
The Journal of Systems and Software 146 (2018) 99–111 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

Performance and programming effort trade-offs of android persistence 

frameworks 

Zheng Jason Song 

∗, Jing Pu , Junjie Cheng , Eli Tilevich 

Software Innovations Lab, Virginia Tech, Blacksburg, VA 24061, United States 

a r t i c l e i n f o 

Article history: 

Received 30 August 2017 

Revised 26 June 2018 

Accepted 21 August 2018 

Available online 23 August 2018 

Keywords: 

Persistence framework 

Mobile application 

Performance 

Programming effort 

a b s t r a c t 

A fundamental building block of a mobile application is the ability to persist program data between 

different invocations. Ref erred to as persistence , this functionality is commonly implemented by means 

of persistence frameworks. Without a clear understanding of the energy consumption, execution time, 

and programming effort of popular Android persistence frameworks, mobile developers lack guidelines 

for selecting frameworks for their applications. To bridge this knowledge gap, we report on the results 

of a systematic study of the performance and programming effort trade-offs of eight Android persistence 

frameworks, and provide practical recommendations for mobile application developers. 

© 2018 Elsevier Inc. All rights reserved. 

1

 

s  

a  

p  

d  

g  

p  

d  

t

 

c  

f  

(  

a  

r  

p  

t  

v  

h  

i  

b  

a  

(  

(

h  

H

 

p  

i  

p  

o  

a  

a  

e  

d  

p  

t  

p

 

s  

e  

o  

p  

p  

o  

i  

s  

c  

w  

h

0

. Introduction 

Any non-trivial application includes a functionality that pre-

erves and retrieves user data, both during the application session

nd across sessions; this functionality is commonly referred to as

ersistence . In persistent applications, relational or non-relational

atabase engines preserve user data, which is operated by pro-

rammers either by writing raw database operations, or via data

ersistence frameworks. By providing abstractions on top of raw

atabase operations, data persistence frameworks help streamline

he development process. 

As mobile devices continue to replace desktops as the primary

omputing platform, Android is poised to win the mobile plat-

orm contest, taking the 82.8% share of the mobile market in 2015

 Smartphone OS market share, 2015 ) with more than 1.6 million

pplications developed thus far ( Statista, 2015 ). Energy efficiency

emains one of the key considerations when developing mobile ap-

lications ( Jha, 2011; Kwon and Tilevich, 2013a; Li et al., 2014 ), as

he energy demands of applications continue to exceed the de-

ices’ battery capacity. Consequently, in recent years researchers

ave focused their efforts on providing Android developers with

nsights that can be used to improve the energy efficiency of mo-

ile applications. The research literature on the subject includes

pproaches ranging from general program analysis and modeling

 Hao et al., 2013; Tiwari et al., 1996; Dong and Zhong, 2010; Co-
∗ Corresponding author. 

E-mail addresses: songz@vt.edu (Z.J. Song), pjing83@vt.edu (J. Pu), cjunjie@vt.edu 

J. Cheng), tilevich@vt.edu (E. Tilevich). 

d  

S  

t  

v  

ttps://doi.org/10.1016/j.jss.2018.08.038 

164-1212/© 2018 Elsevier Inc. All rights reserved. 
en et al., 2012 ) to application-level analysis ( Sahin et al., 2012;

indle, 2012; Kwon and Tilevich, 2013b; Pinto et al., 2014 ). 

Despite all the progress made in understanding the energy im-

act of programming patterns and constructs, a notable omission

n the research literature on the topic is the energy consumption of

ersistence frameworks. Although an indispensable building block

f mobile applications, these frameworks have never been system-

tically studied in this context, which can help programmers gain

 comprehensive insight on the overall energy efficiency of mod-

rn mobile applications. Furthermore, to be able to make informed

ecisions when selecting a persistence framework for a mobile ap-

lication, developers have to be mindful of the energy consump-

ion, execution time, and programming effort trade-offs of major

ersistence frameworks. 

To that end, this paper reports on the results of a comprehen-

ive study we have conducted to measure and analyze the en-

rgy consumption, execution time, and programming effort trade-

ffs of popular Android persistence frameworks. For Android ap-

lications, persistence frameworks expose their APIs to the ap-

lication developers as either object-relational mappings (ORM),

bject-oriented (OO) interfaces, or key-value interfaces, accord-

ng to the underlying database engine. In this article, we con-

ider the persistence libraries most widely used in Android appli-

ations ( Mukherjee and Mondal, 2014 ). In particular, we study six

idely used ORM persistence frameworks ( Activeandroid by par-

om, 0 0 0 0; greenDAO, 0 0 0 0; OrmLite, 0 0 0 0; Sugar ORM, 0 0 0 0;

qlite database engine, 0 0 0 0; DBFlow, 0 0 0 0 )), one OO persis-

ence framework ( Realm database engine, 0 0 0 0 ), and one key-

alue database operation framework ( Paper, 0 0 0 0 ) as our experi-

https://doi.org/10.1016/j.jss.2018.08.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.08.038&domain=pdf
mailto:songz@vt.edu
mailto:pjing83@vt.edu
mailto:cjunjie@vt.edu
mailto:tilevich@vt.edu
https://doi.org/10.1016/j.jss.2018.08.038


100 Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

i  

e  

p  

f  

t  

s

 

f  

T  

t  

n  

w  

t  

t  

t  

f  

m

2

 

o  

g  

p  

e  

c  

e  

Z  

a  

h  

a  

s  

L  

p  

G  

s  

(  

e  

V  

M  

o

 

p  

s  

e  

m  

t  

c  

M  

t  

e  

s

 

e  

m  

P  

A  

t  

v  
mental targets. These frameworks operate on top of the popular

SQLite, Realm, or NoSQL database engines. 

In our experiments, we apply these eight persistence frame-

works to different benchmarks, and then compare and contrast the

resulting energy consumption, execution time, and programming

effort (measured as lines of programmer-written code). Our exper-

iments include a set of micro-benchmarks designed to measure the

performance of individual database operations as well as the well-

known DaCapo H2 database benchmark ( Blackburn et al., 2006 ). To

better understand the noticeable performance and programming

effort disparities between persistence frameworks, we also intro-

duce a numerical model that juxtaposes the performance and pro-

gramming effort s of different persistence frameworks. By applying

this model to the benchmarks, we generate several guidelines that

can help developers choose the right persistence framework for a

given application. 

In other words, one key contribution of our study is in-

forming Android developers about how they can choose a per-

sistence framework that achieves the desired energy/execution

time/programming effort balance. Depending on the amount of

persistence functionality in an application, the choice of a per-

sistence framework may dramatically impact the levels of energy

consumption, execution time, and programming effort. By precisely

measuring and thoroughly analyzing these characteristics of alter-

native Android persistence frameworks, this study aims at gaining

a deeper understanding of the persistence’s impact on the mobile

software development ecosystem. The specific questions we want

to answer are: 

RQ1. How do popular Android persistence frameworks differ in

terms of their respective features and capabilities? 

RQ2. as it is realize What is the relationship between the per-

sistence framework’s features and capabilities and the resulting ex-

ecution time, energy efficiency, and programming effort? 

RQ3. How do the characteristics of an application’s database

functionality affect the performance of persistence frameworks? 

RQ4. Which metrics should be measured to meaningfully assess

the appropriateness of a persistence framework for a given mobile

application scenario? 

To answer RQ1 , we analyze the documentation and implemen-

tation of the persistence frameworks under study to compare and

contrast their features and capabilities. To answer RQ2 and RQ3 ,

we measure each of the energy, execution time, and programming

effort metrics separately, compute their correlations, as well as an-

alyze and interpret the results. To answer RQ4 , we introduce a nu-

merical model, apply it to the benchmarks used for the measure-

ments, and generate several recommendation guidelines. 

Based on our experimental results, the main contributions of

this article are as follows: 

1. To the best of our knowledge, this is the first study that empir-

ically evaluates the energy, execution time, and programming

effort trade-offs of popular Android persistence frameworks. 

2. Our experiments consider multifaceted combinations of fac-

tors which may impact the energy consumption and execu-

tion time of persistence functionality in real-world applications,

which include persistence operations involved, the volume of

persisted data, and the number of transactions. 

3. Based on our experimental results, we offer a series of guide-

lines for Android mobile developers to select the most appro-

priate persistence framework for their mobile applications. For

example, ActiveAndroid or OrmLite fit well for applications pro-

cessing relatively large data volumes in a read-write fashion.

These guidelines can also help the framework developers to op-

timize their products for the mobile market. 

4. We introduce a numerical model that can be applied to evalu-

ate the fitness of a persistence framework for a given applica-
tion scenario. Our model considers programming effort in addi-

tion to execution time and energy efficiency to provide insights

relevant to software developers. 

