the Source device. 3) The Source

device receives the results, in a fashion prescribed by the specified

exchange pattern.

4.3 System Architecture Components

RICCi runtime includes both the functionality executing on each

of the participating devices as well as the distributed logic required

for interacting with broker servers.

Device components: RICCi runtime is responsible for processing

the component data sharing requests within a device. The runtime

is also responsible for setting up a connection to Broker servers,

which route the requests between the devices.We provide additional

details on how RICCi connects to broker servers in Section 5. RICCi

activities in both Source and Target devices comprise two threads

responsible for managing incoming requests: a Messenger Thread

and a Handler Thread. The Messenger Thread interacts with a

transmission channel by sending and receiving data. The incoming

data is transmitted to the Handler Thread. The Handler Thread is

responsible for processing incoming requests and generating the

appropriate responses, which are then retransmitted to the intended

device by the Messenger Thread.

The Broker Server: The Broker server is responsible for delivering

component data to the intended destination. Broker servers are

divided into two categories: edge (LAN) andWAN brokers. A broker

server is responsible for keeping track of the connected devices,

resources and the component data that these devices have available

for sharing. A broker server maintains a list of devices currently

connected, and it analyzes the transferred messages, specifically

the Bundle objects of the RemoteIntent, in order to determine

their destination and data exchange patterns. RICCi runtime uses a

priority queue, explained in Section 5, to determine to which broker

a given device should connect at any given time. Broker servers

connected via local networks are responsible for pairing up devices

and setting a peer-to-peer connection between the paired devices.

Each pair of devices has a Requester (making the requests) and

a Provider (providing the resources). In terms of behavior, LAN

brokers are slightly different from WAN brokers. LAN brokers are

only responsible for pairing up the communicating devices. RICCi

establishes direct connections for streaming and accessing data

remotely. WAN brokers also pair up the communicating devices.

In addition, they are also responsible for acting as a gateway that

relays all the data transferred between any two interacting devices.

5 IMPLEMENTATION

In this section, we present additional technical details of the refer-

ence implementation of RICCi.

5.1 Data Exchange Logic

In abstract terms, RICCi facilitates the development of distributed

Android applications. To that end, RICCi manages the connection

between the interacting devices and the specifics of how the compo-

nent data is transferred across the network. RICCi runtime transfers,

serializes, and compresses component data, while handling the con-

nection setup between the devices.

RemoteIntent objects are used by the reference implementation

to transport component data in a way prescribed by a given data

exchange pattern. RemoteIntent and its contents are serialized

using GSON 3 to be represented as JSON objects. When created, a

RemoteIntent can receive a data exchange pattern and an action.

Actions define what kind of operations the RemoteIntent will

perform, while data exchange patterns define how the results will

be transmitted. Figure 8 shows the declaration of a RemoteIntent

with an action (Intent.ACTION_PICK) line 2 and a data exchange

pattern Transfer.Stream line 3. Developers can choose between

three data exchange patterns: COPY, REMOTE or STREAM. The created

RemoteIntent can be transmitted to a Target device by calling the

RICCi implementation of the startActivity() method, which

processes and sends RemoteIntents across the network by means

of the sockets API.

1 Remote In t en t r I n t e n t = new Remote In t en t (

2 I n t e n t . ACTION_PICK , T r an s f e r . STREAM ) ;

3 s t a r t A c t i v i t y ( r I n t e n t ) ;

Figure 8: RemoteIntent declaration

The Target device (i.e., providing the resources) receives the

RemoteIntent and tags it as an incoming message and forwards it

to an IntentService. Developers are required to add the Intent-

Service extending RICCiIntentService as a service in the man-

ifest file, so the Android system would allow RICCi runtime to

run. This service is responsible for determining how to handle

RemoteIntents according to their data exchange patterns. After

determining how to transfer the requested component data, the

IntentService sends the contents of the RemoteIntent to a mod-

ified BroadcastReceiver, which calls the method startActivity

ForResult() with the contents of the RemoteIntent, and then

returns standard return codes. The results are returned to the

IntentService, which follows the specified data exchange pat-

tern to transmit the results back to the Target Device.

