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1. Introduction

Any non-trivial application includes a functionality that pre-
serves and retrieves user data, both during the application session
and across sessions; this functionality is commonly referred to as
persistence. In persistent applications, relational or non-relational
database engines preserve user data, which is operated by pro-
grammers either by writing raw database operations, or via data
persistence frameworks. By providing abstractions on top of raw
database operations, data persistence frameworks help streamline
the development process.

As mobile devices continue to replace desktops as the primary
computing platform, Android is poised to win the mobile plat-
form contest, taking the 82.8% share of the mobile market in 2015
(Smartphone OS market share, 2015) with more than 1.6 million
applications developed thus far (Statista, 2015). Energy efficiency
remains one of the key considerations when developing mobile ap-
plications (Jha, 2011; Kwon and Tilevich, 2013a; Li et al., 2014), as
the energy demands of applications continue to exceed the de-
vices’ battery capacity. Consequently, in recent years researchers
have focused their efforts on providing Android developers with
insights that can be used to improve the energy efficiency of mo-
bile applications. The research literature on the subject includes
approaches ranging from general program analysis and modeling
(Hao et al., 2013; Tiwari et al., 1996; Dong and Zhong, 2010; Co-
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hen et al, 2012) to application-level analysis (Sahin et al., 2012;
Hindle, 2012; Kwon and Tilevich, 2013b; Pinto et al., 2014).

Despite all the progress made in understanding the energy im-
pact of programming patterns and constructs, a notable omission
in the research literature on the topic is the energy consumption of
persistence frameworks. Although an indispensable building block
of mobile applications, these frameworks have never been system-
atically studied in this context, which can help programmers gain
a comprehensive insight on the overall energy efficiency of mod-
ern mobile applications. Furthermore, to be able to make informed
decisions when selecting a persistence framework for a mobile ap-
plication, developers have to be mindful of the energy consump-
tion, execution time, and programming effort trade-offs of major
persistence frameworks.

To that end, this paper reports on the results of a comprehen-
sive study we have conducted to measure and analyze the en-
ergy consumption, execution time, and programming effort trade-
offs of popular Android persistence frameworks. For Android ap-
plications, persistence frameworks expose their APIs to the ap-
plication developers as either object-relational mappings (ORM),
object-oriented (OO) interfaces, or key-value interfaces, accord-
ing to the underlying database engine. In this article, we con-
sider the persistence libraries most widely used in Android appli-
cations (Mukherjee and Mondal, 2014). In particular, we study six
widely used ORM persistence frameworks (Activeandroid by par-
dom, 0000; greenDAO, 0000; OrmLite, 0000; Sugar ORM, 0000;
Sqlite database engine, 0000; DBFlow, 0000)), one OO persis-
tence framework (Realm database engine, 0000), and one key-
value database operation framework (Paper, 0000) as our experi-
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mental targets. These frameworks operate on top of the popular
SQLite, Realm, or NoSQL database engines.

In our experiments, we apply these eight persistence frame-
works to different benchmarks, and then compare and contrast the
resulting energy consumption, execution time, and programming
effort (measured as lines of programmer-written code). Our exper-
iments include a set of micro-benchmarks designed to measure the
performance of individual database operations as well as the well-
known DaCapo H2 database benchmark (Blackburn et al., 2006). To
better understand the noticeable performance and programming
effort disparities between persistence frameworks, we also intro-
duce a numerical model that juxtaposes the performance and pro-
gramming efforts of different persistence frameworks. By applying
this model to the benchmarks, we generate several guidelines that
can help developers choose the right persistence framework for a
given application.

In other words, one key contribution of our study is in-
forming Android developers about how they can choose a per-
sistence framework that achieves the desired energy/execution
time/programming effort balance. Depending on the amount of
persistence functionality in an application, the choice of a per-
sistence framework may dramatically impact the levels of energy
consumption, execution time, and programming effort. By precisely
measuring and thoroughly analyzing these characteristics of alter-
native Android persistence frameworks, this study aims at gaining
a deeper understanding of the persistence’s impact on the mobile
software development ecosystem. The specific questions we want
to answer are:

RQ1. How do popular Android persistence frameworks differ in
terms of their respective features and capabilities?

RQ2. as it is realize What is the relationship between the per-
sistence framework’s features and capabilities and the resulting ex-
ecution time, energy efficiency, and programming effort?

RQ3. How do the characteristics of an application’s database
functionality affect the performance of persistence frameworks?

RQ4. Which metrics should be measured to meaningfully assess
the appropriateness of a persistence framework for a given mobile
application scenario?

To answer RQ1, we analyze the documentation and implemen-
tation of the persistence frameworks under study to compare and
contrast their features and capabilities. To answer RQ2 and RQ3,
we measure each of the energy, execution time, and programming
effort metrics separately, compute their correlations, as well as an-
alyze and interpret the results. To answer RQ4, we introduce a nu-
merical model, apply it to the benchmarks used for the measure-
ments, and generate several recommendation guidelines.

Based on our experimental results, the main contributions of
this article are as follows:

1. To the best of our knowledge, this is the first study that empir-
ically evaluates the energy, execution time, and programming
effort trade-offs of popular Android persistence frameworks.

2. Our experiments consider multifaceted combinations of fac-
tors which may impact the energy consumption and execu-
tion time of persistence functionality in real-world applications,
which include persistence operations involved, the volume of
persisted data, and the number of transactions.

3. Based on our experimental results, we offer a series of guide-
lines for Android mobile developers to select the most appro-
priate persistence framework for their mobile applications. For
example, ActiveAndroid or OrmlLite fit well for applications pro-
cessing relatively large data volumes in a read-write fashion.
These guidelines can also help the framework developers to op-
timize their products for the mobile market.

