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ABSTRACT

A native cross-platform mobile app has multiple platform-specific
implementations. Typically, an app is developed for one platform
and then ported to the remaining ones. Translating an app from
one language (e.g., Java) to another (e.g., Swift) by hand is tedious
and error-prone, while automated translators either require man-
ually defined translation rules or focus on translating APIs. To
automate the translation of native cross-platform apps, we present
J2SINFERER, a novel approach that iteratively infers syntactic trans-
formation rules and API mappings from Java to Swift. Given a
software corpus in both languages, J2SINFERER first identifies the
syntactically equivalent code based on braces and string similarity.
For each pair of similar code segments, J2SINFERER then creates
syntax trees of both languages, leveraging the minimalist domain
knowledge of language correspondence (e.g., operators and markers)
to iteratively align syntax tree nodes, and to infer both syntax and
API mapping rules. J2sINFERER represents inferred rules as string
templates, stored in a database, to translate code from Java to Swift.
We evaluated j2sINFERER with four applications, using one part of
the data to infer translation rules, and the other part to apply the
rules. With 76% in-project accuracy and 65% cross-project accu-
racy, J2sINFERER outperforms in accuracy j2swift, a state-of-the-art
Java-to-Swift conversion tool. As native cross-platform mobile apps
grow in popularity, J2SINFERER can shorten their time to market by
automating the tedious and error prone task of source-to-source
translation.
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1 INTRODUCTION

To increase market share, software companies and open source orga-
nizations release different versions of their mobile apps for multiple
mobile platforms. To ensure a satisfactory user experience, mobile
developers find themselves having to produce platform-specific
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implementations of their apps. We refer to such applications as
native cross-platform mobile apps. As a specific example, a native
cross-platform mobile app can have three different versions: one
implemented in Java for Android, another implemented in Swift
for iOS, and yet another one implemented in C# or C++ for Win-
dows Phone. When developing multi-platform apps, programmers
commonly first focus on one platform. Once the app developed for
this platform matures, it is then ported to the remaining platforms.
For example, first an app can be developed in Java for Android.
The resulting Android Java version of the app (i.e., the source) is
then translated into an iOS Swift version (i.e., the target). As the
source and target programming languages follow different gram-
mars and feature dissimilar software libraries, the developers of
native mobile apps must be equally versed in both languages and
their APIs to correctly port code. Translating the code of an app
by hand can be quite tedious and error-prone, thus motivating the
need for approaches that can automate the translation process.

1.1 Related Work

Existing code migration tools require users to manually define the
transformation rules [10, 17, 18, 20, 26, 34, 35]. However, defining
these rules by hand is still laborious and error-prone, as a variety
of API and syntax mapping rules need to be specified. For example,
Java2CSharp [20] and j2swift [10] can convert program structures
based on predefined translation rules, but are unable to translate
many APIs due to the large volume of libraries available for different
languages.

Zhong et al. [37] and Nguyen et al. [29] automatically mined
API usage mappings between Java and C#. Specifically, Zhong et
al. aligned the code in two versions based on similar names of
classes and methods, and then constructed the API transformation
graphs for each pair of aligned statements to identify API map-
pings [37]. Nguyen et al. mined API usage sequence mappings by
conducting program dependency analysis [27] and representing
API usage as groums [30]. However, neither approach automati-
cally applies the inferred rules to translate code. mppSMT [28] is
a state-of-the-art approach that automatically migrates Java code
to C# using phrase-based statistical machine translation. It infers
and applies both structure and API mapping rules, as guided by the
following two developer-provided kinds of domain knowledge: (1)
the basic mapping rules between statement types across languages,
such as Supercall in Java mapped to basecall in C#, and (2) the syn-
tactic symbol sequences encoded for each statement type in both
languages, such as statementExpression; in Java encoded as “EXPR
SC”.

In our own prior work, we have investigated several approaches
that aim at facilitating the development of cross-platform mobile
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apps, including a dynamic analysis to reverse-engineer mobile
user interfaces to port them across platforms [33], dynamic cross-
platform replay to mimic cloud-based source app execution on
another platform [19], Native-2-Native [15, 16], which given a
Java Android code block, extracts program identifiers to search
for relevant Swift iOS code blocks by using popular web program-
ming resources (e.g., Google Code, StackOverflow, etc.). Unlike in
J2SINFERER, in these prior approaches, we neither inferred nor ap-
plied any translation rules between the source and target languages.

In the context of the same language, various approaches infer pro-
gram transformation rules by comparing the old and new versions
of one or more code change examples [21-25, 32, 36]. However,
these approaches rely on the source and target codebases shar-
ing the same grammar, thus being unable to infer cross-language
translation rules.

Some existing HTML5 frameworks (e.g., Sencha [13], Phone-
Gap [11], Appcelerator [3], React Native [12]) can automatically
translate Javascript/HTMLS5 to Java or Swift. However, these tools
require that developers follow specific JavaScript APIs rather than
supporting general language-to-language translation.

1.2 Novelty and Contributions

This paper describes the design and implementation of our novel
automated approach j2sINFERER that complements prior work. We
notice that the source and target codebases of native cross-platform
mobile apps encode translation rules over a variety of syntax levels.
Our approach captures these rules and automatically applies them
to guide the porting process. Specifically, J2SINFERER operates in
two phases. In the first phase, J2sINFERER infers rules by comparing
the existing implementations in both languages; it iteratively aligns
and matches Java and Swift code based on braces (i.e., { and 3)
and string similarity. As both languages are object-oriented, they
share the basic syntactic components, including class declarations,
method declarations, loop structures, and conditional statements.
The braces that delimit these components are used identically in
both languages, and thus can serve as anchors to align the code
regions that are potentially syntactically equivalent.

