

Drivers of protistan community autotrophy and heterotrophy in chemically stratified Antarctic lakes

Wei Li^{1,*}, Jenna Dolhi-Binder², Zev E. Cariani³, Rachael M. Morgan-Kiss³

¹Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, Montana 59717, USA

²Department of Biology and Toxicology, Ashland University, Ashland, Ohio 44805, USA

³Department of Microbiology, Miami University, Oxford, Ohio 45056, USA

ABSTRACT: Single-celled, eukaryotic microorganisms, known as protists, are responsible for 2 important, yet opposing, metabolic activities within aquatic food webs. They are major primary producers and highly active predators in marine and fresh water systems. While genomics has accelerated in recent years for this taxonomically diverse group, our understanding of the metabolic capabilities of most protists remains limited. It is also poorly understood how protist trophic mode is affected by biotic and abiotic factors, and therefore it is difficult to predict how events such as global climate change will affect the balance between autotrophic and heterotrophic activities in protist communities. To address open questions regarding how protist metabolic versatility is influenced by their environment, we characterized the potential for carbon fixation versus organic carbon degradation using enzymatic assays (RubisCO and β -D-glucosaminidase, respectively) within the water columns of ice-covered lakes in McMurdo Dry Valleys (MDV), Antarctica. Steep physical and chemical gradients in the water columns, microorganism domination and minimal allochthonous inputs makes the MDV lakes uniquely suited to investigate environment–microbe interactions. Spatial trends in RubisCO and β -D-glucosaminidase activities were lake-specific and vertically stratified within the water columns. Moreover, bottom-up drivers controlling the activity of C-fixation vs. organic C-degradation among the MDV protist communities were distinct between the upper photic vs. the deep, aphotic zones. We conclude that differential controls over major C-cycling enzymes have important implications on the influence of environmental change on the carbon and nutrient cycles in the MDV lakes.

KEY WORDS: Aquatic protists · Autotrophy · Heterotrophy · β -D-glucosaminidase · RubisCO · McMurdo Dry Valleys · Antarctic lakes

— Resale or republication not permitted without written consent of the publisher —

INTRODUCTION

Permanently ice-covered lakes in the McMurdo Dry Valleys (MDV) of South Victoria Land, Antarctica, have closed basins and extremely stable strata that vary physically, chemically, and biologically within and between stratified water columns. The ice-covers (3–4 m in thickness) restrict water column mixing and external inputs. Ephemeral glacial melt streams, which flow for only a few weeks in the austral summer, are the primary mechanism of water and nu-

trient input to the lakes (Lyons et al. 2000). This study focused on 3 MDV lakes (Lake Bonney, Lake Fryxell and Lake Vanda), which have been sites of a long-term study since 1993 (www.mcm.lter.org). All 3 lakes are light-limited and either oligotrophic (Lakes Bonney and Vanda) or mesotrophic (Lake Fryxell) (Priscu 1995). Low light and limited nutrients combined with year-round low temperatures and a lack of sunlight in the winter greatly limit yearly production. The food webs in MDV lakes are microbially dominated, and lack crustacean zooplankton and fish.

*Corresponding author: wei.li02@montana.edu

Microbial eukaryotes (or protists) play dual roles in MDV food webs as primary producers and top predators (i.e. consumers of bacteria and small phytoplankton) (Priscu et al. 1999, Bielewicz et al. 2011). Recent applications of 18S rRNA sequencing provided the first insight into the diversity and function of the microbial eukaryote populations (Bielewicz et al. 2011, Vick-Majors et al. 2014, Rojas-Jimenez et al. 2017). Spatial and seasonal trends in MDV protist community structure are complex and exhibit strong variability among lakes (Bielewicz et al. 2011, Kong et al. 2012b, 2014, Vick-Majors et al. 2014, Dolhi et al. 2015). Lake Bonney is dominated by chlorophytes *Chlamydomonas* in the shallow layers, and haptophytes *Isochrysis* and stramenopiles *Nannochloropsis* in the chemocline. Lake Fryxell is dominated by cryptophytes *Geminigera* (Bielewicz et al. 2011, Kong et al. 2012b, Dolhi et al. 2015) and prasinophytes *Pyramimonas* (Vincent 1981, Roberts et al. 2000). The least productive lake, Lake Vanda, harbors nanoplankton related to non-flagellated chlorophytes *Nannochloris* and stramenopiles *Heterococcus* (Dolhi et al. 2015).

Heterotrophic grazing by protists was measured in several MDV lakes (Roberts & Laybourn-Parry 1999, Marshall & Laybourn-Parry 2002, Thurman et al. 2012), suggesting that heterotrophic protists might play important roles in top-down control of phytoplankton and bacterioplankton populations. Mixotrophy is widespread in ice-covered Antarctic lakes, allowing exploitation of alternative nutrient and energy sources (Nygaard & Tobiesen 1993, Laybourn-Parry et al. 2005, Li et al. 2016). Recent studies in Lake Bonney and Lake Fryxell supported these observations with phylogenetic evidence of heterotrophic nanoflagellates (e.g. choanoflagellates and heterotrophic chrysophytes) (Bielewicz et al. 2011, Vick-Majors et al. 2014). Recent reports also found evidence for the important role of Cryptomycota and Chytridiomycota fungi (Rojas-Jimenez et al. 2017) and heterotrophic nanoflagellates (Li et al. 2016) as parasites and predators in the food webs in MDV lakes.

Lakes and reservoirs cover the globe, forming a network of environmental sensors which can be exploited as sentinels of climate change (Williamson et al. 2009). Seasonally and perennially ice-covered, permanently low-temperature lakes are highly prevalent in polar and alpine environments. Unlike temperate ecosystems, the MDV lakes are relatively low temperature ecosystems which have experienced low human impact, representing end members of the global lake network (Morgan-Kiss & Dolhi 2012). Relative to lower latitude watersheds, Antarctic, Arctic and high alpine aquatic habitats such as the

Tibetan Plateau are more responsive to both climate warming and increased episodic events; however, physiological responses of polar microbial communities are also influenced by local environmental conditions (Morgan-Kiss & Dolhi 2012). Thus, predicting the impact of climate change on functional diversity of the polar lake protist communities is complex.

Several studies have shown that trophic modes of protist communities are sensitive to biotic and abiotic factors. Environmental drivers, including solar radiation (Batistas Navarro et al. 2011, Izaguirre et al. 2012), temperature (O'Connor et al. 2009, Wohlers et al. 2009), nutrients and other physicochemical conditions (Brown et al. 2000, Phillips et al. 2008) can have strong effects on protist activities and therefore their roles in the aquatic carbon and nutrient cycles. The impact of protist trophic mode is likely amplified in stratified, microbial-driven systems such as the MDV lakes; however, an understanding of the relationship between environmental factors and protist trophic activities in the MDV lakes is currently lacking. Improved quantification of trophic activities for MDV protists would contribute to a better understanding of polar lake food webs, building more reliable and predictive models on plankton community interactions, carbon and nutrient fluxes, and the sensitivity of these to environmental change.

Most photosynthetic protists utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic carbon fixation. The enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first and rate-limiting reaction. The radiometric ¹⁴C RubisCO carboxylase activity assay has conventionally been used as a measure of maximum potential of autotrophic carbon fixation and has been adapted for use in natural phytoplankton community samples (Tortell et al. 2006, Dolhi et al. 2012, Kong et al. 2012a).

In phagotrophic and pinocytic protist food uptake, prey cells and other food particles are sequestered in acidic food vacuoles where digestive enzymes such as lysozymes and proteases degrade complex organic compounds into simpler substrates for subsequent heterotrophic metabolism (Vrba et al. 1996, Verni & Gualtieri 1997). While several methods are available for estimating protistan grazing rates using fluorescently labeled bacterial or artificial prey (Sherr & Sherr 1993, Sherr et al. 1997, Smalley et al. 1999), quantifying protist heterotrophic activity in natural environments is challenging. Accurate estimates can be confounded by selective grazing of the predators and/or spatiotemporal shifts in prey abundance. Low productivity systems such as the MDV

lakes are also near the limit of detection. As an alternative approach, planktonic phagotrophic activity can be quantified based on specific lysozyme activity associated with β -D-glucosaminidase (β GAM) enzymatic activity (Zubkov & Sleigh 1998, Štrojsová & Dyhrman 2008, Sintes & del Giorgio 2010, 2014). The optimal pH condition for protist vacuolar β GAM is lower (pH < 5) compared to the exoenzymes of copiotrophic bacteria (pH \geq 7) (Vrba et al. 1996, Arnosti 2011).

In the microbially dominated MDV lakes, protistan carbon fixation and phagotrophic activity are critical to carbon and nutrient cycling. Several studies have reported on the distribution and activity of mixotrophic and heterotrophic eukaryotes in these lakes based on artificial prey feeding experiment or microscopic numeration (Laybourn-Parry et al. 1995, James et al. 1998, Roberts & Laybourn-Parry 1999, Roberts et al. 2004a, Thurman et al. 2012), but direct rate measurements of these 2 critical processes in the Dry Valley lakes are currently lacking. We hypothesize that (1) the trophic activities of protists are stratified in the MDV lake water columns due to highly stratified environmental conditions; (2) these activities are correlated with specific environmental drivers. In this study, we investigated autotroph and protist-specific heterotroph distribution using RubisCO

and acid- β GAM enzyme activities, respectively, in the physically and chemically distinct MDV lakes and correlated activity with specific biotic and abiotic factors.