4. We introduce a numerical model that can be applied to evalu-
ate the fitness of a persistence framework for a given applica-

tion scenario. Our model considers programming effort in addi-
tion to execution time and energy efficiency to provide insights
relevant to software developers.

The rest of this paper is organized as follows. Section 2 sum-
marizes the related prior work. Section 3 provides the background
information for this research. Section 4 describes the design of our
experimental study. Section 5 presents the study results and inter-
prets our findings. Section 6 presents our numerical model and of-
fers practical guidelines for Android developers. Section 7 discusses
the threats to internal and external validity of our experimental re-
sults. Section 8 concludes this article.

This work extends our previous study of Android persistence
frameworks, published in IEEE MASCOTS 2016 (Jing et al., 2016).
This article is a revised and extended version of that paper. In par-
ticular, we describe the additional research we conducted, which
now includes: (1) a comprehensive analysis of the studied frame-
works’ features, (2) the measurements and analysis for two addi-
tional persistence frameworks, (3) a study of the relationship be-
tween database-operations, execution time, and energy consump-
tion, based on our measurements, and (4) a novel empirical model
for selecting frameworks for a given set of development require-
ments.

2. Related work

This section discusses some prior approaches that have focused
on understanding the execution time, energy efficiency, and pro-
gramming effort factors as well as their interaction in mobile com-
puting. Multiple prior studies have focused on understanding the
energy consumption of different mobile apps and system calls, in-
cluding approaches ranging from system level modeling of gen-
eral systems (Tiwari et al., 1996) and mobile systems (Dong and
Zhong, 2010), to application level analysis (Banerjee et al., 2014)
and optimization (Kwon and Tilevich, 2013b). For example, Chowd-
hury et al. study the energy consumed by logging in Android
apps (Chowdhury et al, 2017), as well as the energy con-
sumed by HTTP/2 in mobile apps (Chowdhury et al., 2016).
Liu et al. (2016) study the energy consumed by wake locks in
popular Android apps. Many of these works make use of the
Green Miner testbed (Hindle et al, 2014) to accurately mea-
sure the amount of consumed energy. As an alternative, the
(Monsoon power monitor, 0000) is also used to measure the en-
ergy consumed by various Android APIs (Li et al.,, 2014; Linares-
Vasquez et al., 2014). In our work, we have decided to use the
Monsoon power meter, due to the tool’s ease of deployment and
operation.

Many studies also focus on the impact of software engineering
practices on energy consumption. For example, (Sahin et al., 2012)
study the relationship between design patterns and software en-
ergy consumption. Hindle et al. (2014) provide a methodology for
measuring the impact of software changes on energy consump-
tion. Hasan et al. (2016) provide a detailed profile of the energy
consumed by common operations performed on the Java List,
Map, and Set data structures to guide programmers in selecting
the correct library classes for different application scenarios. Pinto
et al. (2014) study how programmers treat the issue of energy con-
sumption throughout the software engineering process.

The knowledge inferred from the aforementioned studies of en-
ergy consumption can be applied to optimize the energy usage of
mobile apps, either by guiding the developer (Cohen et al., 2012;
Pathak et al., 2012) or via automated optimization (Li et al., 2016).
As discovered in Manotas et al. (2016), mobile app developers tend
to be better tuned to the issues of energy consumption than de-
velopers in other domains, with a large portion of interviewed
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developers taking the issue of reducing energy consumptions into
account during the development process.

Local databases are widely used for persisting data in Android
apps (Lyu et al., 2017), and the corresponding database operation
APIs are known to be as “energy-greedy”(Linares-Vasquez et al.,
2014). Several persistence frameworks have been developed with
the goal of alleviating the burden of writing SQL queries by hand.
However, how these frameworks affect the energy consumption of
Android apps has not been yet studied systematically. To bridge
this knowledge gap, in this work, we study not only the per-
formance of such frameworks, but also the programming effort
they require, with the resulting knowledge base providing practical
guidelines for mobile app developers, who need to decide which
persistence framework should be used in a given application sce-
nario.

3. Background

To set the context for our work, this section describes the per-
sistence functionality, as it is commonly implemented by means of
database engines and persistence frameworks.

The designers of the Android platform have recognized the im-
portance of persistence by including the SQLite database module
with the standard Android image as early as the release 1.5. Ever
since this module has been used widely in Android applications.
According to our analysis of the most popular 550 applications
hosted on GooglePlay (25 most popular apps for each category, and
22 categories in all), over 400 of them (73%) involve interactions
with the SQLite module.

The ORM (object-relational mapping) frameworks have been
introduced and refined to facilitate the creation of database-
oriented applications (Xia et al., 2009; Cvetkovi¢ and Jankovic,
2010). The prior studies of the ORM frameworks have focused
mainly on their execution efficiency and energy efficiency. Mean-
while, Vetro et al. (2013) show how various software develop-
ment factors (e.g., design patterns, software architecture, informa-
tion hiding, implementation of persistence layers, code obfuscation,
refactoring, and data structure usage) can significantly influence
the performance of a software system. In this article, we compare
the performance of different persistence frameworks in a mobile
execution environment with the goal of understanding the results
from the perspective of mobile app developers.

Android persistence frameworks A persistence framework serves
as a middleware layer that bridges the application logic with
the database engine’s operations. The database engine maintains
a schema in memory or on disk, and the framework provides
a programming interface for the application to interact with the
database engine.

As SQLite (the native database of Android) is a relational
database engine, most Android persistence frameworks devel-
oped for SQLite are ORM/OO frameworks. One major function of
such object-relational mapping (ORM) and object-oriented frame-
works is to solve the the object-relational impedance mismatch
(Subramanian et al., 1999) between the object-oriented program-
ming model and the relational database operation model.

