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time-series using Landsat imagery
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Abstract

Salt marshes are deemed as one of the most dynamic and valuable ecosystems on Earth. Recently, salt
marsh deterioration and loss have become widespread because of anthropogenic stressors and sea level
rise. Long-term acquisition of spatial information on salt marsh vegetation communities is thus critical to
detect the general evolutionary trend of marsh ecosystems before irreversible change occurs. Medium
resolution imagery organized in inter-annual time series is more suitable than hyperspectral, high
resolution imagery for large-scale mapping of salt marsh vegetation. For long-term monitoring purposes,
the challenge is to develop time series based on data with uneven temporal distribution. This paper
proposes a flexible Monthly NDVI Time-Series (MNTS) approach to achieve multi-phased classification
maps of salt marsh vegetation communities in the Virginia Coast Reserve, USA, by utilizing all viable
Landsat TM/ETM+ images during the period 1984-2011. Salt marsh vegetation communities are
identified on a reference MNTS spanning 12 months with an overall accuracy of 0.898; 0.163 higher than
classifications using mono-phased images. Utilizing a flexible selection process based on the reference
MNTS, a significant inverse hyperbolic relationship emerges between overall accuracy and average
length of the time series. Based on these results, eight classification maps with average accuracy of 0.844
and time interval of 2-5 years are acquired. A spatio-temporal analysis of the maps indicates that the
upper low marsh vegetation community has diminished by 19.4% in the study period, with a recent
acceleration of losses. The conversion of marsh area to vegetation communities typical of low elevations
(37.7 km?) is more than twice the conversion to communities typical of high elevations (18.3 km?),

suggesting that salt marsh ecosystems at the Virginia Coast Reserve are affected by sea level rise.

Keywords Salt marsh vegetation community, classification mapping, long-term monitoring, remote

sensing time-series, C5.0 decision tree, Landsat imagery

1 Introduction

Salt marshes are highly productive ecosystems, providing an array of ecosystem services (Costanza

et al. 1997; Gedan et al. 2009; Zedler and Kercher 2005). At a local scale, salt marshes play an important

role in food supply, nutrient cycling, contaminant filter, sediment storage, and flood control. At a broader
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scale, salt marshes help regulate regional climate and provide critical habitat for continental and

intercontinental migratory species (Zedler and Kercher 2005). Despite these important benefits, a

significant fraction of salt marshes has been lost due to land development, filling and dredging, or

damaged by anthropogenic modifications (Gedan et al. 2009). Sea level rise has also a significant impact

on the condition and health of coastal salt marshes, especially for those with a limited sediment supply

(Morris et al. 2002).

Salt marsh halophytic vegetation is composed of communities adapted to survive different

submersion periods. As a result, the distribution of plant communities is usually a function of salt marsh

elevation relative to sea level (Silvestri et al. 2005; Isacch et al. 2006; Lenssen et al. 1999). In fact, the
interactions between flooding regime, local topography, and ecophysiological performance may result in

a diversification of vegetation species along inundation gradients (Silvestri et al., 2005; Boutin and Keddy

1993; Isacch et al. 2006). This diversification, at the landscape level, is often represented as belt-shaped

vegetation type communities around channels and ponds, where the land is higher. Thus, as sea level rises,
these communities might transgress landward toward higher areas or disappear altogether if inland marsh
expansion is impossible.

As a countermeasure to increasing natural and anthropogenic pressures, acquisition of long-term
information on spatial distribution of salt marsh vegetation communities is urgently important, and will
help to develop effective strategies for salt marsh management, protection, and restoration (Belluco et al.

2006; Harvey and Hill 2001; Silvestri et al. 2005). Compared to expensive field measurements in areas

with low accessibility, remote sensing has outstanding advantages in its synoptic coverage and
repeatability. In terms of classification of salt marsh communities or species by a remotely sensed
approach, most studies focused on the usage of high spatial or high spectral (hyperspectral) imagery by
either reducing spectral mixing effects in smaller pixels or increasing discriminative capability in a high-

dimensional attributes space (Bachmann et al. 2002; Gilmore et al. 2008; Laba et al. 2008; Timm and

McGarigal 2012; Whiteside and Bartolo 2015). The high discrimination capabilities demonstrated

through the usage of high resolution spatial and hyperspectral data is in turn balanced by their relatively
high cost and low availability, which relegate salt marsh monitoring to small regions and few temporal
snapshots. Multispectral imagery at medium spatial resolution is an alternative option for salt marsh
monitoring applications. These sensors can cover a wide geographic area, have a high temporal depth of
the archive, and are freely available. However, high similarity in the spectral signatures of various
vegetation species leads to low accuracies for vegetation classification based on a mono-phase image,

even at the community level (Harvey and Hill 2001; Klemas 2013). One example is NOAA Coastal

Change Analysis Program (C-CAP), which employs individual Landsat images as primary data and
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produced classification map for coastal land cover spanning 25 vegetation categories. However, C-CAP
regards the whole coastal salt marsh area as a unique class named Estuarine Emergent Wetland (Fig. 1a).
Recently, significant spectral Vegetation Indices (VIs) have been derived from field spectral

observations at different monthly resolutions (Feilhauer et al. 2013; Fernandes et al. 2013; Gao and Zhang

2006). This raises the possibility of accurate discrimination of salt marsh vegetation communities by
means of VIs time-series constructed form multispectral, medium-resolution imagery. Good results have
been achieved through time-series spanning 1-3 years with a combination of different VIs (e.g., NDVI,
NDAVI, WVI, WAVI) and time scales (e.g., seasonal, monthly in the growing season, monthly in the
whole year) (Davranche et al. 2010; Gilmore et al. 2008; Sun et al. 2016; Villa et al. 2015; Wang et al.

2012). Among VIs, the Normalized Difference Vegetation Index (NDVI) is accepted as a stable general
indicator of community type, plant biomass, vegetation phenology, and photosynthetic performance of

salt marsh vegetation (Kerr and Ostrovsky 2003; Sun et al. 2016). Neither as spectrally powerful as

hyperspectral nor as spatially detailed as high-spatial imagery, a multispectral medium-resolution
vegetation mapping with NDVI time-series can go beyond the local scale and short time intervals

providing long-term earth observations (la Cecilia et al. 2016; Sun et al. 2017). However, the reduced

number of useful images should be considered before applications. The difference between total images
and viable images becomes large in coastal zones, where salt marsh vegetation communities grow. Here
the frequent cloud cover and the fluctuating tidal stage lead to a reduced number of viable images with an
uneven and discrete temporal distribution. How to synthesize information from these irregular time series
of images is therefore critical for the long-term monitoring of salt marshes.

