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ABSTRACT

In this paper we explore partial coherence as a tool for eval-
uating the causal, anti-causal, or mixed-causal dependence of
one time series on another. The key idea is to establish a con-
nection between questions of causality and partial coherence.
Once this connection is established, then a scale-invariant par-
tial coherence statistic is used to resolve the question of tem-
poral causality. This coherence statistic is shown to be a like-
lihood ratio. It may be computed from a composite covariance
matrix or from its inverse, the information matrix. Numerical
experiments demonstrate the application of partial coherence
to the resolution of temporal causality.

Index Terms— partial correlation, partial coherence, in-
formation matrix, causality, time series

1. INTRODUCTION

Granger causality [1] has been widely used for addressing
questions of causality. In general, a time series {y,} is
causally dependent on another time series {x,} if the past
of {z,} contains unique information about {y, }. Geweke
[3] has studied the linear dependence and feedback between
two time series and extended in [4] to the conditional linear
dependent under presence of a third time series. Barnett et al.
[5, 6] have adapted Granger’s point of view to the study of
causality in state-space models. In practice, causality can be
evaluated with respect to the available information. Let {.J,, }
be the set of available information at time n. Then, the time
series {z,,} is said to be a prima facie cause of {y,} with
respect to {.J,, } if the knowledge about {y,,} is increased by
adding {z,, } into the information set {.J,, }.

In this paper, we are interested in assessing temporal
causality between two scalar time series, using partial cor-
relation or partial coherence. Partial correlation coefficients
measure correlation between two estimator errors for random
variables that have been regressed onto a third set of vari-
ables. The partial correlation between random variables x
and y, given z, is the correlation between the residuals for x
regressed on z and residuals for y regressed on z, where z is a
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third set of random variables. A zero partial correlation indi-
cates that z is conditionally independent of y given z. Thus,
x does not contain unique information about y in addition to
z. In this paper, we will define the prima facie evidence z
in such a way that the question of causality can be resolved
from an analysis of partial coherence. We show that a partial
coherence statistic is a scale-invariant measure of causality
that has a connection to likelihood testing of hypotheses.

In section 2, we introduce partial coherence and estab-
lish its connection to likelihood. Moreover, we show in Sec-
tion 2.2 assessment of causal relation between two time series
using the partial coherence statistics. In section 3, we con-
duct several experiments to explore the causal, anti-causal,
and mixed-causal relationship between time series. Section 4
discusses the connection between this paper and prior work
of Geweke [3, 4] and by Barnett, et al. [5, 6]

Yuan: We need to reference Geweke’s likelihood result, if
it is the same or similar to ours.

Notation: The superscripts (-)7 and (-)* denote trans-
pose and Hermitian, respectively. I, is the identity matrix
of dimensions M x M, and 0 denotes either a column vector
with M zeros, or the zero matrix of appropriate dimensions
(the difference should be clear from the context). Bold up-
per case letters denote matrices, boldface lower case letters
denote column vectors, and italics denote scalars. We use
A'/2 (A=1/2) to denote the square root matrix of the Her-
mitian matrix A (A~!); blkdiag[Ay,..., Ay)] is a block-
diagonal matrix whose diagonal blocks are A1, ..., Ag. x ~
CN (0, R) indicates that x is an M-dimensional complex
circular Gaussian random vector of zero mean and covariance
R.

2. PARTIAL COHERENCE AND CAUSALITY

2.1. Partial Coherence

Begin with the random vectors (x,y,z). Define u = (z,y).
The most elementary filtering question we shall ask is to es-
timate each of x and y from z. The linear least squares es-
timate of x is & = W2z, where W, = R,;R;;!, and
the linear least squares estimator of y is § = Wz, where

Wy = R,,R_,}. The composite error covariance matrix



for these estimators is

Quuis =E[ z— () ] [ (- @) (v i) ]
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where (.., is the eror covariance matrix for estimat-
ing x from z only, and @Q,,, is the error covariance ma-
trix for estimating y for z only; the partial correlation
Seyla = E[(x—2)(y — §)] is the cross covariance be-
tween the two errors. The partial correlation is zero if x and y
are conditionally linear independent, i.e.,  does not provide
any new information about ¥ in addition to z.

The normalized error covariance matrix is called the par-
tial coherence matrix:

Ciyl. =blkdiag [Q %, Q71 /*]Quu, blkdiag[Q}* @ 1/2
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The NE term Q;zll/z QSxsz;yll/z ? is the partial coherence be-
tween x and y given z. The determinant of the partial coher-
ence matrix C,,|, is a Hadamard ratio, and it determines the
coherence statistic we propose for testing the hypothesis that

Say|z 18 zero:
pP=1- det[Cpy),)

Yuan: Ck this.

