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Abstract

Based on the concept of explanation sheets, we present an
approach to make spreadsheets easier to understand and
thus easier to use and maintain. We identify the notion of
explanation soundness and show that explanation sheets
which conform to simple rules of formula coverage provide
sound explanations. We also present a practical evaluation
of explanation sheets based on samples drawn from widely
used spreadsheet corpora and based on a small user study.

In addition to supporting spreadsheet understanding and
maintenance, our work on explanation sheets has also un-
covered several general principles of explanation languages
that can help guide the design of explanations for other pro-
gramming and domain-specific languages.
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1 Introduction

Studies estimate that software maintenance costs make up
60% [32] to 80% [33] of the total cost of software over its
life cycle. Changing a program or even just using it requires
a user to understand it [30], and that takes time and effort.
Research has shown that software developers spend most of
their time understanding source code [34].

Program understanding gets even more complicated when
a piece of software changes its owner frequently. Studies of
spreadsheet usage found that 85% of the study participants
did not create the spreadsheets they had to work on them-
selves but received them from their colleagues [25]. The
same paper reports that 70% of those users have difficulties
understanding them and spend hours browsing them.

To address some of these challenges, Kankuzi extensively
studied the mental models of spreadsheets users [27]. He ad-
vocates techniques and tools that reflect these mental models
such as abstracting implementation details by replacing cell
references in formulas through user-defined names. Other
approaches in this regard have tried to support the main-
tenance of spreadsheets by systematizing their evolution
[16-18]. However, these techniques face an uphill battle,
since they depend on the widespread adoption of new lan-
guages and tools to be effective. Moreover, it is difficult to
support legacy spreadsheets in this way.

Therefore, we propose to augment spreadsheets with ex-
planations, which can help users better understand and thus
use and maintain spreadsheets. This approach allows users
to continue to work with their current spreadsheet system,
and it can be retroactively applied to existing spreadsheets.
In the following, we illustrate our approach with an example.

When people try to understand a spreadsheet, they com-
monly face the time-consuming and error-prone task of re-
solving cell references to make sense of what formulas in
a spreadsheet do. This task is often exacerbated in spread-
sheets which contain a distracting and overwhelming volume
of data and by the fact that referenced cells often contain
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A B © D E F G
Payroll Spreadsheet

Regular Hours  Overtime Hours

40 5

35 0

40 2

35 0

Total

=E3+F3
=E4+F4
=E5+F5
=E6+F6

Name Pay Rate
8.9
12.55
9.6

10.2

Regular Pay
=B3*C3
=B4*C4
=B5*C5
=B6*C6

Overtime Pay
=B3*1.5*D3
=B4*1.5*D4
=B5*1.5*D5
=B6*1.5*D6

Adams
Baker
Carlton
Daniels

® N VAW

Totals =SUM(C3:C6)  =SUM(D3:D6) =SUM(E3:E6)  =SUM(F3:F6)  =SUM(G3:G6)

Figure 1. Payroll Spreadsheet

formulas that reference other cells in different parts of the
spreadsheet.

This process of “reference chasing” in spreadsheets is nec-
essary, since references are specified using row and column
indexes, which do not provide any information about the
value or meaning of the referenced cell. Therefore, to make
sense of what a reference represents, the user has to scan the
spreadsheet for the indicated row and column. This may re-
quire a user to scroll a long distance and in many cases jump
across multiple cells to make sense of the initial reference.

We address this problem through the use of label abstrac-
tion in our spreadsheet explanation model where possible
labeling information is used to replace raw index references
with the values of cells that label them. In doing so, formulas
that use references become more clear.

Consider Figure 1, which shows the formula view of a
spreadsheet with payroll information for employees within
a company. The spreadsheet was adapted from a study on
spreadsheet error detection and correction [8] and is a sim-
plified version of a real world scenario.

Applying label abstraction to the payroll spreadsheet re-
sults in the spreadsheet shown in Figure 2. Label abstraction
increases readability by giving context to computation, es-
pecially as formula complexity increases.

