
Classification mapping of salt marsh vegetation by flexible monthly NDVI 1

time-series using Landsat imagery2

Chao Sun1, Sergio Fagherazzi1, Yongxue Liu3
1Department of Earth and Environment, Boston University, Boston, Massachusetts USA4

5

Abstract6

Salt marshes are deemed as one of the most dynamic and valuable ecosystems on Earth. Recently, salt 7

marsh deterioration and loss have become widespread because of anthropogenic stressors and sea level 8

rise. Long-term acquisition of spatial information on salt marsh vegetation communities is thus critical to 9

detect the general evolutionary trend of marsh ecosystems before irreversible change occurs. Medium 10

resolution imagery organized in inter-annual time series is more suitable than hyperspectral, high11

resolution imagery for large-scale mapping of salt marsh vegetation. For long-term monitoring purposes,12

the challenge is to develop time series based on data with uneven temporal distribution. This paper 13

proposes a flexible Monthly NDVI Time-Series (MNTS) approach to achieve multi-phased classification 14

maps of salt marsh vegetation communities in the Virginia Coast Reserve, USA, by utilizing all viable15

Landsat TM/ETM+ images during the period 1984-2011. Salt marsh vegetation communities are 16

identified on a reference MNTS spanning 12 months with an overall accuracy of 0.898; 0.163 higher than 17

classifications using mono-phased images. Utilizing a flexible selection process based on the reference 18

MNTS, a significant inverse hyperbolic relationship emerges between overall accuracy and average 19

length of the time series. Based on these results, eight classification maps with average accuracy of 0.844 20

and time interval of 2-5 years are acquired. A spatio-temporal analysis of the maps indicates that the 21

upper low marsh vegetation community has diminished by 19.4% in the study period, with a recent 22

acceleration of losses. The conversion of marsh area to vegetation communities typical of low elevations 23

(37.7 km2) is more than twice the conversion to communities typical of high elevations (18.3 km2), 24

suggesting that salt marsh ecosystems at the Virginia Coast Reserve are affected by sea level rise.25
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1 Introduction30

Salt marshes are highly productive ecosystems, providing an array of ecosystem services (Costanza 31

et al. 1997; Gedan et al. 2009; Zedler and Kercher 2005). At a local scale, salt marshes play an important 32

role in food supply, nutrient cycling, contaminant filter, sediment storage, and flood control. At a broader 33



scale, salt marshes help regulate regional climate and provide critical habitat for continental and 34

intercontinental migratory species (Zedler and Kercher 2005). Despite these important benefits, a 35

significant fraction of salt marshes has been lost due to land development, filling and dredging, or 36

damaged by anthropogenic modifications (Gedan et al. 2009). Sea level rise has also a significant impact 37

on the condition and health of coastal salt marshes, especially for those with a limited sediment supply 38

(Morris et al. 2002).39

Salt marsh halophytic vegetation is composed of communities adapted to survive different 40

submersion periods. As a result, the distribution of plant communities is usually a function of salt marsh 41

elevation relative to sea level (Silvestri et al. 2005; Isacch et al. 2006; Lenssen et al. 1999). In fact, the 42

interactions between flooding regime, local topography, and ecophysiological performance may result in 43

a diversification of vegetation species along inundation gradients (Silvestri et al., 2005; Boutin and Keddy 44

1993; Isacch et al. 2006). This diversification, at the landscape level, is often represented as belt-shaped 45

vegetation type communities around channels and ponds, where the land is higher. Thus, as sea level rises, 46

these communities might transgress landward toward higher areas or disappear altogether if inland marsh 47

expansion is impossible.48

As a countermeasure to increasing natural and anthropogenic pressures, acquisition of long-term 49

information on spatial distribution of salt marsh vegetation communities is urgently important, and will 50

help to develop effective strategies for salt marsh management, protection, and restoration (Belluco et al. 51

2006; Harvey and Hill 2001; Silvestri et al. 2005). Compared to expensive field measurements in areas 52

with low accessibility, remote sensing has outstanding advantages in its synoptic coverage and 53

repeatability. In terms of classification of salt marsh communities or species by a remotely sensed 54

approach, most studies focused on the usage of high spatial or high spectral (hyperspectral) imagery by 55

either reducing spectral mixing effects in smaller pixels or increasing discriminative capability in a high-56

dimensional attributes space (Bachmann et al. 2002; Gilmore et al. 2008; Laba et al. 2008; Timm and 57

McGarigal 2012; Whiteside and Bartolo 2015). The high discrimination capabilities demonstrated 58

through the usage of high resolution spatial and hyperspectral data is in turn balanced by their relatively 59

high cost and low availability, which relegate salt marsh monitoring to small regions and few temporal 60

snapshots. Multispectral imagery at medium spatial resolution is an alternative option for salt marsh 61

monitoring applications. These sensors can cover a wide geographic area, have a high temporal depth of 62

the archive, and are freely available. However, high similarity in the spectral signatures of various 63

vegetation species leads to low accuracies for vegetation classification based on a mono-phase image,64

even at the community level (Harvey and Hill 2001; Klemas 2013). One example is NOAA Coastal 65

Change Analysis Program (C-CAP), which employs individual Landsat images as primary data and66



produced classification map for coastal land cover spanning 25 vegetation categories. However, C-CAP67

regards the whole coastal salt marsh area as a unique class named Estuarine Emergent Wetland (Fig. 1a).68

Recently, significant spectral Vegetation Indices (VIs) have been derived from field spectral 69

observations at different monthly resolutions (Feilhauer et al. 2013; Fernandes et al. 2013; Gao and Zhang 70

2006). This raises the possibility of accurate discrimination of salt marsh vegetation communities by 71

means of VIs time-series constructed form multispectral, medium-resolution imagery. Good results have 72

been achieved through time-series spanning 1-3 years with a combination of different VIs (e.g., NDVI, 73

NDAVI, WVI, WAVI) and time scales (e.g., seasonal, monthly in the growing season, monthly in the 74

whole year) (Davranche et al. 2010; Gilmore et al. 2008; Sun et al. 2016; Villa et al. 2015; Wang et al. 75