5.2 Data Exchange Patterns

This subsection provides additional details on the usage of data

exchange patterns.

When specifying the Copy data exchange pattern, the developer

creates a RemoteIntent with parameter Transfer.COPY. This pa-

rameter is used by RICCi runtime and by the Broker server in

order to handle the requests. The Copy data exchange pattern sig-

nals RICCi runtime to return an exact copy of the data from the

resulting operation of a component in the target device. The con-

tents of the resulting Intent are placed inside a Bundle object in

3https://github.com/google/gson
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a RemoteIntent, which is sent back to the Source device. For ex-

ample, RICCi runtime collects the data Intent resulting from the

onActivityResult, which references context-specific information

stored at the target device. RICCi then uses the reference stored at

the data Intent to directly access all the information that describes

the user contact, such as number, email, etc., and it sends a copy to

the Source device.

When specifying the Stream data exchange pattern, the devel-

oper creates a RemoteIntent with parameter Transfer.STREAM.

This parameter is used by both RICCi runtime and Broker server

as metadata, to determine how data should be accessed. In case of

a WAN broker, this metadata also signifies that the server needs

to gateway the incoming data stream. The Stream data exchange

pattern signals the Target’s RICCi runtime that it needs to access a

file and stream its contents. For example, if the resulting Intent

is a reference to a media file, the Target’s RICCi runtime locates

the file, creates a ServerSocket, and sends its IP and port to the

Source device. The Source device then connects to the server and

requests the file transmission. Finally, the Target device serializes

the accessed media file and starts the process of transmitting it to

the Source device.

When specifying the Remote data exchange pattern, the devel-

oper creates a RemoteIntent with parameter Transfer.REMOTE

and a RemoteAssistant object. The RemoteAssistant is used by

RICCi runtime to execute the defined remote operations, while

the RemoteIntent identifies the Target device’s component. The

Target device specifies a port number and waits for the Source de-

vice to interact with the object. RICCi runtime provides a gateway

to perform remote operations.

For the implementation of this feature we used LipeRMI [1]

as the current version of Java RMI is not supported by Android

OS. LipeRMI is a plug-in replacement for the native Java RMI fa-

cility for the Android platform. The RemoteAssistant object is

used by the Source device’s RICCi runtime to perform the remote

method invocations. The results of those operations are placed in a

RemoteResultsHolder object, which is made available for access

after the interaction is completed. By default the contents of the

transmission are placed in a temporary file for streaming, however,

the developers can modify RICCi’s implementation to save the file

in the device.

We are aware that developers may modify and enhance their ap-

plications to provide greater functionality and flexibility for usage

of the remote pattern. To that end, RICCi features a code gen-

erator that synthesizes code compatible with the RICCi remote

data exchange pattern, including both classes and the manifest file.

The code generator enables developers to explore the features of

RICCi to a greater extent to provide the desired method invocations.

The code generator receives as input an ImmovableIntent object

and generates a stub and skeleton classes that serve as client and

server-side proxies, respectively. Their methods provide the logic

required to dispatch a remote callback method on the Source De-

vice and dispatch them to the Target Device. The generator needs

to be rerun every time the number or type of methods in a given

ImmovableIntent class changes.

5.3 Network Topology Selection

One of the features of RICCi runtime is to select the most advan-

tageous network topology for two Android devices to exchange

component data. Recall that the devices can interact either directly

peer-to-peer or via a broker, provided by either a LAN-connected

edge server or a WAN-connected cloud-based service. To deter-

mine which of the three topologies to select for a given inter-device

component sharing, RICCi follows a predetermined set of customiz-

able priorities. However, developers can change and customize the

network selection logic at will. To that end, RICCi provides class

RicciAppCompatActivity that developers can extend, providing

a custom implementation of method connectWebSocket(). This

method receives an array of IP addresses of the available servers as

input, fromwhich it initially connects its device either directly to an-

other device or to a broker server. In the reference implementation

of the method, connectWebSocket() sequentially checks over each

provided IP for the first server available to serve as a broker. De-

velopers using RICCi are required to call the connectWebSocket()

within the method onCreate() in the MainActivity class of their

distributed mobile application.