J2sINFERER is the first approach that iteratively infers and applies
both syntax and API migration rules from Java to Swift based on
the minimalist developer-provided domain knowledge of language
correspondence. J2sINFERER leverages two intuitions. First, with the
meaning of key arithmetic and logic operators being internalized
as part of elementary math education, language designers tend to
avoid redefining this meaning. Second, other operators and markers
often also have historically established semantics in modern OO
languages. For example, the dot operator (i.e., .) accesses object
members, parentheses (i.e., ()) delimit expressions, and braces (i.e.,
{3) mark code blocks. As these operators and markers have the same
semantics across different languages, they can serve as anchors
for y2sINFERER, which aligns and compares the equivalent coding
idioms.

Additionally, J2sINFERER uses the Java and Swift syntax trees of
matched code to determine in which order multiple operators of
an expression should serve as alignment anchors. Leveraging the
operator precedence commonality between languages, J2SINFERER
can iteratively find the highest matching operator in syntax trees
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to split code in different ways, and may infer multiple code mi-
gration rules at different levels from a single code pair. By relying
on tree-based string splitting and matching, J2sINFERER can infer
more template and argument mappings than pure, delimiter-based,
non-iterative approaches. J2sINFERER works without requiring de-
velopers to manually specify the correspondence between syntactic
components of different languages, or to encode syntactic struc-
tures as sequences of syntactic symbols, thus increasing the level
of automation it provides.
In summary, this paper makes the following contributions:

o We designed and implemented j2SINFERER, the first delimiter-
based iterative rule inference and application approach for au-
tomated Java-to-Swift migration, in which delimiters include
keywords, operators, and markers. This novel approach can
match not only divergent grammars between languages, but
also APIs defined in different libraries.

We designed and implemented a novel way to represent
transformation rules as string templates, and to maintain the
rules using a database. This novel application of the database
enables users to easily understand and modify the inferred
rules, and even augment the database with missing rules to
enhance J2sINFERER’s code migration capability.

We conducted a comprehensive evaluation of j2SINFERER
with 3,859 real code migration examples. Our evaluation
shows that y2sINFERER was able to accurately infer and ap-
ply many translation rules for statements, expressions, and
API usage. It will save the manual effort required to enforce
these rules for syntax and API mappings. Hence, by automat-
ing the simple migration tasks that require mild changes,
J2SINFERER can effectively improve software quality and in-
crease programmer productivity.

2 MOTIVATION AND APPROACH OVERVIEW
2.1 Motivating Scenario

To give an overview of our approach, we present a running example
based on the charts application. Suppose that a new developer,
Alex!, joins a development team that maintains both Java and
Swift versions of a mobile app. Figure 2(a) shows the abbreviated
versions of the app’s current implementation, with the Java and
Swift versions depicted on the left and right, respectively. Although
the two versions have similar layouts of their respective class and
method declarations, they differ in the following three aspects.

e The keyword sets. For example, extends is unique to Java,
while let only exists in Swift.

o The statement syntaxes. For instance, the header of for-
loop has the format for([ForInitl; [Expression]; [ForUpdatel)
in Java; nevertheless in Swift, it becomes for Pattern in
Expression.

o The API usage of fields, methods, and types. On line 6
of Figure 2(a), mbata.get (i) in Java corresponds to datali] in
Swift.

Suppose that Alex is expert in Java, but is fairly new to Swift. To
add a new feature to the app, Alex first would have to implement
and test a new method calcNewAngle() in Java (see Figure 2(b)), and

! Alex, short for both Alexandra and Alexander, is gender-agnostic.
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Figure 1: y2sINFERER consists of two phases: rule inference and application. The first phase takes in both Java and Swift
codebases to infer translation rules. The second phase takes in a Java program to produce a Swift implementation.

then manually translate the tested implementation statement-by-
statement to Swift. Such manual code migration is laborious and
intellectually tiresome for two reasons. First, Alex has to consis-
tently replace language keywords and adjust program structures,
while ensuring that control and data dependencies between local
variables and fields remain intact. Second, Alex needs to learn how
the APIs correspond between the languages to correctly translate
API method calls, field accesses (e.g., data.entryCount), or member
accesses (e.g., set[i1) from Java to Swift.

2.2 Approach Overview

As per Figure 1, J2SINFERER operates in two main phases: rule
inference and rule application.

In Phase I, given a corpus of software with both Java and Swift
versions provided (P; and Ps), J2SINFERER extracts syntactically
equivalent code regions by iteratively aligning and matching code.
Specifically, j2sINFERER first aligns and matches source files be-
tween P; and P; based on file names. If two files are named simi-
larly, they are likely to implement the same functionalities. Among
the aligned files and based on the usage of nested braces (i.e. { and
}), J2sINFERER then iteratively (1) aligns class declarations, method
declarations, as well as statements, and (2) matches code based on
the string similarity. Next, for each matched pair of statements (e.g.,
<Sj, Ss>), J2SINFERER parses syntax trees; it relies on keywords
(e.g., while), operators (e.g., =), and markers (e.g., ,) to align syntax
subtrees. Leveraging a novel tree-traversal algorithm that matches
syntactically equivalent syntax tree nodes, J2sINFERER flexibly in-
fers the translation rules for statements, expressions, as well as API
invocations, even though Java and Swift have different grammars
and many divergent syntax node types. Finally, J2SINFERER saves
the rules as string templates in its database.

In PhaseII, given a Java program, J2sINFERER performs statement-
to-statement translation to generate a translated Swift version by
searching for any applicable translation rule for each statement.
If one rule is applicable, y2sINFERER transforms code accordingly.
If there are multiple rules applicable, J2SINFERER ranks the rules
based on their occurrence frequencies in Phase I, and picks the
most popular rule to apply. When no rule is applicable, users can
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either augment j2sINFERER’s database with the missing rules to
automate the transformation, or manually translate code based on
the tool-generated version.