2012). Among VIs, the Normalized Difference Vegetation Index (NDVI) is accepted as a stable general 76

indicator of community type, plant biomass, vegetation phenology, and photosynthetic performance of 77

salt marsh vegetation (Kerr and Ostrovsky 2003; Sun et al. 2016). Neither as spectrally powerful as 78

hyperspectral nor as spatially detailed as high-spatial imagery, a multispectral medium-resolution 79

vegetation mapping with NDVI time-series can go beyond the local scale and short time intervals80

providing long-term earth observations (la Cecilia et al. 2016; Sun et al. 2017). However, the reduced 81

number of useful images should be considered before applications. The difference between total images 82

and viable images becomes large in coastal zones, where salt marsh vegetation communities grow. Here83

the frequent cloud cover and the fluctuating tidal stage lead to a reduced number of viable images with an84

uneven and discrete temporal distribution. How to synthesize information from these irregular time series 85

of images is therefore critical for the long-term monitoring of salt marshes.86

In this study, we explore new approaches to monitor salt marsh vegetation communities with Landsat 87

TM/ETM+ multispectral remote sensing data. Our goal is to determine the evolution of marsh vegetation 88

at the Virginia Coast Reserve (VCR), USA, through a series of classification maps spanning 30 years.89

Salt marsh vegetation communities are classified with the C5.0 decision tree, which is suitable for salt 90

marsh analysis given its ability to achieve high accuracies with the boosting algorithm. Our specific 91

objectives are: (1) to construct a reference monthly NDVI time-series (MNTS) for vegetation 92

classification and compare its performance with a classification based on mono-phase images from each 93

month; (2) to generate a series of classification maps balancing accuracy with frequency, using a flexible 94

MNTS approach acting on all viable Landsat TM/ETM+ imagery during 1984-2011; (3) based on the 95

classification maps of salt marsh vegetation communities, to explore spatio-temporal variations in salt 96

marsh communities and determine trends in vegetation cover within the salt marshes of VCR.97

98

2 Materials99

2.1 Study area100



Our study area is the Virginia Coast Reserve (VCR), a typical barrier-lagoon-marsh system located 101

on the Atlantic side of the Delmarva Peninsula, USA. These lagoons comprise intertidal and subtidal 102

basins located between the barrier islands and the Delmarva Peninsula (Fig. 1a). Tides are semidiurnal, 103

with a mean tidal range of 1.2 m. Mean Higher High Water (MHHW) at Wachapreague channel (NOAA 104

station 8631044, Fig. 1a) is 0.68 m above mean sea level, whereas Mean Lower Low Water (MLLW) is -105

0.65 m. Marsh vegetation is dominated by Spartina alterniflora (S. alterniflora), with a height ranging106

between 50 and 100 cm.107

108



Fig. 1 Location and dataset of Virginia Coast Reserve (VCR). (a) NOAA C-CAP land cover map of 2010; 109

(b) extent of salt marsh area and distribution of available field data; (c) NAIP aerial image of 2004 and 110

distribution of 1000 random validation points; (d) LiDAR digital elevation model of 2010 and water mask.111

112

2.2 Definition of salt marsh vegetation communities113

To define salt marsh vegetation communities, we start from the mapping units proposed by114

McCaffrey and Dueser (1990) for hydric-halophytic herbaceous vegetation at the VCR. This 115

classification system, derived from the interpretation of 1:20000-scale false color aerial images and field 116

surveys, delineates mapping units based on species composition, growth form, leaf and stem density, tidal 117

influence, and distinct vertical elevation. The classification has been widely accepted with slight 118

modification for salt marshes across the eastern shore of the United States (McCarthy and Halls 2014;119

Pengra et al. 2007; Timm and McGarigal 2012). However, narrow ecotones and small vegetation patches 120

were undetectable at the medium spatial resolution of Landsat images used in our study. We therefore 121

combined several adjacent mapping units of McCaffrey and Dueser (1990). The final definition of each122

salt marsh vegetation community used herein is (Fig. 2):123

Low Marsh (LM). Low marshes have 75%-100% cover of S. alterniflora, often interspersed with 124

Salicornia virginica (S. virginica). Higher elevations in Low Marsh usually have firm organic sediments 125

and support short, often dense, S. alternilfora. Lower elevations have fine-grained, mucky sediments 126

which are inundated several hours per day supporting tall S. alterniflora.127

Upper Low Marsh (ULM). A halophytic association (50-100% cover), usually flooded to a depth of 128

<10 cm, occupies the higher elevations of the Low Marsh. It is dominated by S. virginica and short S.129

alterniflora, often with a belt of Dislichlis spicata (D. spicata).130

High Marsh (HM). High marsh has 100% cover of dense, typically decumbent, D. spicata, Spartina 131

patens (S. patens) and Juncus roemerianus (J. roemerianus) with numerous salty-to-brackish ponds. This 132

association fringes the edges of salt flats. Due to the range of salinity, high marsh may gradually merge 133

with Upper Low Marsh shoreward or dense grassland and scrubs landward.134

Tidal Flat (TF) consists of salt flats, mud flats, wash flats, and open water. Salt flats are135

intermittently flooded areas of firm sand with a high salt concentration, often covered with a surface layer 136

of unicellular algae and sulfur bacteria. Mud flats have a muddy surface, and are usually devoided of 137

vegetation except for occasional Ulva lactuca, S. alterniflora and other halophytes. Wash flats appear as 138

bayshore beaches, and bury low marshes in overwash areas and in ephemeral inlets. Open water 139

comprises ephemeral or permanent ponds, tidal creeks, and the bays in general.140



141
Fig.2 Vertical distribution and dominant species for salt marsh vegetation communities in our 142

classification system.143

144

2.3 Data set145

2.3.1 Remote sensing data146

The remote sensing data used in our study include Landsat imagery, NAIP aerial imagery, C-CAP 147

land cover maps, and a Lidar DEM.148

Landsat5 TM data provided nearly continuous coverage of the earth surface from 1984 to 2011 at a 149

spatial resolution of 30 m. Landsat7 ETM+ SLC-on data (1999-2003), with similar spectral distribution 150

and same spatial resolution, is an efficient way to enhance the imagery availability. The images from 151

1984 to 2011 for a Landsat scene centered over the VCR (Path: 014, Row: 034) were acquired from the152

United States Geological Survey (USGS) Earth Explorer and were used for the construction of monthly 153

NDVI time-series (MNTS).154

NOAA Coastal Change Analysis Program (C-CAP) maps cover intertidal areas, wetlands, and 155

adjacent uplands. These maps include 25 land use and vegetation classes with the spatial resolution of 30 156

m and update every five years starting in 1992. In total, 5 C-CAP land cover maps were obtained from 157

NOAA office for coastal management, for the years 1992, 1996, 2001, 2006, and 2010. In the C-CAP 158

classification system, the whole salt marsh area of the VCR was categorized into a unique class labeled 159