The RICCi runtime sets up the connection topology between a

device and a broker as follows. First the device calls the connect-

WebSocket() method to check the list of possible available servers

(1 & 2). If the server is available, RICCi performs a handshake op-

eration and connects to the broker server (3), in which it provides

its current device information, IP address, and possible capabilities

to the server. The server receives the setup requests and persists

the device’s information (4). Finally, the server concludes the setup

process and starts awaiting requests (5). In case of a request, the

server goes over the list of connected devices and creates a pair re-

quester (device making a request) and provider (device providing

the information). Based on the server’s location, the devices either

communicate directly peer-to-peer or through a gateway.

One alternate system design would be to integrate Service Dis-

covery (SD) [22] as a more flexible way for clients and servers to

locate each other. In fact, there are several SD implementations (e.g.,

[14]) that can be integrated with the reference implementation of

RICCi. One can also develop a simpler discovery component based

on multicast. We plan to explore these alternate designs as a future

work direction.

5.4 Broker Implementation

The RICCi broker system was implemented following the defined

architecture presented in Section 4.3. In order to successfully man-

age messages and connected devices, the system stores each device

information in Device objects and stores the connection informa-

tion in Session objects. When a device makes a request, the broker

system pairs it with an available second device and keeps the in-

formation regarding requester (device making data request) and

provider (device providing data). All messages transmitted between

connected devices have their metadata checked, in order to de-

termine data exchange pattern, place of origin, and destination.

Depending on the information being carried, the broker will be-

have differently. In case of remote or stream messages, LAN broker

servers transfer the local network IP from the requester device to

the provider device, so that devices can use RICCi to establish the
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device-to-device connection. In case of copy, the broker acts as a

gateway. For WAN broker servers, the broker acts as a gateway by

relaying all messages between connected devices.

6 MOTIVATING SCENARIOS REVISITED

In this section we, revisit the motivating scenarios from Section 2

and explain how RICCi facilitates their implementation.

6.1 Sharing Documents Across Mobile Devices

In this scenario, users have to be able to share text documents be-

tween their mobile devices without relying on having an Internet

connection. To that end, RICCi can be used to implement an appli-

cation that copies documents between devices by building on the

ICC logic for accessing files within the same device. Because RICCi

mirrors the ICC interfaces, the developer would have to indicate

that the documents need to be copied across the network by using

the RICCi’s Copy data exchange pattern. RICCi automatically de-

termines which communication mode to select by analyzing the

current network conditions and available resources (more details in

Section 4.3). For example, in the absence of any Internet connectiv-

ity, the devices would talk to each other via WiFi Direct; if no WiFi

Direct connection is established, but both devices are connected to

the Internet, they would share the documents over a cloud-based

service; finally, if both devices are configured to talk to a local edge

server, they would use it to broker their communication as well.

The issue in hand is that using RICCi enables mobile application

developers to keep the same application logic for sharing the doc-

uments under any of the aforementioned network environments.

Furthermore, the logic for opening a document component on an-

other device is almost identical to that of opening a document on

the same device. Any Android programmer, familiar with the ubiq-

uitous ICC abstraction, should be able to quickly become productive

when using RICCi.

6.2 Reading Input from IoT Devices

In this scenario, data must be streamed from IoT devices to a smart-

phone. To that end, developers can use RICCi to implement an

application that uses the Stream data exchange pattern to stream

the sensory data from the collecting devices to the ones displaying

the information to the user. The RICCi runtime would determine

which communication mode to select, based on the current net-

work and server availability. If the user is in the vicinity of the

IoT sensors (i.e., inside the house), the data would be streamed

directly from device to device. If the user stepped outside into the

yard, RICCi would leverage the house’s edge server to mediate the

communication. Finally, if the user tries to access the streamed data

from a remote location, a cloud-based service would mediate the

streaming session.