The rest of this paper is organized as follows. Section 2 sum-

arizes the related prior work. Section 3 provides the background

nformation for this research. Section 4 describes the design of our

xperimental study. Section 5 presents the study results and inter-

rets our findings. Section 6 presents our numerical model and of-

ers practical guidelines for Android developers. Section 7 discusses

he threats to internal and external validity of our experimental re-

ults. Section 8 concludes this article. 

This work extends our previous study of Android persistence

rameworks, published in IEEE MASCOTS 2016 ( Jing et al., 2016 ).

his article is a revised and extended version of that paper. In par-

icular, we describe the additional research we conducted, which

ow includes: (1) a comprehensive analysis of the studied frame-

orks’ features, (2) the measurements and analysis for two addi-

ional persistence frameworks, (3) a study of the relationship be-

ween database-operations, execution time, and energy consump-

ion, based on our measurements, and (4) a novel empirical model

or selecting frameworks for a given set of development require-

ents. 

. Related work 

This section discusses some prior approaches that have focused

n understanding the execution time, energy efficiency, and pro-

ramming effort factors as well as their interaction in mobile com-

uting. Multiple prior studies have focused on understanding the

nergy consumption of different mobile apps and system calls, in-

luding approaches ranging from system level modeling of gen-

ral systems ( Tiwari et al., 1996 ) and mobile systems ( Dong and

hong, 2010 ), to application level analysis ( Banerjee et al., 2014 )

nd optimization ( Kwon and Tilevich, 2013b ). For example, Chowd-

ury et al. study the energy consumed by logging in Android

pps ( Chowdhury et al., 2017 ), as well as the energy con-

umed by HTTP/2 in mobile apps ( Chowdhury et al., 2016 ).

iu et al. (2016) study the energy consumed by wake locks in

opular Android apps. Many of these works make use of the

reen Miner testbed ( Hindle et al., 2014 ) to accurately mea-

ure the amount of consumed energy. As an alternative, the

 Monsoon power monitor, 0 0 0 0 ) is also used to measure the en-

rgy consumed by various Android APIs ( Li et al., 2014; Linares-

ásquez et al., 2014 ). In our work, we have decided to use the

onsoon power meter, due to the tool’s ease of deployment and

peration. 

Many studies also focus on the impact of software engineering

ractices on energy consumption. For example, ( Sahin et al., 2012 )

tudy the relationship between design patterns and software en-

rgy consumption. Hindle et al. (2014) provide a methodology for

easuring the impact of software changes on energy consump-

ion. Hasan et al. (2016) provide a detailed profile of the energy

onsumed by common operations performed on the Java List ,

ap , and Set data structures to guide programmers in selecting

he correct library classes for different application scenarios. Pinto

t al. (2014) study how programmers treat the issue of energy con-

umption throughout the software engineering process. 

The knowledge inferred from the aforementioned studies of en-

rgy consumption can be applied to optimize the energy usage of

obile apps, either by guiding the developer ( Cohen et al., 2012;

athak et al., 2012 ) or via automated optimization ( Li et al., 2016 ).

s discovered in Manotas et al. (2016) , mobile app developers tend

o be better tuned to the issues of energy consumption than de-

elopers in other domains, with a large portion of interviewed



Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 101 

d  

a

 

a  

A  

2  

t  

H  

A  

t  

f  

t  

g  

p  

n

3

 

s  

d

 

p  

w  

s  

A  

h  

2  

w

 

i  

o  

2  

m  

w  

m  

t  

r  

t  

t  

e  

f

 

a  

t  

a  

a  

d

 

d  

o  

s  

w  

(  

m

 

g  

b  

w  

i

 

w  

p  

p  

p  

p  

p  

c  

f  

a  

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

evelopers taking the issue of reducing energy consumptions into

ccount during the development process. 

Local databases are widely used for persisting data in Android

pps ( Lyu et al., 2017 ), and the corresponding database operation

PIs are known to be as “energy-greedy”( Linares-Vásquez et al.,

014 ). Several persistence frameworks have been developed with

he goal of alleviating the burden of writing SQL queries by hand.

owever, how these frameworks affect the energy consumption of

ndroid apps has not been yet studied systematically. To bridge

his knowledge gap, in this work, we study not only the per-

ormance of such frameworks, but also the programming effort

hey require, with the resulting knowledge base providing practical

uidelines for mobile app developers, who need to decide which

ersistence framework should be used in a given application sce-

ario. 

. Background 

To set the context for our work, this section describes the per-

istence functionality, as it is commonly implemented by means of

atabase engines and persistence frameworks. 

The designers of the Android platform have recognized the im-

ortance of persistence by including the SQLite database module

ith the standard Android image as early as the release 1.5. Ever

ince this module has been used widely in Android applications.

ccording to our analysis of the most popular 550 applications

osted on GooglePlay (25 most popular apps for each category, and

2 categories in all), over 400 of them (73%) involve interactions

ith the SQLite module. 

The ORM (object-relational mapping) frameworks have been

ntroduced and refined to facilitate the creation of database-

riented applications ( Xia et al., 2009; Cvetkovi ́c and Jankovi ́c,

010 ). The prior studies of the ORM frameworks have focused

ainly on their execution efficiency and energy efficiency . Mean-

hile, Vetro et al. (2013) show how various software develop-

ent factors (e.g., design patterns, software architecture, informa-

ion hiding, implementation of persistence layers, code obfuscation,

efactoring, and data structure usage) can significantly influence

he performance of a software system. In this article, we compare

he performance of different persistence frameworks in a mobile

xecution environment with the goal of understanding the results

rom the perspective of mobile app developers. 

Android persistence frameworks A persistence framework serves

s a middleware layer that bridges the application logic with

he database engine’s operations. The database engine maintains

 schema in memory or on disk, and the framework provides

 programming interface for the application to interact with the

atabase engine. 

As SQLite (the native database of Android) is a relational

atabase engine, most Android persistence frameworks devel-

ped for SQLite are ORM/OO frameworks. One major function of

uch object-relational mapping (ORM) and object-oriented frame-

orks is to solve the the object-relational impedance mismatch

 Subramanian et al., 1999 ) between the object-oriented program-

ing model and the relational database operation model. 

We evaluate 8 frameworks: Android SQLite, ActiveAndroid,

reenDAO, OrmLite, Sugar ORM, DBFlow, Java Realm, and Paper,

acked up by the SQLite, Realm, and NoSQL database engines,

hich are customized for mobile devices, with limited resources,

ncluding battery power, memory, and processor. 

Persistence framework feature comparison Persistence frame-

orks differ in a variety of ways, including database engines,

rogramming support (e.g., object and schema auto generation),

rogramming abstractions (e.g., data access object (DAO) sup-

ort, relationships, raw query interfaces, batch operations, com-

lex updates, and aggregation operations), relational features sup-
ort (e.g., key/index Structure, SQL join operations, etc.), and exe-

ution modes (e.g., transactions and caching). We focus on these

eatures, as they may impact energy consumption, execution time,

nd programming effort. Table 1 compares these similarities and

ifferences of the persistence frameworks used in our study. 

1. Database engine Six of the studied persistence frameworks use

SQLite ( Newman, 2004 ), an ACID (Atomic, Consistent, Isolated,

and Durable) and SQL standard-compliant relational database

engine. Java Realm framework uses Realm ( Realm database en-

gine, 0 0 0 0 ), an object-oriented database engine, whose design

goal is to provide functionality equivalent to relational engines.

Paper uses NoSQL (0 0 0 0) , a non-relational, schema-free, key-

value data storage database. Therefore, as we here mainly com-

pare features of relational database, Paper as a non-relational

database engine, lacks many of these features. 

2. Object code generation Some frameworks feature code genera-

tors, which relieve the developer from having to write by hand

the classes that represent the relational schema in place. 

3. Schema generation At the initialization stage, persistence frame-

works employ different strategies to generate the database

schema. Android SQLite requires raw SQL statements to cre-

ate database tables, while OrmLite provides a special API call.

greenDAO generates a special DAO class that includes the

schema. The remaining frameworks (excluding Paper) automat-

ically extract the table schema from the programmer defined

entity classes. 

4. Data access method DAO (Data Access Object) is a well-known

abstraction strategy for database access that provides a unified

object-oriented, entity-based persistence operation set (insert,

update, delete, query, etc.). greenDAO, Sugar ORM, and Orm-

Lite provide the DAO layer, while Android SQLite adopts a re-

lational rather than DAO database manipulating interface. Ac-

tiveAndroid, DBFlow, and Java Realm provide a hybrid strategy—

both DAO and SQL builder APIs. 