We can observe that while the values in rows 3-6 differ,
the formulas with labels are all identical. Such a pattern
occurs quite frequently. The redundancy that results from
the repetition is rather distracting. On the other hand, the
different values in the different rows do not contribute much
to the understanding of the represented computation.

Therefore, we apply another transformation to obtain an
explanation of the original spreadsheet that represents re-
peated (groups of) rows by a single (group of) row(s). The
result of this compression, which we call a zoom, can be seen
in Figure 2 where rows 3-6 from the original spreadsheet
have been compressed into one row. Such compressed rows
contain two kinds of information. First, columns (such as E-
G) that contain in the uncompressed sheet a single repeated
formula contain just that single formula. Second, columns
(such as A-D) with different values in different rows contain
a range that captures all values found in the respective col-
umn. The same zoom compression technique can, of course,
be applied to repeated columns.

Note that both transformations preserve the essential
structure and the key computing elements of the original
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spreadsheet. We call a spreadsheet that is the result of label
abstraction and zoom compression an explanation sheet.

In the remainder of this paper, we first present some gen-
eral design principles for explanations in Section 2. Based on
these principles, we have developed our spreadsheet expla-
nation model, which is formalized in Section 3. In Section 4
we present a preliminary artifact evaluation, followed by a
small user study in Section 5. We discuss related work in
Section 6 and present some conclusions in Section 7.

2 Explanation Principles

Informed in part by previous work on explanations [20, 35],
but also by the experience during the creation of spreadsheet
explanations (see Section 4) we have identified a number of
general principles that we believe should guide the develop-
ment of explanations. We present these principles here in a
separate section, so that they can also inform the design of
explanations for other languages.

In general, explanations can take on many different forms.
Taking a programming language perspective, we have found
it useful to conceptualize an explanation system as consisting
of two languages: (A) the language whose programs are to
be explained and (B) the language in which explanations
are expressed. We call the former the subject language and
the latter the explanation language. Correspondingly, we
call programs of the subject language subject programs (or
programs for short), and we call programs of the explanation
language explanation programs (or explanations for short). In
the context of spreadsheet explanations, this means that we
refer to spreadsheets sometimes as subject (spread)sheets and
that we call their explanations explanation (spread)sheets.

The following four principles have emerged as guidelines
for the design of spreadsheet (and other) explanations.

(1) Structure Preservation. An explanation language
should retain key subject language structures. Subject lan-
guage structures can provide easy access to an explana-
tion, since users are already familiar with these structures.
Moreover, reused structures facilitate the alignment of
explanations with subject programs.

(2) Abstraction. An explanation language should aim at
high-level descriptions that abstract from details of the
subject language. Abstraction makes explanations faster
to absorb. It also allows explanations to provide sum-
maries of subject programs.
Partiality. An explanation language should support par-
tial explanations. In other words, an explanation should
not be required to cover all of a subject program. Par-
tiality supports a gentle slope approach to explanations,
since it allows the incremental construction of more and
more complete explanations. Moreover, partiality allows
one to ignore parts that cannot be explained (because
they are not understood) or are trivial or unimportant.

(3
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Figure 2. Top: Payroll Spreadsheet with Label Abstraction; Bottom: Explanation Sheet for the Payroll Spreadsheet

(4) Compositionality. An explanation language should sup-
port constructing bigger explanations from smaller ones.
This requires composition operators for explanations.
Compositionality supports the systematic construction
of explanations and the reuse of explanations. Together
with partiality, compositionality supports the distributed
creation of explanations by different people who under-
stand different parts of the subject program.

Note that the first two principles are sometimes in conflict
with each other because abstraction calls for ignoring struc-
tures in the subject language. Moreover, there is a trade-off
between the benefits that can be gained from abstraction
and the explicitness and simplicity offered by a detailed and
concrete description of a computation. As illustrated in [20],
this problem can be addressed by providing for one subject
program a set of explanations that are related and can be
explored in a systematic way.