To evaluate J2SINFERER, we created a dataset based on the Java
and Swift versions of four applications: charts [6, 7], antlr4-runtime [2],
cardboard [4, 5], and geometry-api [8, 9]. Exploiting the itera-
tive aligning and matching method of Phase I, we extracted 3,859
statement-level matches between the two versions of all four ap-
plications. The extracted code was used for J2SINFERER’s accuracy
evaluation. To measure J2SINFERER’s in-project translation accu-
racy, for each project, we used 75% data for rule inference, and the
other 25% for rule application. We found j2sINFERER to correctly
translate code with 76% accuracy on average. To evaluate the cross-
project translation accuracy, we leveraged the data of three apps for
rule inference, and the data of the fourth one for rule application.
J2sINFERER achieved 65% accuracy on average. Finally, we used one
half of the extracted code for j2SINFERER to infer rules, and the
other half for both j2sINFERER and j2swift [10] to translate code.
By comparing the generated code of both tools against the original
Swift version, we found that j2sINFERER achieved 76% accuracy,
which was much higher than j2swift’s accuracy of 57%.

Based on the outmost brace pair of Figure 2(a), J2SINFERER aligns
lines 1-7, compares the code regions, and finds their string content
to be similar. Leveraging this finding, j2sINFERER further aligns
lines 2-7 based on the intermediate brace pair, and lines 5-7 based
on the innermost brace pair. It then compares code line-by-line
within each aligned region. This iterative process continues until
every pair of similar lines are identified. After identifying similar
lines, J2SINFERER represents each line as one or more string tem-
plates [31], with every template containing abstract parameters
($p) that can be concretized with arguments (i.e., expressions or
idenfiers). J2sINFERER maps the string templates and arguments
between languages by aligning the program syntax trees based on
commonly used keywords, operators, and markers across languages, as
the meaning of these notations seldom vary between different object-
oriented (OO) languages. For our example in Figure 3, J2SINFERER
extracts string templates from both versions, and records the corre-
sponding Java syntax node type of each template. It also records
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(a) The Java and Swift versions of PieChart used for rule inference

//PieChart. java //PieChartView.swift
1 public class PieChart extends PieChartBase<PieData> { public class PieChartView: PieChartViewBase {
2 private void calcAngles() { ... private func calcAngles() { ...
3 int entryCount = mData.getEntryCount(); let entryCount = data.entryCount
4 int cnt = 0; var cnt = @
5 for(int i = @; i < mData.getDataSetCount(); i++){ for i in @ ..< data.dataSetCount {
6 IPieDataSet set = mData.get(i); let set = data[i]
7 L33 .33
(b) Generating Swift code from a given Java program with rule application
//new example //translated code from templates
1 private void calcNewAngle(){... private func calcNewAngle() {...//translated
2 int ¢ = set.getDataSetCount(); let ¢ = set.dataSetCount //translated
3 for (int j = 1; j < c; j++) { for jinl ..<c { //translated
4 IPieDataSet elem = set.get(i); let elem = set[i] //translated
5 mAbsoluteAngles[cnt] += elem.get(); mAbsoluteAngles[cnt] += elem.get()//?
6 ...1} ...1}
Figure 2: A code migration example
No. Java syntax node type Java templat Swift templat
1 | typeDeclaration public class $pl@ extends $pl1l {...} public class $p10: $p1l1 {...}
2 | classBodyDeclaration private void $p200) {...} private func $p200 {...}
3 | localVarDeclStatement $p30 $p31 = $p32; let $p31 = $p32
expression $p33.getEntryCount() $p33.entryCount
4 | localVarDeclStatement $p40 $p4l = $p42; var $p4l = $p42
5 | statement for($p50 $p51 = $p52; $p51 < $p53; $p51++) {...}| for $p51 in $p52 ..< $p53 {...}
expression $p54.getDataSetCount() $p54.dataSetCount
6 | localVarDeclStatement $p60 $p61 = $p62; let $p61 = $p62
expression $p63.get($p64) $p63[$p64]
Figure 3: String template mappings
Parameter Argument in Java Argument in Swift 3 DESIGN AND IMPLEMENTATION
Sp10 PTeChart - P}eCharthew As shown in Figure 1, J2sINFERER contains two phases: rule infer-
$p11 PieChartBase<PieData> |PieChartViewBase .. .
ence and rule application. The first phase takes as input a corpus of
$p20 calcAngles calcAngles . . . . . .
$p31 entryCount entryCount software implemented in both Java and Swift, and iteratively aligns
$p32 Data. getEntryCount() | data. entryCount and matches cocPe and syntax trees to generate str.mg template and
$p33 mData data argument mappings. The second phase takes as input a new Java
program, selects applicable template and argument mapping rules,

Figure 4: Argument mappings

the argument mappings, such as PieChart and PieChartView shown
in Figure 4.

The first phase of j2sINFERER produces a collection of migration
rules, in which each rule comprises a string template and argument
mappings. The second phase applies these mappings to translate
Java to Swift line by line. Specifically, it coverts each Java line to a
syntax tree. According to the root node’s type, J2SINFERER searches
its rule database to find all matching Java templates. The found
templates are then ranked based on their occurrence frequencies in
the codebase, with the most frequently used template selected for
the translation. Starting with the selected Java template, J2SINFERER
creates a Swift code fragment based on the related Swift template
and relevant argument mappings.

By applying j2sINFERER, Alex obtains a partially translated Swift
version of the application, with the lines that y2sINFERER could not
translate simply copied over and explicitly marked (e.g., //? on line
5 in Figure 2 (b)). By focusing Alex’s manual effort on these hard-to-
translate lines, J2sINFERER can simplify the tedious and error-prone
task of translating applications between different languages.
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and iteratively applies the rules to produce Swift code. In this sec-
tion, we first discuss how code is aligned and matched (Section 3.1),
and then describe how rules are generated (Section 3.2) and applied
(Section 3.3).

