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ABSTRACT

In this paper we explore partial coherence as a tool for eval-

uating the causal, anti-causal, or mixed-causal dependence of

one time series on another. The key idea is to establish a con-

nection between questions of causality and partial coherence.

Once this connection is established, then a scale-invariant par-

tial coherence statistic is used to resolve the question of tem-

poral causality. This coherence statistic is shown to be a like-

lihood ratio. It may be computed from a composite covariance

matrix or from its inverse, the information matrix. Numerical

experiments demonstrate the application of partial coherence

to the resolution of temporal causality.

Index Terms— partial correlation, partial coherence, in-

formation matrix, causality, time series

1. INTRODUCTION

Granger causality [1] has been widely used for addressing

questions of causality. In general, a time series {yn} is

causally dependent on another time series {xn} if the past

of {xn} contains unique information about {yn}. Geweke

[3] has studied the linear dependence and feedback between

two time series and extended in [4] to the conditional linear

dependent under presence of a third time series. Barnett et al.

[5, 6] have adapted Granger’s point of view to the study of

causality in state-space models. In practice, causality can be

evaluated with respect to the available information. Let {Jn}
be the set of available information at time n. Then, the time

series {xn} is said to be a prima facie cause of {yn} with

respect to {Jn} if the knowledge about {yn} is increased by

adding {xn} into the information set {Jn}.

In this paper, we are interested in assessing temporal

causality between two scalar time series, using partial cor-

relation or partial coherence. Partial correlation coefficients

measure correlation between two estimator errors for random

variables that have been regressed onto a third set of vari-

ables. The partial correlation between random variables x

and y, given z, is the correlation between the residuals for x

regressed on z and residuals for y regressed on z, where z is a
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third set of random variables. A zero partial correlation indi-

cates that x is conditionally independent of y given z. Thus,

x does not contain unique information about y in addition to

z. In this paper, we will define the prima facie evidence z

in such a way that the question of causality can be resolved

from an analysis of partial coherence. We show that a partial

coherence statistic is a scale-invariant measure of causality

that has a connection to likelihood testing of hypotheses.

In section 2, we introduce partial coherence and estab-

lish its connection to likelihood. Moreover, we show in Sec-

tion 2.2 assessment of causal relation between two time series

using the partial coherence statistics. In section 3, we con-

duct several experiments to explore the causal, anti-causal,

and mixed-causal relationship between time series. Section 4

discusses the connection between this paper and prior work

of Geweke [3, 4] and by Barnett, et al. [5, 6]

Yuan: We need to reference Geweke’s likelihood result, if

it is the same or similar to ours.

Notation: The superscripts (·)T and (·)H denote trans-

pose and Hermitian, respectively. IM is the identity matrix

of dimensions M ×M , and 0 denotes either a column vector

with M zeros, or the zero matrix of appropriate dimensions

(the difference should be clear from the context). Bold up-

per case letters denote matrices, boldface lower case letters

denote column vectors, and italics denote scalars. We use

A1/2 (A−1/2) to denote the square root matrix of the Her-

mitian matrix A (A−1); blkdiag[A1, . . . ,Ak)] is a block-

diagonal matrix whose diagonal blocks are A1, . . . ,Ak. x ∼
CNM (0,R) indicates that x is an M -dimensional complex

circular Gaussian random vector of zero mean and covariance

R.

2. PARTIAL COHERENCE AND CAUSALITY

2.1. Partial Coherence

Begin with the random vectors (x, y, z). Define u = (x, y).
The most elementary filtering question we shall ask is to es-

timate each of x and y from z. The linear least squares es-

timate of x is x̂ = Wx|zz, where Wx|z = RxzR
−1
zz

, and

the linear least squares estimator of y is ŷ = Wy|zz, where

Wy|z = RyzR
−1
zz

. The composite error covariance matrix



for these estimators is

Q
uu|z = E

[

x− x̂(z)
y − ŷ(z)

]

[

(x− x̂(z))H (y − ŷ(z))H
]

=

[

Qxx|z Sxy|z

SH
xy|z Qyy|z

]

(1)

where Qxx|z is the eror covariance matrix for estimat-

ing x from z only, and Qyy|z is the error covariance ma-

trix for estimating y for z only; the partial correlation

Sxy|z = E
[

(x− x̂)(y − ŷ)H
]

is the cross covariance be-

tween the two errors. The partial correlation is zero if x and y

are conditionally linear independent, i.e., x does not provide

any new information about y in addition to z.