This statistic is invariant to scaling of = and y and to non-
singular transformation of z. Its null distribution is known,
making it suitable for testing. If the covariance R are com-
puted from M spherically-contoured realizations of the ran-
dom variables x, y, and z, then the null distribution of p2 I
Beta [2,2(M — N + 1)] where N is the dimension of vector
Z.

Importantly, iff p> = 0, the linear minimum mean-
squared error estimator of x from y and z, does not use
. In this case, we say x is conditionally linearly independent
of y. If y and z are constructed properly, this fact may be
used to test for causality between time series, space series or
nodes in a network.

Connection to likelihood There is a connection to likeli-
hood. Assume measurements are multivariate normal with
distribution CN';, [0, R], where L isthe L = p+q + 7,
with p, ¢, r the respective dimensions of x,y, z. The covari-
ance matrix R is the composite covariance matrix of the three
vector-value variables. The data matrix V. € CE*M M > L
is a random draw from the composite vector (z,y,z”)?. Un-
der the null hypothesis Hy that = and y are conditionally in-
dependent given z, the MLE for the covariance matrix is de-
noted Ry, and under the alternative hypothesis H;, the MLE
for the covariance matrix is denoted R . The likelihood ratio

for testing Hy vs Hy is

A= det[Rl]

The determinants of the R; may be written as

det [Rl] = det |: 111u\z:| det [Rzz]
det [Ro] = det {Q?m‘z} det [Ryy]

where Q?  denotes the error covariance matrix for estimat-

7{1u\z
ing the pair u = (x,%)” from z, under hypothesis H;. This
error covariance matrix is

Quuiz = E [(u—d)(u - )] = [ g;{wlz Seyla ] .
zylz yylz

So under the null hypothesis that x and y are condition-
ally independent, the NE matrix Smy|z is zero. Therefore,

det] ?mIZ] = det[Qqq,) det[Qyy(,]. Under the alternative
hypothesis, det[ tulz] = det[Quu],) given in (1). Thus,
det[ tu\]
ST e e, 1= 1 — 2
det[QD,,.,] vl

With no further modeling of the covariance matrices R;, other
than these patterns, the generalized likelihood ratio for testing
H; vs Hg replaces these error covariance matrices by their
sample-data estimates.

The information matrix. The inverse of the covariance
matrix may be written

-1 -1
P= R—l _ uu|z L Quu|zW“|11
- - H - -1 H -
Wu|z uu|z RZZ + Wuleuu|zW“|z

So from the inverse of the sample covariance matrix, the ma-
trix Q;&‘z may be read out of the NW corner, and used to

construct the statistic p2.

2.2. Causality and Partial Coherence

Let’s suppose {x,} and {y,} are two time series. We are
interested in if {y,, } is causally dependent on {z,, }. Granger
Causality is popularly used for the causal relation between
stochastic processes. A time series {z,} is said to be the
prima facie cause for {y,, } with respect to z if

7) # F(Ynt1 | Z)' 3)

Here F(-) is the probabilistic distribution. The inequality
means the conditional distribution of y,; is dependent on
the past of {z,, } in addition to z. Here z is the set of informa-
tion from outside {x,, } available at time n.

The definition (3) is broadly applicable to linear or non-
linear systems. The causal effect is often estimated through

F(yn+1 | Z,Tp,Tp—1,y---



a linear/non-linear multivariate regression model involving a
large number of coefficients. By fitting two models with and
without {z,,}, a conditional Granger causality index (CGCI)
is used to quantify the Granger causality [7]. Model selec-
tion or dimension reduction methods have to be implemented
for choosing a reasonable regression model involving a small
number of lagged variables of the time series.

Our trick will be to define a third channel {z,,} of prima
facie evidence in such a way that the question of causality
can be resolved from an analysis of partial coherence. The
idea is illustrated in Fig. 1. Let s and ¢ be two time points,
we define the random variables y = y[s] and z = z[t]. The
random vector z is defined as the available information set
at time s. For example, z, = {z,,n < s,n # t}, i.e., the
past of the time series {x,} at time s. Note that we have
x[t] excluded by the prima facie evidence z if ¢ < s such
that  remains random given z. With z,y, z defined, we can
compute the partial coherence statistic p*(s,t) as introduced
in Section 2.1. The values of p?(s,t) vs the pair (s, t) reveals
causality or non-causality.

The partial coherence p?(s,t) measures the amount of
unique information about y, that contained by x;. When the
time series {yy, } is not causally dependent on {z,}, the par-
tial coherence is zero for any pair of (s,t) with t < s. We
also compute the value of p?(s,t) for t > s to help with in-
vestigating other structures such as anti-causality and mixed
structure.