5. Relationship support The three relationships between entities

are one-to-one, one-to-many, and many-to-many. greenDAO 

and Java Realm support all three relationships. ActiveAndroid

lacks support for Many-to-Many, while Sugar ORM and DBFlow

only support One-To-Many. Android SQLite and OrmLite lack

support for relationships, requiring the programmer to write

explicit SQL join operations. 

6. Raw query interface support Raw queries use naive SQL state-

ments, thus deviating from pure object-orientation to execute

complex database operations on multiple tables, nesting queries

and aggregation functions. Android SQLite, greenDAO, OrmLite,

and DBFlow—all provide this functionality. 

7. Batch operations Batch operations commit several same-type

database changes at once, thus improving performance. green-

DAO, OrmLite, Sugar ORM, and DBFLow provide batch mecha-

nisms for insert, update and delete. Java Realm provides batch

inserts only, and the remaining two frameworks lack this func-

tionality. 

8. Complex update support Typically there are two kinds of

database update operations: update columns to given values,

or update columns based on arithmetic expressions. Android

SQLite and ActiveAndroid can only use raw SQL manipulation

interface to support expression updates. greenDAO, Sugar ORM,

Java Realm, and DBFlow support complex updates via entity

field modification. OrmLite is the only framework that provides

both the value update and expression update abstractions. 

9. Aggregation support Aggregating data in a relational database

enables the statistical analysis over a set of records. Differ-

ent frameworks selectively implement aggregation functional- 

ity. Android SQLite, OrmLite, and DBFlow support all of the ag-

gregation functions via a raw SQL interface. Java Realm and



102 Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 
T
a
b
le
 
1
 

P
e
rs
is
te
n
ce
 
fr
a
m
e
w
o
rk
 
fe
a
tu
re
 
co

m
p
a
ri
so

n
. 

Fe
a
tu
re
s 

A
n
d
ro
id
 
S
Q
Li
te
 

A
ct
iv
e
A
n
d
ro
id
 

g
re
e
n
D
A
O
 

O
rm

Li
te
 

S
u
g
a
r 
O
R
M
 

Ja
v
a
 
R
e
a
lm

 
D
B
F
lo
w
 

P
a
p
e
r 

D
a
ta
b
a
se
 
E
n
g
in
e
 

S
Q
Li
te
 

S
Q
Li
te
 

S
Q
Li
te
 

S
Q
Li
te
 

S
Q
Li
te
 

R
e
a
lm

 
S
Q
Li
te
 

N
o
S
Q
L 

O
b
je
ct
 
C
o
d
e
 

G
e
n
e
ra
ti
o
n
 

✗
 

✗
 

√ 
✗
 

✗
 

✗
 

✗
 

N
.A
. 

S
ch

e
m
a
 
G
e
n
e
ra
ti
o
n
 

m
a
n
u
a
l 

a
u
to
 

a
u
to
 

m
a
n
u
a
l 

a
u
to
 

a
u
to
 

a
u
to
 

N
.A
 

D
a
ta
 
A
cc
e
ss
 
M
e
th

o
d
 

✗
 

✗
 

√ 
√ 

✗
 

✗
 

√ 
N
.A
. 

R
e
la
ti
o
n
sh

ip
 
S
u
p
p
o
rt
 

✗
 

O
n
e
-T
o
-O

n
e
,O
n
e
-T
o
- 

M
a
n
y
 

O
n
e
-T
o
-O

n
e
, 

O
n
e
-T
o
-M

a
n
y,
 

M
a
n
y
-t
o
-M

a
n
y
 

✗
 

O
n
e
-T
o
-M

a
n
y
 

O
n
e
-T
o
-O

n
e
, 

O
n
e
-T
o
-M

a
n
y,
 

M
a
n
y
-t
o
-M

a
n
y
 

O
n
e
-T
o
-M

a
n
y
 

N
.A
. 

R
a
w
 
Q
u
e
ry
 
In
te
rf
a
ce
 

S
u
p
p
o
rt
 

√ 
✗
 

√ 
√ 

✗
 

✗
 

√ 
N
.A
. 

B
a
tc
h
 
O
p
e
ra
ti
o
n
s 

✗
 

✗
 

B
a
tc
h
 
in
se
rt
, 
b
a
tc
h
 

u
p
d
a
te
, 
b
a
tc
h
 
d
e
le
te
 

B
a
tc
h
 
in
se
rt
, 
b
a
tc
h
 

u
p
d
a
te
, 
b
a
tc
h
 
d
e
le
te
 

B
a
tc
h
 
in
se
rt
, 
b
a
tc
h
 

u
p
d
a
te
, 
b
a
tc
h
 
d
e
le
te
 

b
a
tc
h
 
in
se
rt
 

b
a
tc
h
 
in
se
rt
, 
b
a
tc
h
 

u
p
d
a
te
, 
b
a
tc
h
 
d
e
le
te
 

N
.A
. 

C
o
m
p
le
x
 
U
p
d
a
te
 

S
u
p
p
o
rt
 

re
la
ti
o
n
a
l 

re
la
ti
o
n
a
l 

o
b
je
ct
 

re
la
ti
o
n
a
l 

o
b
je
ct
 

o
b
je
ct
 

o
b
je
ct
 

N
.A
. 

A
g
g
re
g
a
ti
o
n
 
S
u
p
p
o
rt
 

a
ll
 

C
O
U
N
T
 

C
O
U
N
T
 

a
ll
 

C
O
U
N
T,
 
F
IR
S
T,
 
L
A
S
T
 

M
A
X
, 
M
IN

, 
S
U
M
, 

A
V
E
R
A
G
E
, 
F
IR
S
T,
 
L
A
S
T
 

a
ll
 

N
.A
. 

K
e
y
/I
n
d
e
x
 
S
tr
u
ct
u
re
 

p
ri
m
a
ry
 
k
e
y,
 
in
d
e
x
, 

fo
re
ig
n
 
k
e
y
 

in
te
g
e
r 
si
n
g
le
 
p
ri
m
a
ry
 

k
e
y,
 
u
n
iq
u
e
, 
in
d
e
x
, 

fo
re
ig
n
 
k
e
y
 

in
te
g
e
r 
si
n
g
le
 
p
ri
m
a
ry
 

k
e
y,
 
u
n
iq
u
e
, 
in
d
e
x
 

si
n
g
le
 
p
ri
m
a
ry
 
k
e
y,
 

in
d
e
x
, 
fo
re
ig
n
 
k
e
y
 

in
te
g
e
r 
si
n
g
le
 
p
ri
m
a
ry
 

k
e
y,
 
u
n
iq
u
e
 

st
ri
n
g
 
o
r 
in
te
g
e
r 

si
n
g
le
 
p
ri
m
a
ry
 
k
e
y,
 

in
d
e
x
 

p
ri
m
a
ry
 
k
e
y,
 
in
d
e
x
, 

fo
re
ig
n
 
k
e
y,
 
u
n
iq
u
e
 

N
.A
. 

S
Q
L
 
JO

IN
 
S
u
p
p
o
rt
 

√ 
√ 

√ 
√ 

✗
 

✗
 

√ 
N
.A
. 

T
ra
n
sa

ct
io
n
 
S
u
p
p
o
rt
 

√ 
√ 

✗
 

√ 
✗
 

√ 
√ 

N
.A
. 

C
a
ch

in
g
 
S
u
p
p
o
rt
 

✗
 

√ 
√ 

√ 
✗
 

✗
 

√ 
√ 

 

 

1  

 

 

 

 

 

 

 

1  

 

 

 

1  

 

 

1  

 

 

 

4

 

d  

t

4

 

d  

v  

d  

a  

r  

p  

t  

n  

p  

t

 

o  

S  

w  

u  

r

 

p  

d  

l  

m  

a  

b  

b  

t  

t  

d  

t  

a

Sugar ORM provide an aggregation subset in the entity layer.

ActiveAndroid and greenDAO support only the COUNT aggrega-

tion. 

0. Key/index structure Key/Index structure identifies individual

records, indicates table correlations, and increases the exe-

cution speed. Android SQLite and DBFlow fully support the

database constraints—single or multiple primary keys (PK), in-

dex and foreign key (FK). ActiveAndroid supports integer single

PK, unique, index, and FK. greenDAO supports integer single PK,

unique, index. OrmLite supports single PK, index, and FK. Sugar

ORM supports integer single PK and unique. Java Realm sup-

ports string or integer single PK, and index. 

1. SQL JOIN support SQL JOIN clause combines data from two or

more relational tables. Android SQLite and DBFlow only sup-

port raw JOIN SQL. ActiveAndroid incorporates JOIN in its ob-

ject query interface. DAOs of greenDAO and OrmLite provide the

JOIN operation. Sugar ORM and Java Realm lack this support. 

2. Transaction support Transactions perform a sequence of opera-

tions as a single logical execution unit. All the studied engines

with the exception of greenDAO, Sugar ORM, and Paper provide

full transactional support. 