We evaluate 8 frameworks: Android SQLite, ActiveAndroid,
greenDAO, OrmlLite, Sugar ORM, DBFlow, Java Realm, and Paper,
backed up by the SQLite, Realm, and NoSQL database engines,
which are customized for mobile devices, with limited resources,
including battery power, memory, and processor.

Persistence framework feature comparison Persistence frame-
works differ in a variety of ways, including database engines,
programming support (e.g., object and schema auto generation),
programming abstractions (e.g., data access object (DAO) sup-
port, relationships, raw query interfaces, batch operations, com-
plex updates, and aggregation operations), relational features sup-

port (e.g., key/index Structure, SQL join operations, etc.), and exe-
cution modes (e.g., transactions and caching). We focus on these
features, as they may impact energy consumption, execution time,
and programming effort. Table 1 compares these similarities and
differences of the persistence frameworks used in our study.

1. Database engine Six of the studied persistence frameworks use
SQLite (Newman, 2004), an ACID (Atomic, Consistent, Isolated,
and Durable) and SQL standard-compliant relational database
engine. Java Realm framework uses Realm (Realm database en-
gine, 0000), an object-oriented database engine, whose design
goal is to provide functionality equivalent to relational engines.
Paper uses NoSQL (0000), a non-relational, schema-free, key-
value data storage database. Therefore, as we here mainly com-
pare features of relational database, Paper as a non-relational
database engine, lacks many of these features.

2. Object code generation Some frameworks feature code genera-
tors, which relieve the developer from having to write by hand
the classes that represent the relational schema in place.

3. Schema generation At the initialization stage, persistence frame-
works employ different strategies to generate the database
schema. Android SQLite requires raw SQL statements to cre-
ate database tables, while OrmlLite provides a special API call.
greenDAO generates a special DAO class that includes the
schema. The remaining frameworks (excluding Paper) automat-
ically extract the table schema from the programmer defined
entity classes.

4. Data access method DAO (Data Access Object) is a well-known
abstraction strategy for database access that provides a unified
object-oriented, entity-based persistence operation set (insert,
update, delete, query, etc.). greenDAO, Sugar ORM, and Orm-
Lite provide the DAO layer, while Android SQLite adopts a re-
lational rather than DAO database manipulating interface. Ac-
tiveAndroid, DBFlow, and Java Realm provide a hybrid strategy—
both DAO and SQL builder APIs.

5. Relationship support The three relationships between entities
are one-to-one, one-to-many, and many-to-many. greenDAO
and Java Realm support all three relationships. ActiveAndroid
lacks support for Many-to-Many, while Sugar ORM and DBFlow
only support One-To-Many. Android SQLite and OrmlLite lack
support for relationships, requiring the programmer to write
explicit SQL join operations.

6. Raw query interface support Raw queries use naive SQL state-
ments, thus deviating from pure object-orientation to execute
complex database operations on multiple tables, nesting queries
and aggregation functions. Android SQLite, greenDAO, OrmlLite,
and DBFlow—all provide this functionality.

7. Batch operations Batch operations commit several same-type
database changes at once, thus improving performance. green-
DAO, OrmlLite, Sugar ORM, and DBFLow provide batch mecha-
nisms for insert, update and delete. Java Realm provides batch
inserts only, and the remaining two frameworks lack this func-
tionality.

8. Complex update support Typically there are two kinds of
database update operations: update columns to given values,
or update columns based on arithmetic expressions. Android
SQLite and ActiveAndroid can only use raw SQL manipulation
interface to support expression updates. greenDAO, Sugar ORM,
Java Realm, and DBFlow support complex updates via entity
field modification. OrmlLite is the only framework that provides
both the value update and expression update abstractions.

9. Aggregation support Aggregating data in a relational database
enables the statistical analysis over a set of records. Differ-
ent frameworks selectively implement aggregation functional-
ity. Android SQLite, OrmLite, and DBFlow support all of the ag-
gregation functions via a raw SQL interface. Java Realm and
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Table 1

Persistence framework feature comparison.

Java Realm DBFlow Paper

Sugar ORM

OrmlLite
SQLite

ActiveAndroid greenDAO

Android SQLite

Features

SQLite NoSQL
N.A.

Realm

SQLite

SQLite SQLite

SQLite

Database Engine
Object Code

Generation

manual auto auto auto N.A
X

auto

auto

manual

X
X

Schema Generation

N.A.
N.A.

Data Access Method

One-To-Many

One-To-One,

One-To-Many

One-To-One,

One-To-One,One-To-

Many

Relationship Support

One-To-Many,

One-To-Many,

Many-to-Many

Many-to-Many

N.A.

W

Raw Query Interface

Support

N.A.

batch insert, batch

Batch insert, batch batch insert

Batch insert, batch

Batch insert, batch

Batch Operations

update, batch delete

object

update, batch delete

object

update, batch delete

relational

update, batch delete

object

N.A.

object

relational

relational

Complex Update

Support
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N.A.

MAX, MIN, SUM, all

COUNT, FIRST, LAST

COUNT all

COUNT

all

Aggregation Support

AVERAGE, FIRST, LAST
string or integer

N.A.

primary key, index,

integer single primary

key, unique

single primary key,
index, foreign key

integer single primary
key, unique, index

integer single primary
key, unique, index,

foreign key

primary key, index,

foreign key

Key/Index Structure

foreign key, unique

single primary key,

index

N.A.

>Ry

N.A.

x

>y

V
v
v

J
J
X

SQL JOIN Support

Transaction Support
Caching Support

Sugar ORM provide an aggregation subset in the entity layer.
ActiveAndroid and greenDAO support only the COUNT aggrega-
tion.

10. Key/index structure Key/Index structure identifies individual
records, indicates table correlations, and increases the exe-
cution speed. Android SQLite and DBFlow fully support the
database constraints—single or multiple primary keys (PK), in-
dex and foreign key (FK). ActiveAndroid supports integer single
PK, unique, index, and FK. greenDAO supports integer single PK,
unique, index. OrmLite supports single PK, index, and FK. Sugar
ORM supports integer single PK and unique. Java Realm sup-
ports string or integer single PK, and index.