MATERIALS AND METHODS

Field sampling and limnological parameters

Locations of study sites within the Taylor (Lakes Bonney and Fryxell) and Wright (Lake Vanda) Valleys of the MDV, Antarctica, are shown in Fig. 1. Water column samples were collected during the austral summer (November–December) of the 2012 field season with the exception of samples for Lake Vanda RubisCO activity, which were collected in December 2011. All sampling depths were measured from the piezometric water level in the ice hole using a depth-calibrated hand winch. Water samples were collected with a 5 l Niskin bottle and stored under low temperature and dark conditions until processing. Water samples for RubisCO carboxylase activity (2–5 l) and β GAM activity (0.75–2 l) were vacuum filtered (0.3 mbar) onto 47 mm GF/C filters (CAS#: 1822-047, Whatman) and hydrophilic nylon membrane filters (CAS#: 7404-004, Whatman) with a

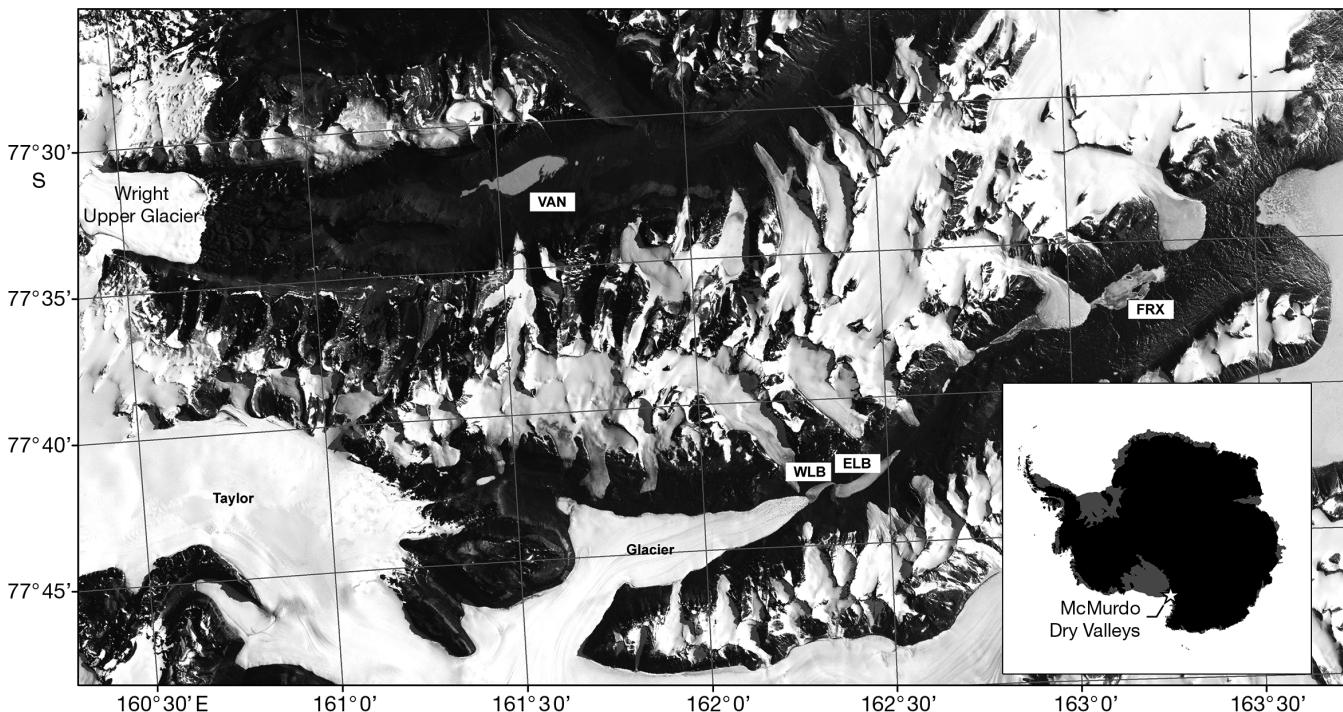


Fig. 1. Map showing locations of study sites within the McMurdo Dry Valleys, Antarctica (see inset): Lake Bonney east (ELB) and west (WLB) lobes, Lake Fryxell (FRX) and Lake Vanda (VAN). Image was edited from a LIMA based map from the Polar Geospatial Center (www.agic.umn.edu/maps/Antarctic)

0.45 μm pore size, respectively. Filters were immediately flash frozen in liquid N_2 and shipped to our US laboratory on dry ice. Samples were stored at -80°C for less than 2 mo before determining enzyme activity. Prior to the field season, both enzymatic assays were optimized. Fresh versus frozen mock filters were also compared to assess the effect of freezing on enzymatic activity.

Photosynthetically active radiation (PAR), temperature, chlorophyll *a* (chl *a*), primary productivity (PPR), and nutrient (NH_4^+ , NO_3^- and soluble reactive phosphorus [SRP]) concentrations were determined through the water columns of the east and west lobes of Lake Bonney (ELB and WLB, respectively), Lake Fryxell, and Lake Vanda. PAR was measured with a LI-193 spherical quantum sensor (LI-COR Biosciences). Temperature was measured with a Sea-bird model 25 profiler (Spigel & Priscu 1998). Chl *a* concentrations were determined using a profiling spectrophotometer (FluoroProbe, BBE Moldaenke) (Carraro et al. 2012). The abundance of major phytoplankton groups including green algae (Chlorophyta and Euglenophyta), Cryptophyta, Haptophyta, Chrysophyceae and Cyanobacteria were discriminated using the FluoroProbe based on their specific light harvesting pigment fluorescence (Beutler et al. 2002). This method has been routinely applied into other studies in these lakes (Winslow et al. 2014, Dolhi et al. 2015). Light-mediated PPR was determined by measuring $\text{NaH}^{14}\text{CO}_3$ incorporation in duplicate over a 24 h *in situ* incubation. Nutrients were measured as part of the NSF-funded McMurdo long-term ecological research (MCM-LTER) program according to the methodology outlined in the MCM-LTER limnological manual (www.mcm.lter.org). Briefly, inorganic nitrogen species were determined with a Lachat autoanalyzer and SRP was measured manually using the antimony-molybdate method (Strickland & Parsons 1972).

RubisCO carboxylase activity assay

GF/C filters were thawed on ice and cut in half. All subsequent extraction steps were carried out on ice. Each cut half filter was transferred to a 1.5 ml screw cap tube containing 0.1 mm zirconia/silica beads and 650 μl ice cold RubisCO extraction buffer (50 mM bicine, 10 mM MgCl_2 , 1 mM EDTA, 5 mg ml^{-1} bovine serum albumin [BSA], and 0.1% triton X-100; add freshly made: 20 mM NaHCO_3 , 10 mM DTT, 0.1 mg ml^{-1} , pH 7.8). Filters were disrupted with a Minibead-Beater-16 (Biospec Products) for 3 cycles of 30 s at

speed setting 48 with alternating 1 min on ice incubations. The lysate was transferred to a cold 1.5 ml microcentrifuge tube and cleared by centrifugation at 4°C for 2 min at $15\,000 \times g$. The soluble lysate was used in RubisCO carboxylase assays.

RubisCO carboxylase activity was measured in the soluble cell lysates (200 μl) within 30 min of extraction. Soluble cell lysates were incubated at 25°C for 1 min before RubisCO activity was measured using a modified $\text{NaH}^{14}\text{CO}_3$ assay from Tortell et al. (2006) as described previously (Dolhi et al. 2012, Kong et al. 2012a). Briefly, RubisCO was activated with MgCl_2 (8 mM) and $\text{NaH}^{14}\text{CO}_3$ (ViTrax, Placentia; specific activity in final reaction: 0.03 $\mu\text{Ci mmol}^{-1}$) for 5 min at 25°C . The carboxylase assay was initiated by addition of 20 μl of the substrate, Ribulose-1,5-bisphosphate (RuBP; CAS #: 24218-00-6, Sigma-Aldrich; 15 mM) and the reaction was allowed to proceed for 5 min at 25°C . The reaction was stopped with 100 μl of 100% propionic acid and unincorporated ^{14}C was exhausted by centrifugation in a fume hood for 1.25 h at $2000 \times g$. Soluble cell lysate with no RuBP substrate added was used in the assay as a negative control. A multipurpose scintillation counter LS6500 (Beckman Coulter) was used to quantify acid stable end products. RubisCO carboxylase activity in the Lake Bonney psychrophilic alga *Chlamydomonas* sp. UWO241 was previously shown to be stable and optimal at 25°C (Morgan-Kiss & Dolhi 2012).

Glucosaminidase activity assay

Acidic β GAM activity was measured as particulate enzyme activity retained on filters. Nylon filters were thawed on ice and extraction was carried out on ice. Filters were disrupted by 3 cycles of bead beating in 2 ml of ice cold extraction buffer (0.1 M acetate, 0.1% 23 lauryl ether [Brig 35], pH 4.6 with glacial acetic acid). β GAM activity was measured in soluble lysates (250 μl) using a β -*N*-Acetyl-glucosaminidase Assay Kit (CAS#: 9012-33-3, Sigma-Aldrich). Cell lysates were incubated with the fluorogenic substrate 4-methylumbelliferyl-*n*-acetyl- α -D-glucosaminide (4-MUF) in the dark at 20°C for 4 h. Nano-pure water and purified β -*N*-Acetyl-glucosaminidase from Jack beans (standard with assay kit) were used as negative and positive controls, respectively. Fluorescence intensity was quantified in a Lambda-35 spectrophotometer (Perkin-Elmer). A standard curve was created with known amounts of the product of the enzymatic reaction, 4-MUF (Vrba et al. 1993, Zubkov & Sleigh 1998).