6.3 Reading Properties of Temporal Data

In this scenario, factory managers must be able to access data mod-

els on their subordinates’ tablets, albeit without copying the models,

which cannot be transferred across the network efficiently. To that

end, the immovable collected sensory data can be represented as an

Android component, exposing several remotely invocable methods

that provide access to the data’s various properties. Developers

can use the Remote data exchange pattern to remotely access these

methods, which are implemented as so-called remote callbacks. In

other words, in this case, RICCi moves the code to the data, with

the provided, automatically generated query interface mirroring

the methods of the Android component that encapsulates the im-

movable data.

7 EVALUATION

This section describes the research questions, methodology, and

experiments we conducted to evaluate RICCi.

7.1 Empirical Study

For the empirical evaluation, we deployed RICCi on a Google Nexus

6 and a Huawei KIW-L24 devices, with the target OS Android

Marshmallow 6.0.1. For power measurements, we deployed RICCi

on a LG Volt LS740 and used a Monsoon power monitor4 to gather

the energy consumption information.

Our evaluation objectives are to evaluate the differences between

RICCi-based and hand-coded applications in terms of their respec-

tive software engineering metrics (i.e., lines of code, complexity)

and runtime performance (i.e., time and energy consumption).

Therefore, our evaluation is driven by the following two research

questions:

• RQ1: When sharing component data across devices, how do

the Software Engineering metrics of a RICCi-based solution

compare to that of a hand-coded solution?

• RQ2: When sharing component data across devices, how do

the runtime performance and energy efficiency of a RICCi-

based solution compare to that of a hand-coded solution?

The purpose of RQ1 is to determine how a hand-coded solution

compares to RICCi while performing the same set of operations,

in terms of software metrics. To answer RQ1, we implemented

three distributed mobile applications that exchange component

data. Each application was implemented in two versions: (1) using

one of RICCi data exchange patterns, (2) hand-coding the same

functionality. We collected software engineering metrics for both

versions of each application and then compared and contrasted

them.

The rationale behindRQ2 is to determinewhether a RICCi-based

or a hand-coded solution more efficient with respect to runtime

performance and energy consumption. To answer RQ2, our three

subject applications implement the functionality required to copy,

stream, and remotely access data. For each subject, we implemented

a RICCi-based and a hand-coded versions. Tomeasure the streaming

operations, we used a media file 3.64MB in size.

For copy, we implemented an application for sharing contact

data. For stream, we implemented an application for streaming

audio files. For remote access, we implemented an application that

access methods of a Intent object containing contact information.

7.2 Evaluation Design

To measure the total number of lines of code (LoC) and code com-

plexity, we used the Android Studio plug-in MetricsReloaded [20].

To measure runtime performance, we collected the total time taken

4https://www.msoon.com/LabEquipment/PowerMonitor/
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Figure 9: Average energy consumption in Joules

Table 1: Metrics

Exchange

Pattern
Version LoC v(G)avg v(G)tot

Copy
Hand Written 4819 2.14 506

RICCi 3730 1.9 306

Stream
Hand Written 6735 2.25 755

RICCi 3719 1.91 303

Remote
Hand Written 7791 2.06 882

RICCi 3874 1.83 322

by system operations and measured energy used by a device when

executing a given component data sharing scenario. In order to

measure energy consumption, we used the Monsoon power mon-

itor to collect the idle power and the average power of a LG Volt

LS740, while performing each of the data exchange patterns. We

then subtracted the idle power from the measured power during

the experiments to determine the actual energy consumed by the

distributed functionality. We calculated the energy consumption

for a time interval of 70 seconds.

7.3 Results

Table 1 presents the numbers of lines of code (LoC), average cy-

clomatic complexity (v(G)avg), and total complexity (v(G)tot) for

the total of all non-abstract methods in each project. These values

show that the hand-coded versions for copy, stream, and remote

are larger and more complex than their RICCi-based counterparts.