3. Cache support OrmLite, ActiveAndroid, greenDAO, DBFlow and

Paper support caching. They provide this advanced feature to

maintain persisted entities in memory to speed-up future ac-

cesses, at the cost of extra processing required to initialize the

cache pool. 

. Experiment design 

In this section, we explain the main decisions we have made to

esign our experiments. In particular, we discuss the benchmarks,

he measurement variables, and the experimental parameters. 

.1. Benchmark selection 

DaCapo H2 ( Blackburn et al., 2006 ) is a well-known Java

atabase benchmark that interacts with the H2 Database Engine

ia JDBC. This benchmark manipulates a considerable volume of

ata to emulate bank transactions. The benchmark includes (1)

 complex schema and non-trivial functionality, obtained from a

eal-world production environment. The database structure is com-

lex (12 tables, with 120 table columns and 11 relationship be-

ween tables), while the database operations simulate the run-

ing of heavy-workload database-oriented applications; (2) com-

lex database operations that require: batching, aggregations, and

ransactions. 

Since DaCapo relies heavily on relational data structures and

perations, we replace H2 with two relational database engines,

QLite or Realm, to adapt this benchmark for Android. In other

ords, we evaluate the performance of all persistence frameworks

nder the DaCapo benchmark except for Paper, which is a non-

elational database engine. 

However, using the DaCapo benchmark alone cannot provide

erformance evaluation of persistence frameworks under the low

ata volumes with simple schema conditions. To establish a base-

ine for our evaluation, we thus designed a set of micro bench-

arks, referred to as the Android ORM Benchmark , which features

 simple database schema with few data records. Specifically, this

enchmark’s database structure includes 2 tables comprising 11 ta-

le columns, and a varying small number of data records. Besides,

his micro-benchmark comprises the fundamental database opera-

ion invocations “create table”, “insert”, “delete”, “select”, and “up-

ate”. As the database operations in many mobile applications tend

o be rather simple, the micro-benchmark’s results present valu-

ble insights for application developers. 



Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 103 

 

e  

t  

s  

c  

S

4

 

s  

A  

s  

a  

t  

h  

d

 

f  

i  

(  

p  

p

 

a  

w  

e  

o  

t  

S  

i  

u  

a  

w  

e

4

 

t  

p  

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

Fig. 1. Monsoon mobile device power monitor’s main channel measurement con- 

nection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

f  

h  

t  

c

 

“  

n  

“  

r  

b

4

Note that database operations differ from database op-

ration invocations. The invocations refer to calling the in-

erfaces provided by the persistence framework (e.g., “in-

ert”, “select”, “update” and “delete”). However, each invocation

an result in multiple database operations (e.g., android...
QLiteStatement.executeInsert() ). 

.2. Test suite implementation 

Our experimental setup comprises a mobile app that uses the

elected benchmarked frameworks to execute both DaCapo and the

ndroid ORM Benchmark. 1 Through this app, experimenters can

elect benchmarks, parameterize the operation and data volume,

s well as select ORM frameworks. The implementation of the

est suite was directed by two graduate students, each of whom

as more than three years of experience in developing commercial

atabase-driven projects. 

As stated above, the DaCapo database benchmark is designed

or relational databases, so it would be non-trivial to reimplement

t using Paper, which is based on a non-relational database engine

NoSQL). Therefore, the DaCapo benchmark is only applied to seven

ersistence frameworks, while the Android ORM Benchmark is ap-

lied to all eight persistence frameworks. 

For each benchmark, the transaction logic (e.g., creating bank

ccounts for DaCapo) is implemented using various ORM frame-

orks, following the design guidelines of these frameworks. For

xample, greenDAO, Sugar ORM, and OrmLite provide object-

riented data access methods, so their benchmarks’ data opera-

ions are implemented by using DAO. On the contrary, Android

QLite adopts a relational rather than DAO database manipulating

nterface, so its benchmark’s data operations are implemented by

sing SQL builders. ActiveAndroid, DBFlow, and Java Realm provide

 hybrid strategy—both DAO and SQL builder APIs. For these frame-

orks, if the benchmark’s operation is impossible or non-trivial to

xpress using DAO, the SQL builder API is used instead. 

.3. Parameters and variables 

Next, we explain the variables used to evaluate the execution

ime, energy consumption, and programming effort of the studied

ersistence frameworks. We also describe how these variables are

btained. 

• Overall execution time The overall execution time is the time

elapsed from the point when a database transaction is triggered

to the point when it completes. 
• Read/write database operation number We focus on comparing

the Read/Write numbers only for SQLite-based frameworks (Ac-

tiveAndroid, greenDAO, OrmLite, Sugar ORM, and DBFlow), as

such frameworks use SQLite operation interfaces provided by

the Android framework to operate on SQLite database. The

write operations include executing SQL statements that are

used to “insert”, “delete”, and “update”, while the read oper-

ations include only “select”. When performing the same combi-

nation of transactions, the differences in Read/Write number is

the output of how different persistence frameworks interpret

database operation invocations. The read/write ratio can also

impact the energy consumption. The operation numbers are ob-

tained by hooking into the SQLite operation interfaces provided

by the Android System Library. For those interfaces provided for

a certain type of database operation, we mark them as “Read”

or “Write”; for those interfaces provided for general SQL exe-

cution, we search for certain keywords (e.g., insert, update, se-
1 All the code used in our experiments can be downloaded from 

ttps://github.com/AmberPoo1/PEPBench. 

 

b  

n  
lect, and delete), in the SQL strings, and further mark them as

“Read” or “Write”. 
• Energy consumption The energy consumption can be calculated

using the real-time current of the Android device’s battery. We

use the Monsoon power monitor (0 0 0 0) to monitor the current

and voltage of the device’s battery, as shown in Fig. 1 . As the

output voltage of a smartphone’s battery remains stable, only

the current and time are required to calculate the energy con-

sumed. Eq. (1) is used to calculate the overall energy consump-

tion, where Ī is the average current ( mA ), and t is the time win-

dow ( ms ). Micro-ampere-hour is a unit of electric charge, com-

monly used to measure the capacity of electric batteries. 

E = 

Ī ∗ t 

3600 s/hour 
(1) 

The equation shows that the energy consumption is propor-

tional to the execution time, as well as to the current required

by the device’s hardware (e.g., CPU, memory, network, and hard

disk). For the persistence frameworks, the differences of energy

consumption reflect not only the execution time differences,

but also the different CPU workload and hard disk R/W oper-

ations required to process database operations. 
• Uncommented line of codes (ULOC) ULOC reflects the required

effort, defined as the amount of code a programmer has to

write to use a persistence framework. For its simplicity, ULOC

was used to express programming effort in earlier studies (e.g.,

Lavazza et al., 2016 ). As all the test suites are implemented only

in Java and SQL, the ULOC metric is reflective of the relative

programming effort incurred by using a framework. 

Next, we introduce the input parameters for different bench-

arks. For the DaCapo benchmark, we want to explore the per-

ormance boundary of different persistence frameworks under a

eavy workload. Therefore, we vary the amount of total transac-

ions to a large scale, and record the overall time taken and energy

onsumed. 

For the micro benchmark, we study the “initialize”, “insert”,

select”, “update”, and “delete” invocations in turn. We change the

umber of transactions for the last four invocations, so for the

select”, “update” and “delete” invocations, the amount of data

ecords also changes. Therefore, the input parameters for the micro

enchmark is a set of two parameters: 

{ number of transactions , amount of data records } . 
.4. Experimental hardware and tools 

To measure the energy consumed by a device, its battery must

e removed to connect to the power meter’s hardware. Unfortu-

ately, a common trend in the design of Android smartphones



104 Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

c  

i  

p  

u  

o  

t  

a  

o  

f  

S  

e

 

s  

o  

e  

f  

o  

t  

o  

L  

b

 

w  

t  

b  

w  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

t  

f  

t  

s  

I  

o  

8  

b  

p  
makes removable batteries a rare exception. The most recently

made device we have available for our experiments is an LG LS740

smartphone, with 1GB of RAM, 8GB of ROM and 1.2GHz quad-core

Qualcomm Snapdragon 400 processor ( Singh and Jain, 2014 ), run-

ning Android 4.4.2 KitKat operating system. Although the device

was released in 2014 and runs at a lower CPU frequency than the

devices in common use today, the Android hardware design, at

least with respect to the performance parameters measured, has

not experienced a major transformation, thus not compromising

the relevance of our findings. 

We execute all experiments as the only load on the device’s OS.