3.1 Alignment and Matching of Code

Intuitively, when translating code from one OO language to an-
other, developers are likely to convert code statement by statement.
Therefore, to mimic developers’ intuitive code translation practice,
we designed J2sINFERER to infer Java-to-Swift translation rules from
a corpus of software in Java and Swift by first identifying the code
regions that may have statement-to-statement correspondences be-
tween the versions. To locate these regions, our approach leverages
braces, line separators, and string similarity.

String Similarity-Based Source File Comparison. When a
program is implemented in Java (P;) and in Swift (Ps), J2SINFERER
first compares the string similarity of file names in both programs
using SimMetrics [14]. If the string similarity between two names
is above 0.7, J2sINFERER considers the files (i.e., Fj and Fs) as a
matching pair that may implement identical functionalities.
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Code Normalization. Before further aligning and matching Algorithm 1: Generating template and argument mappings
code for each file pair, j2sINFERER normalizes source code to remove

Input :(Lj, Ls) /* pair of matching lines between

comments and any unnecessary line break within a statement,
and to add braces to delimit the body of compound statements
(e.g., while-loop’s body) if there is none. By standardizing code

Java and Swift

*/

Output:(M;, M,) /* mappings of string templates and

representation, J2sINFERER ensures that the same type of statements arguments */
always have the same layout and format, and thus can be processed M;:= 0, Mg:= 0;
in the same way. With more details, J2SINFERER creates a syntax queue;:= 0, queues:= 0;
tree for each file using ANTLR [1], and implements a pretty printer /% 1. initial subtree matching */
to traverse the tree and to print source code in a standard way. Tj:= getST(L);
Figure 2 (a) demonstrates the source code after normalization. Ts:= getST(Ls);
Code Region Alignment Based on Braces and Line Sepa- queuej.enque(T});
rators. Starting from the normalized representation, J2SINFERER queues.enque(Ty);
aligns code based on braces, because OO languages commonly use while !queue;.isEmpty() do
braces to delimit the body of class declarations, method declarations, /* 2. operator-based substring extraction */
and compound statements (e.g., switch-statement and for-loop). We streej:=queuej.deque(), strees:=queues.deque();
use the term braced region to refer to the block delimited by { and opj:= getHighestOp(stree;);
} plus the code right before but on the same line as the open brace ops:= getHighestOp(strees);
(such as class header and if-condition). Here the code line right tmpLj:=getString(stree;);
before the open brace is called header. For our example in Figure 2, tmpSj:=getString(strees);
lines 1-7 in both versions are aligned in this way. By delimiting if opj ! = ops then
code blocks and statements with line separators and braces, we if opj == %" then
aimed to simplify the problem of inferring statement-level program | specialMatch(tmpL, tmpS;j, My, Ma);
syntactic mappings across languages to the problem of reasoning end
about mappings between similar code lines. else
Code Region Matching Based On String Similarity. j2SINFERER | flatMatch(tmpL;, tmpSj, My, Ma);

compares the aligned code region for string similarity. If two code end
regions (e.g., Rj and R;) have at least 0.5 similarity, J2SINFERER fur- end
ther aligns and matches any braced region inside them to establish else
finer-granularity matching. If R; and Ry do not contain any match- strs;j:= split(tmpLj, op;), strss:= split(tmpS;, ops);
ing inner braces, J2SINFERER compares their code line by line. Code /* 3. substring comparison */
lines are considered to match if they have at least 0.5 similarity. foreach String s; € strs; do
As mentioned in Section 2, Java and Swift code can be different in ss = findBestMatch(strss);
several aspects. By using a relatively low similarity threshold (i.e., if ¢! = null then
0.5), we are able to match syntactically equivalent implementations Ma:=Mg U (sj, s5);
while tolerating some syntactic differences. If one line L; in R; Sirss = sirss- ss;
matches multiple lines in Ry or vice versa, J2SINFERER picks the line end
with the highest similarity score in Ry as the best match for L;. This end
iterative alignment and matching process continues until every end
pair of similar lines is identified. Due to our code normalization, /* 4. template generation */
each matched line pair can be simply considered as a pair of match- parameterize(Lj, Ls, Mg);
ing statements. J2sINFERER aims to infer translation rules from templatej:=moreParameterize(tmpL;);
matched statements, and then to automate statement-to-statement templates:=moreParameterize(tmpS;);
translation by applying the inferred rules. javaNodeType := streej.getNodeType();

M; := My U (javaNodeType, template;, templates);

/* 5. mapping inference for substrings */
3.2 Syntax Tree Alignment and Mapping foreach (sj, ss) € M, do
For each pair of similar lines or matching statements, J2SINFERER if lisLeaf(s;, stree;) && lisLeafiss, strees) then
parses syntax trees, and aligns subtrees relying on basic language tj:=getST(s;);
features like the commonly used keywords, operators, and markers. ts:=getSTlss);
Our insight is that different OO languages have similar basic language queuej.enque(t;);
features. By using the common features as anchors, we can align queues.enque(ts);
distinct code fragments across languages and thus infer the underlying end
translation rules. To align syntax trees and generate mappings, end

J2sINFERER takes five steps. Algorithm 1 formally describes the
five-step process.
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Figure 5: Syntax trees of a pair of matching lines

To facilitate the explanation of our algorithm, we also present the
ANTLR-generated syntax trees of a matching code pair in Figure 5.
Both the Java and Swift statements implement the same function-
ality (i.e., obtaining the size of a collection). As shown in Figure 5,
ANTLR generates a separate branch for each identifier, keyword,
operator, and marker. It may create a sequence of single-child inner
nodes before producing a leaf node or several branches (e.g., mData
and data.entryCount as circled with dashed lines). Although the
two statements look similar, their syntax trees differ in terms of
the tree heights, node types, and tree structures. Semicolons are
mandatory in Java but optional in Swift.
Step 1: Initial Subtree Matching. Given the matching code
pair, J2sINFERER traverses their syntax trees to find the lowest level
of subtree pairs that reflect the string matching while ignoring semi-
colons. In Figure 5 (a), the inner node localVariableDeclaration in
Java corresponds to int entryCount=mData.getEntryCount(), while
the node constant_declaration in Swift corresponds to let entryCount
=data.entryCount. Based on the similar strings, we match these two
subtrees (localVariableDeclaration, constant_declaration), and
adds the subtrees to two separate queues—queue; and queues—for
further processing.