Table 2 shows the performance values of a RICCi-based applica-

tion in terms of the time it took to complete all requests as required

by different data exchange patterns under three dissimilar net-

work environments. These results show that the time required to

complete the component sharing requests is closely related to the

amount of data transferred and latency of the underlying network.

Figure 9 shows the values of the average energy consumed by

each of the data exchange patterns in joules. The information refers

to requesters devices (devices making the requests) and providers

Table 2: Average time in milliseconds to perform operation

for different data exchange pattern

Network
Exchange

Pattern
Total Time

Transmission

Time

WAN

Copy 2867.64ms 321ms

Stream 8183.68ms 2578.28ms

Remote 2165.29ms 231ms

LAN

Copy 3851.64ms 306.33ms

Stream 8522.64ms 330.66ms

Remote 3618.36ms 326.08ms

Direct

Copy 2616.68ms 3186.43ms

Stream 5691.56ms 2490.18ms

Remote 3179.58ms 1204.42ms

(remote devices providing the resources). We also show average

energy consumption for a basic ICC operation while retrieving

contacts from one device. Figure 9 shows that for all cases, the

average energy consumption for RICCi requesters and providers

devices is lower than for performing an operation (accessing a

phone contact) using ICC 48.38J. We speculate that the higher

energy consumption for ICC is related to the necessity to perform

more operations than when operating within a single device, while

for RICCi the energy costs come from data transfer operations. In

addition, for most data exchange patterns, the provider device will

be consuming more energy than the requester counterpart. The

two exceptions are for the remote and stream transfers, which use

direct (peer-to-peer) communication.

7.4 Threats to Validity

As any study, our evaluation also carries threats to validity. We

identify the following sources of validity threats.

Internal Threats: We implemented all the applications used for

the experiments. It is possible that different hand-coded solutions

would show different performance characteristics. In addition, the
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size of the files transferred during the experiments can also impact

the performance.

External Threats: In terms of power consumption, Android phones

have background processes that may require additional energy. To

mitigate this threat, we ended all background processes, and per-

formed multiple runs, to properly estimate the amount of energy

consumed by each test. Android OS is being continuously updated,

so newer versions may be better optimized, particularly w.r.t. en-

ergy consumption, than the one that we used for our experiments,

thus improving the runtime performance results across the board.

In terms of time, different networks offer dissimilar transmission

latencies, and different devices with dissimilar hardware capabili-

ties can provide unequal response times. In terms of accuracy of

our power measurement procedures, our readings are directly re-

lated to the accuracy of the power monitoring devices used in the

experiments.

7.5 Summary of the Results

We derived several insights from our experimental study. First,

RICCi is not only comparable to hand-coded solutions in terms of

complexity and in terms of lines of code, but also can provide a

smaller code size and less complex solutions for mobile application

developers to maintain. Second, the runtime performance in terms

of the total time can vary, being affected by the latency of the

network in place and the amount of transferred data. Finally, we

found that RICCi operations on each of the participating devices

can consume less energy than the equivalent operations over ICC

within a single device, an insight motivating the use of distributed

processing to reduce the amount of energy consumed by individual

devices.

8 APPLICABILITY

In this section, we present guidelines for Android developers, with

the goal of helping them apply RICCi effectively to share component

data across devices.

8.1 Usage Guidelines

RICCi can be quite effective in those scenarios, in which component

data type and size may constantly change during the development

process. For example, in the initial development stages, data being

transferred was in small volumes and in plain-text form. However,

after some iterations, the nature of the requirements changed, now

requiring that the application stream large video files between

devices. With RICCi, developers will be relieved from the necessity

to re-implement from scratch the functionality required to stream

larger files. Instead, the required change in component data sharing

semantics can be accomplished by changing a couple of lines of

code, due to the declarative nature of the RICCi programming

model. Based on the changed data exchange pattern, RICCi runtime

can automatically handle the changes in the component data’s

size and transmission procedure. In terms of maintainability, our

measurements show that the distributed functionality implemented

using RICCi in most cases takes fewer lines of code. However, it is

always less complex, to implement than the corresponding hand-

coded version. In terms of security, our component-based design

preserves encapsulation, thus facilitating security enhancements.