To minimize the interference from other major sources of energy

consumption, we set the screen brightness to the minimal level

and turn off the WiFi/GPS/Data modules. As the CPU frequency

takes time to normalize once the device exits the sleep mode, we

run each benchmark 5 times within the same environment, with

the first two runs to warm up the system and wait until the back-

ground energy consumption rate stabilizes. The reported data is

calculated as the average of the last 3 runs, with the differences

of the three runs of the same benchmark being not larger than 5%.

To understand the Dalvik VM method invocations, we use

Traceview, an Android profiler that makes it possible to explore the

impact of programming abstractions on the overall performance.

Unfortunately, only the Android ORM benchmark is suitable for

this exploration, due to the Traceview scalability limitations. 

5. Study results 

In this section, we report and analyze our experimental results.

5.1. Experiments with the android ORM benchmark 

In this group of experiments, we study how the types of op-

eration (insert, update, select, and delete) and the variations on

the number of transactions impact energy consumption and execu-

tion time with different frameworks using the micro benchmark 2 

The experimental results for each type of persistence operation

are presented in Figs. 2 and 3 . The first row of Fig. 2 (a) and (b)

shows the energy consumption and execution time of the “insert”

database invocation, and Fig. 2 (c)(d), (e)(f), and (g)(h) show that of

the “update”, “select”, and “delete” database invocations, respec-

tively. Fig. 3 (a)–(d) show the database read and write operations

of these four invocations, respectively. 

The results show that the persistence frameworks differ in

terms of their respective energy consumption, execution time,

read, and write measurements. Next, we compare the results by

operation: 

Insert We observe that DBFlow takes the longest time to per-

form the insert operation, while ActiveAndroid takes the second

longest, with the remaining frameworks showing comparable per-

formance levels. DBFlow performs the highest number of database

operations, a measurement that explains its long execution time.

Different from other frameworks, DBFlow requires that a database

read operation be performed before a database write operation to

ensure that the-record-to-insert has not been already inserted into

the database. Besides, the runtime trace reveals that interactions

with the cache triggered by inserts in ActiveAndroid are expensive,

costing 62% of the overall execution time. By contrast, greenDAO

exhibits the shortest execution time, due to its simple but efficient

batch insert encapsulation, as shown in Table 1 . 

Update We observe that the cost of the Java Realm update is

several orders of magnitude larger than that of other frameworks,
2 We use the terms the micro benchmark and the Android ORM benchmark inter- 

changeably in the rest of the presentation. 

i  

b  

I  

n

specially as the number of transactions grows. Several reasons

an explain the high performance costs of the update operation

n Java Realm. As one can see in Table 1 , Java Realm lacks sup-

ort for batch updates. Besides, the update procedure invokes the

nderlying library method, TableView.size() , which operates

n a memory-hosted list of entities and costs more than 98% of

he overall execution time. The execution time of Sugar ORM is

lso high, due to it having the highest number of read and write

perations. Sugar ORM needs to search for the target object be-

ore updating it. This search procedure is designed as the recursive

ugarRecord.find() method, which costs 96% of the overall

xecution time. 

Select and delete For the select and delete operations, we ob-

erve that Sugar ORM (1) exhibits the worst performance in terms

f execution time and energy consumption; (2) performs the high-

st number of database operations, as it executes an extra query

or each atomic operation. The inefficiency of the select and delete

perations in Sugar ORM stems from the presence of these ex-

ra underlying operations. However, as discussed above, the bulk

f the execution time is spent in the recursive find method. Orm-

ite, greenDAO, DBFlow, Paper, and Android SQLite show compara-

le performance levels when executing these two operations. 

Table 2 sums up the rankings of each persistence framework

.r.t. different database operation invocations. We also measure

he Uncommented Lines of Code (ULOC) for implementing all the

asic database operation invocations for each persistence frame-

ork and include this metric in the table. From Table 2 and our

nalysis above, we can draw the following conclusions: 

1. By adding up the rankings of different operations, we can rank

these frameworks in terms of their overall performance: An-

droid SQLite > greenDAO = DBFlow > OrmLite > Java Realm

> Paper > Sugar ORM > ActiveAndroid , where “> ” means

“having better performance than”, and “= ” means “having sim-

ilar performance with”. 

2. Considering the programming effort of implementing all

database operations using different frameworks, DBFlow and

Paper require less programming effort than the other frame-

works. 

3. When considering the balance of programming effort and per-

formance, DBFlow can be generally recommended for devel-

oping database-oriented mobile application with a standard

database operation/schema complexity. 

4. Sugar ORM would not be an optimal choice when the domi-

nating operations in a mobile app are select or delete, DBFlow

would not be optimal when the dominating operation is insert,

while Java Realm would not be optimal when the dominating

operation is update. 

.2. Experiments with the dacapo benchmark 

In this group of experiments, we use the DaCapo benchmark

o study how the energy consumption and execution time of each

ramework changes in relation to the number of executed bank

ransactions. The benchmark comes with a total of 41,971 records,

o in our experiments we differ the number of bank transactions.

n our measurements, we vary the number of bank transactions

ver the following values: 40, 120, 200, 280, 360, 440, 520, 600,

0 0, 10 0 0, 150 0. The total number of transactions is the sum of

asic bank transactions, as listed in Table 3 . Each transaction com-

rises a complex set of database operations. The key transactions

n each run are “New Order”, “Payment by Name”, and “Payment

y ID”, which mainly execute the “query” and “update” operations.

n our experiments, “New Order” itself takes 42.5% of the entire

umber of transactions. 



Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 105 

Fig. 2. Energy/execution time for android ORM benchmark with alternative persistence frameworks. 



106 Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 

Fig. 3. Read/write operations for android ORM benchmarks with alternative persistence frameworks. 

Table 2 

Comparison of persistence frameworks in the android ORM experiment. 

Compared Item SQLite DBFlow greenDAO ORMLite Realm Paper Sugar ActiveAndroid 

ULOC 306 181 241 326 313 190 226 253 

Initialization ranking 6 1 5 7 3 4 2 8 

Insert ranking 2 8 1 4 3 5 6 7 

Update ranking 1 2 5 3 8 7 6 4 

Select ranking 1 2 3 4 5 6 8 7 

Delete ranking 4 2 1 3 7 6 8 5 

Summed up ranking 14 15 15 21 26 28 30 31 

Table 3 

Number of operations for each transaction type 

with 1500 overall transactions. 

Transaction type Operation amount 

New order rollback 8 

Order status by ID 26 

Order status by name 42 

Stock level 59 

Delivery schedule 62 

Payment by ID 245 

Payment by name 391 

New order 667 

 

 

F  

b  

n  

b  

g  

w  

e  

o  

w  

S  

i  

e

 

i  

t  
In Fig. 4 , (a) and (b) show the energy/execution time and

read/write operations of the DaCapo Initialization, respectively.
ig. 4 (c) shows the energy consumption for each transaction num-

er, and Fig. 4 (d) shows the execution time for each transaction

umber. Fig. 4 (e) and (f) show the read/write operation num-

er, respectively. As the write operation number of ActiveDroid,

reenDao, OrmLite, Sugar ORM and SQLite are very close (e.g,

hen the transaction amount is 1500, the number of write op-

ration are 18209, 18200, 18205, 18211, 18212 respectively), we

nly present the average operation number of these five frame-

orks in Fig. 4 (e). Similarly, we use the line in pink to present

ugar ORM/greenDao, and the line in green for SQLite/ActiveDroid

n Fig. 4 (f). Table 3 shows the number of operations performed by

ach transaction. 

The dominant database operation in the initialization phase

s insert, and (a) shows the performance levels consistent with

hose seen in the Android ORM benchmark for the same opera-



Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 107 

Fig. 4. Energy/execution time/read and write for DaCapo benchmark with alternative persistence frameworks. (For interpretation of the references to color in this figure, the 

reader is referred to the web version of this article.) 

t  

t  

t

 

t  

m  

r  

s  

e  

t  

t  

 

u  

a  

o

 

 

ion: DBFlow, Sugar ORM and ActiveAndroid have the longest run-

ime. greenDAO performs better than Android SQLite, possibly due

o greenDAO supporting batch insert (see Table 1 for details). 

From Fig. 4 , we observe that Java Realm and Sugar ORM have

he longest execution time when executing the transactions whose

ajor database operation is update (e.g., “New order”, “New order

ollback”, “Payment by name”, and “Payment by ID”). This conclu-

ion is consistent with that derived from the Android ORM update

xperiments shown in Section 5.1 . Android SQLite takes rather long

o execute, as it involves database aggregation (e.g., sum , and the

 

able queried had 30,060 records) and arithmetic operations (e.g.

f ield − 1 ) in the select clause. Meanwhile, as ActiveAndroid only

ses the raw SQL manipulation interface for complex update oper-

tions ( Table 1 ), it exhibits the best performance, albeit at the cost

f additional programming effort. 