Step 2: Operator-Based Substring Extraction. Given two match-
ing subtrees: stree; and strees, J2SINFERER searches for the highest
operator in each syntax tree (i.e., op; and ops). If the operators are
the same, J2SINFERER further extracts expressions and identifiers by
splitting each string based on the matching operator, whitespace,
and semicolon, and by excluding structure-relevant keywords from
the substring set. In our research, we classify keywords into two
types: structure-relevant vs. structure-irrelevant, and treat them dif-
ferently. The structure-relevant keywords (e.g., for) are inherent in
program structures. They do not vary with the content put into the
structures, and thus should be included as parts of the generated tem-
plates. The structure-irrelevant keywords (e.g., int) are not closely
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bound to any syntactic component, and thus does not indicate the
program structure. They are replaceable by other identifiers, and
should be parameterized away instead of included when generating
templates.

For our exemplar statement int entryCount=mData.getEntryCount(),

the highest operator is =, which matches the highest operator in
the Swift code. Based on this operator and whitespace, we can split
the Java code into three substrings: int, entryCount, and mData.
getEntryCount(). None of these substrings is a structure-relevant
keyword, so they are all included into the resulting substring set
strsj. Similarly, J2SINFERER also splits the Swift statement let
entryCount=data.entryCount into three substrings: let, entryCount,
and data.entryCount. However, as the keyword let is structure-
relevant, J2sINFERER excludes it from the resulting substring set
strss.

Step 3: Substring Comparison. Between the two extracted
substring sets—strs; and strs;, J2SINFERER exhaustively compares
strings pair-by-pair to find the best match for each string, and
to reveal the correspondence between different parts of the code
pair. The default similarity threshold is 0.5, meaning that if the
similarity between two strings is less than 0.5, they are consid-
ered dissimilar. In our example, entryCount exists in both versions
and matches, while mData.getEntryCount() and data.entryCount
are similar and matched. However, int does not match anything,
indicating that this identifier is used only in the Java version, with-
out being translated to Swift. Therefore, all matched substrings are
saved as argument mappings in a database, as shown in Figure 4.

Step 4: Template Generation. For the given code pair, J2SINFERER
creates templates by consistently replacing each pair of matched
substrings with the same parameter, and by replacing each un-
matched substring with a unique parameter. For our example,
J2sINFERER infers the Java template $p30 $p31 $p32; and the
Swift template let $p31 = $p32. This template pair and the Java
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syntax node type are saved as a template mapping in the database,
as shown in Table 3.

Step 5: Mapping Inference for Substrings. The template and
argument mappings generated so far only describe statement-level
mappings, without showing how expressions can be structured
differently between languages. Such coarse-grained mappings only
allow J2SINFERER to restructure statements by moving Java expres-
sions around, but do not support further translations of Java ex-
pressions to Swift ones. To enable expression-level translations,
J2sINFERER continues comparing matched substrings, and gen-
erates fine-grained mappings by repeating Steps 1-4 iteratively.
For our example, the further iteration of Steps 1-4 on substrings
mData.getEntryCount () and data.entryCount produces an extra tem-
plate mapping—(expression, $p33.getEntryCount(), $p33.entryCount),
and an additional argument mapping ($p33, mData, data).

With the template mapping, we know how to translate a Java
method API invocation (i.e., $p33.getEntryCount()) to a Swift field
API access (i.e., $p33.entryCount).

Although our algorithm is intuitively explained with a pair of
variable declaration statements, the algorithm also contains special
logic to effectively handle compound statements (e.g., for-loop)
and code pairs without matching operators (e.g., a+b vs. sum(a, b)).
In particular, as shown in Figure 6, the syntax tree of a compound
statement (e.g., for-loop) may correspond to the statement itself
together with those statements under the structure (e.g., statements
inside the for-loop body). In such scenarios, Step 1 initializes sub-
tree matching for the whole compound statement, while Steps 2-5
only focus on the header’s subtrees ignoring the statements con-
tained by the body. When semicolons are used in the header of
Java for-loop, J2sINFERER implements a separate match method
specialMatch(...) to specially treat semicolons as delimiters used
in the resulting inferred template. Additionally, in Step 2, if two
syntax trees have no matching highest-level operator (e.g., a+b vs.
sum(a, b)), J2SINFERER implements flatMatch(...) to simply split
each string based on all operators, markers, and whitespace.

3.3 Template Selection and Code Translation

If we consider the above rule inference process as iteratively re-
placing concrete substrings with abstract parameters to generate
mappings, then the rule application phase can be considered as the
reverse process. It iteratively selects mappings to generate code
by replacing abstract parameters with concrete substrings. There-
fore, some functions mentioned in Section 3.2 can be reused in this
phase.

Given a Java code line to translate (e.g., for(int j=1;j<c;j++){),
J2sSINFERER first locates the lowest subtree that matches the code
(getST(...)), and then selects related template mappings based on
the subtree’s node type. Figure 6 presents the syntax tree found
for the above exemplar Java code. Based on the syntax node type
(statement), J2SINFERER queries its database to get all relevant tem-
plate mappings. Among all the mappings shown in Figure 3, there
is only one relevant mapping as shown below, which is selected to
translate this code.