All the functionality is encapsulated in individual components,

which talk to each other using pre-defined data exchange patterns.

In addition, RICCi can be useful to a development team that

lacks sufficient time required to learn how to modify some legacy

code that handles data distribution over the network. Developers

may find that the similarities of RICCi to ICC make it easier to

understand how it works and how to interact with the required dis-

tributed component data. In terms of maintainability, RICCi allows

developers to override and modify the behavior of virtually every

piece of RICCi functionality. In other words, RICCi offers develop-

ers the ability to easily change the distributed functionality of a

mobile application, as required by changes in project requirements.

8.2 Limitations

RICCi may be inadequate to all projects. In some situations, the

requirements may render this programming mechanism inapplica-

ble. For instance, since RICCi facilitates the sharing of component

data across the network, its performance is closely related to the

available network’s capacities. Developers deeply experienced in

low-level networking and with rigid requirements in terms of se-

curity and access latencies would be advised to stay away from

using distributed abstractions, such as RICCi. Instead, they can

achieve comparable or even superior performance characteristics

if they manually implement their own low-level, hand-optimized

solutions.

9 RELATEDWORK

Our work is related to numerous research efforts that focus on

facilitating distributed computing by means of programming frame-

works and abstractions. It would be unrealistic to compare and

contrast our work with all these prior efforts. Hence, we limit the

related work coverage to the most relevant or recent approaches.

The remote procedure call (RPC) [2] has been the foremost pro-

gramming mechanism for constructing distributed systems. RPC

provides programming abstractions and runtime support to make

invoking methods in a different address space as similar as pos-

sible to invoking those in the same address space. In distributed

computing, RPC transfers each remote call from a client to execute

on a server, while returning back the results. Examples of object-

oriented variants of RPC include DCOM [3], CORBA [37], and Java

RMI [15]. Mobile Plus [27] provides an RPC-based middleware to

enable Android devices to share resources; it does so by modifying

the Android OS, so as to properly support all the required func-

tionalities with adequate performance. Since one of the key design

objectives of RICCi is portability, our reference implementation

runs entirely in user space and requires no changes to the Android

platform.

In Android, each process runs in a separate address space. To

enable processes to communicate with each other within the same

device, Android features the Binder framework, which provides

RPC-based communication between client and server processes.

Binder passes data to remote method calls, returning the results to

the client’s calling thread. Android even offers Android Interface

Definition Language (AIDL)5, similar to CORBA IDL, for developers

5https://developer.android.com/guide/components/aidl.html
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to define a set of remote methods to be invoked between client and

server processes [11, 12, 34].

Despite the ubiquity of RPC, this distributed programming para-

digm has been critiqued as not realistically reflecting the actual dif-

ferences between the local and remote computing models [38]. In a

way, the RPC abstraction may be too powerful, making remote calls

look indistinguishable from local calls, and thus encouraging the

questionable “papering over the network” designs for distributed

applications [16]). Because remote calls can take orders of magni-

tude longer than local calls to execute, treating them uniformly is

only possible in low-latency distributed systems with high resource

availability. Perhaps, that is why RPC-based systems have been

particularly successful as a communication mechanism between

different processes on the same machine.

We have designed RICCi to support a distributed programming

model that is distinct from RPC. Instead, RICCi extends the Inter

Component Communication (ICC) framework, which is fundamen-

tally asynchronous and event-based. When implementing RICCi-

based applications, developers are required to take into account

the remote data’ properties (i.e. its size and privacy) in order to

determine how and whether to transfer it across the network. As

a result, RICCi is not an RPC-based but a remote data-based dis-

tributed programming abstraction. Internally, RICCi does make use

of RPC to implement its remote access data exchange pattern, in

which the data remains stationary and instead accessed by means

of remote callbacks, implemented using an extant RPC system.