From Fig. 4 (c)–(f) and Table 4 we conclude that: 

1. ActiveAndroid offers the overall best performance for all Da-

Capo transactions. It shows the best performance for the most

common transactions, at the cost of additional programming



108 Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 

Fig. 5. Energy/execution time/RW amount relationships. 

Table 4 

LOC for DaCapo benchmark. 

DaCapo ULOC 

greenDAO 2200 

DBFlow 2407 

Sugar ORM 2911 

ActiveAndroid 2923 

Android SQLite 3068 

Java Realm 3071 

OrmLite 3310 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

n  

c  

t  

w  

c  

p  

a  

c

6

 

n  

d  

t  

i  

a

 

i  

p  

o  

t  

c  

o

 

u  

c  

o  

s  

t  

P

 

w  

i  

w

 

m

I  
effort. Besides, its execution invokes the smallest number of

database operations, due to its caching mechanism. 

2. Sugar ORM and Java Realm have the longest execution time, in

line with the Android ORM benchmark’s results discussed in

Section 5.1 . 

3. greenDAO’s performance is in the middle, while requiring the

lowest programming effort, t aking 24.5% fewer uncommented

lines of code to implement than the other frameworks. 

4. DBFlow takes more time and energy to execute that does Ac-

tiveAndroid; it also requires a higher programming effort than

greenDAO does. Nevertheless, it strikes a good balance between

the required programming effort and the resulting execution ef-

ficiency. 

5.3. Relationship of energy consumption, execution time and DB 

operations 

We also discuss the relationship between energy consumption,

execution time, and database operations. We combine all the pre-

vious collected read/write, execution time and energy consumption

data from all the benchmarks. As shown in Fig. 5 (a), the number

of total database operations (Read and Write) has a dominating im-

pact on both the execution time and energy consumption results:

(1) as the number of data operations increases so usually do the

execution time and energy consumption; (2) the execution time

and energy consumption are also impacted by other factors (e.g.,

the complexity of data operations, the framework’s implementa-

tion design choices, etc.). 

Meanwhile, as shown in Fig 5 (b), there is a significant posi-

tive relationship between the time consumption and the energy

consumption, with r(142) = 0.99, p < 0.001. Hence, the longer a

database task executes, the more energy it ends up consuming. 
. Numerical model 

The experiments above show that for the same application sce-

ario different frameworks exhibit different execution time, energy

onsumption, and programming effort. However, to derive prac-

ical benefits from these insights, mobile app developers need a

ay to quantify these trade-offs for any combination of an appli-

ation scenario and a persistence framework. To that end, we pro-

ose a numerical model PEP ( P erformance, E nergy consumption,

nd P rogramming E ffort) for mobile app developers to systemati-

ally evaluate the suitability of persistence frameworks. 

.1. Design of the PEP model 

Our numerical model follows a commonly used tech-

ique for evaluating software products called a utility in-

ex ( Christodoulou et al., 2009 ). Products with equivalent func-

ionality possess multidimensional feature-sets, and a utility index

s a score that quantifies the overall performance of each product,

llowing the products to be compared with each other. 

As our experiments show, the utility of persistence frameworks

s closely related to application features (e.g., data schema com-

lexity, operations involved, data records manipulated, database

perations executed). Therefore, it is only meaningful to compare

he persistence frameworks within the context of a certain appli-

ation scenario. Here, we use p to denote an application with a set

f features. 

Let O = { o = 1 , 2 , 3 . . . } be a set of frameworks. Let E o (p) , ∀ o ∈ O
denote the energy consumption of different implementations of p

sing various frameworks o , while T o (p) , ∀ o ∈ O denotes the exe-

ution time. As the energy consumption and the execution time

f database operations correlate linearly in our experimental re-

ults, we use the Euclidean distance of a two dimensional vec-

or to calculate the overall performance, which can be denoted as

 o p = 

√ 

T o (p) 2 + E o (p) 2 , ∀ o ∈ O. 

The programming effort is represented by the ULOC, and here

e use L o (p) , ∀ o ∈ O to denote the programming effort of different

mplementations of the project p using different persistence frame-

orks. 

We consider both the framework’s performance and program-

ing effort to compute the utility index I o ( p ): 

 o (p) = 

min (P o (p) , ∀ o ∈ O) 

P o (p) 
/ 

L o (p) 

min (L o (p) , ∀ o ∈ O) 
, ∀ o ∈ O (2)



Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 109 

Table 5 

Applying numerical model on DaCapo and androidORM benchmark. 

Benchmark Parameters & Index ActiveAndroid greenDAO OrmLite Sugar SQLite Realm DBFlow Paper 

DaCapo Trans = 40, τ= 0.5 0.328 0.184 0.135 0.166 0.109 0.098 0.956 N.A. 

DaCapo Trans = 40, τ= 1 0.284 0.184 0.135 0.094 0.140 0.083 0.914 N.A. 

DaCapo Trans = 40, τ= 1.5 0.247 0.184 0110 0.082 0.118 0.070 0.878 N.A. 

DaCapo Trans = 1500, τ= 0.5 0.867 0.726 0.726 0.412 0.671 0.368 0.924 N.A. 

DaCapo Trans = 1500, τ= 1 0.752 0.726 0.592 0.358 0.568 0.312 0.884 N.A. 

DaCapo Trans = 1500, τ= 1.5 0.652 0.726 0.483 0.133 0.481 0.264 0.845 N.A 

Android ORM Trans = 1025, τ= 0.5 0.050 0.166 0.124 0.044 0.180 0.055 0.255 0.976 

Android ORM Trans = 1025, τ= 1 0.051 0.144 0.092 0.039 0.139 0.042 0.255 0.952 

Android ORM Trans = 1025, τ= 1.5 0.043 0.125 0.069 0.035 0.107 0.031 0.255 0.929 

Android ORM Trans = 20025, τ= 0.5 0.159 0.740 0.633 0.289 0.769 0.007 0.591 0.635 

Android ORM Trans = 20025, τ= 1 0.165 0.641 0.472 0.080 0.591 0.005 0.591 0.621 

Android ORM Trans = 20025, τ= 1.5 0.114 0.555 0.352 0.071 0.454 0.004 0.591 0.606 

 

m  

f  

m  

p  

p  

t  

t  

w

 

c  

v  

t  

t  

t  

t  

T  

T

 

t  

v  

s  

e

I

w  

s  

t  

t

6

 

e  

t  

c  

e  

e  

t  

4  

s  

a  

c  

w  

i  

g  

p

 

c  

w  

s  

e  

A  

e  

c  

A  

p  

s  

g  

e  

t  

m  

s  

r

 

d  

d  

i  

u  

d  

p  

h  

t  

r  

b  

m  

s  

T  

u  

e  

t  

r  

c  

t  

n  

w  

m  

t  

p  

r

7

 

t  

t  

c  

o

The equation’s first part, min (P o (p) , ∀ o∈O) 
P o (p) 

, compares the perfor-

ance of a mobile app implemented by means of the persistence

ramework o , and the implementation that has the best perfor-

ance. The equation’s second part, L o (p) 
min (L o (p) , ∀ o∈O) 

, compares the

rogramming effort between an implementation o ( p ) and the im-

lementation that requires the minimal programming effort. When

he utility index of a framework o -based implementation is close

o 1, the implementation is likely to offer acceptable performance,

ith low programming effort. 

Consider the following example that demonstrates how to cal-

ulate the utility index. If for an app p , Android SQLite might pro-

ide the best performance, while the greenDAO-based implemen-

ation consumes twice the energy and takes twice the execution

ime. Therefore, the performance index of P greenDAO ( p ) is 0.5. On

he other hand, the greenDAO-based implementation might require

he lowest programming effort, as measured by the ULOC metric.

herefore, the implementation complexity index of L greenDAO p is 1.

hus, the overall utility index is 0.5/1 = 0.5. 

Application developers apply dissimilar standards to judge the

rade-offs between performance and programming effort. Some de-

elopers focus solely on performance, while others may prefer the

hortest time-to-market. We introduce τ to express these prefer-

nces. 

 o (p) = 

min (P o (p) , ∀ o ∈ O) 

P o (p) 
/ 

(
L o (p) 

min (L o (p) , ∀ o ∈ O) 

)τ

(3) 

here τ > 0. When τ > 1, the larger τ is, the more weight is as-

igned to the programming effort t arget. Otherwise, when τ < 1,

he lower τ is, the more weight is assigned to the performance

arget. 