11. SQL JOIN support SQL JOIN clause combines data from two or
more relational tables. Android SQLite and DBFlow only sup-
port raw JOIN SQL. ActiveAndroid incorporates JOIN in its ob-
ject query interface. DAOs of greenDAO and OrmLite provide the
JOIN operation. Sugar ORM and Java Realm lack this support.

12. Transaction support Transactions perform a sequence of opera-
tions as a single logical execution unit. All the studied engines
with the exception of greenDAO, Sugar ORM, and Paper provide
full transactional support.

13. Cache support OrmlLite, ActiveAndroid, greenDAO, DBFlow and
Paper support caching. They provide this advanced feature to
maintain persisted entities in memory to speed-up future ac-
cesses, at the cost of extra processing required to initialize the
cache pool.

4. Experiment design

In this section, we explain the main decisions we have made to
design our experiments. In particular, we discuss the benchmarks,
the measurement variables, and the experimental parameters.

4.1. Benchmark selection

DaCapo H2 (Blackburn et al, 2006) is a well-known Java
database benchmark that interacts with the H2 Database Engine
via JDBC. This benchmark manipulates a considerable volume of
data to emulate bank transactions. The benchmark includes (1)
a complex schema and non-trivial functionality, obtained from a
real-world production environment. The database structure is com-
plex (12 tables, with 120 table columns and 11 relationship be-
tween tables), while the database operations simulate the run-
ning of heavy-workload database-oriented applications; (2) com-
plex database operations that require: batching, aggregations, and
transactions.

Since DaCapo relies heavily on relational data structures and
operations, we replace H2 with two relational database engines,
SQLite or Realm, to adapt this benchmark for Android. In other
words, we evaluate the performance of all persistence frameworks
under the DaCapo benchmark except for Paper, which is a non-
relational database engine.

However, using the DaCapo benchmark alone cannot provide
performance evaluation of persistence frameworks under the low
data volumes with simple schema conditions. To establish a base-
line for our evaluation, we thus designed a set of micro bench-
marks, referred to as the Android ORM Benchmark, which features
a simple database schema with few data records. Specifically, this
benchmark’s database structure includes 2 tables comprising 11 ta-
ble columns, and a varying small number of data records. Besides,
this micro-benchmark comprises the fundamental database opera-
tion invocations “create table”, “insert”, “delete”, “select”, and “up-
date”. As the database operations in many mobile applications tend
to be rather simple, the micro-benchmark’s results present valu-
able insights for application developers.
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Note that database operations differ from database op-
eration invocations. The invocations refer to calling the in-
terfaces provided by the persistence framework (e.g., “in-
sert”, “select”, “update” and “delete”). However, each invocation
can result in multiple database operations (e.g., android...

SQLiteStatement.executeInsert()).
4.2. Test suite implementation

Our experimental setup comprises a mobile app that uses the
selected benchmarked frameworks to execute both DaCapo and the
Android ORM Benchmark.! Through this app, experimenters can
select benchmarks, parameterize the operation and data volume,
as well as select ORM frameworks. The implementation of the
test suite was directed by two graduate students, each of whom
has more than three years of experience in developing commercial
database-driven projects.

As stated above, the DaCapo database benchmark is designed
for relational databases, so it would be non-trivial to reimplement
it using Paper, which is based on a non-relational database engine
(NoSQL). Therefore, the DaCapo benchmark is only applied to seven
persistence frameworks, while the Android ORM Benchmark is ap-
plied to all eight persistence frameworks.

For each benchmark, the transaction logic (e.g., creating bank
accounts for DaCapo) is implemented using various ORM frame-
works, following the design guidelines of these frameworks. For
example, greenDAO, Sugar ORM, and OrmlLite provide object-
oriented data access methods, so their benchmarks’ data opera-
tions are implemented by using DAO. On the contrary, Android
SQLite adopts a relational rather than DAO database manipulating
interface, so its benchmark’s data operations are implemented by
using SQL builders. ActiveAndroid, DBFlow, and Java Realm provide
a hybrid strategy—both DAO and SQL builder APIs. For these frame-
works, if the benchmark’s operation is impossible or non-trivial to
express using DAO, the SQL builder API is used instead.

4.3. Parameters and variables

Next, we explain the variables used to evaluate the execution
time, energy consumption, and programming effort of the studied
persistence frameworks. We also describe how these variables are
obtained.

e Overall execution time The overall execution time is the time
elapsed from the point when a database transaction is triggered
to the point when it completes.

Read/write database operation number We focus on comparing
the Read/Write numbers only for SQLite-based frameworks (Ac-
tiveAndroid, greenDAO, OrmlLite, Sugar ORM, and DBFlow), as
such frameworks use SQLite operation interfaces provided by
the Android framework to operate on SQLite database. The
write operations include executing SQL statements that are
used to “insert”, “delete”, and “update”, while the read oper-
ations include only “select”. When performing the same combi-
nation of transactions, the differences in Read/Write number is
the output of how different persistence frameworks interpret
database operation invocations. The read/write ratio can also
impact the energy consumption. The operation numbers are ob-
tained by hooking into the SQLite operation interfaces provided
by the Android System Library. For those interfaces provided for
a certain type of database operation, we mark them as “Read”
or “Write”; for those interfaces provided for general SQL exe-
cution, we search for certain keywords (e.g., insert, update, se-

T All the code used in our experiments can be downloaded from
https://github.com/AmberPoo1/PEPBench.