Estuarine Emergent Wetland. Thus, the maximum extent of this class from each period was used to 160

delimit the salt marsh region of our study (Fig. 1b).161

The National Agriculture Imagery Program (NAIP) acquires aerial imagery at a resolution of 1 m for 162

the United States during the agricultural growing season. A total of 6 NAIP county mosaic images were 163

collected from United States Department of Agriculture (USDA) Geospatial Data Gateway for the years164

2004, 2005, 2006, 2008, 2009, and 2011 (Fig. 1c). These images were used as the reference data for 165



accuracy assessment of classification maps during 2002-2011 by labeling the corresponding salt marsh 166

vegetation community with 1000 random points (Fig. 1c), generated with the assistance of ArcGIS 167

software (Foody 2002; Theobald et al. 2007).168

A LiDAR DEM of the VCR was downloaded from Virginia Coast Reserve Long Term Ecological 169

Research (VITA 2011). The LiDAR DEM with a cell resolution of 3.048 m, was created from LiDAR 170

points (~ 1 m spacing) acquired in March 25-30, 2010. The horizontal and vertical datum are NAD83 and 171

NAVD88, and the vertical accuracy was validated at less than 0.15 m. A water mask file was also 172

attached to control for tidal regime during data collection (Fig. 1d). In our study, a coordinate 173

transformation and a spatial resampling were first applied to the LiDAR DEM to match the datum 174

(WGS84 UTM 18N) and spatial resolution (30 m) of the Landsat images. Then, areas without tidal 175

inundation were used to ascertain the elevation for each salt marsh vegetation community.176

2.3.2 Field data and training samples177

Data on end-of-year biomass is available for 17 sites marshes at the VCR from 1999 to 178

2014(Christian and Blum 2014) (Fig. 1b). For each site, 4 transects were established for each marsh 179

community (defined as creek bank, low marsh, high marsh, and transition). The location was determined 180

with GPS and additional information, such as biomass, plant height, and population density, was also 181

recorded. After extracting the annual invariant plots for low marsh and high marsh and projecting them to182

image coordinate (WGS84 UTM 18N), training samples of LM and HM were ascertained. 183

Simultaneously, by comparing the Landsat images with the classification map of McCaffrey and Dueser 184

(1976) (Fig. S1), we obtained the texture and color characteristics of ULM and TF. These characteristics 185

were adopted to identify the invariant plots, namely training samples, of ULM and TF by overlaying 186

several images from different decades and seasons. In total, 1391 pixels of training samples (including 187

331 for TF, 381 for LM, 365 for ULM, and 314 for HM) were employed from 40 invariant plots to build 188

a classifier (Fig. 1b).189

2.3.3 Water level data190

Tidal level data were collected from NOAA Tides and Currents. The verified hourly water level data191

from the Wachapreague (no. 8631044) and the Kiptopeke (no. 8632200) tide gauge stations were used to 192

determine the water level related to each Landsat image (Fig. 1a).193

194

3 Methods195

3.1 Assessment of available Landsat imagery196

In coastal regions, frequent cloudy weather severely blurs the clarity of satellite images and reduces 197

the reliability of classification results. Tidal flooding significantly affects vegetation reflectance, resulting 198

in an underestimation of vegetation indices such as NDVI. Thus, an assessment of viable satellite imagery 199



is the first step to guarantee high quality of time-series construction. We correct each image for cloud 200

cover and tidal inundation using the NASA Landsat Ecosystem Disturbance Adaptive Processing System 201

(LEDAPS) software, which provides a series of Landsat TM/ETM+ products including surface 202

reflectance, CFmask band (mask for clouds and cloud shadows), and LandWater band (distinguishing 203

between land and water).204

A two-step cloud cover filter strategy is proposed to avoid the cloud cover effect. First, a total of 379 205

Landsat images, including Landsat 4/5 TM during 1984-2011 and Landsat 7 ETM+ scan off during 1999-206

2003 (Fig. 3a), were preliminarily filtered, eliminating all scenes with a cloud cover above 40%. Then, we 207

further reduced the dataset to 254 scenes with a blurred percent less than 40%. The blurred percent was 208

defined as:209

210 blurred percent = ( ) (  )(  ) × 100% (1)211

212

where A(salt marsh) is the area of salt marsh. A(cloud) and A(could shadow) correspond to the area 213

of clouds and cloud shadows falling on the salt marsh region. The clouds and cloud shadows for each 214

image were detected by the CFmask band with the label values of 2 and 4.215

To reduce the effect of different tidal stages, we determined a tidal height threshold above which the 216

satellite image is less affected by tidal inundation. To ascertain this threshold, the tidal height for 254 217

candidate images was first calculated by the verified hourly water level data from the Wachapreague tide218

gauge station (no. 8631044), with linear interpolation to the time of image acquisition. This water data 219

covers the whole study period except for the years 2006 and 2007. To estimate the tidal height during that 220

period, an equivalent Wachapreague tidal height was approximated by a linear interpolation of the tidal 221

height from the Kiptopeke tide gauge station (8632200, Fig. 3b). For each tidal level, the subaerial part of 222

the marsh was separated from the submerged part using the LandWater band with the label value of 0,223

determining the percent of land for each image. Results show that the percent of land first gradually224

decreases then rapidly drops for an increasing tidal level. Two discrete linear fittings are thus proposed to 225

determine the critical tidal level threshold above which the marsh is flooded (Fig. 3c). The data were 226

separated in two groups by a prescribed tidal level, and a linear fit applied to each group obtaining two 227

coefficients of determination. By varying the tidal level from 0 to 150 cm with a step of 1 cm, the tidal 228

height threshold was determined as the x-coordinate that maximizes the sum of the coefficient of 229

determinations of the two linear fits. The final threshold was 92.4 cm above MLLW. A total of 160 230

images had a water level below the threshold and were selected as viable images for our analysis.231



232
Fig. 3 Temporal distribution of all available Landsat TM/ETM+ imagery during 1984-2011 filtered by 233

cloud cover and tidal inundation. (a) Temporal distribution of 379 tiles of Landsat images. Gray crosses 234

are 125 tiles eliminated due to cloud cover, blue crosses are 94 tiles eliminated due to tidal inundation, 235

and red squares are the viable 160 tiles used for this study; (b) linear relationship between the tidal level236

data from Wachapreague (no. 8632200) and Kiptopeke (no. 8631044) stations; (c) determination of 237

inundation threshold by two discrete linear fits.238

239

3.2 Construction of the reference MNTS240

Determination of the monthly sampling rate must consider the tradeoff between the revisit frequency 241

of Landsat and the intra-annual phenological dynamics of salt marsh vegetation. During the period 1999-242