(statement, for($p50 $p51 = $p52; $p51 < $p53; $p51++) {...3,

for $p51 in $p52 ..< $p53 {...})
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Code translation involves two parts: string-template matching
and argument replacement. With template mappings selected based
on a syntax node type, J2SINFERER tentatively matches the given
Java code with each Java template to check which template map-
ping is applicable. If multiple mappings are applicable, J2SINFERER
picks the one that occurs most in the rule inference phase. For our
example, the Java code matches the Java template in the above
mapping (3.3). Therefore, J2sINFERER identifies the following corre-
spondence between concrete substrings and abstract parameters
accordingly:

(int, $p50), (3, $p51), (1, $p52), (c, $p53)

According to the template mapping (3.3), J2sINFERER detects that
$p51, $p52, and $p53 are reused in the Swift template. It then queries
the database for argument mappings related to any of these con-
crete substrings: j, 1, and c. If there is such an argument mapping,
J2sINFERER simply uses the corresponding Swift substring to gener-
ate code; otherwise, J2SINFERER reuses the Java substring for code
generation. In our example, there is no argument mapping found,
so J2sINFERER translates code by replacing parameters used in the
Swift template with corresponding Java substrings, producing the
following Swift-style string: for(j in 1 ..< c){.

Finally, j2sINFERER checks whether each extracted Java substring
(ie., int, j, 1, and c) corresponds to a leaf node or inner node in the
original syntax tree. If a substring corresponds to a leaf node, the
substring is an identifier, and does not need any further conversion.
However, if a substring corresponds to an inner node, J2sSINFERER
leverages the inner node’s type to query the database, and to itera-
tively convert Java expressions to Swift ones. The process continues
until every Java expression is converted, or until there is no appli-
cable template mapping for translation. In our example, since all
Java substrings are identifiers, J2SINFERER does not need to convert
any expressions after producing the Swift-style string mentioned
above.

A naive non-iterative alternative rule inference and appli-
cation algorithm. To generate template and argument mappings
from the matching statements between Java and Swift, a naive non-
iterative alternative would be to simply extract substrings based
on all operators, markers, whitespace, and keywords, and then to
establish mappings between the two substring sets. Although this
approach can generate some mappings, the applicability of the in-
ferred mappings is limited. For instance, given two similar strings:
c=atb; vs. c=sum(a, b), only one template mapping can be inferred
in this way: (localVarDeclStat $p@=$p1+$p2; $po=sum($p1, $p2)).
This mapping does not enable J2SINFERER to convert d=a+b+c to
d=sum(sum(a, b), c). However, with our syntax tree-based itera-
tive template inference algorithm, J2sINFERER can correctly trans-
late the expression by iteratively applying two inferred template
mappings: (localVarDeclStat, $p@=$p1;, $p0=$p1), (expression,
$p1+$p2, sum($pl, $p2)).

4 EVALUATION

This section presents our evaluation data set (Section 4.1), the accu-
racy metric (Section 4.2), and the three experiments we conducted
on the dataset (Section 4.3, 4.4, and 4.5).
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Figure 6: In this Java syntax tree of for(int j=1; j<c; j++). ..

body.
4.1 Dataset

To evaluate how effectively J2SINFERER can infer and apply rules to
translate Java code to Swift, we collected four subject applications:
charts [6, 7], antlr4-runtime [2], cardboard [4, 5], and geometry-
api [8, 9], each of which has both Java and Swift implementations. A
brief description of our subjects is as follows. charts is a chart/graph
view library that supports different kinds of charts, including line
charts, bar charts, and pie charts. antlr4-runtime is a component
of ANTLR, which is a parser generator for reading, processing,
executing, or translating structured text or binary files. ANTLR
provides multiple versions of its runtime component in different
languages. cardboard is the Google cardboard virtual reality (VR)
toolkit library, which simplifies common VR development tasks,
such as lens distortion correction and head tracking. geometry-
api provides APIs for simple geometries, spatial operations, and
topological relationship tests.

By aligning the two versions of each application in the way
mentioned in Section 3.1, we identified a subset of the code whose
implementation can be intuitively matched across languages. Ta-
ble 1 shows the lines of code (LOC) for both versions of each subject,
and the LOC with successful alignment. In total, there are 3,859
LOC aligned between the two versions of programs. We used these
3,859 aligned code pairs as the data set in our evaluation. These
code pairs cover syntax components that include class, field, and
method declarations, compound statements, and simple statements.

Table 1: Dataset of cross-platform applications

Project | Java LOC | Swift LOC | Aligned LOC
charts 29,861 22,428 2,507
antlr4-runtime 24,617 24,603 1,023
cardboard 7,006 3,279 176
geometry-api 105,887 993 153

According to Table 1, geometry-api has the largest Java codebase
but the smallest Swift codebase, with only 153 LOC aligned between
the two versions. This discrepancy is due to the Swift version only
partially implementing the functionalities of the Java version. charts

expression
expression < expression expressionList

primary

c

statement

: forUpdate block

{ blockStatement
expression localVariableDeclarationStatement
expression ++ localVariableDeclaration