In this study, we explore new approaches to monitor salt marsh vegetation communities with Landsat
TM/ETM+ multispectral remote sensing data. Our goal is to determine the evolution of marsh vegetation
at the Virginia Coast Reserve (VCR), USA, through a series of classification maps spanning 30 years.
Salt marsh vegetation communities are classified with the C5.0 decision tree, which is suitable for salt
marsh analysis given its ability to achieve high accuracies with the boosting algorithm. Our specific
objectives are: (1) to construct a reference monthly NDVI time-series (MNTS) for vegetation
classification and compare its performance with a classification based on mono-phase images from each
month; (2) to generate a series of classification maps balancing accuracy with frequency, using a flexible
MNTS approach acting on all viable Landsat TM/ETM+ imagery during 1984-2011; (3) based on the
classification maps of salt marsh vegetation communities, to explore spatio-temporal variations in salt

marsh communities and determine trends in vegetation cover within the salt marshes of VCR.

2 Materials
2.1 Study area
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Our study area is the Virginia Coast Reserve (VCR), a typical barrier-lagoon-marsh system located
on the Atlantic side of the Delmarva Peninsula, USA. These lagoons comprise intertidal and subtidal
basins located between the barrier islands and the Delmarva Peninsula (Fig. 1a). Tides are semidiurnal,
with a mean tidal range of 1.2 m. Mean Higher High Water (MHHW) at Wachapreague channel (NOAA
station 8631044, Fig. 1a) is 0.68 m above mean sea level, whereas Mean Lower Low Water (MLLW) is -
0.65 m. Marsh vegetation is dominated by Spartina alterniflora (S. alterniflora), with a height ranging
between 50 and 100 cm.

75“!)'W
I Developed, High Intensity
| Developed, Medium Intensity
Developed, Low Intensity
Developed, Open Space
Cultivated Crops
[ Pasture/Hay
Grassland/Herbaceous
I Deciduous Forest
[ Evergreen Forest
Mixed Forest
Scrub/Shrub
I Palustrine Forested Wetland
I Palustrine Scrub/Shrub Wetland
[ Palustrine Emergent Wetland
Palustrine Aquatic Bed
I Estuarine Forested Wetland
[ Estuarine Scrub/Shrub Wetland
' Estuarine Emergent Wetland

Atlantic Ocean Unsonsolidated Shore

Bare Land

37°40'N
|

37°20'N

Open Water
0 10 20 40
I I K

75°40'W 75°20'W 75°0'W
| | |

Water Mask

’ Elevation (m)
-36.34

o Validated Point I
)
wl -2.30

@ Observation Point
I saltmarsh Mask



109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Fig. 1 Location and dataset of Virginia Coast Reserve (VCR). (a) NOAA C-CAP land cover map of 2010;
(b) extent of salt marsh area and distribution of available field data; (¢) NAIP aerial image of 2004 and

distribution of 1000 random validation points; (d) LiDAR digital elevation model of 2010 and water mask.

2.2 Definition of salt marsh vegetation communities
To define salt marsh vegetation communities, we start from the mapping units proposed by

McCaffrey and Dueser (1990) for hydric-halophytic herbaceous vegetation at the VCR. This

classification system, derived from the interpretation of 1:20000-scale false color aerial images and field
surveys, delineates mapping units based on species composition, growth form, leaf and stem density, tidal
influence, and distinct vertical elevation. The classification has been widely accepted with slight

modification for salt marshes across the eastern shore of the United States (McCarthy and Halls 2014;

Pengra et al. 2007; Timm and McGarigal 2012). However, narrow ecotones and small vegetation patches

were undetectable at the medium spatial resolution of Landsat images used in our study. We therefore

combined several adjacent mapping units of McCaffrey and Dueser (1990). The final definition of each

salt marsh vegetation community used herein is (Fig. 2):

Low Marsh (LM). Low marshes have 75%-100% cover of S. alterniflora, often interspersed with
Salicornia virginica (S. virginica). Higher elevations in Low Marsh usually have firm organic sediments
and support short, often dense, S. alternilfora. Lower elevations have fine-grained, mucky sediments
which are inundated several hours per day supporting tall S. alterniflora.

Upper Low Marsh (ULM). A halophytic association (50-100% cover), usually flooded to a depth of
<10 cm, occupies the higher elevations of the Low Marsh. It is dominated by S. virginica and short S.
alterniflora, often with a belt of Dislichlis spicata (D. spicata).

High Marsh (HM). High marsh has 100% cover of dense, typically decumbent, D. spicata, Spartina
patens (S. patens) and Juncus roemerianus (J. roemerianus) with numerous salty-to-brackish ponds. This
association fringes the edges of salt flats. Due to the range of salinity, high marsh may gradually merge
with Upper Low Marsh shoreward or dense grassland and scrubs landward.

Tidal Flat (TF) consists of salt flats, mud flats, wash flats, and open water. Salt flats are
intermittently flooded areas of firm sand with a high salt concentration, often covered with a surface layer
of unicellular algae and sulfur bacteria. Mud flats have a muddy surface, and are usually devoided of
vegetation except for occasional Ulva lactuca, S. alterniflora and other halophytes. Wash flats appear as
bayshore beaches, and bury low marshes in overwash areas and in ephemeral inlets. Open water

comprises ephemeral or permanent ponds, tidal creeks, and the bays in general.
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Fig.2 Vertical distribution and dominant species for salt marsh vegetation communities in our

classification system.

2.3 Data set
2.3.1 Remote sensing data

The remote sensing data used in our study include Landsat imagery, NAIP aerial imagery, C-CAP
land cover maps, and a Lidar DEM.

Landsat5 TM data provided nearly continuous coverage of the earth surface from 1984 to 2011 at a
spatial resolution of 30 m. Landsat7 ETM+ SLC-on data (1999-2003), with similar spectral distribution
and same spatial resolution, is an efficient way to enhance the imagery availability. The images from
1984 to 2011 for a Landsat scene centered over the VCR (Path: 014, Row: 034) were acquired from the
United States Geological Survey (USGS) Earth Explorer and were used for the construction of monthly
NDVI time-series (MNTYS).

NOAA Coastal Change Analysis Program (C-CAP) maps cover intertidal areas, wetlands, and
adjacent uplands. These maps include 25 land use and vegetation classes with the spatial resolution of 30
m and update every five years starting in 1992. In total, 5 C-CAP land cover maps were obtained from
NOAA office for coastal management, for the years 1992, 1996, 2001, 2006, and 2010. In the C-CAP
classification system, the whole salt marsh area of the VCR was categorized into a unique class labeled
Estuarine Emergent Wetland. Thus, the maximum extent of this class from each period was used to
delimit the salt marsh region of our study (Fig. 1b).