This approach is applicable to the multivariate time series.
When z; € CP and y; € C%, we can derive the p x ¢ partial
coherence matrix where the (i, 7)th element give the partial
coherence between the :th component of z; and the jth com-
ponent of y.
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Fig. 1. The time series

3. EXPERIMENTS

In this section, we will conduct several experiment and use
the partial coherence to assess the causality between two time
series. We consider the following linear system, as shown in

Fig. 2,

—+oo
Z Ritn—g

k=—o0

—+o0 +oo

E IkUn—k + E feTn—r,
k=—o0 k=—o0

where u, v are unit variance white noises. It is easy to show
the covariance coefficients are determined by the filter coeffi-
cients as

7‘717? xnanrm E hk:hk+m

i = Elynynim] = kafzrm+k_z + D 9utm

k
Z frerm

As a result, the partial coherence can be calculated analyti-
cally as introduced in Section 2.1. We set the filter coeffi-
cients for the noises as hj, = hoa” and g, = gob”* for k > 0
where hg = 0.8, a = 0.9, go = 0.7, and b = 0.95. The co-
efficients filtering {x,,}, i.e., {gx}, is the key component for
the relationship between {z,} and {y,}. We consider three
different scenarios.

xr
Tmy xnyner

Case 1: {y,, } is causally dependent on {x,, }:

Yn = Tp + 052,17 + 042, _9 + 0.32,_3 + 0.22, _4+
—+oo
0'2377175 + Z 9kUn—k

k=—o00

Case 2: {y,, } is anti-causally dependent on {z,, }:

Yn = T, + 0.52p41 + 0.42 42 + 0.3, 43+
“+o0
0.2xp44 + 0.2z, 45 + Z GkVn—k

k=—o0

Case 3: the mixed case:

Yn = Tp +0.52,-1 + 0.4z, _9 4+ 0.5z, 41+
+oo
O.4.’£n+2 + Z GkUn—k

k=—o

The resulted partial coherence maps are illustrated in
Fig. 2. For any given time points s and ¢, we show that value
of the partial coherence statistic p?(s, ) for ys and x;. Here
z = {xs,x5_1,..., }, i.e., the past of {x,,} at time s. The
top panel illustrates the partial coherence when the time se-
ries {yy, } is causally dependent on {x,}. It can be seen that
p*(s,t) # 0 for t < s, meaning that z; contains some unique
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Fig. 2. The partial coherence matrices for the three cases:
causal (top), anti-causal (middle), and mixed (bottom).

information about y in addition to z. Moreover, p?(s,t) = 0
for any ¢ > s, which suggests that the future value of x
does not contain unique information about y, given z. The
middle panel of Fig. 2 is the results for Case 2. In this case,
p%(s,t) = 0 for any t < s suggesting the past of 2 contains
no information about y under this anti-causal model. On the
other hand, p?(s,t) is nonzero for t > s. Case 3, shown in
the bottom panel, is the mixed case. The nonzero pattern of
p*(s,t) for both t > s and t < s demonstrates the mixed
relation between the two series.

4. RAPPROCHEMENT WITH THE WORK OF
GEWEKE AND BARRETT, ET AL.

There is flexibility in the choice of variables in the vectors
(z,y,2). To demonstrate, let us consider these two-channel
problems consisting of the time series = {x;} and the time
series y = {y¢}-

Example 1: (z = z4,t > s,y,z = {z,,u < s}). The
time series value y = y,,t < s, is to be predicted from its
own past, z = {y,,u < s}, and the question is whether this
prediction can improved with the use of the past of an ancil-
lary time series x, namely {z,,,u < s}. This is the prediction
question considered by Geweke [3, 4] and by Barnett, et al.
[5, 6]. In this problem the prima facie evidence is the past of
x and the past of y. We have compared the results carefully
and it turns out that their test statistic

det(Z1) 9
log m = log(1 — p°).

Example 2. The value y = y, of the y-series is to be
predicted by the past of the z-series, namely {z,,,u < s}, and
the question is whether x = z;,¢ > s improves the estimate.
This is the estimation problem considered in this paper. The
prima facie evidence is the past of z and a future value of it.

5. DISCUSSION

In this paper, our objective has been to explore the use of par-
tial coherence as a scale-invariant statistic to assess the tem-
poral causality between two time series. Of course these time
series might well be space series, in which case the idea of
anti- or mixed-causality is a physically meaningful question.
The partial coherence statistic we argue for is grounded in
likelihood theory, and it may be computed from the informa-
tion matrix. The key idea in the application of partial coher-
ence to questions of causality is to define three channels of
measurements so that they code for the causality question of
interest. We have demonstrated this for one particular ques-
tion of temporal causality.
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