Fig. 1. Monsoon mobile device power monitor’s main channel measurement con-
nection.

lect, and delete), in the SQL strings, and further mark them as
“Read” or “Write”.

o Energy consumption The energy consumption can be calculated
using the real-time current of the Android device’s battery. We
use the Monsoon power monitor (0000) to monitor the current
and voltage of the device’s battery, as shown in Fig. 1. As the
output voltage of a smartphone’s battery remains stable, only
the current and time are required to calculate the energy con-
sumed. Eq. (1) is used to calculate the overall energy consump-
tion, where I is the average current (mA), and t is the time win-
dow (ms). Micro-ampere-hour is a unit of electric charge, com-
monly used to measure the capacity of electric batteries.

- 360:):t (1)

/hour

The equation shows that the energy consumption is propor-
tional to the execution time, as well as to the current required
by the device’s hardware (e.g., CPU, memory, network, and hard
disk). For the persistence frameworks, the differences of energy
consumption reflect not only the execution time differences,
but also the different CPU workload and hard disk R/W oper-
ations required to process database operations.

Uncommented line of codes (ULOC) ULOC reflects the required

effort, defined as the amount of code a programmer has to

write to use a persistence framework. For its simplicity, ULOC

was used to express programming effort in earlier studies (e.g.,

Lavazza et al.,, 2016). As all the test suites are implemented only

in Java and SQL, the ULOC metric is reflective of the relative

programming effort incurred by using a framework.

E

Next, we introduce the input parameters for different bench-
marks. For the DaCapo benchmark, we want to explore the per-
formance boundary of different persistence frameworks under a
heavy workload. Therefore, we vary the amount of total transac-
tions to a large scale, and record the overall time taken and energy
consumed.

For the micro benchmark, we study the “initialize”, “insert”,
“select”, “update”, and “delete” invocations in turn. We change the
number of transactions for the last four invocations, so for the
“select”, “update” and “delete” invocations, the amount of data
records also changes. Therefore, the input parameters for the micro
benchmark is a set of two parameters:

{NUMBER OF TRANSACTIONS, AMOUNT OF DATA RECORDS}.

4.4. Experimental hardware and tools
To measure the energy consumed by a device, its battery must

be removed to connect to the power meter’s hardware. Unfortu-
nately, a common trend in the design of Android smartphones
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makes removable batteries a rare exception. The most recently
made device we have available for our experiments is an LG LS740
smartphone, with 1GB of RAM, 8GB of ROM and 1.2GHz quad-core
Qualcomm Snapdragon 400 processor (Singh and Jain, 2014), run-
ning Android 4.4.2 KitKat operating system. Although the device
was released in 2014 and runs at a lower CPU frequency than the
devices in common use today, the Android hardware design, at
least with respect to the performance parameters measured, has
not experienced a major transformation, thus not compromising
the relevance of our findings.

We execute all experiments as the only load on the device’s OS.
To minimize the interference from other major sources of energy
consumption, we set the screen brightness to the minimal level
and turn off the WiFi/GPS/Data modules. As the CPU frequency
takes time to normalize once the device exits the sleep mode, we
run each benchmark 5 times within the same environment, with
the first two runs to warm up the system and wait until the back-
ground energy consumption rate stabilizes. The reported data is
calculated as the average of the last 3 runs, with the differences
of the three runs of the same benchmark being not larger than 5%.

To understand the Dalvik VM method invocations, we use
Traceview, an Android profiler that makes it possible to explore the
impact of programming abstractions on the overall performance.
Unfortunately, only the Android ORM benchmark is suitable for
this exploration, due to the Traceview scalability limitations.

5. Study results

In this section, we report and analyze our experimental results.

5.1. Experiments with the android ORM benchmark

In this group of experiments, we study how the types of op-
eration (insert, update, select, and delete) and the variations on
the number of transactions impact energy consumption and execu-
tion time with different frameworks using the micro benchmark?
The experimental results for each type of persistence operation
are presented in Figs. 2 and 3. The first row of Fig. 2(a) and (b)
shows the energy consumption and execution time of the “insert”
database invocation, and Fig. 2(c)(d), (e)(f), and (g)(h) show that of
the “update”, “select”, and “delete” database invocations, respec-
tively. Fig. 3(a)-(d) show the database read and write operations
of these four invocations, respectively.

The results show that the persistence frameworks differ in
terms of their respective energy consumption, execution time,
read, and write measurements. Next, we compare the results by
operation:

Insert We observe that DBFlow takes the longest time to per-
form the insert operation, while ActiveAndroid takes the second
longest, with the remaining frameworks showing comparable per-
formance levels. DBFlow performs the highest number of database
operations, a measurement that explains its long execution time.
Different from other frameworks, DBFlow requires that a database
read operation be performed before a database write operation to
ensure that the-record-to-insert has not been already inserted into
the database. Besides, the runtime trace reveals that interactions
with the cache triggered by inserts in ActiveAndroid are expensive,
costing 62% of the overall execution time. By contrast, greenDAO
exhibits the shortest execution time, due to its simple but efficient
batch insert encapsulation, as shown in Table 1.

Update We observe that the cost of the Java Realm update is
several orders of magnitude larger than that of other frameworks,

2 We use the terms the micro benchmark and the Android ORM benchmark inter-
changeably in the rest of the presentation.

especially as the number of transactions grows. Several reasons
can explain the high performance costs of the update operation
in Java Realm. As one can see in Table 1, Java Realm lacks sup-
port for batch updates. Besides, the update procedure invokes the
underlying library method, TableView.size (), which operates
on a memory-hosted list of entities and costs more than 98% of
the overall execution time. The execution time of Sugar ORM is
also high, due to it having the highest number of read and write
operations. Sugar ORM needs to search for the target object be-
fore updating it. This search procedure is designed as the recursive
SugarRecord.find () method, which costs 96% of the overall
execution time.