The National Agriculture Imagery Program (NAIP) acquires aerial imagery at a resolution of 1 m for
the United States during the agricultural growing season. A total of 6 NAIP county mosaic images were
collected from United States Department of Agriculture (USDA) Geospatial Data Gateway for the years
2004, 2005, 2006, 2008, 2009, and 2011 (Fig. 1c). These images were used as the reference data for
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accuracy assessment of classification maps during 2002-2011 by labeling the corresponding salt marsh
vegetation community with 1000 random points (Fig. 1c), generated with the assistance of ArcGIS
software (Foody 2002; Theobald et al. 2007).

A LiDAR DEM of the VCR was downloaded from Virginia Coast Reserve Long Term Ecological
Research (VITA 2011). The LiDAR DEM with a cell resolution of 3.048 m, was created from LiDAR

points (~ 1 m spacing) acquired in March 25-30, 2010. The horizontal and vertical datum are NAD83 and
NAVDSS, and the vertical accuracy was validated at less than 0.15 m. A water mask file was also
attached to control for tidal regime during data collection (Fig. 1d). In our study, a coordinate
transformation and a spatial resampling were first applied to the LiDAR DEM to match the datum
(WGS84 UTM 18N) and spatial resolution (30 m) of the Landsat images. Then, areas without tidal
inundation were used to ascertain the elevation for each salt marsh vegetation community.
2.3.2 Field data and training samples

Data on end-of-year biomass is available for 17 sites marshes at the VCR from 1999 to

2014(Christian and Blum 2014) (Fig. 1b). For each site, 4 transects were established for each marsh

community (defined as creek bank, low marsh, high marsh, and transition). The location was determined
with GPS and additional information, such as biomass, plant height, and population density, was also
recorded. After extracting the annual invariant plots for low marsh and high marsh and projecting them to
image coordinate (WGS84 UTM 18N), training samples of LM and HM were ascertained.

Simultaneously, by comparing the Landsat images with the classification map of McCaffrey and Dueser

(1976) (Fig. S1), we obtained the texture and color characteristics of ULM and TF. These characteristics
were adopted to identify the invariant plots, namely training samples, of ULM and TF by overlaying
several images from different decades and seasons. In total, 1391 pixels of training samples (including
331 for TF, 381 for LM, 365 for ULM, and 314 for HM) were employed from 40 invariant plots to build
a classifier (Fig. 1b).
2.3.3 Water level data

Tidal level data were collected from NOAA Tides and Currents. The verified hourly water level data
from the Wachapreague (no. 8631044) and the Kiptopeke (no. 8632200) tide gauge stations were used to

determine the water level related to each Landsat image (Fig. 1a).

3 Methods

3.1 Assessment of available Landsat imagery
In coastal regions, frequent cloudy weather severely blurs the clarity of satellite images and reduces
the reliability of classification results. Tidal flooding significantly affects vegetation reflectance, resulting

in an underestimation of vegetation indices such as NDVI. Thus, an assessment of viable satellite imagery
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is the first step to guarantee high quality of time-series construction. We correct each image for cloud
cover and tidal inundation using the NASA Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) software, which provides a series of Landsat TM/ETM+ products including surface
reflectance, CFmask band (mask for clouds and cloud shadows), and LandWater band (distinguishing
between land and water).

A two-step cloud cover filter strategy is proposed to avoid the cloud cover effect. First, a total of 379
Landsat images, including Landsat 4/5 TM during 1984-2011 and Landsat 7 ETM+ scan off during 1999-
2003 (Fig. 3a), were preliminarily filtered, eliminating all scenes with a cloud cover above 40%. Then, we
further reduced the dataset to 254 scenes with a blurred percent less than 40%. The blurred percent was
defined as:

A(cloud)+A(cloud shadow)
A(salt marsh)

blurred percent = X 100% (1)

where A(salt marsh) is the area of salt marsh. A(cloud) and A(could shadow) correspond to the area
of clouds and cloud shadows falling on the salt marsh region. The clouds and cloud shadows for each
image were detected by the CFmask band with the label values of 2 and 4.

To reduce the effect of different tidal stages, we determined a tidal height threshold above which the
satellite image is less affected by tidal inundation. To ascertain this threshold, the tidal height for 254
candidate images was first calculated by the verified hourly water level data from the Wachapreague tide
gauge station (no. 8631044), with linear interpolation to the time of image acquisition. This water data
covers the whole study period except for the years 2006 and 2007. To estimate the tidal height during that
period, an equivalent Wachapreague tidal height was approximated by a linear interpolation of the tidal
height from the Kiptopeke tide gauge station (8632200, Fig. 3b). For each tidal level, the subaerial part of
the marsh was separated from the submerged part using the LandWater band with the label value of 0,
determining the percent of land for each image. Results show that the percent of land first gradually
decreases then rapidly drops for an increasing tidal level. Two discrete linear fittings are thus proposed to
determine the critical tidal level threshold above which the marsh is flooded (Fig. 3c). The data were
separated in two groups by a prescribed tidal level, and a linear fit applied to each group obtaining two
coefficients of determination. By varying the tidal level from 0 to 150 cm with a step of 1 cm, the tidal
height threshold was determined as the x-coordinate that maximizes the sum of the coefficient of
determinations of the two linear fits. The final threshold was 92.4 cm above MLLW. A total of 160

images had a water level below the threshold and were selected as viable images for our analysis.
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Fig. 3 Temporal distribution of all available Landsat TM/ETM+ imagery during 1984-2011 filtered by

cloud cover and tidal inundation. (a) Temporal distribution of 379 tiles of Landsat images. Gray crosses

are 125 tiles eliminated due to cloud cover, blue crosses are 94 tiles eliminated due to tidal inundation,

and red squares are the viable 160 tiles used for this study; (b) linear relationship between the tidal level

data from Wachapreague (no. 8632200) and Kiptopeke (no. 8631044) stations; (c) determination of

inundation threshold by two discrete linear fits.

3.2 Construction of the reference MNTS

Determination of the monthly sampling rate must consider the tradeoff between the revisit frequency

of Landsat and the intra-annual phenological dynamics of salt marsh vegetation. During the period 1999-
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2003, more images are available from the two satellites (Landsat5 TM and Landsat 7 ETM+ SLC on) and
allow the construction of a monthly Landsat time-series with a short time interval. 12 tiles of images
acquired in 2001-2002 were selected and their detailed information referred in Table 1. These images
were radiometrically corrected to surface reflectance using the LEDAPS software, which applies MODIS
atmospheric correction to Landsat TM/ETM+ data based on 6S radiative transfer model. The NDVI of

each image was then calculated and combined in an orderly manner to a monthly NDVI times-series.