.2. Evaluating the benchmarks 

To provide an insight into how the persistence frameworks

valuated in this article fit different application scenarios, we apply

he PEP model to the Android ORM and DaCapo benchmarks. We

onsider typical low and high transaction volumes, respectively, for

ach benchmark. Specifically, for the Android ORM benchmark, we

valuate two sets of input, 1025 transactions and 20,025 transac-

ions. For the DaCapo benchmark, we evaluate two sets of input,

0 transactions and 1500 transactions. For each input set, we as-

ign τ to 0.5, 1, and 1.5, in turn, to show whether the developers

re willing to invest extra effort to improve performance. Specifi-

ally, when τ = 0 . 5 , the developer’s main concern is performance;

hen τ = 1 , the balance of performance and programming effort

s desired; when τ = 1 . 5 , the developer wishes to minimize pro-

ramming effort. Table 5 shows the calculated index values of the

ersistence frameworks for all cases. 

From the results presented in Table 5 , we can draw several con-

lusions: (1) For the DaCapo benchmark or similar mobile apps
ith heavy data processing functionality and complicated data

tructures, DBFlow represents the best performance/programming

ffort trade-off. When the number of data operations is very high,

ctiveAndroid should also be considered, as it provides the best

xecution performance, especially when the programmer is not as

oncerned about minimizing the programming effort; (2) For the

ndroid ORM benchmark or similar mobile apps with less com-

licated data structures, when the number of data operations is

mall, the top choice is Paper, as this framework reduces the pro-

ramming effort while providing high execution efficiency. How-

ver, when the number of data operations surpasses a certain

hreshold (over 10K simple data operations), the execution perfor-

ance of Paper experiences a sudden drop due to scalability is-

ues. In such cases, greenDAO and Android SQLite would be the

ecommended options. 

In the following discussion, we use hypothetical use cases to

emonstrate how the generated guidelines can help mobile app

evelopers pick the best framework for the application scenario

n hand. Consider four cases: (1) a developer wants to persist the

ser’s application-specific color scheme preferences; (2) a team of

evelopers wants to develop a production-level contact book ap-

lication; (3) an off-line map navigation application needs to store

undreds of MBs of data, comprising map fragments, points of in-

erests, and navigation routines; (4) an MP3 player app needs to

etrieve the artist’s information based on some features of the MP3

eing played. For use case 1, the main focus during the develop-

ent procedure is to lower the programming effort, while the data

tructures and the number of data operations are simple and small.

herefore, for this use case, we would recommend using Paper. For

se case 2, the main focus is to improve the responsiveness and

fficiency, as the potential data volume can get quite large. Given

hat minimizing the programming effort is deprioritized, we would

ecommend using greenDAO or Android SQLite. For use case 3,

omplex data structures are required to be able to handle the po-

entially large data volumes, while maintaining quick responsive-

ess and high efficiency is expected of navigation apps. Therefore,

e would recommend using ActiveAndroid. For use case 4, the

ain application’s feature is playing MP3s, and the ability to re-

rieve the artist’s data instantaneously is non-essential. To save the

rogramming effort of this somewhat auxiliary feature, we would

ecommend using DBFlow. 

. Threats to validity 

Next, we discuss the threats to the validity of our experimen-

al results. Although in designing our experimental evaluation, we

ried to perform as an objective assessment as possible, our design

hoices could have certainly affected the validity and applicability

f our conclusions. 



110 Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B  

 

 

C  

 

C  

 

 

 

 

 

 

 

 

 

 

 

g  

H  

 

 

 

 

 

H  

 

 

J  

 

J  

 

K  

K  

 

L  

 

L  

 

 

 

 

 

 

 

L  

 

 

L  

 

 

M  

 

 

 

 

 

N  

O  
The key external threat to validity is our choice of the hard-

ware devices, Android version, and profiling equipment. Specifi-

cally, we conduct our experiments with an LG mobile phone, with

1.2 GHz quad-core Qualcomm Snapdragon 400 processor, running

Android 4.4.2 KitKat, profiled with the Monsoon Power Monitor.

Even though these experimental parameters are representative of

the Android computing ecosystem, changing any of these parame-

ters could have affected some outcomes of our experiments. 

The key internal threat to validity are our design choices for

structuring the database and the persistence application function-

ality. Specifically, while our Android ORM benchmark set explores

the object features of Android persistence frameworks, the orig-

inal DaCapo ( Blackburn et al., 2006 ) H2 benchmark manipulates

relational database structures directly, without stress-testing the

object-oriented persistence frameworks around it. To retarget Da-

Capo to focus on persistence frameworks rather than the JVM

alone, we adapted the benchmark to make use of transparent per-

sistence as a means of accessing its database-related functionality.

Nevertheless, the relatively large scale of data volume, with the se-

lect and update operations bank transactions dominating the exe-

cution, this benchmark is representative of a large class of database

application systems, but not all of them. Besides, we have not

tested our PEP model on real-world applications. Hence, it is not

confirmed yet how accurate the model would be for such applica-

tions. 

8. Conclusions 

In this paper, we present a systematic study of popular Android

ORM/OO persistence frameworks. We first compare and contrast

the frameworks to present an overview of their features and ca-

pabilities. Then we present our experimental design of two sets

of benchmarks, used to explore the execution time, energy con-

sumption, and programming effort of these frameworks in differ-

ent application scenarios. We analyze our experimental results in

the context of the analyzed frameworks’ features and capabilities.

Finally, we propose a numerical model to help guide mobile de-

velopers in their decision making process when choosing a persis-

tence framework for a given application scenario. To the best of

our knowledge, this research is the first step to better understand

the trade-offs between the execution time, energy efficiency, and

programming effort of Android persistence frameworks. As a future

work direction, we plan to apply the PEP model presented above

to real-world applications, in order to assess its accuracy and ap-

plicability. 

Acknowledgment 

This research is supported by the National Science Foundation

through the Grants CCF-1649583 and CCF-1717065. The authors

would like to thank the anonymous reviewers, whose insightful

comments helped improve this article. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.jss.2018.08.038 . 

References 

Activeandroid by pardom. Last accessed data: 19-June-2018 http://www.

activeandroid.com . 
Banerjee, A. , Chong, L.K. , Chattopadhyay, S. , Roychoudhury, A. , 2014. Detecting en-

ergy bugs and hotspots in mobile apps. In: Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering. ACM,

pp. 588–598 . 
lackburn, S.M. , Garner, R. , Hoffmann, C. , Khang, A.M. , McKinley, K.S. , Bentzur, R. ,
Diwan, A. , Feinberg, D. , Frampton, D. , Guyer, S.Z. , et al. , 2006. The DaCapo

benchmarks: java benchmarking development and analysis. In: Proceedings of
the ACM Sigplan Notices, 41. ACM, pp. 169–190 . 

howdhury, S. , Di Nardo, S. , Hindle, A. , Jiang, Z.M.J. , 2017. An exploratory study on
assessing the energy impact of logging on android applications. Empir. Softw.

Eng. 1–35 . 
howdhury, S.A. , Sapra, V. , Hindle, A. , 2016. Client-side energy efficiency of HTTP/2

for web and mobile app developers. In: 23rd International Conference on

Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE, 1. IEEE,
pp. 529–540 . 

Christodoulou, S.E. , Ellinas, G. , Michaelidou-Kamenou, A. , 2009. Minimum moment
method for resource leveling using entropy maximization. J. Constr. Eng. Manag.

136 (5), 518–527 . 
Cohen, M. , Zhu, H.S. , Senem, E.E. , Liu, Y.D. , 2012. Energy types. In: Proceedings of

the ACM SIGPLAN Notices, 47. ACM, pp. 831–850 . 

Cvetkovi ́c, S. , Jankovi ́c, D. , 2010. A comparative study of the features and perfor-
mance of ORM tools in a NET environment. In: Objects and Databases. Springer,

pp. 147–158 . 
DBFlow A blazing fast, powerful, and very simple ORM Android database library

that writes database code for you. Last accessed data: 19-June-2018 https:
//github.com/Raizlabs/DBFlow . 

Dong, M. , Zhong, L. , 2013. Sesame: self-constructive system energy modeling for

battery-powered mobile systems. In: Proceedings of the 9th international con-
ference on Mobile systems, applications, and services. ACM, 2011 . 

reenDAO: the superfast android orm for sqlite Last accessed data: 19-June-2018
http://greenrobot.org/greendao/ . 

ao, S. , Li, D. , Halfond, W.G. , Govindan, R. , 2013. Estimating mobile application en-
ergy consumption using program analysis. In: Proceedings of the 35th Interna-

tional Conference on Software Engineering (ICSE), 2013. IEEE, pp. 92–101 . 

Hasan, S. , King, Z. , Hafiz, M. , Sayagh, M. , Adams, B. , Hindle, A. , 2016. Energy profiles
of Java collections classes. In: Proceedings of the 38th International Conference

on Software Engineering (ICSE), 2016 IEEE/ACM. IEEE, pp. 225–236 . 
Hindle, A. , 2012. Green mining: a methodology of relating software change to power

consumption. In: Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories. IEEE Press, pp. 78–87 . 

indle, A. , Wilson, A. , Rasmussen, K. , Barlow, E.J. , Campbell, J.C. , Romansky, S. , 2014.

