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ABSTRACT

Modern mobile users commonly use multiple heterogeneous mo-

bile devices, including smartphones, tablets, and wearables. En-

abling these devices to seamlessly share their computational, net-

work, and sensing resources has great potential benefit. Sharing

resources across collocated mobile devices creates mobile device

clouds (MDCs), commonly used to optimize application perfor-

mance and to enable novel applications. However, enabling hetero-

geneous mobile devices to share their resources presents a number

of difficulties, including the need to coordinate and steer the exe-

cution of devices with dissimilar network interfaces, application

programming models, and system architectures. In this paper, we

describe a solution that systematically empowers heterogeneous

mobile devices to seamlessly, reliably, and efficiently share their re-

sources. We present a programming model and runtime support for

heterogeneous mobile device-to-device resource sharing. Our solu-

tion comprises a declarative domain-specific language for device-to-

device cooperation, supported by a powerful runtime infrastructure.

we evaluated our solution by conducting a controlled user study

and running performance/energy efficiency benchmarks. The eval-

uation results indicate that our solution can become a practical tool

for enhancing the capabilities of modern mobile applications by

leveraging the resources of nearby mobile devices.
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1 INTRODUCTION

The modern computing landscape is marked by several rapidly

evolving realities. A typical user owns multiple mobile devices that

differ in their types, platforms, and capabilities. For example, a

user may simultaneously own a smartphone, a tablet, an e-reader,

each of which runs a different operating system and offers vastly

dissimilar processing capabilities, sensory functionalities, and net-

working interfaces. Furthermore, the number and variety of mobile
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devices in a typical household is even greater. Finally, the rapid

developments in wearable computing and the Internet of Things

(IoT) have the potential to increase these numbers for a typical user

by as much as an order of magnitude in the near future.

Mobile devices have traditionally used the cloud as a means of

enhancing their execution [25, 26, 44], both to improve the quality

of service and to extend their functionality. Nevertheless, accessing

cloud-based resources is not always feasible, beneficial, or safe.

On the other hand, with the rapid growth of capacity of mobile

devices, the computational power could be provided by nearby

mobile devices instead. All these scenarios give rise to the potential

of leveraging nearby mobile devices, often owned by the same

user or a community of users, as an alternative means of gaining

additional resources.

1.1 Motivating Scenarios

Figures 1, 2 and 3 depict three scenarios exemplifying the conditions

described above. In Figure 1, a smartphone application needs to

search for a given face from all photos in the phone’s album. Facial

recognition is known to be computation/energy-intensive thus

causing high latency/battery consumption, especially when the user

has hundreds of photos. In Figure 2, the driver is navigated through

a smart glasses interface. However, keeping the glasses’ GPSmodule

on continuously could drain the device’s battery quickly. In Figure
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Figure 1: Scenario 1: Photo Recognition
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Figure 2: Scenario 2: GPS Sharing
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Figure 3: Scenario 3: Data Plan Sharing

3, a smartphone user on a short-term trip to a foreign country needs

to access the Internet. However, without a local mobile account,

the phone cannot access any mobile data services provided by the

available cellular network providers.

Although the users mentioned above are all short of either

computational resources, context-related resources, or network

resources, various mobile devices (e.g., tablets, ereaders, and wear-

ables, etc.), owned by themselves or their acquaintances may be in

the immediate vicinity. These devices could provide the external

resources required to solve the problems above. One could rewrite

the mobile applications, so as to enable them to take advantage of

such external resources. In scenario 1, one can reduce the execu-

tion time of computationally intensive tasks if they are run in a

piecemeal fashion on nearby devices. In scenario 2, one can request

GPS sensory reading from a nearby mobile device with larger bat-

tery capacity. In scenario 3, one can access the Internet by using

a nearby mobile device, with a local mobile data plan, as a proxy

that forwards the network requests and responses.

1.2 Research Challenges and Contribution

The aforementioned scenarios demonstrate how by sharing the

resources of nearby devices, mobile applications can not only im-

prove their quality of service, but also provide new functionality.

However, several conceptual obstacles stand in the way of such

resource sharing across heterogeneous mobile devices. For example,

in scenario 1, one cannot execute offloaded mobile functionality

on a different platform (e.g., running Android code on iOS). In sce-

nario 2, one needs to be able to dynamically locate a nearby mobile

device, whose battery capacity can accommodate long-lasting GPS

sensor reading. In scenario 3, the programming interface to another

user’s mobile device must provide access to the device’s voluntarily

shared resources, while preventing misuse. The runtime in all sce-

narios must properly adapt to the mobility of the devices involved,

ensuring efficiency and robustness.