2003, more images are available from the two satellites (Landsat5 TM and Landsat 7 ETM+ SLC on) and 243

allow the construction of a monthly Landsat time-series with a short time interval. 12 tiles of images 244

acquired in 2001-2002 were selected and their detailed information referred in Table 1. These images 245

were radiometrically corrected to surface reflectance using the LEDAPS software, which applies MODIS 246

atmospheric correction to Landsat TM/ETM+ data based on 6S radiative transfer model. The NDVI of 247

each image was then calculated and combined in an orderly manner to a monthly NDVI times-series.248

249

Table 1 Detailed information of each image for the reference MNTS.250

Image Date Satellite Sensor Blurred percent (%) Land percent (%) Tide height (cm)
2002-01-26 Landsat5 TM 0.72 94.83 26.28
2002-02-19 Landsat7 ETM+ 4.86 75.57 78.81
2002-03-23 Landsat7 ETM+ 0.21 97.39 0.54
2001-04-29 Landsat5 TM 4.71 92.04 68.50
2002-05-10 Landsat7 ETM+ 8.94 95.27 43.37
2002-06-11 Landsat7 ETM+ 19.47 88.30 78.58
2002-07-05 Landsat5 TM 21.42 97.64 17.72
2001-08-27 Landsat7 ETM+ 0.06 95.78 34.83
2001-09-12 Landsat7 ETM+ 3.27 93.97 51.50
2002-10-01 Landsat7 ETM+ 5.97 94.85 35.43
2002-11-18 Landsat7 ETM+ 1.10 87.36 70.19
2001-12-25 Landsat5 TM 10.02 94.34 46.22

251

3.3 C5.0 decision tree252

The C5.0 algorithm was used to build a classification decision tree in order to map salt marsh 253

vegetation communities. This algorithm uses the information gain ratio criterion to determine the best 254

attribute and possible threshold to separate different classes (Quinlan 1999). An advanced ensemble 255

classifier method, named boosting, is also integrated into the C5.0 decision tree algorithm (Quinlan et al. 256

1996). The boosting algorithm works by repeatedly running the C5.0 algorithm on various distributions 257

over the training samples, then combines the classifiers into a single composite classifier. By binding this 258

boosting algorithm, the C5.0 decision tree algorithm significantly improves the classification, making it 259

widely applicable in the field of remote sensing (de Colstoun and Walthall 2006; Esch et al. 2014; Sun et 260

al. 2016).261

In our study, all the training samples was used to build the C5.0 decision tree, whose accuracy was 262

verified by random validated points labeled with the salt marsh vegetation community category. To set 263

the parameters of the decision tree, NDVI from different months served as attributes and the confidence 264

level and minimum case were set to 0.25 and 15 (almost 1% of training data), respectively. Ten decision 265

trees were built by the boosting algorithm.266



267

3.4 Construction of flexible MNTS268

Even though the superior performance of MNTS for salt marsh classification has been proven (Sun 269

et al. 2016; Wang et al. 2012), it is still hard to directly apply such method to all viable Landsat images 270

due to their irregular and scattered temporal distribution (Fig. 3a). For example, owing the lack of images271

from 1984 to 1992, in this period it would take almost 9 years to obtain a classification map using a 272

MNTS based on images from 12 months. The accuracy of this map would be low since vegetation likely 273

changed during such a long time interval. Therefore, we used the NDVI of only few key months rather 274

than the values of 12 months to circumvent the lack of suitable Landsat imagery in some years. A two-275

step procedure including full subset assessment and iterative selection was proposed to construct the 276

flexible MNTS (Fig. 4a). The whole procedure was automatically implemented in Matlab and R software.277

Reference subsets assessment. In order to determine the optimal MNTS, the predicted accuracy (the 278

overall accuracy of the subset from the reference MNTS) was assessed for each possible subset of months, 279

from 1 to 12 months, for the period 2001-2002. Such predicted accuracy does not take into account all the 280

aspects of classification, but it is intuitive and proven to give results similar to more complex indexes for 281

each subset. For a 12-month time-series dataset, the total number of subsets is calculated by:282

283 (12, ) = (12,1) + (12,2) + + (12,12) = 2 1 (2)284

285

where (12, ) = !!( )!, denotes the number of possible subsets of i months from a set of 12 286

months. In our study, the referenced MNTS from 2001-2002 was used as the reference dataset. Random 287

validated points, labeled with the interpreted salt marsh vegetation community based on the NAIP of 2004,288

were utilized to calculate the predicted accuracy, and a total of 4095 different subsets of MNTS were 289

tested. We thus build a look-up table with the accuracy of all subsets of images with different number and 290

combination of months. The accuracy is only computed for the 2001-2002 period, but it can be used to 291

estimate the accuracy of any other subset of images taken from that combination of months. Although 292

time consuming, this exhaustive process enables to compare the classification efficiency among all 293

subsets, which would not be possible in common variable selection processes.  294

Iterative selection. After the predicted accuracies were assigned to all subsets, the average time 295

interval between classification maps as well as the total number of classification maps for the period 296

1984-2011 can be calculated for a given predicted accuracy with an iterative process (Fig. 4b). We first 297

create an empty collection to store information for each month. We then add the next available image to 298

the collection, skipping images for months already present in the collection. In this way we create a series 299

of subsets with a different number of images from consecutive months. For each subset, we determine the 300



predicted accuracy from the reference MNTS for 2001-2002. For example, if the subset contains images 301

from July, August, and November, we assign to it the accuracy of the 2001-2002 subset with images from 302

July, August, and November. If the predicted accuracy of the subset is greater than the target one, the 303

information (e.g., combination of images, time interval) is recorded. This process is repeated until all 304

possible MNTS are recorded for a given accuracy. Finally, the average time interval between two 305

classification maps is computed as the ratio between the number of years (28, between 1984 and 2011) 306

and the final number of maps. A series of multi-phased classification maps of salt marsh vegetation 307

communities is finally generated based on the information from the flexible MNTS.308

309

310
Fig. 4 Flow chart depicting the method used in our study. (a) General technique procedure; (b) detailed 311

description of the iterative process to determine all flexible MNTS for a given accuracy.312

313

4 Results314

4.1 Comparison between MNTS and mono-phased images315

Tidal flats (TF) are characterized by very low NDVI values in all seasons (see the reference MNTS 316

curve for 2001-2002 in Fig. 5a). In particular, the NDVI values between July and October are317



significantly lower than those of the other salt marsh vegetation communities, indicating that this is the 318

optimal period for tidal flat identification and separation from salt marsh. The NDVI curves for the three 319

salt marsh vegetation communities (LM, ULM, HM) have a similar trend — the NDVI peaks during the 320

late growing season (from July to September), while the minimum is in winter (from February to March).321