3 An Explanation Language for
Spreadsheets

In Sections 3.1 and 3.2 we define spreadsheets and expla-
nation sheets, respectively. In Section 3.3 we introduce a
relationship between the two languages that captures the
notion of explainability.

3.1 Spreadsheets

A spreadsheet is a rectangular grid of cells that contain for-
mulas and values. We can represent spreadsheets s € S as
partial mappings from addresses A = N X N to formulas.
Formulas are either plain values (v € Val), application of op-
erations (w) to other formulas, and references to cells (a € A).
The set of values includes an empty value L, which allows us
to distinguish undefined cells that are part of the spreadsheet
from undefined cells on the outside.

f eFml vlw(f,....f)la
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Abstracting from the contents of cells, we use the type con-
structor B, = A — « to represent sheets indexed by ad-
dresses and storing values of type a. A spreadsheet Bpy;
is then simply a sheet of formulas. Formulas are evaluated
to values Val, and we call the result of the evaluation of a
spreadsheet a value sheet, which is a sheet of values By,;. The
semantics of a spreadsheet language are given by a function
[-] : Bpm — By that maps spreadsheets to value sheets.

3.2 Explanation Sheets

Following the structure preservation principle from Section
2, we design an explanation of a spreadsheet to be itself a
kind of spreadsheet, a so-called explanation sheet that stores
formula explanations in cells. Following the abstraction prin-
ciple, an explanation sheet should abstract from some of the
details of the spreadsheet and should thus be smaller in size.
We therefore need a definition that allows one cell in an
explanation sheet to explain many cells in a spreadsheet.
To explain formulas, we need explanations for values,
references, and expressions built by operations applied to
other formulas. Since the values in a spreadsheet are either
numbers or strings, which are both ordered domains, we
can summarize a set of values from different cells by a value
range (o € Val = Val x Val). Similarly, a set of references can
be summarized by an address range (@ € A = A x A). The
two addresses of a range represent opposing corners of a
rectangular area, and the region denoted by a range is given
by the function p : A — A, which is defined as follows (/7
compute the minimum/maximum of two numbers).

<x <x1Tx

p(((x1, 1), (x2,12)) = {(x, 1) | x1lxp <
<y < uyily2}

A yilye

Since labels have been successfully employed in the past for
annotating and explaining cells [4, 19, 26, 29], we use labels to
explain a set of references by one or two (row and/or column)
labels ¢ € Lab = Val U Val X Val. More precisely, based on
a relationship £ C A X A where (a,a’) € £ whenever the
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VALUE RANGE ADDRESS RANGE

VALUE

01 KU Uy a1 <ax<a
VAU
(v1,v2) Q0 (a,a2) ©a
ForMmuLA LABEL
X1 9 fi Xn < fn L(a) = ¢
X1y .oy Xn) Q0(fiy oy fn) {<a
EmMPTY VALUE EmpTY FORMULA UNEXPLAINED
(v1,v9) 2 U o(x1,...,x) U 1Lof

Figure 3. Formula Explanations

value S(a) in cell a is considered to be a label for cell a’, we
can define a partial labeling function L : A — Lab, which
identifies values as labels for cells.

n _ [S(a) if £7(a’) = {a}
L(a ) a {(S(al)’s(aZ)) if—Eil(a/) = {al,az}

L(a’) is undefined whenever £7!(a’) = @.

We explain sets of formulas that share a common structure
and differ only in their references by a formula with labels
abstracting the references. Finally, we represent unexplained
areas using the special value L (“unexplained”), which allows
us to reduce potentially large chunks of a spreadsheet by a
single row, column, or cell.

Thus we obtain the following definition of explanation
formulas and the derived notion of explanation sheets Hxy;.

x € Xpl v|dlalall|wlx,...,x)| L

The structure preservation embraced by By, aligns the struc-
ture and composition of an explanation sheet with that of
the explained spreadsheet.