The prior state of the art has studied novel applications of sharing

resources across nearby mobile devices. However, these solutions

mostly have focused on specific mobile platforms, without the

overarching goal of supporting heterogeneous environments. These

prior solutions have lacked focus on programmability and thus

require the programmer to write complex logic for error handling

and performance/energy consumption optimization.

In this paper, we present solutions that address the deep, concep-

tual challenges of enabling mobile devices to provide/use resources

for/of nearby heterogeneous mobile devices. These solutions em-

brace heterogeneity, working with any pair of mobile devices, irre-

spective of their platforms, operating systems, or installed applica-

tions. Also, the presented solutions reduce the programmer’s effort

in creating reliable and efficient functionality for sharing resources.

This paper makes the following contributions:

• We study and reveal how existing applications can benefit

from shared resources of nearby devices.

• We design the Resource Query Language (RQL)—a declara-

tive domain-specific language for accessing shared resources

of nearby devices. RQL makes it possible to declaratively

express resource sharing requests by simply specifying the

preferred devices, resource types, and the actions to be car-

ried out. The RQL runtime is designed with provisions for

energy efficiency, latency optimization, and privacy preser-

vation when executing across heterogeneous mobile devices.

• We provide a reference implementation of the RQL language

and runtime support on major mobile platforms, including

iOS and Android. We also describe example applications that

make use of RQL to access resources across the iOS and

Android platforms

• We evaluate the programmability and efficiency of our tech-

nical approach through a case study and experiments. Our

results indicate that the presented solutions can improve the

productivity of mobile programmers, as well as improve the

performance/energy efficiency of mobile applications.

The rest of this paper is organized as follows. Section 2 stud-

ies the functionality of existing applications that can benefit from

resource sharing. Section 3 introduces our design of the resource
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sharing solution, focusing on the proposed RESTful language for

the programmers to specify their resource requirements. Section 4

describes the design of the runtime support, and the optimization

strategies we designed for energy efficiency, latency optimality,

and privacy preservation. Section 5 introduces our reference im-

plementation of RQL and its runtime. We also describe how we

have applied RQL to realize the solutions motivated in this section.

Section 6 shows how our resource sharing method benefits the pro-

grammers, as well as improve the performance/energy efficiency of

mobile applications. Section 7 summarizes the related state of art,

and Section 8 concludes this paper and puts forward some future

research directions based on this work.

2 IDENTIFYING REQUIREMENTS

In this section, we demonstrate the potential benefits of resource

sharing across mobile devices by answering these two questions: 1)

for existing apps, how many kinds of local API calls may possibly

be replaced with remote calls? 2) how frequently such replaceable

APIs are called in existing applications?

2.1 Methodology

In the study, we use 574 of most popular Android applications in

different application domains, which we downloaded from Google

Play in September 2014. We carefully analyzed the APIs included

in these applications, and found that those APIs which can benefit

from nearby resources can be classified into three major cate-

gories: (1) context-providing sensors/media tools (e.g., GPS,

accelerometer, microphone, camera); (2) computational re-

sources (e.g., processors, memory, and storage); (3) service

resources (e.g., network connections, phone service, SMS).

Following the steps given below, we pick the API calls that belong

to the above listed three categories.

1) We disassemble the deployment archives of these applications,

and use a tool called Baksmali to de-compile Android DEX (VM

bytecode) files into Smali files (readable code in the smali language)

which can be analyzed. Regular expressions are then used to pick

out all API calls, as shown in Fig 4. (a).

2) We then remove the APIs of the packages irrelevant for re-

source sharing, such as java/lang/, java/io/, com/google/ads/, an-

droid/view; android/os/. Fig 4.(b) shows the remaining APIs.

3) Finally we manually remove those APIs that do not fall into

the three considered categories above. Fig 4. (c) shows the left

APIs, in which those marked in black are the APIs that involve

service resources, those marked in green stand for APIs that need

computational resources, and those marked in yellow show APIs

that are sensor related.

2.2 Results

We randomly picked applications from 3 application domains (Book,

Business, and Game) and listed their API usages in Table. I. From the

table we can see: 1) The APIs that provide HTTP services, including

webview→loadurl, url→openconnection, httpurlconnection→connect,

httpclient→execute, are widely used in every application domain.