The NDVI value of the LM is significantly lower in almost every month, facilitating the discrimination of 322

this community. The NDVI value for HM is significantly higher than the others in summer. HM can 323

therefore be identified by NDVI values between June to August. In contrast, the separability of each class 324

using the surface reflectance curve from a mono-phase image during the growing season (July 5, 2002) is 325

not very good (Fig. 5b). In the surface reflectance curve, although large differences can be observed in the 326

bands 4 and 5 for HM, no significant differences are present for the other three classes (TF, LM, and 327

ULM).328

329
Fig. 5 (a) Monthly NDVI Time Series (MNTS) for the four classes: Tidal Flat (TF), Low Marsh (LM), 330

Upper Low Marsh (ULM), and High Marsh (HM); (b) Surface reflectance curve in July 5 2002. Nodes 331

represent the mean values and error bars represent the standard deviation.332

333

Based on 1000 random validated points with the real salt marsh classes interpreted on the NAIP of 334

2004, a confusion matrix was introduced to further quantify the classification results. The overall 335

accuracy of classification maps using a mono-phased image in the period 2001-2002 is on average 0.735;336

the overall accuracy rises to a maximum of 0.776 in September and falls to a minimum of 0.679 in337

January (Fig. 6a). The user’s and producer’s accuracies for each class fluctuate tremendously and always 338

display low values—the user’s accuracy for TF from December to February ranges from 0.110 to 0.202339

and the producer’s accuracy for ULM in January is lower than 0.557 (Fig. 6b, c). In contrast, the overall 340



accuracy of the classification map (Fig. 7) using the reference MNTS reaches 0.898, approximately 0.163 341

higher than the average accuracy of mono-phased classification maps. Moreover, the user’s and 342

producer’s accuracies for each class (except for TF) is always above 0.87, higher than the maximum value 343

of any mono-phased image classification. It is noted that the accuracies for TF is still not quite 344

satisfactory even after the significant improvement by the MNTS approach, which seems a contradiction 345

against the observed high separability (Fig. 5a). This is probably associated with the distributed346

discrepancy between training and validated samples and the commission error from unstable inlets and 347

eroding marshes, where the transition from marsh to tidal flat or vice versa is very fast (details in section 348

5.1).349

350
Fig.6 Accuracy assessment for the referenced MNTS and mono-phased images. (a) overall accuracy for 351

MNTS and each mono-phased image; (b) and (c) user’s accuracy and producer’s accuracy of each salt 352

marsh vegetation community using MNTS or mono-phased images in different months.353



354
Fig. 7 Classification maps of salt marsh vegetation communities in 2002 based on the referenced MNTS. 355

(a) Overview classification map of the entire VCR, (b)-(g) detailed classification maps of six sites within 356

the VCR.357

358

4.2 Relationship between predicted accuracy and average time interval between classifications359

Predicted accuracy varied as a function of the number of months and month subsets used for 360

classification mapping (Fig. 8a). In general, the average predicted accuracy rises with the number of 361



months used in the analysis, while the variability in accuracy among subsets having the same number of 362

months decreases. For subsets using a high number of months in the time-series construction, the 363

increment in accuracy is not very large, indicating that an excessive number of months could be 364

inefficient for the purpose of accuracy improvement. For example, the maximum predicted accuracy 365

(0.898) is reached using images from only 10 months (Fig. 8a, b). February and August are relatively366

important for the identification of salt marsh vegetation communities, since 28 (82.3%) of the 34 subsets367

with highest accuracy include the NDVI of these two months (Fig. 8b).368

369
Fig. 8 (a) Predicted accuracy as a function of the number of months used in the MNTS. Labeled values370

represent the total number of subsets considered using that number of months; (b) subsets having the 371



three highest accuracies for a given number of months used in the analysis (black squares mean that a 372

particular month was selected for that subset, in parenthesis the number of months).373

374

Using a large number of months in the analysis increases the time interval between classification 375

maps, affecting the temporal resolution of the study. To determine the optimal subset, we plot the average376

time interval between two subsequent maps as well as the number of resulting maps as a function of 377

predicted accuracy (Fig. 9). A significant linear descending relationship (R2=0.98) is revealed between the 378

predicted accuracy and the number of maps. A total of 26 classification maps can be obtained for a 379

predicted accuracy of 0.78. In turn, the number of maps sharply decreases to 4 for a predicted accuracy of 380

0.89. The average time interval between maps increases from 1 year for an accuracy of 0.78 to 7 years for 381

an accuracy of 0.89 with a hyperbolic relationship (R2=0.96). In general, the higher is the chosen accuracy,382

the lower the number of maps and the longer the average time interval between maps are, reducing the 383

effectiveness of the analysis. Based on these results, we choose 8 classification maps separated on 384

average by 3.5 years with a predicted accuracy of 0.86 (Table 2, Fig. S2-S9).385

To further validate our method, the classification map of 1988 was compared with the map of386

McCaffrey and Dueser (1976), yielding an accuracy of 0.778. Four classification maps acquired after 387

2000 were also verified with random validated points labeled with the real salt marsh classes interpreted 388

on NIAP images. It is worth noting that the average overall accuracy for the classification maps was 389

0.844, lower than the predicted value (Table 2). This discrepancy between predicted and validated 390

accuracy is probably due to changes in image quality for time-series construction (details in section 5.2).391

392



Fig. 9 Relationship between predicted accuracy, number of obtained classification maps, and average time393

interval between maps based on all viable Landsat images from 1984 to 2011 (the grey bars are the 394

numbers of maps and the blue bars is the average timespan) .395

396

Table 2 Detailed information on 8 classification maps obtained in the period 1984-2011 with the flexible 397

MNTS approach.398

Classification
Map

Period/
Time interval

(yr)

Information
for flexible MNTS

Reference 
Map

Validated 
Accuracy

1988 1984-1988 / 5
19850228_LANDSAT5_TM      19870306_LANDSAT5_TM
19870509_LANDSAT5_TM      19880714_LANDSAT5_TM
19840921_LANDSAT5_TM      19871016_LANDSAT5_TM
19871117_LANDSAT5_TM

McCaffrey 
and Dueser 

(1976)
0.778

1992 1989-1992 / 4
19920115_LANDSAT5_TM      19890327_LANDSAT5_TM
19890412_LANDSAT5_TM      19890615_LANDSAT5_TM
19890725_LANDSAT4_TM      19891021_LANDSAT5_TM
19891106_LANDSAT5_TM