β GAM activity was also measured in 3 psychrophilic phytoplankton strains, *Chlamydomonas* sp. ICE-MDV, *Isochrysis* sp. MDV and *Geminigera cryophila* to test for temperature sensitivity and specificity of the β GAM activity. *Chlamydomonas* sp. ICE-MDV and *Isochrysis* sp. MDV were isolated from Lake Bonney (Li et al. 2016, Raymond & Morgan-Kiss 2017), while *G. cryophila* (CCMP 2564) was isolated from Ross Sea near McMurdo Sound. All 3 algae were grown in either autotrophic (F/2 or L1) or heterotrophic media (F/2 supplemented with 5% cereal grass). β GAM activity was measured in the soluble lysate across several incubation temperatures in a homemade temperature gradient apparatus.

In order to select filter material with optimal enzyme recovering capability, various filter types (glass fiber, polyethersulfone, and nylon) were also tested using water samples from a local lake (Acton Lake, OH). The test results indicated that sample extraction from nylon filters produced the highest enzyme yield (data not shown).

Protein concentration determination

Protein concentration was determined in the soluble cell lysate extracted for RubisCO and β GAM assays according to the Bradford method using BSA (CAS #: 9048-46-8, Sigma-Aldrich) as a standard (Bradford 1976).

Bacterial enumeration

Quantitation of free-living bacteria in the lake water columns was carried out using a method modified from Lebaron et al. (1994). Lake water (2 ml) from each depth was fixed with paraformaldehyde at a final concentration of 2% v/v for 30 min. Fixed samples were filtered on 25 mm black polycarbonate membrane with a pore size of 0.2 μ m. Bacteria cells were stained with a fluorochrome (4',6-diamidino-2-phenylindole, [DAPI], CAS #: 28718-90-3, Sigma-Aldrich) followed by epifluorescent microscopic enumeration. Filters were examined using an Olympus AX-70 Multi-mode System with a specific filter set (EX 360/40 nm, EM 460/50 nm) for DAPI staining, and digital images of at least 15 random views were taken. Images were then calibrated, and bacterial counts from each image were recorded using ImageJ software (V1.47, National Institutes of Health). The bacterial concentration of each depth was determined by using the average bacterial counts of each image.

Statistical analyses

Abiotic parameter data including PAR, temperature, NH_4^+ , NO_3^- , SRP^- , dissolved inorganic N:P ratio (N:P), dissolved inorganic carbon (DIC), and conductivity were normalized using z-scores. Principal component analysis (PCA) was carried out in PAST software (V3.07, Hammer et al. 2001). All other statistical analyses were performed using JMP Pro 12 software (SAS Institute). Data of physical (except temperature), chemical, and biological parameters were log-transformed, and the correlation between these parameters and enzyme activities were determined using Pearson correlation analysis. In order to identify linear models of enzyme activities (respondents) with abiotic and biotic factors (variables), we generated all possible linear models and selected the models with lowest Akaike Information Criterion (AIC) value to obtain the models with the least number of parameters and the maximum explanatory power (Akaike 1974, Sakamoto et al. 1986).

RESULTS

Optimization of enzyme assays

We have previously reported on optimization of the RubisCO enzyme assay in natural samples from Lake Bonney (Dolhi et al. 2012, Kong et al. 2012a) and tested the temperature range of RubisCO activity in a Lake Bonney isolate (*Chlamydomonas* sp. UWO241) (Morgan-Kiss & Dolhi 2012). This latter study showed that despite the fact that *Chlamydomonas* sp. UWO241 is a psychrophile (Morgan et al. 1998), RubisCO is not cold-adapted and exhibits maximum activity at assay temperatures $\geq 20^\circ\text{C}$ (Morgan-Kiss & Dolhi 2012).

Since the β GAM assay has not been previously applied to protist communities of the MDV lakes, we tested β GAM activity in 3 psychrophilic, polar algal isolates: 2 from Lake Bonney (*Chlamydomonas* sp. ICE-MDV and *Isochrysis* sp. MDV), and a third from a polar marine environment (*Geminigera cryophila*). *Chlamydomonas* sp. ICE-MDV and *Isochrysis* sp. MDV are dominant phytoplankton of Lake Bonney, while a cryptophyte closely related to the marine *G. cryophila* dominates the water column in Lake Fryxell (Bielewicz et al. 2011, Kong et al. 2012b, Dolhi et al. 2015). In addition, previous studies have reported that *Isochrysis* sp. MDV and *G. cryophila* are mixotrophic, while *Chlamydomonas* sp. ICE-MDV is an obligate photoautotroph (Gast et al. 2014, Li et al. 2016). We compared β GAM across these 3 psy-

chrophile isolates grown under autotrophic vs. heterotrophic conditions. As expected β GAM activity was below detectable levels in the pure photoautotroph, *Chlamydomonas* sp. ICE-MDV (Table S1 in the Supplement at www.int-res.com/articles/suppl/a082p225_supp.pdf). In contrast, β GAM activity was detectable in the mixotrophs *Isochrysis* sp. MDV and *G. cryophila*, and was maximal when both strains were grown in the presence of cereal grass (Table S1).

We also tested the effect of assay temperature on β GAM activity in *Isochrysis* sp. MDV and *G. cryophila* (Fig. S1 in the Supplement). Over a range of incubation temperatures β GAM activity of both psychrophiles increased slightly with increasing temperature; although, no significant difference was observed between 10 to 20°C (Fig. S1). Therefore, we concluded that similar to RubisCO, β GAM activity in the psychrophiles does not cold-adapt. Thus, since the temperature in the MDV lakes can widely vary (from -6 to over 20°C), we chose 20°C as the temperature for enzyme assays on environmental samples.

Lake Bonney

Lake Bonney is separated into 2 lobes, east and west. The water columns of each lobe remain isolated from each other for most of the year, with the exception of a narrow passage which connects the upper photic zones for a few weeks during the austral summer. Thus, ELB and WLB share some common characteristics, including strong thermo-haline stratification (Fig. 2) and phosphorus limitation (Fig. 3A,C); however, the deeper layers of each lobe are permanently separated. For both lobes, maximum PAR values were at or below 20 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (Fig. 3B,D). Temperatures in the shallow depths and the chemoclines ranged between 2 and 4°C in both lobes, but declined to below 0°C in the monimolimnion of WLB (Fig. 3B,D). Both lobes exhibit SRP levels near the limit of detection throughout the water columns and early studies reported that phytoplankton and bacterial communities are limited by phosphorus (Priscu 1995, Ward et al. 2003). Nitrogen (NH_4^+ , NO_3^-) was low in the surface waters of both lobes. Spatial trends in several chemical variables are distinct in the monimolimnia below the chemoclines, in particular salinity (Fig. 2) and concentration of several inorganic nitrogen species (Fig. 3A,C). For example, ELB exhibits high levels of NO_3^- below the chemocline, suggesting a lack

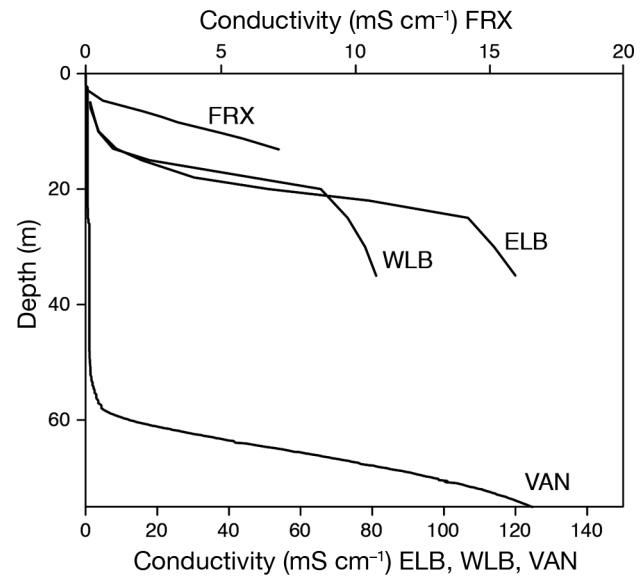


Fig. 2. Salinity profiles for Lake Bonney (east lobe, ELB; west lobe, WLB), Lake Fryxell (FRX) and Lake Vanda (VAN). Note that Lake Fryxell is plotted on a secondary x-axis

of significant rates of denitrification (Ward et al. 2005). Chl *a* maxima were present in the shallow and deep layers of both lobes of Lake Bonney; the deep chlorophyll maximum (DCM) was well defined in WLB, reaching a maximum chl *a* concentration of 15 $\mu\text{g l}^{-1}$ (Fig. 4A,B). Spatial trends in bacterial biomass were uncoupled from phytoplankton in WLB. Maximum bacterial biomass occurred above the chemocline in both lobes, but peaked at different depths (5 m for ELB and 10 m for WLB; Fig. 4A,B).