Table 1 Detailed information of each image for the reference MNTS.

Image Date Satellite Sensor  Blurred percent (%) Land percent (%) Tide height (cm)
2002-01-26 Landsat5 ™ 0.72 94.83 26.28
2002-02-19 Landsat7 ETM+ 4.86 75.57 78.81
2002-03-23 Landsat7 ETM+ 0.21 97.39 0.54
2001-04-29 Landsat5 ™ 4.71 92.04 68.50
2002-05-10 Landsat7 ETM+ 8.94 95.27 43.37
2002-06-11 Landsat7 ETM+ 19.47 88.30 78.58
2002-07-05 Landsat5 ™ 21.42 97.64 17.72
2001-08-27 Landsat7 ETM+ 0.06 95.78 34.83
2001-09-12 Landsat7 ETM+ 3.27 93.97 51.50
2002-10-01 Landsat7 ETM+ 5.97 94.85 35.43
2002-11-18 Landsat7 ETM+ 1.10 87.36 70.19
2001-12-25 Landsat5 ™ 10.02 94.34 46.22

3.3 C5.0 decision tree

The C5.0 algorithm was used to build a classification decision tree in order to map salt marsh
vegetation communities. This algorithm uses the information gain ratio criterion to determine the best
attribute and possible threshold to separate different classes (Quinlan 1999). An advanced ensemble
classifier method, named boosting, is also integrated into the C5.0 decision tree algorithm (Quinlan et al.
1996). The boosting algorithm works by repeatedly running the C5.0 algorithm on various distributions
over the training samples, then combines the classifiers into a single composite classifier. By binding this
boosting algorithm, the C5.0 decision tree algorithm significantly improves the classification, making it
widely applicable in the field of remote sensing (de Colstoun and Walthall 2006; Esch et al. 2014; Sun et
al. 2016).

In our study, all the training samples was used to build the C5.0 decision tree, whose accuracy was
verified by random validated points labeled with the salt marsh vegetation community category. To set
the parameters of the decision tree, NDVI from different months served as attributes and the confidence
level and minimum case were set to 0.25 and 15 (almost 1% of training data), respectively. Ten decision

trees were built by the boosting algorithm.
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3.4 Construction of flexible MNTS
Even though the superior performance of MNTS for salt marsh classification has been proven (Sun

et al. 2016; Wang et al. 2012), it is still hard to directly apply such method to all viable Landsat images

due to their irregular and scattered temporal distribution (Fig. 3a). For example, owing the lack of images
from 1984 to 1992, in this period it would take almost 9 years to obtain a classification map using a
MNTS based on images from 12 months. The accuracy of this map would be low since vegetation likely
changed during such a long time interval. Therefore, we used the NDVI of only few key months rather
than the values of 12 months to circumvent the lack of suitable Landsat imagery in some years. A two-
step procedure including full subset assessment and iterative selection was proposed to construct the
flexible MNTS (Fig. 4a). The whole procedure was automatically implemented in Matlab and R software.
Reference subsets assessment. In order to determine the optimal MNTS, the predicted accuracy (the
overall accuracy of the subset from the reference MNTS) was assessed for each possible subset of months,
from 1 to 12 months, for the period 2001-2002. Such predicted accuracy does not take into account all the
aspects of classification, but it is intuitive and proven to give results similar to more complex indexes for

each subset. For a 12-month time-series dataset, the total number of subsets is calculated by:

Yi2.c(12,i) = C(12,1) + C(12,2) + -+ C(12,12) = 212 — 1 )

12!

where C(12, i) = m,

denotes the number of possible subsets of i months from a set of 12

months. In our study, the referenced MNTS from 2001-2002 was used as the reference dataset. Random
validated points, labeled with the interpreted salt marsh vegetation community based on the NAIP of 2004,
were utilized to calculate the predicted accuracy, and a total of 4095 different subsets of MNTS were
tested. We thus build a look-up table with the accuracy of all subsets of images with different number and
combination of months. The accuracy is only computed for the 2001-2002 period, but it can be used to
estimate the accuracy of any other subset of images taken from that combination of months. Although
time consuming, this exhaustive process enables to compare the classification efficiency among all
subsets, which would not be possible in common variable selection processes.

Iterative selection. After the predicted accuracies were assigned to all subsets, the average time
interval between classification maps as well as the total number of classification maps for the period
1984-2011 can be calculated for a given predicted accuracy with an iterative process (Fig. 4b). We first
create an empty collection to store information for each month. We then add the next available image to
the collection, skipping images for months already present in the collection. In this way we create a series

of subsets with a different number of images from consecutive months. For each subset, we determine the
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predicted accuracy from the reference MNTS for 2001-2002. For example, if the subset contains images
from July, August, and November, we assign to it the accuracy of the 2001-2002 subset with images from
July, August, and November. If the predicted accuracy of the subset is greater than the target one, the
information (e.g., combination of images, time interval) is recorded. This process is repeated until all
possible MNTS are recorded for a given accuracy. Finally, the average time interval between two
classification maps is computed as the ratio between the number of years (28, between 1984 and 2011)
and the final number of maps. A series of multi-phased classification maps of salt marsh vegetation

communities is finally generated based on the information from the flexible MNTS.

W R
. collection, |
\_map number=0 ' |

(a)

&
Landsat / /  Referenced
- —_—
Archive f.-’ / MNTS

| —b—::.‘_'_'__E'_'_-)-(’ist next image? End |||
Cloudy Cover Filter C5.0 Decision Tree | N o
Y |
| Read month |
information of next
' ' | image |
Tidal Inundation Filter :;;L::rﬂiﬁ | |
N _month not existin__

i l | collection? — |
Temporal Distribution Predicted Accuracy | Y |
for Available Lf:ln_dsat for Each S'f‘_bft__ | Add month to |

e _{ T _l collection
! | List all possible |
Iterative Selection L + subsets of collection
for Flexible MNTS La |
l | N _____f,g:c;ura'i:y f I
| —_ subset great than |
; Classification ““spegirﬁgd?

,._.-"'f’hase 1 Maps /L | L 4 |
/Phase 2 . F | Empty collection, Flexible MNTS |

map number + 1 information
/Phase n | L. e J

Fig. 4 Flow chart depicting the method used in our study. (a) General technique procedure; (b) detailed

description of the iterative process to determine all flexible MNTS for a given accuracy.