primary

I

, we use ellipses (“..”) to succinctly represent content in the loop
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has a relatively large code size in both Java and Swift versions, and
contains the largest LOC value (i.e., 2,507) for the aligned code.
Table 2 demonstrates the top 10 most frequent template map-
pings inferred from the aligned code of charts. The top-1 most
frequent template mapping corresponds to local variable declara-
tions. The only difference between the two templates is that Swift
code does not need a type identifier when declaring a variable;
instead, it requires using the var keyword. The 24 and 7t most
frequent template mappings have identical Java parts but slightly
different Swift parts. This peculiarity indicates that when trans-
lating some types of statements (e.g., if-statements), developers
actually followed more than one translation strategy, as guided by
their individual coding styles or preferences. However, manually de-
fined rules describe at most one strategy for each kind of translated
statements. By inferring the alternative rules that were followed
during manual code translation, J2SINFERER can be configured to
favor any of the alternatives based on their context or frequency.
Template mappings ranked 37d 4th 7th and 8" have identical
Java and Swift counterparts. One may deem mappings like these
unnecessary, but in fact they serve two purposes. First, when infer-
ring translation rules, these mappings work as anchors that align
heterogeneous syntax trees between Java and Swift, and further
reveal lower-level structural and content mappings. For example,
given a=b=c in Java and a=(b=c) in Swift, by leveraging the 4'"
mapping when comparing two syntax trees, J2SINFERER can cor-
rectly align the first assignment operator in both versions, and infer
the following argument mappings: ($p@, a, a), ($p1, b=c, (b=c)).
Second, when translating code, these mappings help correctly split
Java code, enabling separate translation of each substring. For exam-
ple, based on the 7" and gth mappings, J2sINFERER can correctly
translate if (!m.aname()) to if (!m.sname()), when there is an
argument mapping ($p0, m.aname(), m. sname()) in its database.

4.2 Accuracy

To measure J2sINFERER's effectiveness, we define accuracy as the
percentage of lines that j2SINFERER has translated correctly. To decide
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Table 2: Top 10 most frequent template mappings inferred from charts

Rank ‘ Java syntax type ‘ Java template ‘ Swift template Cnt
1 localVarDeclStmt $p2 $p0 = $p1; var $p0 = $p1 90
2 statement if ($p0) {...} if $p0 {...} 70
3 importDecl import $p0; import $p0 69
4 statement $p0 = $p1; $p0 = $p1 68
5 classBodyDecl public $p0 $p1 () {...} public var $p1 : $p0 {..} 65
6 statement return $p0; return $p0 63
7 statement if ($p0) {..} if ($p0) {..} 37
8 expression ! $p0 ! $p0 29
9 classBodyDeclStmt | private $p2 $p0 = $p1; private var $p0 = $p1 24
10 classBodyDecl public $p0 $p1($p2 $p3) {...} | public func $p1($p3: $p2) -> $p0 {...} 19

whether a line of code is translated correctly, we compare the tool-
generated code with the original Swift version of applications. The
translation is considered correct if one of the following criteria
applies:

e the translated version is identical to the human-translated
version (oracle);

o the translated version has no syntax error and is syntactically
similar to the oracle, with the differences confined to the
usage of identifiers; and

o the translated version is syntactically valid and semantically
equivalent to the oracle, while adhering to a different syntax.

We conducted three experiments to measure J2SINFERER’s ac-
curacy. In the first experiment, each subject’s aligned code is par-
titioned into the inference and application subsets. We used the
inference subset to infer translation rules, and the application subset
to apply them, thereby evaluating the accuracy rate of J2SINFERER’s
in-project translation (Section 4.3). In the second experiment, we
followed a similar process by inferring rules from three subjects,
and applying them to the remaining one, thereby assessing the
accuracy of J2SINFERER’s cross-project translation (Section 4.4). Fi-
nally, in the third experiment, we compared the output produced by
J2sINFERER to that produced by j2swift, a state-of-the-art Java-to-
Swift translation tool (Section 4.5), thereby assessing the respective
accuracy rates for both tools.

4.3 In-Project Translation

For each subject, we first identified all source files containing any
aligned code. Then we used the aligned code in 75% of these files
as the inference set, and the aligned code in the other 25% files
as the application set. Table 3 shows J2SINFERER’s accuracy for
the application set in each subject. As both Java and Swift have
four common syntactic components: type declaration (TypeDecl),
method declaration (MethodDecl), field declaration (FieldDecl), and
statement, Table 3 presents the accuracy rate for each component.

The overall accuracy is 76%(498/654) on average. cardboard and
geometry-api lack data for FieldDecl type mainly because devel-
opers did not intuitively translate the field declarations across lan-
guages. Among the four common types, Statement has the highest
average accuracy (84%), while MethodDecl obtains the lowest one
(73%). This discrepancy is caused by the fact that there are more
template variants for method declaration headers than statements.
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Table 3: In-project code translation results

Common | charts antlr4 cardboard | geometry-
Type api
TypeDecl 73%(27/37) | 88%(7/8) 100%(3/3) | 0%(0/1)
MethodDecl | 80%(34/42) | 78%(34/45) 70%(7/10) | 36%(4/11)
FieldDecl | 75%(24/32) | 88%(42/48) B -
Statement | 83%(196/235)| 92%(146/159) | 42%(5/12) | 36%(4/11)
Average | 81%(246/346)] 88%(229/260) | 60%(15/25) | 35%(8/23)

The number and sequential order of parameters and modifiers (e.g.,
final and static) can produce numerous formats of method decla-
ration headers, making it harder to match a given concrete header
with already inferred templates.

charts and antlr4-runtime show higher overall accuracy (81% and
88%) than cardboard and geometry-api (60% and 35%). We noticed
that the owners of the first two applications (charts and antlr4-
runtime) maintain both the Java and Swift versions, while the other
two applications’ different versions (cardboard and geometry-api)
are owned by different people. This observation may indicate that
when the same developer maintains both versions of an applica-
tion, she is likely to manually port one language implementation
to the other (i.e., Java to Swift). With such manually translated
applications, J2sINFERER can effectively infer and apply the intu-
itive code translation rules with high accuracy. However, when
the Java and Swift versions are maintained by different develop-
ers, these versions tend to be built independently instead of being
manually ported from one to another. Therefore, it is not surpris-
ing that J2sINFERER achieves lower accuracy when we compare its
translation with a separately built Swift version.