We used RubisCO and β GAM enzyme activities to understand how spatial variability in physico-chemical and biological parameters impacts relative contributions of autotrophic and heterotrophic metabolism, respectively, in the food webs of MDV lakes. Enzyme activity was expressed on the basis of either total extracted protein (Fig. 5A–D) or volume of filtered lake water (Fig. 5E–H). Activity for both enzymes was higher in ELB relative to WLB. On a protein basis, RubisCO activity peaked at 13 m in both lobes. Spatial trends in β GAM activity were distinct from RubisCO activity, indicating that the importance of the 2 metabolic processes is variable at different layers within the lakes. Both lobes exhibited a peak in β GAM activity in shallow depths (5 m); however, WLB also exhibited a distinct peak in the chemocline (15 m depth). Spatial trends in β GAM were comparable on a protein or lake water basis; however, trends in RubisCO activity were

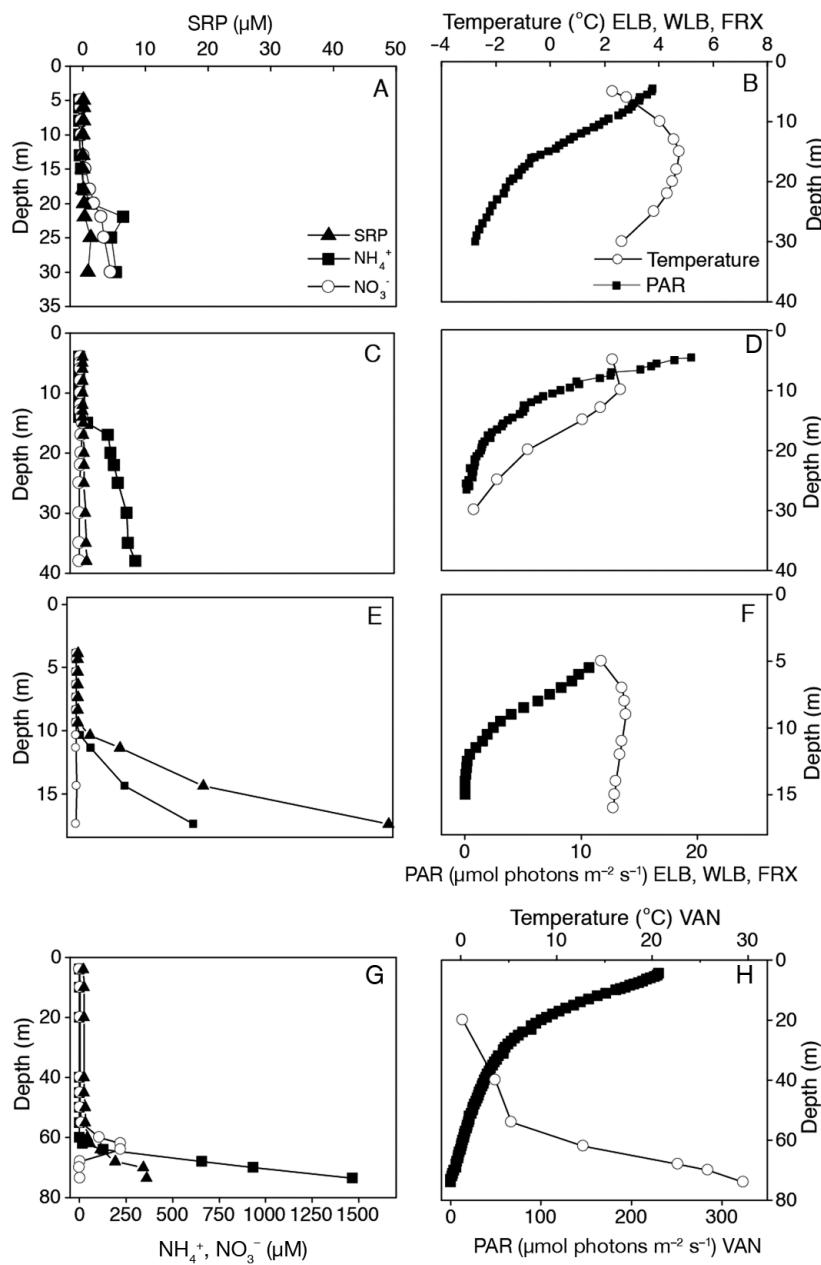


Fig. 3. Depth profiles of physical and chemical characteristics for the 3 lakes in this study: (A,B) Lake Bonney east lobe (ELB) and (C,D) west lobe Lake Bonney (WLB), (E,F) Lake Fryxell (FRX), and (G,H) Lake Vanda (VAN). Note that photosynthetically active radiation (PAR) and temperatures for Lake Vanda are plotted on secondary x-axes. SRP: soluble reactive phosphorus

dependent upon which variable was used for normalization of the data.

Lake Fryxell

Lake Fryxell is the least saline (maximum conductivity ~ 7 mS cm $^{-1}$) and shallowest (20 m maximum

depth) of the 3 lakes in this study (Fig. 2), and exhibited very low PAR levels (maximum PAR < 10 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$) (Fig. 3F). In common with Lake Bonney, nutrient concentrations were low in the upper oxic zone. SRP levels were significantly higher in the deeper zones of Lake Fryxell relative to Lake Bonney and a recent study showed that Lake Fryxell phytoplankton communities are co-limited for nitrogen and phosphorus (Teufel et al. 2017). Higher nutrient levels supported the highest levels of chl *a* and bacterial biomass in the water column of Lake Fryxell compared with other MDV lakes (Fig. 4C), peaking at 9 m and 7 m for chl *a* and bacterial biomass, respectively.

On a protein basis, RubisCO activity peaked above the chemocline (7 m); however, on a lake water volume basis RubisCO activity peaked in the deep anoxic zone (14 m) (Fig. 5C,G). β GAM activity levels in Lake Fryxell were comparable with Lake Bonney; however, no spatial trends were noted.

Lake Vanda

Lake Vanda is the deepest lake (maximum depth 80 m) in our study and exhibited fresh shallow water and hypersaline bottom water which was comparable to Lake Bonney (Fig. 2). PAR levels under the ice were 5–10× higher relative to Lakes Bonney and Fryxell, and the maximum temperature was above 20°C at the bottom of the water column (Fig. 3F). Nutrient concentrations for most of the water column (above 60 m depth) were low or at undetectable levels, and SRP levels in Lake Vanda were comparable

with Lake Bonney (i.e. maximum SRP < 10 μM) (Fig. 3G). Lake Vanda is considered one of the most oligotrophic bodies of water in the world (Vincent et al. 1981); both chl *a* and bacterial biomass levels peaked within the chemocline (68 m depth) and were the lowest of the 3 study lakes (Fig. 4D). In contrast, both RubisCO and β GAM activities peaked in the deeper layer of Lake Vanda (72 m) (Fig. 5D,H).



Fig. 4. Depth profiles for chl *a* concentration and bacterial abundance in (A) Lake Bonney east lobe (ELB), (B) Lake Bonney west lobe (WLB), (C) Lake Fryxell (FRX) and (D) Lake Vanda (VAN)

versus the deep layers (chemocline and deeper) (Fig. 6). In the PCA, the first 3 principal components explained the majority of the variation between samples (34.6, 23.4 and 20.2 % for PC1, PC2, and PC3, respectively) (Fig. 6). The shallow and deeper layers were majorly separated on the first axis (PC1); the environmental parameter loadings of the first 3 principal components are shown in Table S2 in the Supplement. The first component largely represented a gradient of nutrient balance (N:P ratio) and conductivity levels. It also positively correlated with concentrations of DIC, NO_3^- , NH_4^+ while PAR levels had a weakly negative effect. In addition, the separation between samples within shallow and deeper layers was majorly in the second and third principal components. The second component majorly represented a gradient of temperature and concentrations of NH_4^+ and SRP. The third component represented a gradient of NO_3^- , SRP and DIC, and weakly correlated with PAR and temperature. Further, NO_3^- PAR and temperature were at the positive end of the gradient while SRP and DIC were at the negative end.

Cluster analyses of lake physicochemical parameters

In agreement with past reports (Vincent 1981, Priscu 1995, Roberts et al. 2000), lake physicochemistry and biology exhibited strong vertical stratification as well as lake-specific differences (Figs. 2–4). This spatial complexity in lake biogeochemistry was reflected in spatial trends of both RubisCO and β GAM enzyme activities (Fig. 5). In an effort to determine whether specific environmental and biological factors influence protist autotrophic or heterotrophic activity, we first performed PCA of major abiotic factors (i.e. temperature, PAR, conductivity and dissolved inorganic nutrients) across all sampling sites. Despite the lake-specific differences in several physicochemical parameters, the PCA results indicated that physicochemical parameters collected from 93 total samples clustered strongly into 2 major groups representing sampling depths located in the shallow layers (above chemocline)

Correlation of autotrophic and heterotrophic activities with physicochemical parameters

Given that lake physicochemical parameters strongly clustered into 2 groups (i.e. the upper water column and at/below the chemocline), we performed Pearson correlation coefficient (PCC) analysis between autotrophic and heterotrophic enzyme activity and a suite of biological and environmental parameters in shallow and deep layers separately. Several environmental and biological parameters exhibited significant correlations with RubisCO and β GAM (Table 1). Spatial trends in Log RubisCO activity in the shallow water column layers weakly correlated with abiotic parameters such as conductivity, temperature, NO_3^- , SRP and N:P, as well as biotic parameters such as PPR and abundance of cryptophytes. However, in deep water columns Log RubisCO activity negatively corresponded with the environmental parameter conductivity as well as NH_4^+ , NO_3^- and