Select and delete For the select and delete operations, we ob-
serve that Sugar ORM (1) exhibits the worst performance in terms
of execution time and energy consumption; (2) performs the high-
est number of database operations, as it executes an extra query
for each atomic operation. The inefficiency of the select and delete
operations in Sugar ORM stems from the presence of these ex-
tra underlying operations. However, as discussed above, the bulk
of the execution time is spent in the recursive find method. Orm-
Lite, greenDAO, DBFlow, Paper, and Android SQLite show compara-
ble performance levels when executing these two operations.

Table 2 sums up the rankings of each persistence framework
w.r.t. different database operation invocations. We also measure
the Uncommented Lines of Code (ULOC) for implementing all the
basic database operation invocations for each persistence frame-
work and include this metric in the table. From Table 2 and our
analysis above, we can draw the following conclusions:

1. By adding up the rankings of different operations, we can rank
these frameworks in terms of their overall performance: An-
droid SQLite > greenDAO = DBFlow > OrmlLite > Java Realm
> Paper > Sugar ORM > ActiveAndroid , where “>" means
“having better performance than”, and “=" means “having sim-
ilar performance with”.

2. Considering the programming effort of implementing all
database operations using different frameworks, DBFlow and
Paper require less programming effort than the other frame-
works.

3. When considering the balance of programming effort and per-
formance, DBFlow can be generally recommended for devel-
oping database-oriented mobile application with a standard
database operation/schema complexity.

4, Sugar ORM would not be an optimal choice when the domi-
nating operations in a mobile app are select or delete, DBFlow
would not be optimal when the dominating operation is insert,
while Java Realm would not be optimal when the dominating
operation is update.

5.2. Experiments with the dacapo benchmark

In this group of experiments, we use the DaCapo benchmark
to study how the energy consumption and execution time of each
framework changes in relation to the number of executed bank
transactions. The benchmark comes with a total of 41,971 records,
so in our experiments we differ the number of bank transactions.
In our measurements, we vary the number of bank transactions
over the following values: 40, 120, 200, 280, 360, 440, 520, 600,
800, 1000, 1500. The total number of transactions is the sum of
basic bank transactions, as listed in Table 3. Each transaction com-
prises a complex set of database operations. The key transactions
in each run are “New Order”, “Payment by Name”, and “Payment
by ID”, which mainly execute the “query” and “update” operations.
In our experiments, “New Order” itself takes 42.5% of the entire
number of transactions.
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Table 2
Comparison of persistence frameworks in the android ORM experiment.
Compared Item SQLite  DBFlow  greenDAO  ORMLite  Realm  Paper  Sugar  ActiveAndroid
ULOC 306 181 241 326 313 190 226 253
Initialization ranking 6 1 5 7 3 4 2 8
Insert ranking 2 8 1 4 3 5 6 7
Update ranking 1 2 5 3 8 7 6 4
Select ranking 1 2 3 4 5 6 8 7
Delete ranking 4 2 1 3 7 6 8 5
Summed up ranking 14 15 15 21 26 28 30 31
Table 3

Number of operations for each transaction type
with 1500 overall transactions.

Transaction type Operation amount

New order rollback 8
Order status by ID 26
Order status by name 42
Stock level 59
Delivery schedule 62
Payment by ID 245
Payment by name 391
New order 667

In Fig. 4, (@) and (b) show the energy/execution time and
read/write operations of the DaCapo Initialization, respectively.

Fig. 4(c) shows the energy consumption for each transaction num-
ber, and Fig. 4(d) shows the execution time for each transaction
number. Fig. 4(e) and (f) show the read/write operation num-
ber, respectively. As the write operation number of ActiveDroid,
greenDao, OrmlLite, Sugar ORM and SQLite are very close (e.g,
when the transaction amount is 1500, the number of write op-
eration are 18209, 18200, 18205, 18211, 18212 respectively), we
only present the average operation number of these five frame-
works in Fig. 4(e). Similarly, we use the line in pink to present
Sugar ORM/greenDao, and the line in green for SQLite/ActiveDroid
in Fig. 4(f). Table 3 shows the number of operations performed by
each transaction.

The dominant database operation in the initialization phase
is insert, and (a) shows the performance levels consistent with
those seen in the Android ORM benchmark for the same opera-
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tion: DBFlow, Sugar ORM and ActiveAndroid have the longest run-
time. greenDAO performs better than Android SQLite, possibly due
to greenDAO supporting batch insert (see Table 1 for details).
From Fig. 4, we observe that Java Realm and Sugar ORM have
the longest execution time when executing the transactions whose
major database operation is update (e.g., “New order”, “New order
rollback”, “Payment by name”, and “Payment by ID”). This conclu-
sion is consistent with that derived from the Android ORM update
experiments shown in Section 5.1. Android SQLite takes rather long
to execute, as it involves database aggregation (e.g., sum, and the

table queried had 30,060 records) and arithmetic operations (e.g.
field — 1) in the select clause. Meanwhile, as ActiveAndroid only
uses the raw SQL manipulation interface for complex update oper-
ations (Table 1), it exhibits the best performance, albeit at the cost
of additional programming effort.

From Fig. 4(c)-(f) and Table 4 we conclude that:

1. ActiveAndroid offers the overall best performance for all Da-
Capo transactions. It shows the best performance for the most
common transactions, at the cost of additional programming
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Table 4
LOC for DaCapo benchmark.
DaCapo ULOC
greenDAO 2200
DBFlow 2407
Sugar ORM 2911
ActiveAndroid 2923
Android SQLite 3068
Java Realm 3071
OrmlLite 3310

effort. Besides, its execution invokes the smallest number of
database operations, due to its caching mechanism.

2. Sugar ORM and Java Realm have the longest execution time, in
line with the Android ORM benchmark’s results discussed in
Section 5.1.