3.3 Explaining Spreadsheets with Explanation
Sheets

A spreadsheet explanation is captured by a so-called zoom
X <”)S, which consists of an explanation sheet X, a spreadsheet
S, a total function 7 that embeds the spreadsheet into the
explanation, that is, dom(n) = dom(S) A rng(n) = dom(X),
and whose explanation formulas explain the formulas of
the spreadsheet. The totality of 1 ensures that every cell in
S is covered by a cell in X. We don’t require zooms to be
surjective to allow for “filler cells” in the explanation sheets
that serve no other purpose than to turn explanation sheets
into rectangular areas.

The purpose of zooms is to explain a number of similar
cells by one cell. Specifically, when 7! (a) = {ay, ..., ax}, we
use cell a to summarize, or explain, all the cells ay, . . ., ak.
We can formalize this idea through the notion of formula
explanation, which is defined as a binary relationship x < f
that says an explanation formula x explains a spreadsheet
formula f, see Figure 3.
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[alx = [X(a)]x

[€]x =IL7'(¢)

[v]x = (v,v) [0]x =0

la]x = U[X(a)]x | a € p(a)}

[xilx = (v},0?) v} <v; <V

Sxn)x = Uw(or, . ..

[L]x =1L

ﬂw(xls' . ’vn)]]X}

Figure 4. Explanation Semantics

The cases for plain value, value range, and address range
should be obvious. Rule FormULA requires that the explana-
tion and explained formulas have the same structure, and
the premise in the rule LABEL ensures that a label exists. The
rules EMPTY VALUE and EMPTY FormULA allow empty values
to be explained by ranges and formulas, respectively, and the
rule UNEXPLAINED allows any formula to be left unexplained.

For a zoom XS we require that every formula in X ex-
plain all formulas in S that are mapped to it, that is:

Ya' € dom(X),¥(a,a’) € n:X(a") < S(a)

Based on the semantics of spreadsheets, we can define the se-
mantics for explanation sheets as follows. Since explanation
formulas include ranges of values and addresses, they will
generally evaluate to ranges of values.! To resolve references
the semantics needs access to the explanation sheet. Since
we also have to account for L formulas, the semantics of ex-
planation formulas is of type [-] : Xpl — By, — ValU{L}.
The definition is shown in Figure 4. We use the function
TV = (lV,1V) to compute the minimally enclosing range
for a set of values V. (We also use it for addresses.)

The semantics of explanation sheets is then given by the

following function [-] : Bx, — By, -

[X] = {(a,0.) | (a,x) € X A [x]x =0}

Note that the semantics also depends on the underlying
subject sheet S and a labeling relationship £ to resolve labels
(¢) in explanation formulas.

Next we introduce the notion of zoom soundness. This is
essentially the < relationship for value ranges and values
applied to whole sheets that are connected via a function 7.
We say that an explanation X is sound for a spreadsheet S
under 7 if [X]S[S]. This relationship captures the notion
that an explanation sheet X covers all cases of the explained
spreadsheet S and that the evaluation of S holds no surprises.

Now we can present our main result, which says that
zooms are sound.

Theorem 3.1 (Soundness). XS = [X]<S[S]

Note that for any spreadsheet S we always can find a trivial
explanation through the zoom $9S,? which means that any

1A single value v can always be represented by a trivial range (v, v).
?Here id denotes the identity function.
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spreadsheet trivially explains itself. However, such a zoom
is not really useful, since it does not achieve any abstraction.
Employing a straightforward ordering on zooms based on
the size of the explanation sheet, we can define that a zoom
X;9S achieves a higher explanatory reduction than a zoom
X, 38 if |dom(X;)| < |dom(X3)|. Note that this relationship
defines a partial order, and there isn’t necessarily a single
smallest explanation.

We can identify a number of interesting relationships for
explanations, including notions such as explanatory cover-
age and based on that also an explanation refinement rela-
tionship. We leave that for future work.

4 Artifact Evaluation

We employed real-world spreadsheets from two spreadsheet
corpora in the design and evaluation of our approach.

4.1 Guiding the Design of Explanations

The design of our spreadsheet explanations was guided in
part by real-world example spreadsheets. With a preliminary
definition of explanation formulas and zooms we set out to
explain existing spreadsheets from two repositories.