4 Results
4.1 Comparison between MNTS and mono-phased images

Tidal flats (TF) are characterized by very low NDVI values in all seasons (see the reference MNTS
curve for 2001-2002 in Fig. 5a). In particular, the NDVI values between July and October are
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significantly lower than those of the other salt marsh vegetation communities, indicating that this is the
optimal period for tidal flat identification and separation from salt marsh. The NDVI curves for the three
salt marsh vegetation communities (LM, ULM, HM) have a similar trend — the NDVI peaks during the
late growing season (from July to September), while the minimum is in winter (from February to March).
The NDVI value of the LM is significantly lower in almost every month, facilitating the discrimination of
this community. The NDVI value for HM is significantly higher than the others in summer. HM can
therefore be identified by NDVI values between June to August. In contrast, the separability of each class
using the surface reflectance curve from a mono-phase image during the growing season (July 5, 2002) is
not very good (Fig. 5b). In the surface reflectance curve, although large differences can be observed in the

bands 4 and 5 for HM, no significant differences are present for the other three classes (TF, LM, and

ULM).
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Fig. 5 (a) Monthly NDVI Time Series (MNTS) for the four classes: Tidal Flat (TF), Low Marsh (LM),
Upper Low Marsh (ULM), and High Marsh (HM); (b) Surface reflectance curve in July 5 2002. Nodes

represent the mean values and error bars represent the standard deviation.

Based on 1000 random validated points with the real salt marsh classes interpreted on the NAIP of
2004, a confusion matrix was introduced to further quantify the classification results. The overall
accuracy of classification maps using a mono-phased image in the period 2001-2002 is on average 0.735;
the overall accuracy rises to a maximum of 0.776 in September and falls to a minimum of 0.679 in
January (Fig. 6a). The user’s and producer’s accuracies for each class fluctuate tremendously and always
display low values—the user’s accuracy for TF from December to February ranges from 0.110 to 0.202

and the producer’s accuracy for ULM in January is lower than 0.557 (Fig. 6b, c). In contrast, the overall
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accuracy of the classification map (Fig. 7) using the reference MNTS reaches 0.898, approximately 0.163
higher than the average accuracy of mono-phased classification maps. Moreover, the user’s and
producer’s accuracies for each class (except for TF) is always above 0.87, higher than the maximum value
of any mono-phased image classification. It is noted that the accuracies for TF is still not quite
satisfactory even after the significant improvement by the MNTS approach, which seems a contradiction
against the observed high separability (Fig. 5a). This is probably associated with the distributed
discrepancy between training and validated samples and the commission error from unstable inlets and
eroding marshes, where the transition from marsh to tidal flat or vice versa is very fast (details in section

5.1).
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Fig.6 Accuracy assessment for the referenced MNTS and mono-phased images. (a) overall accuracy for
MNTS and each mono-phased image; (b) and (c¢) user’s accuracy and producer’s accuracy of each salt

marsh vegetation community using MNTS or mono-phased images in different months.
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Fig. 7 Classification maps of salt marsh vegetation communities in 2002 based on the referenced MNTS.
(a) Overview classification map of the entire VCR, (b)-(g) detailed classification maps of six sites within

the VCR.

4.2 Relationship between predicted accuracy and average time interval between classifications
Predicted accuracy varied as a function of the number of months and month subsets used for

classification mapping (Fig. 8a). In general, the average predicted accuracy rises with the number of
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months used in the analysis, while the variability in accuracy among subsets having the same number of
months decreases. For subsets using a high number of months in the time-series construction, the
increment in accuracy is not very large, indicating that an excessive number of months could be
inefficient for the purpose of accuracy improvement. For example, the maximum predicted accuracy
(0.898) is reached using images from only 10 months (Fig. 8a, b). February and August are relatively
important for the identification of salt marsh vegetation communities, since 28 (82.3%) of the 34 subsets

with highest accuracy include the NDVI of these two months (Fig. 8b).
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Fig. 8 (a) Predicted accuracy as a function of the number of months used in the MNTS. Labeled values

represent the total number of subsets considered using that number of months; (b) subsets having the
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three highest accuracies for a given number of months used in the analysis (black squares mean that a

particular month was selected for that subset, in parenthesis the number of months).

Using a large number of months in the analysis increases the time interval between classification
maps, affecting the temporal resolution of the study. To determine the optimal subset, we plot the average
time interval between two subsequent maps as well as the number of resulting maps as a function of
predicted accuracy (Fig. 9). A significant linear descending relationship (R*=0.98) is revealed between the
predicted accuracy and the number of maps. A total of 26 classification maps can be obtained for a
predicted accuracy of 0.78. In turn, the number of maps sharply decreases to 4 for a predicted accuracy of
0.89. The average time interval between maps increases from 1 year for an accuracy of 0.78 to 7 years for
an accuracy of 0.89 with a hyperbolic relationship (R*=0.96). In general, the higher is the chosen accuracy,
the lower the number of maps and the longer the average time interval between maps are, reducing the
effectiveness of the analysis. Based on these results, we choose 8 classification maps separated on
average by 3.5 years with a predicted accuracy of 0.86 (Table 2, Fig. S2-S9).

To further validate our method, the classification map of 1988 was compared with the map of

McCaffrey and Dueser (1976), yielding an accuracy of 0.778. Four classification maps acquired after

2000 were also verified with random validated points labeled with the real salt marsh classes interpreted
on NIAP images. It is worth noting that the average overall accuracy for the classification maps was
0.844, lower than the predicted value (Table 2). This discrepancy between predicted and validated

accuracy is probably due to changes in image quality for time-series construction (details in section 5.2).
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Fig. 9 Relationship between predicted accuracy, number of obtained classification maps, and average time

interval between maps based on all viable Landsat images from 1984 to 2011 (the grey bars are the

numbers of maps and the blue bars is the average timespan) .