3. greenDAO’s performance is in the middle, while requiring the
lowest programming effort, taking 24.5% fewer uncommented
lines of code to implement than the other frameworks.

4. DBFlow takes more time and energy to execute that does Ac-
tiveAndroid; it also requires a higher programming effort than
greenDAO does. Nevertheless, it strikes a good balance between
the required programming effort and the resulting execution ef-
ficiency.

5.3. Relationship of energy consumption, execution time and DB
operations

We also discuss the relationship between energy consumption,
execution time, and database operations. We combine all the pre-
vious collected read/write, execution time and energy consumption
data from all the benchmarks. As shown in Fig. 5(a), the number
of total database operations (Read and Write) has a dominating im-
pact on both the execution time and energy consumption results:
(1) as the number of data operations increases so usually do the
execution time and energy consumption; (2) the execution time
and energy consumption are also impacted by other factors (e.g.,
the complexity of data operations, the framework’s implementa-
tion design choices, etc.).

Meanwhile, as shown in Fig 5(b), there is a significant posi-
tive relationship between the time consumption and the energy
consumption, with r(142) = 0.99, p < 0.001. Hence, the longer a
database task executes, the more energy it ends up consuming.

6. Numerical model

The experiments above show that for the same application sce-
nario different frameworks exhibit different execution time, energy
consumption, and programming effort. However, to derive prac-
tical benefits from these insights, mobile app developers need a
way to quantify these trade-offs for any combination of an appli-
cation scenario and a persistence framework. To that end, we pro-
pose a numerical model PEP (Performance, Energy consumption,
and Programming Effort) for mobile app developers to systemati-
cally evaluate the suitability of persistence frameworks.

6.1. Design of the PEP model

Our numerical model follows a commonly used tech-
nique for evaluating software products called a utility in-
dex (Christodoulou et al., 2009). Products with equivalent func-
tionality possess multidimensional feature-sets, and a utility index
is a score that quantifies the overall performance of each product,
allowing the products to be compared with each other.

As our experiments show, the utility of persistence frameworks
is closely related to application features (e.g., data schema com-
plexity, operations involved, data records manipulated, database
operations executed). Therefore, it is only meaningful to compare
the persistence frameworks within the context of a certain appli-
cation scenario. Here, we use p to denote an application with a set
of features.

Let O={0=1,2,3...} be a set of frameworks. Let E;(p), Yo € O
denote the energy consumption of different implementations of p
using various frameworks o, while To(p), Yo € O denotes the exe-
cution time. As the energy consumption and the execution time
of database operations correlate linearly in our experimental re-
sults, we use the Euclidean distance of a two dimensional vec-
tor to calculate the overall performance, which can be denoted as
Pop=/To(p)? + Eo(p)%, Yo € O.

The programming effort is represented by the ULOC, and here
we use L,(p), Vo € O to denote the programming effort of different
implementations of the project p using different persistence frame-
works.

We consider both the framework’s performance and program-
ming effort to compute the utility index I,(p):

Ly(p)
min(L,(p), Vo e O)’

min(P,(p), Yo € O)
Py (p)

L(p) = Yoe O (2)
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Table 5

Applying numerical model on DaCapo and androidORM benchmark.
Benchmark Parameters & Index  ActiveAndroid  greenDAO  Ormlite  Sugar  SQLite  Realm  DBFlow  Paper
DaCapo Trans=40,7=0.5 0.328 0.184 0.135 0.166  0.109 0.098 0.956 N.A.
DaCapo Trans=40,7=1 0.284 0.184 0.135 0.094 0140 0.083 0.914 N.A.
DaCapo Trans=40,7=1.5 0.247 0.184 0110 0.082  0.118 0.070 0.878 N.A.
DaCapo Trans=1500,7=0.5 0.867 0.726 0.726 0.412 0.671 0.368 0.924 N.A.
DaCapo Trans=1500,7=1 0.752 0.726 0.592 0.358  0.568 0.312 0.884 N.A.
DaCapo Trans=1500,7=1.5 0.652 0.726 0.483 0.133 0.481 0.264 0.845 N.A
Android ORM  Trans=1025,7=0.5 0.050 0.166 0.124 0.044 0180 0.055 0.255 0.976
Android ORM  Trans=1025,7=1 0.051 0.144 0.092 0.039 0139 0.042 0.255 0.952
Android ORM  Trans=1025,7=1.5 0.043 0.125 0.069 0.035  0.107 0.031 0.255 0.929
Android ORM  Trans=20025,7=0.5  0.159 0.740 0.633 0.289  0.769 0.007 0.591 0.635
Android ORM  Trans=20025,7=1 0.165 0.641 0.472 0.080  0.591 0.005 0.591 0.621
Android ORM  Trans=20025,r=15  0.114 0.555 0.352 0.071 0.454 0.004 0.591 0.606

The equation’s first part, M, compares the perfor-

mance of a mobile app implementeiip)by means of the persistence
framework o, and the implementation that has the best perfor-
mance. The equation’s second part, W, compares the
programming effort between an implementation o(p) and the im-
plementation that requires the minimal programming effort. When
the utility index of a framework o-based implementation is close
to 1, the implementation is likely to offer acceptable performance,
with low programming effort.

Consider the following example that demonstrates how to cal-
culate the utility index. If for an app p, Android SQLite might pro-
vide the best performance, while the greenDAO-based implemen-
tation consumes twice the energy and takes twice the execution
time. Therefore, the performance index of Pgreenpao(p) is 0.5. On
the other hand, the greenDAO-based implementation might require
the lowest programming effort, as measured by the ULOC metric.
Therefore, the implementation complexity index of Lgreenpaop is 1.
Thus, the overall utility index is 0.5/1 = 0.5.