By cooperatively providing HTTP services for a group of devices,

one can reduce the total energy consumption of the group because

some contents can be shared among nearby devices[18]. Consider

Table 1: Offloadable APIs

Book Business Game

Number of applications 27 27 18

Services per application 2.7 2.7 3.6

Computational-intensive: database 0.59 0.48 0.5

Computational-intensive: crypto 0.59 0.37 0.83

Context-related API: sensor 0.29 0 0.67

Specific API 1: gestures recognition 0.41 0 0

Specific API 2: sslconnection 0 0.26 0

Specific API 3: khronos (OpenGL) 0 0 0.56

cellular links, which are energy intensive at low bit-rates and have

high round-trip times after idle periods. Here consolidating mul-

tiple users’ traffic on a subset of links would shorten the round

trip time as well as save the energy consumption[34]; 2) The APIs

for local database searching and crypto are frequently spotted in

game applications. Such APIs consume more computational power

than other APIs, so if they can be executed by another device with

greater computational power, it will save the overall energy con-

sumption and speed up the whole execution[1]; 3) The APIs for

obtaining sensors’ readings are frequently spotted in book and

game applications. As commercial sensors usually will not provide

enough accuracy to figure out the attitude of the phone and the

exact motion of users[48]; using other sensors from a nearby device

can provide a viable alternative.

By carefully analyzing existing applications, one can conclude

that most applications in different domains can generally benefit

from using the network service/ computational / sensory resources

of nearby devices. In the following sections, we will detail our

solutions that enable such resource sharing across nearby devices.

3 RQL DESIGN

In this section, we present the design of the resource sharing lan-

guage (RQL). RQL is a platform-independent, domain-specific lan-

guage that enables heterogeneous devices to seamlessly share their

resources. We designed RQL around the RESTful architecture [12],

a proven solution for many of the complexities of engineering

dynamic, heterogeneous distributed systems, including the WWW.

In our target domain, we leverage the flexibility of this architec-

ture to hide the complexity of the inherent heterogeneity of mobile

devices that need to participate in device-to-device resource sharing

scenarios. We observe that in this domain, the actual operations

on the shared resources are limited to a small set, and exploit this

observation to provide a concise yet powerful DSL for resource

sharing. Specifically, the design of RQL follows the verb/nouns par-

adigm: nouns express the requested resources, while verbs express

the actions performed on these resources.

We next present RQL by example. Consider an RQL statement:

pull glass:sensor/orientation. This statement will retrieve

the readings of the orientation sensor of a glass device, if it happens

to be in the vicinity; it will return a null reading otherwise. The
specific details of locating a glass device, connecting to it, retrieving

its readings, etc. are handled by the RQL runtime.

3.0.1 Nouns. RQL represents the resource intention with nouns.

Specifically, the nouns comprise the following parts: “device de-

scription:resource description/specific name”.
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Figure 4: Steps of Picking APIs

Pull:

Push:

Get Data Once

1. Send parameter

Delegate:

1.Send parameter

2.Get Result

Bind:

Get Data 
persistently

2. Send Data

Figure 5: Defined RQL Verbs

Device description defines device types (e.g., glass, smartphone,

tablet, etc.) or specific characteristics (e.g., name, owner, OS, etc.).

Resource description defines the type of resource (e.g., sensors, ser-

vices, files, etc.) followed by specific names (e.g., sensor/orientation,

sensor/gps, service/facerecognition, service/httpsend, etc.).

3.0.2 Verbs. Following the RESTful design principles, a small

number of verbs manipulates an infinite number of nouns. In partic-

ular, RQL defines only four verbs: pull, push, delegate, and bind.
As shown in Fig. 5, “pull” retrieves data from the service interface

of another device immediately; “push” sends data from the source

device to the target device; “delegate” sends some parameters and

then gets the execution results back; finally, “bind” establishes a
persistent connection to a device to obtain the value changes of a

specific sensor.

3.0.3 Adverbs. Although traditional RESTful interfaces consists

of only verbs and nouns, RQL integrates adverbs as informed by

some prior research on fault-tolerant RESTful services [11]. In

RQL, adverbs can express how commands should be executed

in terms of time or quality constraints. For example, an adverb

can express the timeout value for a pull command (in ms) (e.g.,

pull external:alg/OCR -latency < 500ms). Another adverb is
-blocking (e.g., pull external:sensor/GPS -blocking, which
expresses that the RQL call to retrieve the GPS reading should block,

to return only when a GPS reading becomes available or the call has

failed. By default, all RQL statements are non-blocking with the re-

sults communicated via an asynchronous callback mechanism. We

discuss a programming scenario involving the -blocking adverb
in Section 5.

Fig. 6 depicts several examples of using RQL. The first example is

concerned with getting GPS readings from another device. The sec-

ond example sends a data file to a remote device (belonging to user

John) to use as a parameter to a facial recognition algorithm. The

third example directs a remote device to perform an HTTP request

for a given URL and sends back the obtained output. The fourth ex-

ample establishes a persistent connection to get orientation sensor

updates from John’s smart glasses device.