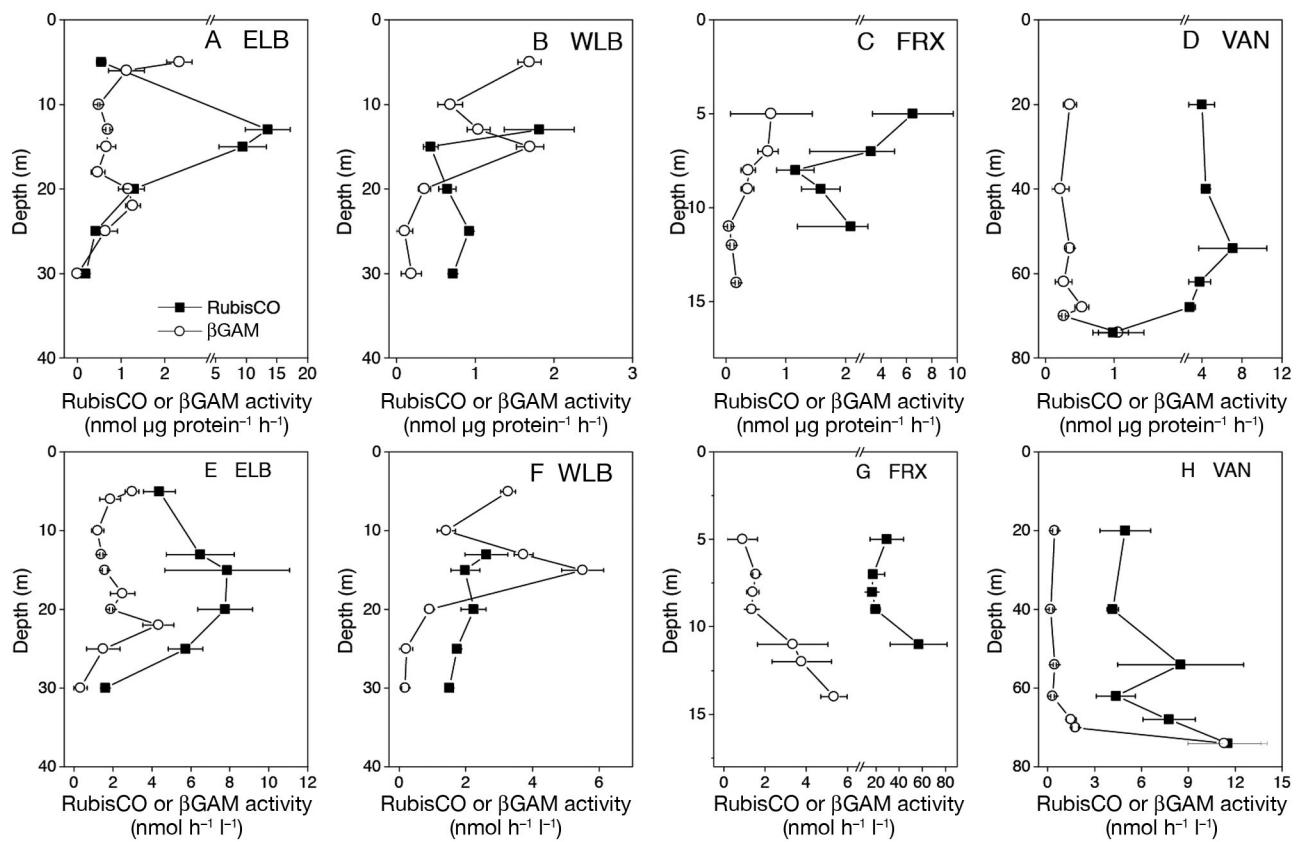


Fig. 5. Spatial variability in enzyme activity of RubisCO and β -D-glucosaminidase (β GAM) in study sites: (A,E) Lake Bonney east lobe, (B,F) Lake Bonney west lobe, (C,G) Lake Fryxell and (D,H) Lake Vanda. Enzyme activity is represented as either $\text{nmol } \mu\text{g protein}^{-1} \text{h}^{-1}$ (A-D) or $\text{nmol h}^{-1} \text{l}^{-1}$ lake water (E-H). Note that the scales of the x-axes are different across all panels, and also note the break in the x-axis in (A,C,D) and (G)

N:P, and positively corresponded with the biological parameters chl *a*, protein concentration, as well as abundance of cryptophytes and haptophytes.

The relationship between spatial distribution of heterotrophic activity (i.e. β GAM) and various lake parameters was distinct from that of RubisCO. Statistically significant correlations for β GAM activity in shallow water column layers include those with PAR, temperature, bacteria counts, protein concentration, chl *a* as well as green algae. In contrast, the enzyme activity in deep water column layers showed correlations with conductivity, temperature, NH_4^+ and SRP^- , protein concentration (Table 1). Interestingly, in the deep layers β GAM activity was positively correlated with temperature while in the shallow layers, it had negative correlation with this parameter.

We selected linear models of RubisCO and β GAM activities and their significant predictors (i.e. abiotic and biotic factors) based on the lowest AIC values (Table 2). RubisCO activity in the shallow layers was predicted mostly by abiotic variables (i.e. DIC concentration, conductivity and ammonia concentration)

($R^2 = 0.49$, $p = 0.02$). In the deep lake layers, irradiance (PAR), conductivity, major nutrient ratio (N:P) and total protein concentration were the significant predictors of RubisCO activity ($R^2 = 0.80$, $p < 0.001$). On the other hand, physicochemical conditions were the significant predictors of β GAM activity in both shallow and deep layer models, with $R^2 = 0.65$, $p < 0.001$ and $R^2 = 0.80$, $p < 0.001$, respectively. Temperature and N:P were present in both models while chl *a* and phosphate concentrations were important to explain β GAM activity in shallow layers, and conductivity and irradiance were significant predictors of the activity in deep layers.

DISCUSSION

MDV lakes exhibit strong gradients in the physico-chemistry which drives variations in microbial distribution, diversity and abundance within and between the lakes (Laybourn-Parry et al. 1997, Roberts et al. 2004b, Kong et al. 2012b). Recent studies combining

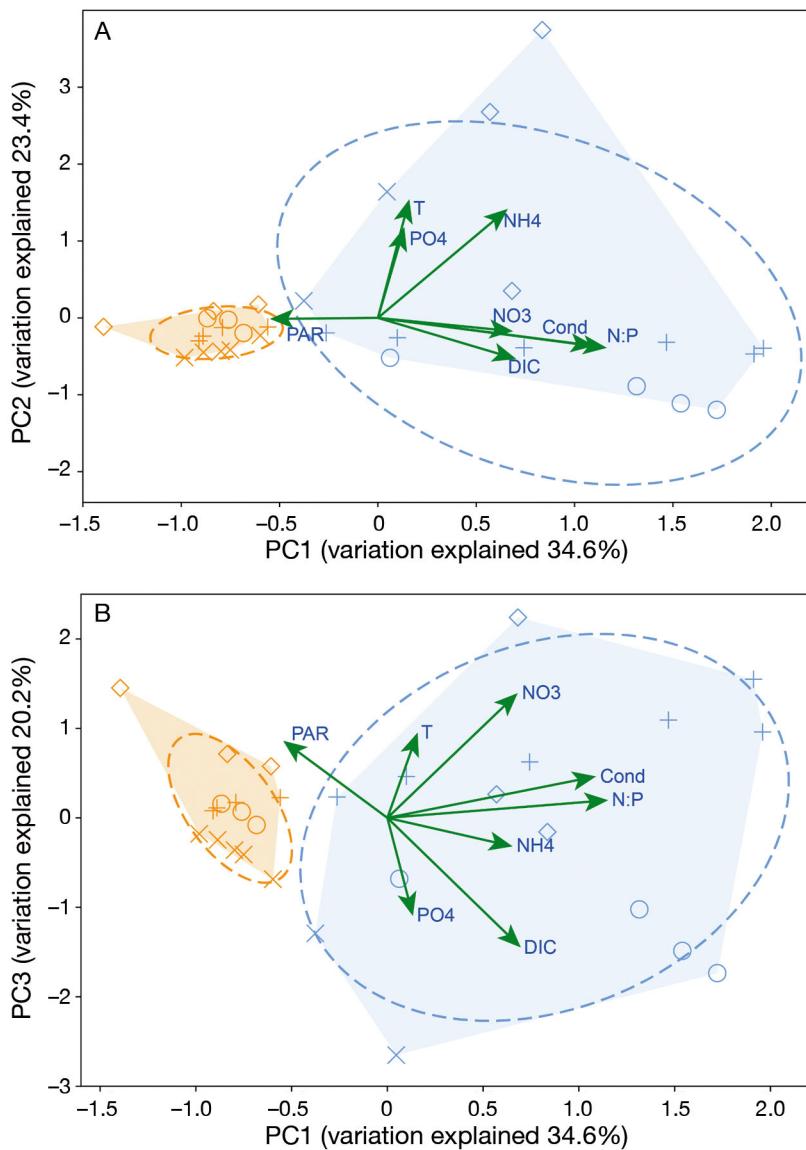


Fig. 6. Principal component analysis (PCA) based on major abiotic factors of 4 study lakes. Cond: conductivity; PAR: photosynthetically available radiation; T: temperature; DIC: dissolved inorganic carbon; NO₃: NO₃⁻; NH₄: NH₄⁺; PO₄: soluble reactive phosphorus; N:P: dissolved inorganic N:P ratio. Shallow and deep layers were coded as orange and blue respectively. Circles: 75% similarity within each group. Symbols indicated samples from Lake Bonney east lobe (plus), Lake Bonney west lobe (circle), Lake Fryxell (cross) and Lake Vanda (diamond)

sequencing and quantitative PCR (qPCR) approaches have described the diversity and vertical distribution of the protistan communities residing in MDV lakes (Bielewicz et al. 2011, Kong et al. 2012a,b, Dolhi et al. 2015). Based on gene and transcript abundance of form I and II RubisCO genes (*rbcL* and *cbbM*, respectively), these studies predicted that light is a strong environmental driver for the obligate photoautotrophs (e.g. chlorophytes). On the other hand, spatial

and seasonal variability in mixotrophic protist populations (e.g. haptophytes and cryptophytes) appears to be independent of PAR availability (Kong et al. 2012b, Dolhi et al. 2015). The present study extends the findings from the molecular studies by measuring autotrophic and heterotrophic enzyme activities in the MDV lake communities.