The normalized error covariance matrix is called the par-

tial coherence matrix:

Cxy|z =blkdiag [Q
−1/2
xx|z , Q

−1/2
yy|z ]Q

uu|z blkdiag[Q
−1/2
xx|z , Q

−1/2
yy|z ]

=

[

1 Q
−1/2
xx|z Sxy|zQ

−1/2
yy|z

Q
−1/2
xx|z SH

xy|zQ
−1/2
yy|z 1

]

The NE term Q
−1/2
xx|z Sxy|zQ

−1/2
yy|z is the partial coherence be-

tween x and y given z. The determinant of the partial coher-

ence matrix Cxy|z is a Hadamard ratio, and it determines the

coherence statistic we propose for testing the hypothesis that

Sxy|z is zero:

ρ2 = 1− det[Cxy|z]

Yuan: Ck this.

This statistic is invariant to scaling of x and y and to non-

singular transformation of z. Its null distribution is known,

making it suitable for testing. If the covariance R are com-

puted from M spherically-contoured realizations of the ran-

dom variables x, y, and z, then the null distribution of ρ2 is

Beta [2, 2(M −N + 1)] where N is the dimension of vector

z.

Importantly, iff ρ2 = 0, the linear minimum mean-

squared error estimator of x from y and z, does not use

y. In this case, we say x is conditionally linearly independent

of y. If y and z are constructed properly, this fact may be

used to test for causality between time series, space series or

nodes in a network.

Connection to likelihood There is a connection to likeli-

hood. Assume measurements are multivariate normal with

distribution CNL [0,R], where L is the L = p + q + r,

with p, q, r the respective dimensions of x, y, z. The covari-

ance matrix R is the composite covariance matrix of the three

vector-value variables. The data matrix V ∈ CL×M ,M ≥ L

is a random draw from the composite vector (x, y, zT )T . Un-

der the null hypothesis H0 that x and y are conditionally in-

dependent given z, the MLE for the covariance matrix is de-

noted R0, and under the alternative hypothesis H1, the MLE

for the covariance matrix is denoted R1. The likelihood ratio

for testing H1 vs H0 is

Λ =
det[R1]

det[R0]
(2)

The determinants of the Ri may be written as

det [R1] = det
[

Q1
uu|z

]

det [Rzz]

det [R0] = det
[

Q0
uu|z

]

det [Rzz]

where Qi
uu|z denotes the error covariance matrix for estimat-

ing the pair u = (x, y)T from z, under hypothesis Hi. This

error covariance matrix is

Q
uu|z = E

[

(u− û)(u− û)H
]

=

[

Qxx|z Sxy|z

SH
xy|z Qyy|z

]

.

So under the null hypothesis that x and y are condition-

ally independent, the NE matrix Sxy|z is zero. Therefore,

det[Q0
uu|z] = det[Qxx|z] det[Qyy|z]. Under the alternative

hypothesis, det[Q1
uu|z] = det[Q

uu|z] given in (1). Thus,

Λ =
det[Q1

uu|z]

det[Q0
uu|z]

= det[Cxy|z] = 1− ρ2

With no further modeling of the covariance matrices Ri, other

than these patterns, the generalized likelihood ratio for testing

H1 vs H0 replaces these error covariance matrices by their

sample-data estimates.

The information matrix. The inverse of the covariance

matrix may be written

P = R−1 =

[

Q−1

uu|z Q−1

uu|zWu|z

WH
u|zQ

−1

uu|z R−1
zz

+WH
u|zQ

−1

uu|zWu|z

]

So from the inverse of the sample covariance matrix, the ma-

trix Q−1

uu|z may be read out of the NW corner, and used to

construct the statistic ρ2.

2.2. Causality and Partial Coherence

Let’s suppose {xn} and {yn} are two time series. We are

interested in if {yn} is causally dependent on {xn}. Granger

Causality is popularly used for the causal relation between

stochastic processes. A time series {xn} is said to be the

prima facie cause for {yn} with respect to z if

F (yn+1 | z, xn, xn−1, . . . , ) 6= F (yn+1 | z). (3)

Here F (·) is the probabilistic distribution. The inequality

means the conditional distribution of yn+1 is dependent on

the past of {xn} in addition to z. Here z is the set of informa-

tion from outside {xn} available at time n.