Sometimes the source device may need to execute a sequence

of RQL statements on the same target device consecutively. To

that end, RQL features the “|” binary operator, which specifies

that its operands are to be transmitted in bulk to the target device

and executed in sequence. Consider the source device needing to

execute both the OCR and language translation algorithms one after

another on the same target device. The programmer can express

this functionality in RQL as shown in line 2 of Fig. 6. Batching RQL

requests may also reduce their aggregate latency.

4 RUNTIME DESIGN

To meet its design goals, RQL requires sophisticated runtime sup-

port for mainstream platforms (i.e., Android, iOS, and Windows

Phone). In this section, we identify the requirements and outline

design of such runtime support. With respect to requirements, the

RQL runtime must reconcile the need for efficiency with that of

portability and ease of implementation. Hence, we have deliberately

constrained our runtime design to the application space, so as to

avoid low-level, platform-specific system changes. In other words,

the user should be able to install the RQL runtime as if it were a

regular mobile application, albeit with extended permissions (e.g.,

access to all sensors, the ability to connect to remote services via

all available network interfaces, access to local application data and

external storage, etc.)
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1 . p u l l any : s en so r / GPS

2 . push John : f i l e / myphoto . j pg − i /DCIM/ 2 0 1 7 0 3 1 9 3 2 3 . j pg | d e l e g a t e s e r v i c e / f a c e R e c o gn i t i o n

3 . d e l e g a t e any : s e r v i c e / h t t p − t h t t p : / /www. goog l e . com

4 . b ind John / g l a s s e s : s en so r / o r i e n t a t i o n

Figure 6: RQL Examples
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Figure 7: General Design of Runtime Support

The runtime support, whose basic flow appears in Figure 7, in-

cludes three basic modules: client, server, and monitor. The client

module of Device A accepts an RQL request and determines whether

the request can be executed by a nearby device (Device B) by query-

ing a distributed registry of nearby devices and resources they

provide. The devices communicate by means of near field commu-

nication interface (e.g., Bluetooth). The server module of Device B

parses the request, executes it, and returns the result back to the

client module of Device A. The monitor module comprises two

parts: device and service status. The device status monitor keeps

track of the battery levels, resource usage status, and locations of

nearby devices. The service status module monitors the energy con-

sumption/latency of the services provided by the nearby devices.

In the remainder of this section, we will further demonstrate

how we optimized the runtime design for energy efficiency, latency

reduction, and privacy preservation.

4.1 Ensuring Energy Efficiency

4.1.1 Choosing Communication Channels. In our runtime de-

sign, Bluetooth Low Energy (BTLE) serves as the major commu-

nication mechanism for two reasons: 1) BTLE is known to be the

most energy efficient way to discover/announce external services.

Although WiFi and Bluetooth are popular device-to-device commu-

nication mechanisms, their energy consumption levels are larger

than that of BTLE, both in active and idle modes; 2) to support

heterogeneity, the runtime must be able to use a communication

mechanism supported by major mobile platforms. Mainstream mo-

bile communication mechanisms, including WiFi-direct and tradi-

tional Bluetooth, cannot connect a recent (i.e., 4.4.2 and up) Android

device with an iOS device.

However, BTLE does have some limitations. Chief among them

is the primary use-case for BTLE: command transmission and small

data-size transmissions. The main purpose of BTLE is to send small

bursts of data for extended periods of time while consuming min-

imal energy. The largest size package BTLE will send is 20 bytes.

Therefore, when the runtime needs to send a data file to another

device, using a different communication mechanism can provide

performance advantages.

To overcome the limitations of BTLE when transferring larger

data volumes, our design includes an optimization that makes use

of edge servers. When transferring a data file, the runtime at the

source device uploads the file to an edge server, and send the URL

of that file to the target device via a BTLE connection for the target

device to download. Nevertheless, it is worth noting that, with

both Android and iOS constantly improving the relatively new

inter-device communication mechanisms, our runtime is capable

of communicating via WiFi-direct, once it becomes available for

heterogeneous devices.

4.1.2 Choosing Target Device. When multiple devices can be

used for a given task, selecting the correct device could save the

overall energy consumption of all devices. For tasks that require

the service to send HTTP requests, as the 3G chips would still

cost energy when the data transmission is finished, combining

multiple requests and sending them at once could greatly save

the overall energy consumption. For tasks that require a specific

sensory reading like GPS, the major energy consumption happens

when the target device tries to obtain the sensory reading. Therefore,

combining multiple sensory requirement tasks to the same device

could also reduce the overall energy consumption.

We intend to use an incentive strategy to encourage batching

HTTP requests and sensory data requests to the same target device.