Spatial trends in autotrophic (RubisCO) activity peaked at or near the chemocline in both lobes of Lake Bonney as well as Lake Vanda. WLB exhibited relatively low RubisCO activity compared to ELB despite the presence of a well-defined chl *a* maximum. The apparent uncoupling of chl *a* from carbon fixation in WLB was also noted by Kong et al. (2012b), who observed that transcriptional activity of 2 types of RubisCO large subunit (*rbcL*) genes was 25 and 500× lower in WLB compared with ELB (Kong et al. 2012b). In support of the molecular evidence, PPR was 4 to 5× lower in WLB compared with ELB (Kong et al. 2012b); however, expression of the photosystem II reaction center gene *psbA* was comparable between the 2 lobes. These reports combined with results presented here indicate that phytoplankton in WLB have a relatively high light harvesting capacity combined with a lower capacity for fixation of CO₂, relative to ELB. This uncoupling between light energy capture and C-fixation may be due to photoacclimation in obligate photoautotrophs and/or heterotrophic metabolism in mixotrophic phytoplankton (Morgan-Kiss et al. 2016, Obryk et al. 2016).

Permanent chemoclines are steep redox transitions associated with high

microbial activity and biomass in meromictic lakes (Van Gemerden & Mas 1995), and represent a rich source of POC for heterotrophic and mixotrophic protists. While mixotrophy in the chemoclines is likely a strategy for energy acquisition under limiting light levels, peaks in βGAM activity in the shallow depths of both lobes of Lake Bonney may reflect digestion of bacterial prey as an alternative mechanism for the acquisition of additional nutrients (nitro-

Table 1. Pearson correlation coefficient values (r) for average RubisCO and β -D-glucosaminidase (β GAM) activity with lake physical, chemical, and biological parameters for all samples ($n = 57-93$). The significance of the correlation coefficient is indicated by * $0.01 < p < 0.05$; ** $0.001 < p < 0.01$; *** $p < 0.001$. Cond: conductivity; PPR: primary productivity; PAR: photosynthetically available radiation; Temp: temperature; SRP: soluble reactive phosphorous; DIC: dissolved inorganic carbon; Bact: bacteria counts; Prot: protein; Chl a : chlorophyll a ; Galg: green algae; Cyan: cyanobacteria; Hapt: haptophytes; Crypt: cryptophytes

	Cond	PPR	PAR	Temp	NH_4^+	NO_3^-	SRP	N:P	DIC	Bact	Prot	Chl a	Galg	Cyan	Hapt	Crypt
Log RubisCO																
Shallow ($n = 20$)	-0.53*	0.5*	0.27	-0.49*	-0.35	-0.48*	-0.52*	-0.49*	-0.04	0.3	-0.08	0.46	-0.29	-0.31	0.26	0.51*
Deep ($n = 37$)	-0.66***	-0.21	0.26	-0.19	-0.52**	-0.42**	-0.23	-0.69***	-0.14	0.25	0.42**	0.57***	-0.36*	0.04	0.5**	0.75***
βGAM																
Shallow ($n = 42$)	0.1	-0.26	-0.47**	-0.39*	0.03	0.04	0.06	0.08	-0.01	0.54***	0.39*	0.67***	0.54***	0.15	0.17	-0.15
Deep ($n = 51$)	-0.47**	-0.05	-0.22	0.41**	0.5***	-0.18	0.45***	-0.22	-0.22	-0.06	0.32*	0.01	0.03	0.25	-0.09	-0.09

Table 2. Linear regression models explaining the enzyme activities in different portions of water columns. The models were selected by lowest AIC value from all possible linear models to explain log-transformed enzyme activities in shallow and deep layers as dependent variables and log-transformed abiotic (except temperature) and biotic parameters as independent variables. β GAM: β -D-glucosaminidase; Cond: conductivity; PAR: photosynthetically available radiation; Temp: temperature; DIC: dissolved inorganic carbon; Chl a : chlorophyll a ; Prot: protein. The significance of the correlation coefficient is indicated by * $0.01 < p < 0.05$; ** $0.001 < p < 0.01$; *** $p < 0.001$

No.	Dependent variable	Linear model	AIC	R^2	n
1	Log RubisCO _{shallow}	$1.8*** + 0.27*** \text{ DIC} - 1.16*** \text{ Log Cond} + 0.15 \text{ Log NH}_4^+$	52	0.49	18
2	Log RubisCO _{deep}	$-2.83 + 0.14* \text{ PAR} + 1.55*** \text{ Log Cond} - 0.65*** \text{ Log SRP} - 0.66* \text{ Log N:P} + 0.11 \text{ Chl } a + 0.07*** \text{ Prot}$	78	0.80	37
3	β GAM _{shallow}	$1.41** - 0.22*** \text{ Temp} - 0.002 \text{ Chl } a + 0.68*** \text{ Log SRP} + 0.58*** \text{ Log N:P}$	95	0.65	39
4	β GAM _{deep}	$8.84*** - 1.11*** \text{ PAR} + 0.37*** \text{ Temp} - 3.89*** \text{ Log Cond} + 2.32*** \text{ Log N:P}$	228	0.61	54

gen and phosphorus) in the highly oligotrophic surface layers (Laybourn-Parry et al. 2005). In support of this hypothesis, β GAM activity correlated with bacterial abundance (Table 1), and N:P explained β GAM variation (Table 2) in the shallow zones.

Spatial trends in RubisCO and β GAM in both ELB and WLB matched that of haptophyte *rbcL* abundance in a previous study (Kong et al. 2012b). The dominant haptophyte in Lake Bonney is an *Isochrysis* sp. (Bielewicz et al. 2011). While this genus is not typically associated with mixotrophy, the Lake Bonney strain was isolated and shown to be capable of mixotrophy (Table S1) (Li et al. 2016). Thus, it is likely that haptophytes contribute significantly to both RubisCO and β GAM activity within the chemoclines of ELB and WLB. In addition, a recent report identified *Isochrysis* as a major prey for a heterotrophic nanoflagellate, *Pteridomonas* sp. (Li et al. 2016). Thus, *Isochrysis* sp. represents a keystone in Lake Bonney, playing a significant role in the transfer of carbon and nutrients within the food web of MDV lakes.

Of the 4 lakes in this study, Lake Fryxell exhibited the highest ratio of RubisCO to β GAM activity (RubisCO: β GAM range of 3–36). Higher PPR in Lake Fryxell correlates with its status as one of the most productive lakes in the MDV (Priscu 1995). Mixotrophic cryptophytes related to *Geminigera cryophila* dominate the photic zone (Dolhi et al. 2015) and are likely to be major contributors to the carbon cycle in Lake Fryxell. The contribution of cryptophytes to primary production in all the lakes was evident in the significant correlation between RubisCO activity and cryptophyte abundance (Table 1). The contribution of cyanobacteria to RubisCO activity cannot be ruled out, as *Oscillatoria* spp. and *Phormidium* spp. have been dominant members of the under-ice and chemocline communities, respectively, in certain years (Spaulding et al. 1994). Conversely, β GAM activity remained

low in Lake Fryxell, suggesting that the Lake Fryxell mixotrophs were not reliant on heterotrophy during the sampling time of this experiment (mid-summer). Thus, while all MDV lakes are limited for light by the permanent ice-covers, we suggest that nutrient availability is a strong driver of protist community trophic status. This hypothesis is also supported by a recent nutrient bioassay study mimicking a climate-related summer flood event which showed that the diversity and abundance of phytoplankton communities in Lake Bonney, but less so in Lake Fryxell, was highly responsive to nitrogen and phosphorus concentrations (Teufel et al. 2017).

The PCC analysis of enzyme activity correlating with biotic and abiotic environmental parameters provided further insights on drivers of auto- and hetero-trophic groups in shallow and deep lake depths. The correlation between RubisCO activity and biotic parameters (protein concentration, chl *a*, and haptophyte and cryptophyte abundance) in deep layers indicates that haptophytes and cryptophytes are likely major contributors to inorganic carbon fixation within the chemoclines of Lakes Bonney and Fryxell, respectively. On the other hand, β GAM activity correlated strongly with biotic parameters (bacterial counts, protein concentration, chl *a*, and green algae abundance) in shallow lake layers, whereas β GAM activity correlated strongly with abiotic parameters (temperature, salinity, NH_4^+ , and PO_4^{3-}) in deep lake layers. This correlation fits well with the assumption that heterotrophic protists heavily graze on bacterioplankton and small phytoplankton (Laybourn-Parry et al. 1995, 1997, Laybourn-Parry 1997). The positive correlation between β GAM activity and biotic parameters in these depths suggests that prey availability might be a limiting factor of heterotrophic activity in shallow layers. In contrast, PCC analysis indicates that conductivity was negatively correlated with heterotrophic activity, which can be explained by the fact that higher salinity depths (e.g. hyper-saline water in deep Lake Bonney) may impact the physiology of heterotrophic protists (Greenwald & Hurlbert 1993). Since many heterotrophic organisms are known for their delicate cell structure, it is not surprising that MDV heterotrophic protists could be adversely affected by the extreme salinity levels in the deep zone of Lake Bonney. A recent paper on the diversity and distribution of fungal communities in the MDV lakes also reported salinity as a strong driver of abundance and diversity (Rojas-Jimenez et al. 2017).