Table 2 Detailed information on 8 classification maps obtained in the period 1984-2011 with the flexible

MNTS approach.
. . Period/ . .
Classification Time interval Information Reference Validated

Map (yr) for flexible MNTS Map Accuracy
19850228 LANDSAT5 TM 19870306 LANDSAT5 TM McCaffrey

1988 1984-1988 / 5 19870509 LANDSATS TM 19880714 LANDSAT5 TM and Dueser 0.778
19840921 LANDSATS TM 19871016 LANDSAT5 TM S ol :
19871117_LANDSAT5_TM 1976
19920115 LANDSAT5 TM 19890327 LANDSAT5 TM
19890412 LANDSATS TM 19890615 LANDSAT5 TM

1992 1989-1992 /4 19890725 LANDSAT4 TM 19891021 LANDSAT5 TM - -
19891106 LANDSAT5 TM
19960211 LANDSAT5 TM 19950312 LANDSAT5 TM
19930712 LANDSATS TM 19950904 LANDSAT5 TM

1996 1993-1996/ 4 19951022 LANDSAT5 TM 19961109 LANDSAT5 TM - -
19931219 LANDSAT5 TM
19980421 LANDSAT5 TM 19990705 LANDSAT7 ETM+
19990806 _LANDSAT7 ETM+ 19990923 LANDSAT7_ETM+

1999 1997-1999/3 19981030 LANDSAT5 TM 19991118 LANDSAT5 TM - -
19981201 LANDSAT5 TM
20020126 LANDSAT5 TM 20020219 LANDSAT7 ETM+
20020323 LANDSAT7 ETM+ 20000504 LANDSAT7 ETM+

2002 2000-2002 /3 20020611 LANDSAT7 ETM+ 20010803 LANDSATS5 TM NAIP 2004 0.869
20010912 LANDSAT7_ETM+20011022_LANDSAT5 TM
20021118 LANDSAT7 ETM+
20050219 LANDSAT5 TM 20030310 LANDSAT7 ETM+
20040405 LANDSAT5 TM 20050611 _LANDSAT5 TM

2005 2003-2005 /3 20040811 _LANDSAT5 TM 20051001 _LANDSAT5 TM NAIP 2005 0.838
20031129 LANDSAT5 TM
20060206 LANDSAT5S TM 20060411 _LANDSAT5 TM

2007 2006-2007 /2 20070516_LANDSAT5_TM 20060801 _LANDSATS_TM NAIP 2008 0.848
20060918 LANDSATS TM 20061004 LANDSAT5 TM
20080228 LANDSATS TM 20090318 LANDSAT5 TM

2011 2008-2011 /4 20090521 _LANDSATS TM  20080603_LANDSATS_TM NAIP 2011 0821

20110730_LANDSATS_TM
20081110_LANDSATS_TM

20101015_LANDSATS TM

4.3 Elevation of salt marsh vegetation communities

The LiDAR DEM of 2010 and classification map of 2011 were overlapped to extract the elevation

for each class at a pixel level. The elevation distributions for each class are shown in Fig. 10a. The Tidal
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Flat class displays a large distribution of elevations because unvegetated overwash fans having high
elevation are included in this class. Differences in elevation among classes was demonstrated by one-way
ANOVA (ANalysis Of VAriance) with unequal sample sizes (Table 3). The Mean Square of elevation
between classes (MS,, 2570.34) is much larger than the Mean Square of elevation within classes (MS,,
0.17). As a ratio between MS, and MS,, the F statistic equals to 15458.14, which is extremely high and
renders the p-value almost near to 0 (<0.05). That indicates the average elevation of the four classes is not

the same at the confident level over 95%.
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Fig. 10 (a) LiDAR-derived elevation distributions for the four classes: Tidal Flat (TF), Low Marsh (LM),
Upper Low Marsh (ULM), and High Marsh (HM); (b) Multi-compare of means and intervals of the

elevation distributions for 4 classes based on Tukey HSD post-hoc analysis.

Table 3 One-way ANOVA result for the elevations from the 4 classes with unequal sample sizes (TF:
11752, LM: 88399, ULM: 43361, HM: 6712).

Source SS df MS F Prob>F
Between Classes 7711 3 2570.34 15458.14 0
Within Classes 24978.2 150220 0.17
Total 32689.2 150223

To determine whether the average elevations of the vegetation classes were different, the Tukey
HSD (Honestly Significant Difference) for post-hoc analysis was further performed (Fig. 10b, Table 4).
From all 6 pairwise comparisons, both lower and upper confidence intervals are uniformly negative even
for neighboring classes (i.e., TF-LM, LM-ULM, and ULM-HM). Therefore the average elevation of any

class is significantly different from the others. Quantitatively, with the confidence level over 95%, the
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elevation of TF is 0.525 to 0.546 m lower than the elevation of LM, the elevation of LM is 0.268 to 0.281
m lower than the elevation of ULM, and the elevation of ULM is 0.200 to 0.227 m lower than the
elevation of HM. Salt marsh vegetation communities are therefore segregated by elevation, and might

respond to sea level rise and vertical sediment deposition (details in section 5.3).

Table 4 Pairwise comparison results based on Turkey HSD post-hoc analysis.

Class 1 Class 2 Lower confidence interval  Estimate  Upper confidence interval p value
TF LM -0.546 -0.537 -0.525 5.96E-08
TF ULM -0.821 -0.810 -0.799 5.96E-08
TF HM -1.040 -1.024 -1.008 5.96E-08
LM ULM -0.281 -0.274 -0.268 5.96E-08
LM HM -0.501 -0.488 -0.475 5.96E-08

ULM HM -0.227 -0.214 -0.200 5.96E-08

4.4 Spatial and temporal variations in salt marsh vegetation communities

The classification map of 2011 indicates that TF, LM, ULM, and HM account for 11.3% (36.4 kmz),
62.7% (201.4 km?), 20.1% (64.4 km?), and 5.9% (19.0 km?) of the VCR area, respectively. North of
Cedar Island ULM and HM are more common whereas LM dominates the bays south of Cedar Island
(Fig. 7a-c). Unvegetated TF areas comprise washover deposits, small tidal creeks, and eroded marsh area
(Fig. 7c-g). Note that here we only consider areas within the NOAA C-CAP class of estuarine emergent
marsh, therefore TF represent areas that used to be vegetated at the time of the NOAA classification and
eventually became unvegetated because of different processes.

By comparing the 8 classification maps (Fig. 11), TF and HM experienced a significant increase in
area from 1984 to 2011 (15.1 and 5.0 km” respectively), accompanied by a large reduction in ULM (15.5
km?) and a subtle decrease in LM (4.6 km®) (Fig. 12a). A significant quadratic polynomial relationship
can be fitted between year and the cumulative percent of area change (Fig. 12b). The diverse curvatures
of the fitting curves suggest two different evolution trajectories: one for TF and HM, whose increment in
area mainly took place before 2000, the other for ULM, whose area decreased after 2000. Between 1988
and 2011, only a small part of the area (17.4%) underwent vegetation conversion, and 93.6% of the
change involved neighboring salt marsh vegetation communities (i.e., TF to LM, LM to ULM, and ULM
to HM, Fig. 12c¢). The conversion from LM to TF and from ULM to LM and HM are the most sizable.
20.1 km® of LM has been replaced by TF, either through erosion of marsh boundaries in the southern part
of VCR or through overwash events that buried marsh vegetation in the backbarrier area (Fig. 11b, f). 6.4
km® of ULM became HM, mostly in the marshes between Cedar island and the mainland (Fig. 11a); 13.8
km® of ULM scattered in the whole area was transformed in LM (F ig. l1c, e).
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Fig. 11 Classification maps of salt marsh vegetation communities in the VCR from 1984 to 2011. (a)-(f)
Classification maps of 1988, 1992, 1996, 1999, 2002, 2005, 2007, and 2011 corresponding to the 6 study
sites in Fig.6.
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Fig. 12 (a) Total area change for each vegetation community determined by 8 classification maps. (b)
Percent of area change for each salt marsh vegetation community; (c) conversion area for each pair of salt

marsh vegetation communities in the period 1984-2011.