The basic idea is to let the device which has already been the dele-

gation of such requests to ask for lower bid prices for other tasks

of the same kind. The details are described in Sec. 4.3.
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4.2 Reducing Latency

Different from the HTTP requests and sensory data requests, RQL

requests which need to perform computationally intensive tasks

can not be energy-optimized by being batched to a same delegation.

On the contrary, when such tasks are combined to the same target

device, their time/latency usually gets larger. Therefore, in the

runtime, for those RQL requests that want to process an amount of

computation intensive tasks through multiple devices, the runtime

needs to act as the load balancer: it needs to divide the necessary

tasks into chunks between multiple devices in a way that the overall

waiting time is minimized.

The most accurate way to balance loads across numerous avail-

able devices is to get real-time loads from each devices and also

the execution time of each task in advance. However, the frequent

communication among devices costs extra energy and clogs the

channel as it is occupied for a larger amount of time. In such cases,

the solution we take is to log the load of each device in the for-

mat of how many tasks are running or waiting. The running tasks

of surrounding devices are updated through the device monitor’s

scanning action. When the runtime assigns one task to a device,

the device’s load of is incremented by one; when it get the result

back from a device, its load is decremented by one. Therefore, each

time when the runtime needs to assign a task, it assigns it to one

of all the devices providing that service with the lowest load.

4.3 Incentive Strategy

In the presence of multiple unrelated mobile users, the adopters

of this technology may face the problem of having to motivate

them to share the resources of their devices. One possible ap-

proach is putting in place an incentive strategy that employs micro-

transactions for devices to pay for the external resources consumed.

The payments can be represented as marketplace credits to pay for

using shared resources in the future or even as a standard currency.

The RQL runtime’s design includes an incentive strategy based

on the reversed auction model, as shown in Fig. 8. Before a device

can issue an RQL request, the runtime scans all nearby devices

and gets their bid prices for the required service. It then chooses a

device with the lowest bid price as the target of offloading. When

other devices have the same bid prices, it randomly picks one, or

chooses one according to their loads. After the task is finished and

the results are returned, it pays the chosen device the bid price as

incentive. This strategy would help motivate unrelated users to

make the resources of their devices available for sharing.

An incentive strategy can also take energy consumption into con-

sideration when offering bids. For example, a mobile device already

delegating HTTP or sensory tasks, should be able to offer lower bid

prices than idle devices, as performing additional tasks would incur

smaller energy costs. Therefore, the probability of forwarding the

majority of HTTP requests or sensory reading tasks to the same

device would increase. In such cases, the energy consumption of

all the participating devices becomes minimized. Hence, the initial

investment into recruiting mobile users to participate in resource

sharing will be amortized by the future improvements in usability

and performance. Incentive strategies thus constitute a promising

future research direction for this work.

Device 2Device 1

Two other devices 
subscribing GPS

Bid Price: 1 Bid Price: 5

1. Bid 1. Bid

2. Select

No other devices 
subscribing GPS

Figure 8: Flow of Reversed Auction
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4.4 Privacy and Security

Fig. 9 describe the potential threat of privacy leakage and security

issues, where device A and device B are the source and the target,

respectively. The security threats could arise in the following sce-

narios: 1) When the runtime on device A broadcasts the result of

some third party application, it could be wiretapped by a malware

installed on that device. 2) when the runtime on device A receives

the broadcast from device B through Bluetooth, another device C

binding to the same Bluetooth channel might get that message as

well. One can counter this security threat by encrypting the mes-

sage. To solve the problem, the third party application will need to

provide a public encryption key for each RQL request, so that the

runtime can encrypt the result with that key. This way, it is only

the third party application with the private key that can decrypt

the result. Although our reference implementation does not yet

include this security mechanism, our design makes it possible to

straightforwardly add it to the runtime.

5 REFERENCE IMPLEMENTATION

Our reference implementation of RQL and its runtime concretely

reifies the design decisions we described in Sections 3 and 4. While

we have implemented all the described features of RQL including

the required runtime support, some of the optimization and privacy

provisioning features of the runtime remain a work in progress.

To demonstrate our implementation, we next describe how we

used it to address the resource sharing needs in the three motivat-

ing examples from Section 1. The snippets of Java code in Fig 10

show how the three source devices use RQL to access resources

of nearby target devices. Fig 11. (a) gives an overview of the com-

munication flow between the source device’s applications and the

runtime, while Fig 11. (b) shows a sequence diagram of an iOS

device communicating with an Android device by means of RQL.
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:Connect to runtime

:Send RQl calls for querying GPS data
and record Task ID

Send RQl calls for face recognition 
and record Task ID

Send RQl calls for http delegation 
and record Task ID

Check if the broadcast is sent from RQL runtime

Get results with Task ID

Handle the result for each task

Figure 10: Mobile Application Code using RQL
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6. send File through WIFI direct / Edge Server

Case 3:Delegate
5. Send RQL parameters through BTLE

6. receive result from BTLE result service
7. Result with Task ID

(b) Runtime Sequence Diagram

Figure 11: Third Party Application

On Android, the RQL runtime executes as a background service.