RubisCO activity was measurable at depths below the photic zones in all MDV lakes studied, indicating that there is the potential for carbon fixation using

alternative energy sources, such as reduced organic or inorganic compounds (i.e. chemolithoautotrophic metabolism). Evidence for chemolithoautotrophic bacteria in the MDV aquatic ecosystems has been reported for several MDV lakes. The anoxic, sulfidic bottom waters of Lake Fryxell have yielded culture-dependent (Sattley & Madigan 2006) and independent (Dolhi et al. 2015) evidence for sulfur-oxidizing bacteria (SOB) related to *Thiobacillus thioparus*. Evidence for the existence of a SOB community below the photic zone was also found for WLB (Kong et al. 2012a, Dolhi et al. 2015). It is predicted that these organisms utilize dimethyl sulfoxide (DMSO), a breakdown product of dimethylsulfoniopropionate (DMSP) which is produced by algae including haptophytes, chrysophytes, and dinoflagellates as a cryo- or osmo-protectant (Trevena et al. 2000), as an electron acceptor. A second breakdown product, dimethylsulfide (DMS) may be utilized as an electron donor (Raina et al. 2010). The potential for dark carbon fixation by ammonia-oxidizing bacteria also exists in ELB and Lake Vanda (Vincent et al. 1981, Voytek et al. 1999).

While the RubisCO enzyme assay measured the potential for a community to fix inorganic carbon, β GAM activity is a proxy for community respiration, specifically breakdown of complex organic carbon sources by acidic food vacuoles. As the result of local climate change, it has been reported that water levels of the MDV lakes have risen significantly in the past 30 yr due to greater input of glacial melt and streams (Fountain et al. 2016). Continuous fresh water inflow into these closed basin lakes could potentially affect the lake physiochemical conditions. For example, our linear model predicts that a 10% decrease of whole lake conductivity would cause a 12% RubisCO activity increase in the water column above the chemocline or a 16% RubisCO enzyme activity decrease and a 14% increase of average β GAM activity below the chemocline.

Some fraction of the β GAM activity could be attributable to other microorganisms. Sherr & Sherr (1999) observed that both heterotrophic bacteria and phytoplankton exhibit β GAM activity. However, a more recent paper tested the contribution of heterotrophic bacteria to particulate β GAM activity and reported that particulate activity was magnitudes higher compared with that of the filtrate (Sintes & del Giorgio, 2010). In addition, β GAM activity is below detection limits in a strict photosynthetic alga, *Chlamydomonas* sp. ICE-MDV (Table S1), a dominant member of the Lake Bonney phytoplankton community (Bielewicz et al. 2011).

Using functional enzyme activity, the present study showed that autotrophic and heterotrophic spatial trends within the MDV lakes are complex. While autotrophic metabolism was generally dominant at depths at and below the chemocline, heterotrophic metabolism was dominant at both shallow, nutrient-deficient depths (Lake Bonney), within the chemocline (Lake Bonney and Vanda), or below the chemocline (Lake Fryxell). Previous studies of RubisCO gene diversity and distribution (Kong et al. 2012a,b) helped to attribute enzyme function to groups of organisms. Pairing diversity and function studies with environmental parameters will improve understanding of microbial community structure and how this may be impacted by climate change, an area of research with many unanswered questions (Caron & Hutchins 2013). Polar microbial communities on the cusp of environmental change are important predictors for future changes in low-latitude aquatic environments.

Acknowledgements. The authors thank the McMurdo LTER program, Antarctic Support Contract and PHI helicopters for logistical assistance in the field. We also thank Mr. Mike Cloutier and the Polar Geospatial Center for providing maps of the research area. This work was supported by NSF Office of Polar Programs Grant OPP-1056396 and GEO-1637708.

LITERATURE CITED

Akaike H (1974) A new look at the statistical model identification. *IEEE Trans Automat Contr* 19:716–723

Arnosti C (2011) Microbial extracellular enzymes and the marine carbon cycle. *Annu Rev Mar Sci* 3:401–425

Batistas Navarro M, Balseiro E, Modenutti B (2011) UV radiation simultaneously affects phototrophy and phagotrophy in nanoflagellate-dominated phytoplankton from an Andean shallow lake. *Photochem Photobiol Sci* 8: 1318–1325

Beutler M, Wiltshire KH, Meyer B, Moldaenke C and others (2002) A fluorometric method for the differentiation of algal populations *in vivo* and *in situ*. *Photosynth Res* 72: 39–53

Bielewicz S, Bell E, Kong W, Friedberg I, Priscu JC, Morgan-Kiss RM (2011) Protist diversity in a permanently ice-covered Antarctic lake during the polar night transition. *ISME J* 5:1559–1564

Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principles of dye-binding. *Anal Biochem* 72:248–254

Brown CD, Hoyer MV, Bachmann RW, Canfield DE Jr (2000) Nutrient-chlorophyll relationships: an evaluation of empirical nutrient-chlorophyll models using Florida and north-temperate lake data. *Can J Fish Aquat Sci* 57:1574–1583

Caron DA, Hutchins DA (2013) The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. *J Plankton Res* 35:235–252

Carraro E, Guyennon N, Hamilton D, Valsecchi L and others (2012) Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium *Planktothrix rubescens* in a medium-sized lake. In: Salmaso N, Naselli-Flores L, Cerasino L, Flaim G, Tolotti M, Padisák J (eds) *Phytoplankton responses to human impacts at different scales*. Dev Hydrobiol, Vol 221. Springer, Dordrecht, p 77–95

Dolhi JM, Ketchum N, Morgan-Kiss RM (2012) Establishment of microbial eukaryotic enrichment cultures from a chemically stratified Antarctic lake and assessment of carbon fixation potential. *J Vis Exp* 62:e3992

Dolhi JM, Teufel AG, Kong W, Morgan-Kiss RM (2015) Diversity and spatial distribution of autotrophic communities within and between ice-covered Antarctic lakes (McMurdo Dry Valleys). *Limnol Oceanogr* 60: 977–991

Fountain AG, Saba G, Adams B, Doran P and others (2016) The impact of a large-scale climate event on Antarctic ecosystem processes. *Bioscience* 66:848–863

Gast RJ, McKie-Krisberg ZM, Fay SA, Rose JM, Sanders RW (2014) Antarctic mixotrophic protist abundances by microscopy and molecular methods. *FEMS Microbiol Ecol* 89:388–401

Greenwald GM, Hurlbert SH (1993) Microcosm analysis of salinity effects on coastal lagoon plankton assemblages. *Hydrobiologia* 267:307–335

Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for education and data analysis. *Palaeontol Electronica* 4:1–9

Izaguirre I, Sinistro R, Schiaffino MR, Sánchez ML, Unrein F, Massana R (2012) Grazing rates of protists in wetlands under contrasting light conditions due to floating plants. *Aquat Microb Ecol* 65:221–232

James MR, Hall JA, Laybourn-Parry J (1998) Protozooplankton and microzooplankton ecology in lakes of the Dry Valleys, Southern Victoria Land. In: Priscu JC (ed) *Ecosystem dynamics in a Polar desert: the McMurdo Dry Valleys, Antarctica*. Antarctic Res Ser, Vol 72. American Geophysical Union, Washington, DC, p 255–267

Kong W, Dolhi JM, Chiuchiolo A, Priscu JC, Morgan-Kiss RM (2012a) Evidence of form II RubisCO (*cbbM*) in a perennially ice-covered Antarctic lake. *FEMS Microbiol Ecol* 82:491–500

Kong W, Ream DC, Priscu JC, Morgan-Kiss RM (2012b) Diversity and expression of RubisCO genes in a perennially ice-covered Antarctic lake during the polar night transition. *Appl Environ Microbiol* 78:4358–4366

Kong W, Li W, Romancova I, Prášil O, Morgan-Kiss RM (2014) An integrated study of photochemical function and expression of a key photochemical gene (*psbA*) in photosynthetic communities of Lake Bonney (McMurdo Dry Valleys, Antarctica). *FEMS Microbiol Ecol* 89: 293–302

Laybourn-Parry J (1997) The microbial loop in Antarctic lakes. In: Lyons WB, Howard-Williams C, Hawes I (eds) *Ecosystem processes in Antarctic ice-free landscapes*. Balkema, Rotterdam, p 231–240

Laybourn-Parry J, Bayliss P, Ellis-Evans JC (1995) The dynamics of heterotrophic nanoflagellates and bacterioplankton in a large ultra-oligotrophic Antarctic lake. *J Plankton Res* 17:1835–1850

Laybourn-Parry J, James MR, McKnight DM, Priscu J, Spaulding SA, Shiel R (1997) The microbial plankton of

Lake Fryxell, southern Victoria Land, Antarctica during the summers of 1992 and 1994. *Polar Biol* 17:54–61

☞ Laybourn-Parry J, Marshall WA, Marchant HJ (2005) Flagellate nutritional versatility as a key to survival in two contrasting Antarctic saline lakes. *Freshw Biol* 50: 830–838