Application developers apply dissimilar standards to judge the
trade-offs between performance and programming effort. Some de-
velopers focus solely on performance, while others may prefer the
shortest time-to-market. We introduce t to express these prefer-

ences.
L(p) = Lo(p) ) (3)

Py(p)

where 7 >0. When t > 1, the larger t is, the more weight is as-
signed to the programming effort target. Otherwise, when 7 <1,
the lower t is, the more weight is assigned to the performance
target.

min(P,(p), Yo € O)
min(L,(p), Yo € O)

6.2. Evaluating the benchmarks

To provide an insight into how the persistence frameworks
evaluated in this article fit different application scenarios, we apply
the PEP model to the Android ORM and DaCapo benchmarks. We
consider typical low and high transaction volumes, respectively, for
each benchmark. Specifically, for the Android ORM benchmark, we
evaluate two sets of input, 1025 transactions and 20,025 transac-
tions. For the DaCapo benchmark, we evaluate two sets of input,
40 transactions and 1500 transactions. For each input set, we as-
sign T to 0.5, 1, and 1.5, in turn, to show whether the developers
are willing to invest extra effort to improve performance. Specifi-
cally, when 7 = 0.5, the developer’s main concern is performance;
when 7 =1, the balance of performance and programming effort
is desired; when 7 = 1.5, the developer wishes to minimize pro-
gramming effort. Table 5 shows the calculated index values of the
persistence frameworks for all cases.

From the results presented in Table 5, we can draw several con-
clusions: (1) For the DaCapo benchmark or similar mobile apps

with heavy data processing functionality and complicated data
structures, DBFlow represents the best performance/programming
effort trade-off. When the number of data operations is very high,
ActiveAndroid should also be considered, as it provides the best
execution performance, especially when the programmer is not as
concerned about minimizing the programming effort; (2) For the
Android ORM benchmark or similar mobile apps with less com-
plicated data structures, when the number of data operations is
small, the top choice is Paper, as this framework reduces the pro-
gramming effort while providing high execution efficiency. How-
ever, when the number of data operations surpasses a certain
threshold (over 10K simple data operations), the execution perfor-
mance of Paper experiences a sudden drop due to scalability is-
sues. In such cases, greenDAO and Android SQLite would be the
recommended options.

In the following discussion, we use hypothetical use cases to
demonstrate how the generated guidelines can help mobile app
developers pick the best framework for the application scenario
in hand. Consider four cases: (1) a developer wants to persist the
user’s application-specific color scheme preferences; (2) a team of
developers wants to develop a production-level contact book ap-
plication; (3) an off-line map navigation application needs to store
hundreds of MBs of data, comprising map fragments, points of in-
terests, and navigation routines; (4) an MP3 player app needs to
retrieve the artist’s information based on some features of the MP3
being played. For use case 1, the main focus during the develop-
ment procedure is to lower the programming effort, while the data
structures and the number of data operations are simple and small.
Therefore, for this use case, we would recommend using Paper. For
use case 2, the main focus is to improve the responsiveness and
efficiency, as the potential data volume can get quite large. Given
that minimizing the programming effort is deprioritized, we would
recommend using greenDAO or Android SQLite. For use case 3,
complex data structures are required to be able to handle the po-
tentially large data volumes, while maintaining quick responsive-
ness and high efficiency is expected of navigation apps. Therefore,
we would recommend using ActiveAndroid. For use case 4, the
main application’s feature is playing MP3s, and the ability to re-
trieve the artist’s data instantaneously is non-essential. To save the
programming effort of this somewhat auxiliary feature, we would
recommend using DBFlow.

7. Threats to validity

Next, we discuss the threats to the validity of our experimen-
tal results. Although in designing our experimental evaluation, we
tried to perform as an objective assessment as possible, our design
choices could have certainly affected the validity and applicability
of our conclusions.
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The key external threat to validity is our choice of the hard-
ware devices, Android version, and profiling equipment. Specifi-
cally, we conduct our experiments with an LG mobile phone, with
1.2 GHz quad-core Qualcomm Snapdragon 400 processor, running
Android 4.4.2 KitKat, profiled with the Monsoon Power Monitor.
Even though these experimental parameters are representative of
the Android computing ecosystem, changing any of these parame-
ters could have affected some outcomes of our experiments.

The key internal threat to validity are our design choices for
structuring the database and the persistence application function-
ality. Specifically, while our Android ORM benchmark set explores
the object features of Android persistence frameworks, the orig-
inal DaCapo (Blackburn et al., 2006) H2 benchmark manipulates
relational database structures directly, without stress-testing the
object-oriented persistence frameworks around it. To retarget Da-
Capo to focus on persistence frameworks rather than the JVM
alone, we adapted the benchmark to make use of transparent per-
sistence as a means of accessing its database-related functionality.
Nevertheless, the relatively large scale of data volume, with the se-
lect and update operations bank transactions dominating the exe-
cution, this benchmark is representative of a large class of database
application systems, but not all of them. Besides, we have not
tested our PEP model on real-world applications. Hence, it is not
confirmed yet how accurate the model would be for such applica-
tions.

8. Conclusions

In this paper, we present a systematic study of popular Android
ORM/OO persistence frameworks. We first compare and contrast
the frameworks to present an overview of their features and ca-
pabilities. Then we present our experimental design of two sets
of benchmarks, used to explore the execution time, energy con-
sumption, and programming effort of these frameworks in differ-
ent application scenarios. We analyze our experimental results in
the context of the analyzed frameworks’ features and capabilities.
Finally, we propose a numerical model to help guide mobile de-
velopers in their decision making process when choosing a persis-
tence framework for a given application scenario. To the best of
our knowledge, this research is the first step to better understand
the trade-offs between the execution time, energy efficiency, and
programming effort of Android persistence frameworks. As a future
work direction, we plan to apply the PEP model presented above
to real-world applications, in order to assess its accuracy and ap-
plicability.
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