Android applications communicate with the runtime by establish-

ing an Android Interface Definition Language (AIDL) connection,

a standard Android mechanism for inter-application/service com-

munication. The Android API provides methods for sending RQL

requests over the established AIDL connection. Upon receiving an

RQL request, the runtime immediately returns a unique identifier

for that request. The application can then use this identifier to lo-

cate the request’s results once it has been carried out. The runtime

is responsible for several functionalities, including parsing the RQL

commands, determining which device should be the target for a

given command, controlling the communication (over Bluetooth

LE) with other devices, and receiving the results from target devices.

The returned results are made available to mobile applications via a

broadcast-based callback mechanism. The unique identifiers must

be discarded once the results of the RQL requests associated with

them have been received.

In some rare cases, the programming scenario at hand may re-

quire that the results of an RQL command be received prior to

executing any subsequent program statements. In other words, the

RQL command needs to be executed in a blocking fashion. To en-

able this blocking behavior, albeit ill-advised for performance and

fault-tolerance reasons, the programmers can simply add the ad-

verb -blocking to any RQL command. The runtime processes this

directive by finishing the specified command first and returning

the results back to the caller.
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One peculiarity of BTLE communication is that each device can

serve either a peripheral or central role, roughly corresponding to

the traditional server/client functionalities, respectively. In other

words, the peripheral role entails advertising services, each having

potentially multiple characteristics, while the central role entails

locating or accessing the services of the devices playing the periph-

eral role. This clear role separation is currently only supported by

iOS devices and Android devices with the latest OS distribution.

To accommodate these distinct roles, the RQL runtime enables

mobile devices communicating via BTLE to seamlessly process and

advertise resources. The runtime keeps track of the available ser-

vices bymeans of unique ids (UUIDs). Since the UUIDs are universal

and guaranteed to be globally unique by the BTLE standard, the

RQL runtime can easily keep track of the available services and

their associated characteristics. These characteristics can have read,

write, and notify properties. Reading allows a central device to read

a value, writing allows it to write a new value into the characteristic,

and notify allows the central device to subscribe to the characteris-

tic’s value, so any changes to it will cause a notification update on

the central device.

The RQL runtime currently provides five peripheral device’s

characteristics: GPS, accelerometer, file writing, HTTP request, and

facial recognition. As a means of getting updated values, it provides

a special-purpose, subscribable result characteristic. As shown in

Fig 11. (a), the RQL runtime of an Android device first scans for

nearby devices, and then scans for the services they are advertising.

If the RQL verb is “pull”, the Android device directly reads the GPS

readings from the corresponding BLE characteristic on the iOS side.

If the RQL verb is “push”, the runtime sends a file in chunks of 20

bytes to the file writing characteristic. Otherwise, it writes the RQL

command to the BLE service with the unique taskid, and then reads

the results back from the BLE result characteristic.

In the runtime of the central device, as shown in Fig 11. (b), the

runtime keeps track of the status of surrounding devices and under-

going tasks. Once the runtime receives a RQL request, it enqueues

that request into a task queue and returns a task-id immediately.

Meanwhile, the device manager periodically scans the Bluetooth

advertisements of surrounding devices to discover the provided

services. When a task is popped from the task queue, the runtime

parses the RQL command to decide on which peripheral device’s

characteristic it should query or write.

In the runtime of the peripheral device, all received requests are

queued up. Each item contains the id of that request and the RQL

command associated with it. When a RQL request is received with

an adverb defining latency constraints, the request is added to the

head of the queue, so as to prioritize its processing. Otherwise, if

no adverb is specified, it is added to the end of the queue. When

the runtime wants to process a request, it removes a task from the

head of the queue, ensures that the task is unexpired, and executes

it using the designated service.

6 EVALUATION

In this section, we describe how we evaluated various aspects of

the reference implementation of RQL, detailed in Section 5. Our

Table 2: Lines of Code

Runtime Based Built from scratch

GPS request 20 370

HTTP request 20 556

Facial Recognition 32 883

evaluation comprises a small user study, various performance/en-

ergy efficiency micro-benchmarks, and a robustness assessment of

our retrofitting approach.