— —

1996 1993-1996 / 4
19960211_LANDSAT5_TM      19950312_LANDSAT5_TM
19930712_LANDSAT5_TM      19950904_LANDSAT5_TM
19951022_LANDSAT5_TM      19961109_LANDSAT5_TM
19931219_LANDSAT5_TM

— —

1999 1997-1999 / 3
19980421_LANDSAT5_TM      19990705_LANDSAT7_ETM+
19990806_LANDSAT7_ETM+ 19990923_LANDSAT7_ETM+
19981030_LANDSAT5_TM      19991118_LANDSAT5_TM
19981201_LANDSAT5_TM

— —

2002 2000-2002 / 3

20020126_LANDSAT5_TM      20020219_LANDSAT7_ETM+
20020323_LANDSAT7_ETM+ 20000504_LANDSAT7_ETM+
20020611_LANDSAT7_ETM+ 20010803_LANDSAT5_TM
20010912_LANDSAT7_ETM+ 20011022_LANDSAT5_TM
20021118_LANDSAT7_ETM+

NAIP 2004 0.869

2005 2003-2005 / 3
20050219_LANDSAT5_TM     20030310_LANDSAT7_ETM+
20040405_LANDSAT5_TM     20050611_LANDSAT5_TM
20040811_LANDSAT5_TM     20051001_LANDSAT5_TM
20031129_LANDSAT5_TM

NAIP 2005 0.838

2007 2006-2007 / 2
20060206_LANDSAT5_TM     20060411_LANDSAT5_TM
20070516_LANDSAT5_TM     20060801_LANDSAT5_TM
20060918_LANDSAT5_TM     20061004_LANDSAT5_TM

NAIP 2008 0.848

2011 2008-2011 / 4
20080228_LANDSAT5_TM     20090318_LANDSAT5_TM
20090521_LANDSAT5_TM     20080603_LANDSAT5_TM
20110730_LANDSAT5_TM     20101015_LANDSAT5_TM
20081110_LANDSAT5_TM

NAIP 2011 0.821

399

4.3 Elevation of salt marsh vegetation communities400

The LiDAR DEM of 2010 and classification map of 2011 were overlapped to extract the elevation401

for each class at a pixel level. The elevation distributions for each class are shown in Fig. 10a. The Tidal 402



Flat class displays a large distribution of elevations because unvegetated overwash fans  having high 403

elevation are included in this class. Differences in elevation among classes was demonstrated by one-way 404

ANOVA (ANalysis Of VAriance) with unequal sample sizes (Table 3). The Mean Square of elevation 405

between classes (MSb, 2570.34) is much larger than the Mean Square of elevation within classes (MSw,406

0.17). As a ratio between MSb and MSw, the F statistic equals to 15458.14, which is extremely high and407

renders the p-value almost near to 0 (<0.05). That indicates the average elevation of the four classes is not 408

the same at the confident level over 95%.409

410
Fig. 10 (a) LiDAR-derived elevation distributions for the four classes: Tidal Flat (TF), Low Marsh (LM), 411

Upper Low Marsh (ULM), and High Marsh (HM); (b) Multi-compare of means and intervals of the 412

elevation distributions for 4 classes based on Tukey HSD post-hoc analysis.413

414

Table 3 One-way ANOVA result for the elevations from the 4 classes with unequal sample sizes (TF: 415

11752, LM: 88399, ULM:  43361, HM:  6712).416

Source SS df MS F Prob>F
Between Classes 7711 3 2570.34 15458.14 0
Within Classes 24978.2 150220 0.17

Total 32689.2 150223
417

To determine whether the average elevations of the vegetation classes were different, the Tukey 418

HSD (Honestly Significant Difference) for post-hoc analysis was further performed (Fig. 10b, Table 4). 419

From all 6 pairwise comparisons, both lower and upper confidence intervals are uniformly negative even 420

for neighboring classes (i.e., TF-LM, LM-ULM, and ULM-HM). Therefore the average elevation of any 421

class is significantly different from the others. Quantitatively, with the confidence level over 95%, the 422



elevation of TF is 0.525 to 0.546 m lower than the elevation of LM, the elevation of LM is 0.268 to 0.281 423

m lower than the elevation of ULM, and the elevation of ULM is 0.200 to 0.227 m lower than the 424

elevation of HM. Salt marsh vegetation communities are therefore segregated by elevation, and might 425

respond to sea level rise and vertical sediment deposition (details in section 5.3).426

427

Table 4 Pairwise comparison results based on Turkey HSD post-hoc analysis.428

Class 1 Class 2 Lower confidence interval Estimate Upper confidence interval p value
TF LM -0.546 -0.537 -0.525 5.96E-08
TF ULM -0.821 -0.810 -0.799 5.96E-08
TF HM -1.040 -1.024 -1.008 5.96E-08
LM ULM -0.281 -0.274 -0.268 5.96E-08
LM HM -0.501 -0.488 -0.475 5.96E-08

ULM HM -0.227 -0.214 -0.200 5.96E-08
429

4.4 Spatial and temporal variations in salt marsh vegetation communities430

The classification map of 2011 indicates that TF, LM, ULM, and HM account for 11.3% (36.4 km2), 431

62.7% (201.4 km2), 20.1% (64.4 km2), and 5.9% (19.0 km2) of the VCR area, respectively. North of 432

Cedar Island ULM and HM are more common whereas LM dominates the bays south of Cedar Island433

(Fig. 7a-c). Unvegetated TF areas comprise washover deposits, small tidal creeks, and eroded marsh area434

(Fig. 7c-g). Note that here we only consider areas within the NOAA C-CAP class of estuarine emergent435

marsh, therefore TF represent areas that used to be vegetated at the time of the NOAA classification and 436

eventually became unvegetated because of different processes.437

By comparing the 8 classification maps (Fig. 11), TF and HM experienced a significant increase in 438

area from 1984 to 2011 (15.1 and 5.0 km2 respectively), accompanied by a large reduction in ULM (15.5 439

km2) and a subtle decrease in LM (4.6 km2) (Fig. 12a). A significant quadratic polynomial relationship440

can be fitted between year and the cumulative percent of area change (Fig. 12b). The diverse curvatures 441

of the fitting curves suggest two different evolution trajectories: one for TF and HM, whose increment in 442

area mainly took place before 2000, the other for ULM, whose area decreased after 2000. Between 1988 443

and 2011, only a small part of the area (17.4%) underwent vegetation conversion, and 93.6% of the 444

change involved neighboring salt marsh vegetation communities (i.e., TF to LM, LM to ULM, and ULM 445

to HM, Fig. 12c). The conversion from LM to TF and from ULM to LM and HM are the most sizable.446