S Discussion
5.1 Classification uncertainty from MNTS

Unlike mono-phased classification maps, the accuracy of which is based on the ability to
discriminate spectral characteristics, the classification based on MNTS relies on the temporal stability of

each class during the time interval selected for the classification (Feilhauer et al. 2013). On the premise of

high separability for each class, the accuracy will be high if the classes are stable, otherwise the accuracy
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will be low. From this point of view, clouds and cloud shadows, tidal oscillations, and a sudden transition
from one vegetation community to another can give rise to uncertainties in the MNTS classification.

Most misclassifications were observed for random validated points falling in ecotones, and were
caused by transition from one community to another (ULM to LM, LM to TF, etc.). A 40% threshold for
the clouds filter still allows some clouds and cloud shadows in the images, possibly reducing mapping
accuracy (Fig. 13b). This notwithstanding, only in few cases a region was covered by clouds for more
than one image of the time series, so that information from consecutive images was able to fill the gap
through the boosting algorithm of C5.0 decision tree. As an example, the region of Fig. 13f affected by
cloud cover in July 2002 was still discriminated by MNTS in the classification maps. Tidal creeks and
adjacent ponding areas present another challenge for time-series classification because they are subject to
flooding at high tide. When the tidal level is low, these regions are identified as LM, because of the marsh
vegetation bordering the creeks (e.g., S. alterniflora) (Fig. 13a); when the tidal level is high, the regions
are likely classified as TF, since the sparse vegetation is mostly submerged, leading to NDVI values
closer to open water or mud flat (Fig. 13e). Voted by each tree from the boosting algorithm, the final
classification map presents a comprehensive result, which is only partly affected by any individual image
of the time series (Fig. 13f). The accuracy of the TF class in these regions was relative low (Fig. 6b, c),
particularly when the accuracy assessment was based on the comparison to high resolution imagery. To
guarantee precision, the training samples for TF were selected within the relatively stable tidal flats with
continuous absence of vegetation. But for the accuracy assessment, several random points fell on the
unstable tidal creeks and adjacent zones, explaining the low user’s accuracy of TF despite the high

separability in the MNTS curve (Fig. 6, Fig. 7).
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Fig. 13 MNTS classification uncertainty due to cloud cover and tidal inundation. (a)-(¢) NDVI images

acquired at different tidal levels; (f) final classification map for salt marsh vegetation communities and

distribution of the random validated points.

5.2 Discrepancy between predicted and validated accuracy

To further explore the difference between predicted and validated accuracy, we generated the
classification maps during 2004-2011 at different predicted accuracy levels. Their overall accuracy was
subsequently validated by random validated points. The average validated accuracy is less than the
predicted accuracy (Fig. 14a), and the difference between predicted and validated accuracy is higher when
the predicated accuracy is either small (<0.79) or large (>0.86).

The classification maps produced with a low predicted accuracy include mono-phased NDVI
classifications, resulting in a lower validated accuracy. This is because mono-phased NDVI classification
is heavily affected by clouds and shadows, since the missing information in the clouds area cannot be

replaced by other images. For a high predicted accuracy, more months are integrated in the time series
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and the time interval between each classification map is long. For example, when the predicted accuracy
is over 0.86, only two classification maps can be acquired for the period 2004-2011, each spanning at
least 4 years. During such long periods, changes in vegetation communities at the ecotones cannot be
ignored, leading to a difference between classification maps and NAIP images. Consequently, the
difference between predicted and validated accuracy becomes larger, despite the increase in predicted
accuracy (Fig. 14a). In contrast, all images from the reference MNTS were acquired in only two years
(2001-2002), reducing the error due to vegetation change. This effect is also the cause of the low accuracy

(0.778) obtained by comparing the classification map of 1988 and that of McCaffrey and Dueser (1976),

taken 13 years apart (Table 2). For a predicted accuracy between 0.79 and 0.86, the difference between
the predicted and validated accuracies is quite small, and it is possibly due to the quality of the images:
the images from the flexible MNTS of 2002 have fewer clouds and lower tidal levels (Fig. 14b, c). The
correlation between predicted and validated accuracy can be well depicted (R*>=0.96) by a linear function,
which differs of a merely 0.0194 from the standard 1:1 line (Fig. 14a). We can thus trade off high
accuracy for a short time interval between classification maps, as long as we avoid either small predicted
accuracies affected by image quality or large predicted accuracies affected by changes in vegetation
surfaces.

The advantages of the flexible MNTS increase when two or more remote sensors are used (e.g. TM
and ETM+, Fig. 3a). With more satellites entering in operation with spectral distribution and spatial
resolution similar to Landsat (e.g., Landsat8 OLI, Sentinel2 MSI, HJ-1 CCD), we can forecast that the
increased availability of images for the construction of time-series will reduce the difference between

predicted and validated accuracy, paving the way for a more robust application of our method.
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Fig. 14 Difference between predicted and validated accuracy and related causes. (a) Relationship between
predicted accuracy and validated accuracy (nodes represent the mean values and error bars represent the
standard deviation for the validated accuracy, number of classification maps is indicated; (b) and (c)
distributions of percent of blurred area and tidal levels for the images used in each classification map (the

number of images used in the flexible MNTS construction is indicated).

5.3 Application of multi-phased classification mapping to salt marsh vegetation communities
Traditional long-term monitoring of salt marsh vegetation has mostly relied on field measurements,
which usually require considerable sampling effort and time. These field investigations are rather
challenging in vast coastal salt marsh systems like the VCR due to limited field accessibility and complex
terrain. In our study, an archive of historical remote sensing images organized into flexible MNTS was

proven to capture the evolution of salt marsh vegetation communities. Multi-phased classification maps
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were generated to detect spatial patterns and temporal variations of salt marsh vegetation communities,
which are often difficult to obtain with in situ observations.