6.1 Programmability

First, we evaluated the software engineering benefits of our pro-

gramming model. To that end, we compared two different imple-

mentations of the same resource-sharing scenario: original with

all resource sharing functionality implemented from scratch and

RQL-based with the major functionality provided by the RQL run-

time. In Table 2, for each implementation, we report the total lines

of uncommented code (ULOC).

As one can see, using RQL reduces the amount of code the pro-

grammer has to write by a factor ranging between 20 and 28. Con-

sidering that the written code involves complex asynchronous,

distributed processing, this code size reduction is likely to have a

high positive impact on the code quality.

To empirically assess howwell RQL can assist the programmer in

putting in place the inter-device resource sharing functionality, we

conducted a user study. To that end, we recruited 10 Junior to Senior

level Computer Science students from an intermediate Android de-

velopment class at Virginia Tech. We divided the recruited students

into 2 groups, the experimental and control groups, for novice and

experienced Android developers, respectively. The experimental

group comprised 6 students with no prior experience in Android

programming, while the control group comprised 4 students with

several years of Android development experience.

In the beginning, we briefly introduced the concepts of AIDL ser-

vices, broadcast receivers, and Bluetooth LE. Then, each group was

given 90 minutes to complete the programming task of obtaining

the GPS sensor reading from an iOS device to an Android device.

The experimental group was asked to use RQL, while the control

group was asked to use any existing, mainstream Android API. The

control group was also given an Android chat sample application

as an example from which to draw device-to-device coding idioms.

Table 3 presents the results of the study. To our surprise, none

of the students in the control group were able to complete the

task successfully, which demonstrates the non-trivial nature of

device-to-device communication. The results of the experimental

group, armed with RQL, were mixed, with 3 students successfully

completing the task, with the remaining 3 giving up before the

experiment concluded. Because the group using RQL comprised

non-experienced Android programmers, the results above indicate

that our programming abstraction provide value by streamlining

the process of implementing device-to-device interactions and can

become a pragmatic tool for future applications.
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Table 3: Study Results

Group 1 2

Familiarity with Android Development Beginner Familiar

Number of students 6 4

Number of students completed the task 3 0

Table 4: Energy Consumption per Second

Status Energy (mA) Status Energy (mA)

ScreenOn 100

BluetoothOn 1 BluetoothActive 66

CpuIdle 92 CpuActive 242

WiFiOn 6 WiFiActive 102

GpsOn 60 GpsActive 300

3GOn 10 3GActive 250

6.2 Experiment Setup

The hardware setup for the following experiments include 4 An-

droid mobile devices (1.5GHz dual-core CPU, 2GB RAM) used as

source devices, and 2 iOS devices (1 iPhone 6 and an iPad mini)

used as target devices.

To evaluate the energy consumption of these devices, we recorded

the execution time between “Start" and “Stop" tags, adding tags for

actions, such as “Screen On", “Bluetooth On", “Bluetooth Active",

“3G Active", “GPS Active", “CPU Idle/Active” etc. Table 4 shows the

manufacturer provided values for energy consumption of these

operations. For all graphs, we refer to ’local’ and ’remote’ meaning

requests processed on the user’s local device and some external

nearby device, respectively.

6.3 Local and Remote Energy Evaluation

First, we examine the motivating examples’ performance in terms of

the energy usage in both the local API calls and the corresponding

remote RQL calls. Figure 12 shows the energy used by 100 identical

RQL requests on the same and across different devices, respectively.

Because of the vastly different energy consumption levels between

sensor data and heavy HTTP requests, we use both linear and

logarithmic vertical scales to present the results.

The graphs show that, excluding some outliers, both local and

remote RQL calls consume energy consistently throughout the ex-

periments. The baseline of both figures is identical and essentially

shows how an idle application would be consuming energy. In both

local and remote calls, the GPS sensor retrieval consumes far less

energy than either of HTTP requests or Facial recognition. To com-

pare various protocols, we also benchmark a “Heavy” HTTP request,

representative of work-intensive web-based processing. Given the

extensible nature of the RQL runtime, one can easily add emerging

communication mechanisms, which can outperform BTLE when ex-

ecuting heavy HTTP requests or other high-throughput processes.

Because communicating with nearby devices consumes addi-

tional energy, local RQL calls increase their energy efficiency when

processing small loads of requests. However, for requests that can

be distributed across several available devices, both energy costs

and processing latencies decrease precipitously. Figure 12 also re-

veals cache correspondences between the same device, primarily for

sensor data (GPS). Thus reading the GPS data incurs a single large,

upfront cost of connecting to the device, but internally optimizes

the subsequent request via the assumption that the GPS readings

have not changed. This internal optimization explains the plummet

in energy costs of accessing remote sensor data, such as GPS.

6.4 Local and Remote RQL Latency
Experiments

Consider Figure 13 that shows local and remote latency, respectively.