20.1 km2 of LM has been replaced by TF, either through erosion of marsh boundaries in the southern part447

of VCR or through overwash events that buried marsh vegetation in the backbarrier area (Fig. 11b, f). 6.4 448

km2 of ULM became HM, mostly in the marshes between Cedar island and the mainland (Fig. 11a); 13.8 449

km2 of ULM scattered in the whole area was transformed in LM (Fig. 11c, e).450



451



Fig. 11 Classification maps of salt marsh vegetation communities in the VCR from 1984 to 2011. (a)-(f) 452

Classification maps of 1988, 1992, 1996, 1999, 2002, 2005, 2007, and 2011 corresponding to the 6 study 453

sites in Fig.6.454

455

456
Fig. 12 (a) Total area change for each vegetation community determined by 8 classification maps. (b) 457

Percent of area change for each salt marsh vegetation community; (c) conversion area for each pair of salt 458

marsh vegetation communities in the period 1984-2011.459

460

5 Discussion461

5.1 Classification uncertainty from MNTS462

Unlike mono-phased classification maps, the accuracy of which is based on the ability to 463

discriminate spectral characteristics, the classification based on MNTS relies on the temporal stability of 464

each class during the time interval selected for the classification (Feilhauer et al. 2013). On the premise of 465

high separability for each class, the accuracy will be high if the classes are stable, otherwise the accuracy 466



will be low. From this point of view, clouds and cloud shadows, tidal oscillations, and a sudden transition 467

from one vegetation community to another can give rise to uncertainties in the MNTS classification.468

Most misclassifications were observed for random validated points falling in ecotones, and were 469

caused by transition from one community to another (ULM to LM, LM to TF, etc.). A 40% threshold for 470

the clouds filter still allows some clouds and cloud shadows in the images, possibly reducing mapping 471

accuracy (Fig. 13b). This notwithstanding, only in few cases a region was covered by clouds for more 472

than one image of the time series, so that information from consecutive images was able to fill the gap 473

through the boosting algorithm of C5.0 decision tree. As an example, the region of Fig. 13f affected by 474

cloud cover in July 2002 was still discriminated by MNTS in the classification maps. Tidal creeks and 475

adjacent ponding areas present another challenge for time-series classification because they are subject to 476

flooding at high tide. When the tidal level is low, these regions are identified as LM, because of the marsh 477

vegetation bordering the creeks (e.g., S. alterniflora) (Fig. 13a); when the tidal level is high, the regions478

are likely classified as TF, since the sparse vegetation is mostly submerged, leading to NDVI values479

closer to open water or mud flat (Fig. 13e). Voted by each tree from the boosting algorithm, the final 480

classification map presents a comprehensive result, which is only partly affected by any individual image 481

of the time series (Fig. 13f). The accuracy of the TF class in these regions was relative low (Fig. 6b, c), 482

particularly when the accuracy assessment was based on the comparison to high resolution imagery. To 483

guarantee precision, the training samples for TF were selected within the relatively stable tidal flats with 484

continuous absence of vegetation. But for the accuracy assessment, several random points fell on the485

unstable tidal creeks and adjacent zones, explaining the low user’s accuracy of TF despite the high 486

separability in the MNTS curve (Fig. 6, Fig. 7).487



488
Fig. 13 MNTS classification uncertainty due to cloud cover and tidal inundation. (a)-(e) NDVI images 489

acquired at different tidal levels; (f) final classification map for salt marsh vegetation communities and 490

distribution of the random validated points.491

492

5.2 Discrepancy between predicted and validated accuracy493

To further explore the difference between predicted and validated accuracy, we generated the 494

classification maps during 2004-2011 at different predicted accuracy levels. Their overall accuracy was495

subsequently validated by random validated points. The average validated accuracy is less than the 496

predicted accuracy (Fig. 14a), and the difference between predicted and validated accuracy is higher when 497

the predicated accuracy is either small (<0.79) or large (>0.86).498

The classification maps produced with a low predicted accuracy include mono-phased NDVI 499

classifications, resulting in a lower validated accuracy. This is because mono-phased NDVI classification 500

is heavily affected by clouds and shadows, since the missing information in the clouds area cannot be 501

replaced by other images. For a high predicted accuracy, more months are integrated in the time series 502



and the time interval between each classification map is long. For example, when the predicted accuracy 503

is over 0.86, only two classification maps can be acquired for the period 2004-2011, each spanning at 504

least 4 years. During such long periods, changes in vegetation communities at the ecotones cannot be 505

ignored, leading to a difference between classification maps and NAIP images. Consequently, the 506

difference between predicted and validated accuracy becomes larger, despite the increase in predicted507

accuracy (Fig. 14a). In contrast, all images from the reference MNTS were acquired in only two years 508

(2001-2002), reducing the error due to vegetation change. This effect is also the cause of the low accuracy 509

(0.778) obtained by comparing the classification map of 1988 and that of McCaffrey and Dueser (1976),510

taken 13 years apart (Table 2). For a predicted accuracy between 0.79 and 0.86, the difference between 511

the predicted and validated accuracies is quite small, and it is possibly due to the quality of the images:512

the images from the flexible MNTS of 2002 have fewer clouds and lower tidal levels (Fig. 14b, c). The 513

correlation between predicted and validated accuracy can be well depicted (R2=0.96) by a linear function,514

which differs of a merely 0.0194 from the standard 1:1 line (Fig. 14a). We can thus trade off high515

accuracy for a short time interval between classification maps, as long as we avoid either small predicted 516

accuracies affected by image quality or large predicted accuracies affected by changes in vegetation 517

surfaces.518

The advantages of the flexible MNTS increase when two or more remote sensors are used (e.g. TM 519

and ETM+, Fig. 3a). With more satellites entering in operation with spectral distribution and spatial 520

resolution similar to Landsat (e.g., Landsat8 OLI, Sentinel2 MSI, HJ-1 CCD), we can forecast that the 521

increased availability of images for the construction of time-series will reduce the difference between 522

predicted and validated accuracy, paving the way for a more robust application of our method.523