☞ Lebaron P, Troussellier M, Got P (1994) Accucary (sic) of epifluorescence microscopy counts for direct estimates of bacterial numbers. *J Microbiol Methods* 19:89–94

☞ Li W, Podar M, Morgan-Kiss RM (2016) Ultrastructural and single-cell level characterization reveals metabolic versatility in a microbial eukaryote community from an ice-covered Antarctic lake. *Appl Environ Microbiol* 82: 3659–3670

☞ Lyons WB, Fountain A, Doran P, Priscu JC, Neumann K, Welch KA (2000) The importance of landscape position and legacy: the evolution of the lakes in Taylor Valley, Antarctica. *Freshw Biol* 43:355–367

☞ Marshall W, Laybourn-Parry J (2002) The balance between photosynthesis and grazing and Antarctic mixotrophic cryptophytes during summer. *Freshw Biol* 47: 2060–2070

☞ Morgan RM, Ivanov AG, Priscu JC, Maxwell DP, Huner NP (1998) Structure and composition of the photochemical apparatus of the Antarctic green alga, *Chlamydomonas subcaudata*. *Photosynth Res* 56:303–314

Morgan-Kiss RM, Dolhi J (2012) Microorganisms and plants: a photosynthetic perspective. In: Storey K, Tanino K (eds) *Temperature in a changing climate: nature at risk*. CABI, Oxfordshire, p 24–44

☞ Morgan-Kiss RM, Lizotte MP, Kong W, Priscu JC (2016) Photoadaptation to the polar night by phytoplankton in a permanently ice-covered Antarctic lake. *Limnol Oceanogr* 61:3–13

☞ Nygaard G, Tobiesen A (1993) Bacterivory in algae: a survival strategy during nutrient limitation. *Limnol Oceanogr* 38:273–279

☞ O'Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. *PLOS Biol* 7:e1000178

☞ Obryk MK, Doran PT, Friedlaender AS, Gooseff MN and others (2016) Responses of Antarctic marine and freshwater ecosystems to changing ice conditions. *Bioscience* 66:864–879

☞ Phillips G, Pietiläinen OP, Carvalho L, Solimini A, Lyche Solheim A, Cardoso AC (2008) Chlorophyll-nutrient relationships of different lake types using a large European dataset. *Aquat Ecol* 42:213–226

☞ Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. *Freshw Biol* 34: 215–227

☞ Priscu JC, Wolf CF, Takacs CD, Fritsen CH and others (1999) Carbon transformations in the water column of a perennially ice-covered Antarctic lake. *Bioscience* 49:997–1008

☞ Raina JB, Dinsdale EA, Willis BL, Bourne DG (2010) Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? *Trends Microbiol* 18:101–108

☞ Roberts EC, Laybourn-Parry J (1999) Mixotrophic cryptophytes and their predators in the Dry Valley lakes of Antarctica. *Freshw Biol* 41:737–746

☞ Roberts EC, Laybourn Parry J, McKnight DM, Novarino G (2000) Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica. *Freshw Biol* 44: 649–661

☞ Roberts EC, Priscu JC, Laybourn-Parry J (2004a) Micro- plankton dynamics in a perennially ice-covered Antarctic lake — Lake Hoare. *Freshw Biol* 49:853–869

☞ Roberts EC, Priscu JC, Wolf C, Lyons WB, Laybourn-Parry J (2004b) The distribution of microplankton in the McMurdo Dry Valley Lakes, Antarctica: response to ecosystem legacy or present-day climatic controls? *Polar Biol* 27:238–249

☞ Rojas-Jimenez K, Wurzbacher C, Bourne EC, Chiuchiolo A, Priscu JC, Grossart HP (2017) Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. *Sci Rep* 7:15348

Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D Reidel, Dordrecht

☞ Sattley WM, Madigan MT (2006) Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. *Appl Environ Microbiol* 72: 5562–5568

Sherr EB, Sherr BF (1993) Protistan grazing rates via uptake of fluorescein-labeled prey. In: Kemp P, Sherr BF, Sherr EB, Cole J (eds) *Handbook of methods in aquatic microbial ecology*. Lewis, Boca Raton, FL, p 695–701

☞ Sherr EB, Sherr BF (1999) β -Glucosaminidase activity in marine microbes. *FEMS Microbiol Ecol* 28:111–119

☞ Sherr EB, Sherr BF, Fessenden F (1997) Heterotrophic protists in the central Arctic Ocean. *Deep Sea Res II* 44: 1665–1682

☞ Sintes E, del Giorgio PA (2010) Community heterogeneity and single cell digestive activity of estuarine heterotrophic nanoflagellates assessed using lysotracker and flow cytometry. *Environ Microbiol* 12:1913–1925

☞ Sintes E, del Giorgio PA (2014) Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial food-webs. *Front Microbiol* 5:453

☞ Smalley GW, Coats DW, Adam EJ (1999) A new method using fluorescent microspheres to determine grazing on ciliates by the mixotrophic dinoflagellate *Ceratium furca*. *Aquat Microb Ecol* 17:167–179

Spigel RH, Priscu JC (1998) Physical limnology of the McMurdo Dry Valleys lakes. In: Priscu JC (ed) *Ecosystem dynamics in a Polar desert: the McMurdo Dry Valleys, Antarctica*. Antarct Res Ser, Vol 72. American Geophysical Union, Washington, DC, p 153–187

Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bulletin 167, 2nd edn. Fisheries Research Board of Canada, Ottawa

☞ Štrojsová A, Dyhrman ST (2008) Cell-specific β -N-acetyl-glucosaminidase activity in cultures and field populations of eukaryotic marine phytoplankton. *FEMS Microb Ecol* 64:351–361

☞ Teufel AG, Li W, Kiss AJ, Morgan-Kiss RM (2017) Impact of nitrogen and phosphorus on phytoplankton production and bacterial community structure in two stratified Antarctic lakes: a bioassay approach. *Polar Biol* 40: 1007–1022

☞ Thurman J, Parry J, Hill PJ, Priscu JC, Vick TJ, Chiuchiolo A, Laybourn-Parry J (2012) Microbial dynamics and flagellate grazing during transition to winter in Lakes Hoare and Bonney, Antarctica. *FEMS Microbiol Ecol* 82:449–458

☞ Tortell PD, Martin CL, Corkum ME (2006) Inorganic carbon uptake and intracellular assimilation by subarctic Pacific phytoplankton assemblages. *Limnol Oceanogr* 51: 2102–2110

Trevena AJ, Jones GB, Wright SW, van den Enden RL (2000) Profiles of DMSP, algal pigments, nutrients and salinity in pack ice from eastern Antarctica. *J Sea Res* 43:265–273

Van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. *Adv Photosynth Respir*, Vol 2. Springer, Dordrecht, p 49–85

Verni F, Gualtieri P (1997) Digestive process of the raptorial feeder ciliate *Litonotus lamella* (Rabdophora, Litostomatea) visualized by fluorescence microscopy. *Micron* 28: 447–451

Vick-Majors TJ, Priscu JC, Amaral-Zettler LA (2014) Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. *ISME J* 8:778–789

Vincent WF (1981) Production strategies in Antarctic inland waters: phytoplankton eco physiology in a permanently ice covered lake. *Ecology* 62:1215–1224

Vincent WF, Downes MT, Vincent CL (1981) Nitrous oxide cycling in Lake Vanda, Antarctica. *Nature* 292:618–620

Voytek MA, Priscu J, Ward BB (1999) The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. *Hydrobiologia* 401:113–130

Vrba J, Šimek K, Nedoma J, Hartman P (1993) 4-Methylumbelliferyl- β -N-acetylglucosaminide hydrolysis by a high-affinity enzyme, a putative marker of protozoan bacterivory. *Appl Environ Microbiol* 59:3091–3101

Vrba J, Šimek K, Pernthaler J, Psenner R (1996) Evaluation of extracellular, high-affinity β -N-acetylglucosaminidase measurements from freshwater lakes: an enzyme assay to estimate protistan grazing on bacteria and pico-cyanobacteria. *Microb Ecol* 32:81–99

Ward BB, Granger J, Maldonado MT, Wells ML (2003) What limits bacterial production in the suboxic region of permanently ice-covered Lake Bonney, Antarctica? *Aquat Microb Ecol* 31:33–47

Ward BB, Granger J, Maldonado MT, Casciotti KL, Harris S, Wells ML (2005) Denitrification in the hypolimnion of permanently ice-covered Lake Bonney, Antarctica. *Aquat Microb Ecol* 38:295–307

Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. *Limnol Oceanogr* 54:2273–2282

Winslow LA, Dugan HA, Buelow HN, Cronin KD, Priscu JC, Takacs-Vesbach C, Doran PT (2014) Autonomous year-round sampling and sensing to explore the physical and biological habitability of permanently ice-covered Antarctic lakes. *Mar Technol Soc J* 48:8–17

Wohlers J, Engel A, Zöllner E, Breithaupt P and others (2009) Changes in biogenic carbon flow in response to sea surface warming. *Proc Natl Acad Sci USA* 106: 7067–7072

Zubkov MV, Sleigh MA (1998) Heterotrophic nanoplankton biomass measured by a glucosaminidase assay. *FEMS Microbiol Ecol* 25:97–106

Editorial responsibility: Robert Sanders,
Philadelphia, Pennsylvania, USA

Submitted: May 14, 2018; Accepted: October 14, 2018
Proofs received from author(s): December 18, 2018