These two graphs demonstrate an important practical advantage

of accessing resource of nearby devices. When examining GPS,

latency drops steeply similar to energy in the previous section, after

incurring the upfront cost of connection. This amortization of initial

connect requests ensures far better median latency for these remote

calls. In fact, we see that for a computationally intensive operation,

such as Facial Recognition, the latency is smaller in remote RQL

calls by a factor of nearly 1.4 for only a small request size. If we

consider sending large requests for Facial Recognition across even

a small subset of nearby devices (say only 3 external devices), the

resulting latency reduction far outweighs the additional energy use

incurred across all devices in use.

Figure 14 presents a full comparison of median energy and la-

tency measurements. This graph supports our initial assumption

about the trade off in energy for decreased latency when processing

various request types. It is clear that the only outlier is processing

HTTP requests remotely. Given the nature of BTLE small packet

transmission size restriction, we observe a larger latency since

each piece of the HTTP request is broken up and sent individually.

Referring back to one of our motivating examples, consider the

traveler to a foreign country who is unable to access local mobile

data towers. Providing this functionality to the end user is impor-

tant irrespective of the resulting performance, as long as it is not

prohibitively poor. In other words, not outperforming local requests

is a minor hindrance in comparison with not being able to process

any requests at all. Nevertheless, this limitation of BTLE motivated

our efforts to optimize the RQL runtime.

7 RELATEDWORK

Using nearby mobile devices to cooperatively implement new func-

tionality was originally proposed as a means of exchanging private

information over devices for data sharing and data mining [23].

Subsequent research took user mobility into account [19, 24, 35].

Besides data sharing, another avenue for device cooperation is

runningmap reduce [47] onmobile devices to execute computational-

intensive tasks [9, 29, 42]. These approaches, however, are oblivious

to device mobility and the preference of users to participate.

In addition to traditional mobile devices, the IoT setups can

provide resources for device-to-device resource sharing. Computa-

tional tasks have been offloaded to such setups (e.g., Road Side Unit)

[16], while mobile messages have been stored and forwarded by a

wall-mounted Estimote device [3]. The proposed project will focus

on the software engineering aspects of mobile device cooperation,

thus benefiting the implementation practices of many of the prior

state-of-the-art approaches.

Traditional middleware has been adapted for peer-to-peer re-

source sharing, includingOpenCORBA[27], Globe[45] and JXTA[15],
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although without taking device mobility into account. The UPnP

protocol[43] enables network devices to provide service to other

devices in the network.

Device mobility-aware peer-to-peer resource sharing has started

from content sharing [36], with numerous subsequent approaches

[2, 6, 10, 20, 21, 32, 33, 40]. Special purpose middleware support

face-to-face interactions [41] and cooperative display[4]. These

middleware approaches are platform-specific and require modifi-

cations at the system level. By contrast, the proposed project aims

at heterogeneous device-to-device applications running on top of

unmodified system stacks.

The MANET project leverages assistance from devices through

multi-hop wireless communication [7]. Various middleware ap-

proaches have focused on various aspects of inter-device coop-

eration, including LIME[31], TOTA[28], Limone[13], CAST[39],

MESHmdl[17], Preom [22], MobiPeer [5], Peer2Me [46], Steam

[30], Transhumance [37], QAM [14], and MobiCross [8]. These

middleware approaches provide programming to control network

topologies, network traffic, peer management, etc. By contrast,

the proposed approach focuses on supporting mobile application

programmers, who are primarily concerned with obtaining the

hardware resources they need for their applications.

To support platform independence, [38] proposed using anHTTP

server. By contrast, this project focuses on P2P communication, thus

reducing communication latencies and processing overhead.

8 CONCLUSION

This research focuses on the problem of engineering seamless re-

source sharing among nearby mobile devices to improve the per-

formance, energy consumption and latency of mobile applications.

Although there have been many research publications that have

focused on using cooperative device resource sharing to enable new

functionalities or to optimize energy and performance, there has not

been a push towards software engineering support for application

developers to leverage shared resources between heterogeneous

mobile devices. To address this problem, we first studied the re-

quirements for leveraging nearby resources in terms of API calls,

and then proposed a domain-specific declarative language and a

runtime support on two major mobile platforms to enable resource

sharing. The results of our case study, user study and efficiency

evaluation indicate that our programming model and runtime sup-

port can work as a bridge among nearby heterogeneous mobile

devices to both improve the programmers’ productivity, and opti-

mize the energy consumption and latency of mobile applications.

By facilitating the process of implementing cooperative resource

sharing among devices, we hope to be able to add this support in

the standard toolset for mobile application developers.
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