4.4 Cross-Project Translation

In addition to inferring and applying translation rules within the
same project, we also inferred rules from three subjects, and then
applied the inferred rules to a fourth subject. Compared with the
in-project translation, such cross-project translation may be unable
to identify sufficient project-specific mappings for the target Java
project. However, this translation strategy can better fit the real
usage scenarios, in which developers create a brand new Swift
project by using J2sINFERER to automatically translate their Java
code.
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Table 4: Cross-project code translation results

Common | charts antlr4- cardboard | geometry-
type runtime api
TypeDecl | 47%(10/21) | 86%(36/42) 100%(8/8) | 100%(2/2)
MethodDecl | 60%(39/65) | 66%(80/122) | 56%(19/34) | 62%(38/61)
FieldDecl | 42%(34/81) | 57%(98/174) - -
Statement | 56%(73/122) | 84%(128/152) | 93%(39/42) | 80%(40/50)
Average | 51%(156/307)| 69%(342/490) | 78%(66/84) | 71%(80/113)

Table 4 shows the cross-project translation results. The overall
accuracy is 65%(644/994) on average, which is lower than the in-
project translation accuracy reported in Section 4.3. Specifically,
we obtained a much lower accuracy result for charts (51% vs. 81%).
This significant accuracy decrease occurs because charts’ train-
ing data of cross-project translation is much smaller than that of
in-project translation, and insufficient training data weakens the
translation capability. antlr-runtime’s accuracy rate of 69% is much
lower than the 88% of the in-project translation, despite the sub-
stantially enlarged training set for cross-project translation. This
is because there are many mappings specific to antlr-runtime (e.g.,
project-specific method calls), which are not inferable from other
subjects’ data. Both cardboard and geometry-api achieve higher
accuracy for cross-project than in-project translations, because the
training data from other projects manifests a more comprehensive
set of translation rules.

4.5 Comparison with j2swift

j2swift [10] is a state-of-the-art Java-to-Swift syntax converter.
It leverages ANTLR to create a parse tree for Java, and imple-
ments manually defined syntax conversion rules to generate Swift
code while walking the parse tree. The documentation claims that
j2swift finishes 80% translation tasks for simple Java code. We
used one half of the files with aligned data for j2sINFERER to infer
rules, and the other half of the files to evaluate the code transla-
tion accuracy of both j2sINFERER and j2swift. Table 5 shows that
J2SINFERER outperforms j2swift for each common type. The av-
erage accuracy of J2sINFERER is 76%, which is much higher than
J2SINFERER’s 57% accuracy rate. This observation is unsurprising,
because j2sINFERER flexibly infers both template and argument
mappings, while j2swift hard-codes only some template mappings.
When translating Java code, J2sINFERER has more template map-
pings and argument mappings to apply than j2swift. Consider
translating if(set.getEntryCount() >max.getEntryCount()) to if
set.entryCount>max.entryCount. Without encoding the domain knowl-
edge of mapping member APIs ($p.getEntryCount() vs.
$p.entryCount), j2swift can only copy the original code to Swift
code without translating it. In comparison, J2SINFERER can trans-
late this code correctly due to its inferred rules.

5 THREATS TO VALIDITY

J2sINFERER infers template and argument mappings from matched
statements between Java and Swift. When the inference data set
fails to cover the mappings required for a particular translation task
or includes incorrect translation examples, J2SINFERER would not
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Table 5: J2SINFERER vs. j2swift

Common type | j2sINFERER |  j2swift

TypeDecl 65%(37/57) | 40%(23/57)
MethodDecl 58%(71/122) | 55%(67/122)
FieldDecl 70%(150/214) | 38%(82/214)
Statement 83%(471/565) | 66%(372/565)
Average | 76%(729/958) | 57%(544/958)

be able to translate code correctly. One can alleviate this problem
by expanding the inference data with additional code pairs.

Our inferred rules currently exclude the type information for
identifiers. This exclusion makes it possible to incorrectly apply
some rules to identifiers with unmatched types. As a future work
direction, we plan to fully exploit type information for both rule
inference and application.

When multiple inferred template and argument mappings are
applicable to a Java code snippet, J2SINFERER selects the most fre-
quent one. This frequency-based selection may be inappropriate.
In the future, we plan to ask users to select the best mapping for a
given context to eliminate this threat.

J2sINFERER currently translates code line-by-line or statement-
by-statement to mimic the intuitive manual code translation prac-
tices. However, when matching different language libraries, develop-
ers sometimes need to map APIs in one-to-many or many-to-many
ways. In addition, a Java class declaration may be mapped to several
Swift class declarations. J2SINFERER currently provides no support
for such translation tasks. Novel approaches are required to be
able to automate the inference and applications of these complex
mappings.

6 CONCLUSIONS AND FUTURE WORK

As native cross-platform mobile apps have become an industry
standard, their development remains challenging. We presented
J2sINFERER that facilitates the porting of such apps between dif-
ferent platforms. The data-driven nature of J2SINFERER causes its
effectiveness to grow with the number of codebases available for
rule inferencing. In our evaluation, even with the limited training
data, J2SINFERER clearly outperformed j2swift in terms of transla-
tion accuracy. As a future work, we plan to enhance J2SINFERER
to support translation involving code refactoring, to further im-
prove J2sINFERER’s translation accuracy, and to extend it to handle
other inter-language translation tasks. As major mobile platforms
keep competing for market dominance, mobile developers will con-
tinue translating their apps across languages, and our approach can
streamline this non-trivial process.

AVAILABILITY

The source code of J2sINFERER described in the paper can be down-
loaded from this website: https://git.cs.vt.edu/ankijin/j2sInferer.
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