Commonly, medium spatial resolution remote sensing data like 30-m Landsat TM/ETM+ are too
coarse to discriminate different salt marsh species. Only in few cases a time-series strategy similar to the

one proposed here was able to classify marsh vegetation down to the species level (Gilmore et al. 2008;

Sun et al. 2016). This fine classification was impossible in our study because of the spatial distribution of
salt marsh species among various study sites. In the VCR, except for LM, which has an almost uniform
cover of S. alterniflora, the communities of ULM and HM have mixed vegetation with patches of
different species. Interspersed vegetation severely affects the ability to discriminate species using medium
spatial resolution imagery.

Even without a classification down at the species level, classification maps of salt marsh vegetation
communities provide insight on the response of vegetation to sea level rise, because relative elevation is
well represented by salt marsh vegetation (section 4.3). For example, ULM is likely to morph into LM
when sea level rise outpaces vertical accretion. Similarly, an eroding LM is transformed in TF. From this
point of view, the change map of salt marsh vegetation communities (Fig. 15) not only describes
vegetation succession, but also the morphological evolution of the system. Conversion of ULM to HM in
the Northern part of VCR (Fig. 15b-d) can either represent a surplus of sediment accretion against sea
level rise or the encroachment of invasive species with high NDVI values. Accretion and a reduction in
relative sea level allow vegetation typical of high and brackish marsh (e.g., S. patens, J. roemerianus) to
encroach the LM, changing NDVI values. However, transition due to accretion seems unlikely in a period
of accelerated sea level rise. Another explanation is the encroachment of invasive species occurring
without an increase in bottom elevation. Encroachment of Phragmites australis in the ecotone between

the upper limit of the salt marsh and the upland forest is well documented in this area (Bachmann et al.

2001; Chambers et al. 1999). Compared to native species, P. australis stabilizes surface sediments, traps

suspended sediments, has a large tolerance to varying salinity and moisture regimes, and a higher ability
to accumulate organic matter. Large storms, wrack deposits, and winter ice can disturb the native marsh
vegetation favoring the expansion of P. australis. A distribution map of P. australis at the VCR indicated
that the encroachment of this invasive species partly explains the expansion of HM at the expenses of
ULM (Fig. S10, S11). The timing of ULM expansion is also peculiar, with high rates between 1987 and
2000 and reduced rates between 2000 and 2012 (Fig. 12b), corroborating the hypothesis that sea-level rise,
and more generally, global warming, might not be the cause of this conversion.

Overall, vegetation communities typical of high elevations are replaced with vegetation communities
thriving at low elevation, possibly indicating that sediment accretion is not enough to compensate sea

level rise, and that on average the VCR salt marshes are becoming lower. 13.8 km® of ULM scattered
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across the entire VCR were converted to LM, with a conversion rate increasing in the last 20 years (Fig.
11b, c¢). Marshes bordering open water (Fig. 14d-g), are also susceptible to storm waves, which trigger

lateral erosion (Fagherazzi et al. 2010; Fagherazzi and Wiberg 2009). This erosion resulted in 15.1 km? of

net conversions of LM to TF. Interestingly, the LM area that was lost and became TF is of the same order
of the ULM area that became LM due to sea level rise (Fig. 12a). As a result, the total LM area has not
changed much in the last 30 years (Fig. 12b). On the contrary, the extension of ULM dramatically
decreased due to conversion to LM (likely due to an increase in sea level) and the expansion of HM
(possibly due to invasive species). During 1984-2011, the total area that experienced a transformation
toward habitats typical of lower elevations (37.7 km?) is twice as much the area than experienced a
conversion toward habitats with higher elevations (18.3 km?), implying a general transgressive trend for

the entire VCR system.



582
583

584
585

586

587
588
589

(a) TN
WA E
) Landward
TF LM ULM HM
Seaward
o HM ULM LM TF
DT [ INo Change
; i |
- e T T Gl T T
== - 75438'W " 75°36'W & 75°34W 4| [75°42'W 75°38'\
o *-r% (d)
F. ~
'pi-‘ ©
¥ z
|’ / _?; ':
r~ £
3 [} /]
e
: Il:' .'I_:r-_‘:
7
..._-I_ =z 2
‘a o™
v < —
A i
!-‘ ©
it
75°34'W | F5°42W
| i
= T T
75°42°W 75°46'W 75°52'W
rife) - (9)
roi = el z
il = =+
-z =3 - . = —
) 5 T~
- i
.-g,,‘ ﬁ o
- o | ..
i i ~
: i
'’ " "
5N .
=z %, e ] =z
z - ) R et T o
] 2| A 4 i R i ,.( 5
& 5 | g4 = i ' £ g  iaf
i F e 2
o~ © 4 g =
[Hisca0w 75°48'W 75°46'W 2 ||7552wW 75°50'W 75°48]
el | | \ 1 \ L

Fig. 15 Conversion map for each pair of salt marsh vegetation communities for the period 1984-2011. (a)

Entire VCR system, (b)-(g) detailed conversion maps for six sites.

6 Conclusions

Long-term spatial information on vegetation communities is required to understand the evolution of

salt marshes and how they are affected by environmental and anthropogenic drivers. Multispectral,

medium-resolution imagery can capture vegetation evolution when an inter-annual time-series strategy is
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adopted, despite the limited spectral and spatial resolutions. Here we present a flexible monthly NDVI
time-series (MNTS) approach based on all viable Landsat data from 1984 to 2011. The method generates
multiple classification maps that allows tracking the evolution of vegetation communities in time. The
general relationship between overall accuracy and average time interval between classification maps is
presented. To our knowledge, this is the first attempt to apply the method to a series of sparse historical
images for long-term monitoring purposes. The main conclusions can be summarized as follows: (1)
MNTS using Landast images are capable to accurately discriminate salt marsh vegetation communities,
despite noise form clouds cover and tides. This is evidenced by the high overall accuracy of 0.898, 0.163
higher than the accuracy of a mono-phased image. (2) A significant hyperbolic relationship (R*=0.96)
exists between accuracy and average length of the time-series used for classification. This relationship
allows generating long-term classification maps balancing accuracy versus number of classification maps.
(3) The temporal evolution of salt marsh vegetation communities in the Virginia Coast Reserve is
discerned from 8§ classification maps spanning the period 1984-2011. The area of Upper Low Marsh has
diminished of 19.4% (15.5 km?) with a recent accelerated trend (R?=0.92). This area was converted either
in High Marsh or Low Marsh. On average, communities lower in the tidal frame have become more
common (+37.7 km?), with few areas transitioning to communities typical of higher elevations (+18.3

km?).
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