The definition (3) is broadly applicable to linear or non-

linear systems. The causal effect is often estimated through



a linear/non-linear multivariate regression model involving a

large number of coefficients. By fitting two models with and

without {xn}, a conditional Granger causality index (CGCI)

is used to quantify the Granger causality [7]. Model selec-

tion or dimension reduction methods have to be implemented

for choosing a reasonable regression model involving a small

number of lagged variables of the time series.

Our trick will be to define a third channel {zn} of prima

facie evidence in such a way that the question of causality

can be resolved from an analysis of partial coherence. The

idea is illustrated in Fig. 1. Let s and t be two time points,

we define the random variables y = y[s] and x = x[t]. The

random vector z is defined as the available information set

at time s. For example, zs = {xn, n ≤ s, n 6= t}, i.e., the

past of the time series {xn} at time s. Note that we have

x[t] excluded by the prima facie evidence z if t < s such

that x remains random given z. With x, y, z defined, we can

compute the partial coherence statistic ρ2(s, t) as introduced

in Section 2.1. The values of ρ2(s, t) vs the pair (s, t) reveals

causality or non-causality.

The partial coherence ρ2(s, t) measures the amount of

unique information about ys that contained by xt. When the

time series {yn} is not causally dependent on {xn}, the par-

tial coherence is zero for any pair of (s, t) with t < s. We

also compute the value of ρ2(s, t) for t ≥ s to help with in-

vestigating other structures such as anti-causality and mixed

structure.

This approach is applicable to the multivariate time series.

When xt ∈ C
p and ys ∈ C

q , we can derive the p × q partial

coherence matrix where the (i, j)th element give the partial

coherence between the ith component of xt and the jth com-

ponent of ys.

s t time 

x[s]

zs

x[t]

y[s]

Fig. 1. The time series

3. EXPERIMENTS

In this section, we will conduct several experiment and use

the partial coherence to assess the causality between two time

series. We consider the following linear system, as shown in

Fig. 2,

xn =

+∞
∑

k=−∞

hkun−k

yn =

+∞
∑

k=−∞

gkvn−k +

+∞
∑

k=−∞

fkxn−k,

where u, v are unit variance white noises. It is easy to show

the covariance coefficients are determined by the filter coeffi-

cients as

rxxm = E[xnxn+m] =
∑

k

hkhk+m

ryym = E[ynyn+m] =
∑

k,l

fkflr
xx
m+k−l +

∑

k

gkgk+m

rxym = E[xnyn+m] =
∑

k

fkr
xx
m−k

As a result, the partial coherence can be calculated analyti-

cally as introduced in Section 2.1. We set the filter coeffi-

cients for the noises as hk = h0a
k and gk = g0b

k for k ≥ 0
where h0 = 0.8, a = 0.9, g0 = 0.7, and b = 0.95. The co-

efficients filtering {xn}, i.e., {gk}, is the key component for

the relationship between {xn} and {yn}. We consider three

different scenarios.

Case 1: {yn} is causally dependent on {xn}:

yn = xn + 0.5xn−1 + 0.4xn−2 + 0.3xn−3 + 0.2xn−4+

0.2xn−5 +

+∞
∑

k=−∞

gkvn−k

Case 2: {yn} is anti-causally dependent on {xn}:

yn = xn + 0.5xn+1 + 0.4xn+2 + 0.3xn+3+

0.2xn+4 + 0.2xn+5 +

+∞
∑

k=−∞

gkvn−k

Case 3: the mixed case:

yn = xn + 0.5xn−1 + 0.4xn−2 + 0.5xn+1+

0.4xn+2 +

+∞
∑

k=−∞

gkvn−k

The resulted partial coherence maps are illustrated in

Fig. 2. For any given time points s and t, we show that value

of the partial coherence statistic ρ2(s, t) for ys and xt. Here

z := {xs, xs−1, . . . , }, i.e., the past of {xn} at time s. The

top panel illustrates the partial coherence when the time se-

ries {yn} is causally dependent on {xn}. It can be seen that

ρ2(s, t) 6= 0 for t < s, meaning that xt contains some unique
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