Regarding related work on middleware approaches for resource

sharing, ShAir [7] is a latency-tolerant data sharing approach that

uses P2P communication for distribute mobile applications. While

similar in its objectives, RICCi maintains strong encapsulation for

P2P communication, in which the shared resources remain in the

form of components. RICCi also shares goals with Sip2Share [4],

which is an Android framework that extends parts of the built-in

mechanism for sharing services and activities. A distinguishing

characteristic of RICCi is the precise control over how remote data

is transferred across the network; it provides this control by means

of three declarative data exchange patterns, which specify how

exactly to transfer remote data. μMAIS [31] also focuses on sim-

ilar objectives, but unlike RICCi, it exports distributed resources

in the form of Web Services. Mist [35] follows a publish-subscribe

paradigm to provide a latency-tolerant middleware framework.

Similarly to RICCi, Mist focuses on delivering data elements across

the network. However, RICCi also differentiates its data delivery

policies based on the type and volume of the transferred data. Mo-

biClique [29] leverages nearby existing social network contacts

to form ad hoc networks for data sharing. Following an ad hoc

approach to form networks or to share component data can be an

interesting future work direction.

Another popular technique used for optimizing mobile appli-

cations is code offloading, which generally either relies on the

opportunistic execution of code by remote servers [9, 33] or on au-

tomated application partitioning [36]. With a network connecting

mobile and cloud resources, the potential of code offloading lies in

the ability to sustain energy-intensive applications by partitioning

their power-intensive functionality to run at a remote server (e.g.,

Jade [32], CloudAware [28]). Multiple offloading strategies have

been proposed to enhance smartphone applications with cloud-

based resources [5, 6, 10, 17–19]. Massari et al. [23] propose to use

code-offloading techniques to use available computational power

from discarded cellphones. RICCi can serve as a middleware plat-

form for offloading local components to run on a remote device,

and idea we plan to explore as a future work direction.

In terms of network-aware applications, Pinte et al. [30] study

several major techniques and present examples of adding network-

awareness and distribution to mobile applications. To explore how

to access distributed Android resources, Nakao et al. [24] study

how feasible would it to be to use the inter-process communication

mechanism to invoke remote services.

10 CONCLUSIONS AND FUTUREWORK

We have presented the design and implementation of RICCi, a dis-

tributed framework for sharing component data across Android

devices. RICCi provides programming abstractions and runtime sup-

port to facilitate the implementation of inter-device component data

sharing for Android application by enhancing the Android ubiqui-

tous ICC mechanism. The RICCi declarative programming model

features a set of pre-defined data exchange patterns for developers

to specify the semantics for passing component data across the

network. By focusing on remote data rather than procedures, RICCi

treats distributed communication latency as a first class software

design parameter. Even with respect to possible security risks, the

encapsulation benefits of RICCi can streamline the implementation

of security enhancements. As an evaluation, we have compared the

performance, complexity, and code size of RICCi-based and hand-

coded versions of three distributed mobile applications that share

data between applications on different Android devices. We have

found that RICCi-based solutions provide comparable performance

and lower code complexity than their hand-coded counterparts.

We have identified several possible future work directions. First,

we would like to explore the possibility of extending RICCi to

add support for heterogeneous device-to-device environments, in

which, for example, Android devices can exchange components of

iOS devices and vice versa. Second, we would like to thoroughly ex-

plore the security threats to RICCi-based applications and possible

defenses. Third, we would like to explore how RICCi can facili-

tate the adaptation of distributed legacy code to be able to share

component data without breaking encapsulation. And lastly, we

would like to conduct controlled user studies with Android devel-

opers to determine how to improve and refine the usability and

expressiveness of RICCi.

AVAILABILITY

The reference implementation of RICCi as well as all the subject ap-

plications and benchmarks can be accessed via an online appendix

at: https://github.com/brenodan/ricci.
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