524
Fig. 14 Difference between predicted and validated accuracy and related causes. (a) Relationship between 525

predicted accuracy and validated accuracy (nodes represent the mean values and error bars represent the 526

standard deviation for the validated accuracy, number of classification maps is indicated; (b) and (c) 527

distributions of percent of blurred area and tidal levels for the images used in each classification map (the 528

number of images used in the flexible MNTS construction is indicated).529

530

5.3 Application of multi-phased classification mapping to salt marsh vegetation communities531

Traditional long-term monitoring of salt marsh vegetation has mostly relied on field measurements, 532

which usually require considerable sampling effort and time. These field investigations are rather 533

challenging in vast coastal salt marsh systems like the VCR due to limited field accessibility and complex 534

terrain. In our study, an archive of historical remote sensing images organized into flexible MNTS was 535

proven to capture the evolution of salt marsh vegetation communities. Multi-phased classification maps 536



were generated to detect spatial patterns and temporal variations of salt marsh vegetation communities,537

which are often difficult to obtain with in situ observations.538

Commonly, medium spatial resolution remote sensing data like 30-m Landsat TM/ETM+ are too 539

coarse to discriminate different salt marsh species. Only in few cases a time-series strategy similar to the 540

one proposed here was able to classify marsh vegetation down to the species level (Gilmore et al. 2008;541

Sun et al. 2016). This fine classification was impossible in our study because of the spatial distribution of542

salt marsh species among various study sites. In the VCR, except for LM, which has an almost uniform 543

cover of S. alterniflora, the communities of ULM and HM have mixed vegetation with patches of 544

different species. Interspersed vegetation severely affects the ability to discriminate species using medium 545

spatial resolution imagery.546

Even without a classification down at the species level, classification maps of salt marsh vegetation 547

communities provide insight on the response of vegetation to sea level rise, because relative elevation is 548

well represented by salt marsh vegetation (section 4.3). For example, ULM is likely to morph into LM 549

when sea level rise outpaces vertical accretion. Similarly, an eroding LM is transformed in TF. From this 550

point of view, the change map of salt marsh vegetation communities (Fig. 15) not only describes 551

vegetation succession, but also the morphological evolution of the system. Conversion of ULM to HM in 552

the Northern part of VCR (Fig. 15b-d) can either represent a surplus of sediment accretion against sea 553

level rise or the encroachment of invasive species with high NDVI values. Accretion and a reduction in 554

relative sea level allow vegetation typical of high and brackish marsh (e.g., S. patens, J. roemerianus) to 555

encroach the LM, changing NDVI values. However, transition due to accretion seems unlikely in a period 556

of accelerated sea level rise. Another explanation is the encroachment of invasive species occurring 557

without an increase in bottom elevation. Encroachment of Phragmites australis in the ecotone between 558

the upper limit of the salt marsh and the upland forest is well documented in this area (Bachmann et al. 559

2001; Chambers et al. 1999). Compared to native species, P. australis stabilizes surface sediments, traps 560

suspended sediments, has a large tolerance to varying salinity and moisture regimes, and a higher ability 561

to accumulate organic matter. Large storms, wrack deposits, and winter ice can disturb the native marsh 562

vegetation favoring the expansion of P. australis. A distribution map of P. australis at the VCR indicated 563

that the encroachment of this invasive species partly explains the expansion of HM at the expenses of 564

ULM (Fig. S10, S11). The timing of ULM expansion is also peculiar, with high rates between 1987 and 565

2000 and reduced rates between 2000 and 2012 (Fig. 12b), corroborating the hypothesis that sea-level rise, 566

and more generally, global warming, might not be the cause of this conversion. 567

Overall, vegetation communities typical of high elevations are replaced with vegetation communities 568

thriving at low elevation, possibly indicating that sediment accretion is not enough to compensate sea569

level rise, and that on average the VCR salt marshes are becoming lower. 13.8 km2 of ULM scattered 570



across the entire VCR were converted to LM, with a conversion rate increasing in the last 20 years (Fig. 571

11b, c). Marshes bordering open water (Fig. 14d-g), are also susceptible to storm waves, which trigger 572

lateral erosion (Fagherazzi et al. 2010; Fagherazzi and Wiberg 2009). This erosion resulted in 15.1 km2 of 573

net conversions of LM to TF. Interestingly, the LM area that was lost and became TF is of the same order 574

of the ULM area that became LM due to sea level rise (Fig. 12a). As a result, the total LM area has not 575

changed much in the last 30 years (Fig. 12b). On the contrary, the extension of ULM dramatically 576

decreased due to conversion to LM (likely due to an increase in sea level) and the expansion of HM 577

(possibly due to invasive species). During 1984-2011, the total area that experienced a transformation578

toward habitats typical of lower elevations (37.7 km2) is twice as much the area than experienced a 579

conversion toward habitats with higher elevations (18.3 km2), implying a general transgressive trend for 580

the entire VCR system.581



582
Fig. 15 Conversion map for each pair of salt marsh vegetation communities for the period 1984-2011. (a) 583

Entire VCR system, (b)-(g) detailed conversion maps for six sites.584

585

6 Conclusions586

Long-term spatial information on vegetation communities is required to understand the evolution of587

salt marshes and how they are affected by environmental and anthropogenic drivers. Multispectral,588

medium-resolution imagery can capture vegetation evolution when an inter-annual time-series strategy is 589



adopted, despite the limited spectral and spatial resolutions. Here we present a flexible monthly NDVI 590

time-series (MNTS) approach based on all viable Landsat data from 1984 to 2011. The method generates591

multiple classification maps that allows tracking the evolution of vegetation communities in time. The 592

general relationship between overall accuracy and average time interval between classification maps is 593

presented. To our knowledge, this is the first attempt to apply the method to a series of sparse historical594

images for long-term monitoring purposes. The main conclusions can be summarized as follows: (1) 595

MNTS using Landast images are capable to accurately discriminate salt marsh vegetation communities,596

despite noise form clouds cover and tides. This is evidenced by the high overall accuracy of 0.898, 0.163 597

higher than the accuracy of a mono-phased image. (2) A significant hyperbolic relationship (R2=0.96) 598

exists between accuracy and average length of the time-series used for classification. This relationship 599

allows generating long-term classification maps balancing accuracy versus number of classification maps.600

(3) The temporal evolution of salt marsh vegetation communities in the Virginia Coast Reserve is601

discerned from 8 classification maps spanning the period 1984-2011. The area of Upper Low Marsh has 602

diminished of 19.4% (15.5 km2) with a recent accelerated trend (R2=0.92). This area was converted either 603

in High Marsh or Low Marsh. On average, communities lower in the tidal frame have become more 604

common (+37.7 km2), with few areas transitioning to communities typical of higher elevations (+18.3 605

km2).606

607
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