Greenminer: a hardware based mining software repositories software energy
consumption framework. In: Proceedings of the 11th Working Conference on

Mining Software Repositories. ACM, pp. 12–21 . 
ha, S. , 2011. Poorly written apps can sap 30 to 40% of a phones juice. In: Proceed-

ings of the CEO, Motorola Mobility, Bank of America Merrill Lynch 2011 Tech-
nology Conference . 

ing, P. , Zheng, S. , Eli, T. , 2016. Understanding the energy, performance, and pro-

gramming effort trade-offs of Android persistence frameworks. In: Proceedings
of the MASCOTS’16. IEEE . 

won, Y.-W. , Tilevich, E. , 2013. The impact of distributed programming abstractions
on application energy consumption. Inf. Softw. Technol. 55 (9), 1602–1613 . 

won, Y.-W. , Tilevich, E. , 2013. Reducing the energy consumption of mobile appli-
cations behind the scenes. In: Proceedings of the 2013 IEEE International Con-

ference on Software Maintenance. IEEE, pp. 170–179 . 
avazza, L. , Morasca, S. , Tosi, D. , 2016. An empirical study on the effect of program-

ming languages on productivity. In: Proceedings of the 31st Annual ACM Sym-

posium on Applied Computing. ACM, pp. 1434–1439 . 
i, D. , Hao, S. , Gui, J. , Halfond, W.G. , 2014. An empirical study of the energy

consumption of Android applications. In: Proceedings of the IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), 2014. IEEE,

pp. 121–130 . 
Li, D. , Lyu, Y. , Gui, J. , Halfond, W.G. , 2016. Automated energy optimization of HTTP

requests for mobile applications. In: Proceedings of the 38th International Con-

ference on Software Engineering (ICSE), 2016 IEEE/ACM. IEEE, pp. 249–260 . 
Linares-Vásquez, M. , Bavota, G. , Bernal-Cárdenas, C. , Oliveto, R. , Di Penta, M. , Poshy-

vanyk, D. , 2014. Mining energy-greedy API usage patterns in Android apps: an
empirical study. In: Proceedings of the 11th Working Conference on Mining

Software Repositories. ACM, pp. 2–11 . 
iu, Y. , Xu, C. , Cheung, S.-C. , Terragni, V. , 2016. Understanding and detecting wake

lock misuses for Android applications. In: Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, pp. 396–409 . 

yu, Y. , Gui, J. , Wan, M. , Halfond, W.G. , 2017. An empirical study of local database
usage in Android applications. In: Proceedings of the IEEE International Confer-

ence on Software Maintenance and Evolution (ICSME), 2017. IEEE, pp. 4 4 4–455 .
anotas, I. , Bird, C. , Zhang, R. , Shepherd, D. , Jaspan, C. , Sadowski, C. , Pollock, L. ,

Clause, J. , 2016. An empirical study of practitioners’ perspectives on green soft-

ware engineering. In: Proceedings of the 38th International Conference on Soft-
ware Engineering (ICSE), 2016 IEEE/ACM. IEEE, pp. 237–248 . 

Monsoon power monitor. Last accessed data: 19-June-2018. Available: https://www.
msoon.com/LabEquipment/PowerMonitor/ . 

Mukherjee, S. , Mondal, I. , 2014. Future practicability of android application develop-
ment with new android libraries and frameworks. Int. J. Comput. Sci. Inf. Tech-

nol. 5 (4), 5575–5579 . 

Newman, C. , 2004. SQLite (Developer’S library). Sams . 
oSQL database engine Last accessed data: 19-June-2018. Available: http://

nosql-database.org/ . 
rmLite – lightweight object relational mapping (ORM) Java package Last accessed

data: 19-June-2018. Available: http://greenrobot.org/greendao/ . 

https://doi.org/10.1016/j.jss.2018.08.038
http://www.activeandroid.com
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0007
https://github.com/Raizlabs/DBFlow
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0008a
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0008a
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0008a
http://greenrobot.org/greendao/
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0022
https://www.msoon.com/LabEquipment/PowerMonitor/
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0024
http://nosql-database.org/
http://greenrobot.org/greendao/


Z.J. Song et al. / The Journal of Systems and Software 146 (2018) 99–111 111 

P  

P  

 

P  

 

R  

S  

 

 

S  

S  

S  

S  

S  

S  

T  

 

V  

 

 

 

X  

 

 

Z  

H

J  

d

J

E  

g  

t  

p

aper Fast and simple data storage library for Android. Last accessed data: 19-June-
2018. Available: https://github.com/pilgr/Paper . 

athak, A. , Hu, Y.C. , Zhang, M. , 2012. Where is the energy spent inside my app?:
fine grained energy accounting on smartphones with eprof. In: Proceedings of

the 7th ACM european conference on Computer Systems. ACM, pp. 29–42 . 
into, G. , Castor, F. , Liu, Y.D. , 2014. Mining questions about software energy con-

sumption. In: Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, pp. 22–31 . 

ealm database engine. Last accessed data: 19-June-2018. Available: https://realm.

io/ . 
ahin, C. , Cayci, F. , Gutiérrez, I.L.M. , Clause, J. , Kiamilev, F. , Pollock, L. , Winbladh, K. ,

2012. Initial explorations on design pattern energy usage. In: Proceedings of
the First International Workshop on Green and Sustainable Software (GREENS),

2012. IEEE, pp. 55–61 . 
ingh, M.P. , Jain, M.K. , 2014. Evolution of processor architecture in mobile phones.

Int. J. Comput. Appl. 90 (4), 34–39 . 

qlite database engine. Last accessed data: 19-June-2018. Available: https://www.
sqlite.org/ . 

ugar ORM – insanely easy way to work with Android databases, Last accessed
data: 19-June-2018. Available: http://satyan.github.io/sugar/ . 

martphone OS market share, 2015, Last accessed data: 19-June-2018. http://www.
idc.com/prodserv/smartphone- os- market- share.jsp . 

tatista: mobile apps available in leading stores 2015, Last ac-

cessed data: 19-June-2018. http://www.statista.com/statistics/276623/ 
number- of- apps- available- in- leading- app- stores/ . 

ubramanian, M. , Krishnamurthy, V. , Shores, R. , 1999. Performance challenges in ob-
ject-relational DBMSs. IEEE Data Eng. Bull. 22 (2), 27–31 . 

iwari, V. , Malik, S. , Wolfe, A. , Lee, M.T.-C. , 1996. Instruction level power analysis
and optimization of software. In: Proceedings of the Technologies for Wireless

Computing. Springer, pp. 139–154 . 
etro, A. , Ardito, L. , Procaccianti, G. , Morisio, M. , 2013. Definition, implementa-
tion and validation of energy code smells: an exploratory study on an em-

bedded system. In: Proceedings of the Third International Conference on Smart
Grids, Green Communications and IT Energy-aware Technologies(Energy), 2013,

pp. 34–39 . 
ia, C. , Yu, G. , Tang, M. , 2009. Efficient implement of ORM (object/relational map-

ping) use in J2EE framework: Hibernate. In: Proceedings of the International
Conference on Computational Intelligence and Software Engineering, 2009. CiSE

2009. IEEE, pp. 1–3 . 

heng Song is a Ph.D student in the computer science department of VIrginia Tech.
is research interests include mobile computing and software engineering. 

unjie Cheng is now a 4th year undergraduate student in the computer science
epartment of VIrginia Tech. 

ing Pu holds a master’s degree in computer science from Virginia Tech. 

li Tilevich is an associate professor in the department of computer science of Vir-
inia Tech. His research interests include systems end of software engineering; dis-

ributed systems and middleware; automated software transformation; mobile ap-
lications; energy efficient software; CS education; music informatics. 

https://github.com/pilgr/Paper
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0026
https://realm.io/
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0028
https://www.sqlite.org/
http://satyan.github.io/sugar/
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0007b
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0007b
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0007b
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0007b
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0007b
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30170-5/sbref0031

	Performance and programming effort trade-offs of android persistence frameworks
	1 Introduction
	2 Related work
	3 Background
	4 Experiment design
	4.1 Benchmark selection
	4.2 Test suite implementation
	4.3 Parameters and variables
	4.4 Experimental hardware and tools

	5 Study results
	5.1 Experiments with the android ORM benchmark
	5.2 Experiments with the dacapo benchmark
	5.3 Relationship of energy consumption, execution time and DB operations

	6 Numerical model
	6.1 Design of the PEP model
	6.2 Evaluating the benchmarks

	7 Threats to validity
	8 Conclusions
	 Acknowledgment
	 Supplementary material
	 References