Specifically, we analyzed 20 randomly selected spread-
sheets from [31], which are generally well-designed spread-
sheets created by experts, plus 20 randomly selected spread-
sheets from the Enron spreadsheets corpus [22], which in-
cludes more than 15,000 spreadsheets.

We manually created an explanation spreadsheet for each
of the 40 spreadsheets. The main purpose of this exercise
was to see whether explanation formulas are general enough
or maybe even unnecessarily too general and whether our
definition of zooms worked as anticipated.

During this testing phase, the explanation model was re-
vised several times. Specifically, we removed a number of
explanation formulas that we originally thought to be useful
because the anticipated situations did either not occur at all
or only once or twice and thus were not justifying a more
elaborate notion of explanation formulas. We also simplified
the definition of zooms, which originally were defined re-
cursively allowing for nested zooms to explain nested loop
structures in spreadsheets. But since such a nested loop struc-
ture occurred only in one of the selected examples, we traded
the more general definition for a simpler one.

4.2 Applicability and Impact

We randomly selected a new set of spreadsheets from the
two sources and then used 41 worksheets from 36 differ-
ent spreadsheets to analyze the applicability and effect of
spreadsheet explanations.

We observed that 78% (32/41) of worksheets contained
areas that could be compressed and explained by zooms
(20/10/2 worksheets contained row/column/row and column
zooms). Ignoring three huge spreadsheets that were basically
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used as databases and that would lead to a misleadingly high
average, the average (min/max) size compression achieved
by zooms was 64% (25%/99%).

To verify that the generated explanations were correct,
we developed an explanation checker that implements the
definitions from Section 3.3, specifically Figure 3. This expla-
nation checker was applied to all explanations and helped to
correct at least one error in 24 of the 41 explanation sheets.
Most of the errors were due to simple typos, but the checker
also found several incorrect range mappings in zooms and
other reference errors. A summary of the kinds of errors that
were detected is shown in Figure 5.

5 User Evaluation

In this section we describe a preliminary user study we per-
formed to assess the usefulness of explanation spreadsheets.

Spreadsheets. For this study, we have semi-randomly se-
lected 4 spreadsheets (labeled A through D) from 3 different
sources. The selection process was semi-random in the sense
that we had to randomly re-select a new spreadsheet if the
previous one was not suited (for example, when it lacked
formulas). We selected two spreadsheets from the EUSES cor-
pus [21], one from [31], and one from the Enron corpus [22].

Participants. We recruited ten participants from two uni-
versities who were either computer science graduate stu-
dents or had already finished their graduate degree. Most
of the participants are quite experienced spreadsheet users,
some of them having created over 100 spreadsheets. Two
of the participants were females and eight were males with
ages ranging from 23 to 45.

Procedure. For each spreadsheet we created the correspond-
ing explanation. We then created two sets of artifacts, each
consisting of two spreadsheets and two explanation sheets.
The first set contained the spreadsheets for A and C and the
explanation sheets for B and D, and the second set contained
the spreadsheets for B and D and the explanation sheets
for A and C. We then randomly assigned each participant
one of the sets. This way each participant had to work with
spreadsheets as well as explanation sheets, in different or-
ders, thus reducing learning effects. We had the participants
go over a one-page tutorial about spreadsheet explanations
before answering the actual questions. For each of the four
spreadsheets we asked two questions:

‘ Error Type
Value (value in S is mapped to a different value in X)
Range (value in S is not covered by the range in X)
Reference (undefined references in mappings)
Label A (value of the label does not match the value in S)
Label B (labeling does not correctly abstract reference)

N
4
7
4
1
8

Figure 5. Errors found by the Explanation Checker
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Table 1. Average times and scores in the empirical study

average time average score

subject explanation subject explanation
A Q1 1.3 2.1 2.2 2.4
Q2 11 2.2 3.0 2.8
B Q1 3.1 2.9 2.0 2.6
Q2 2.5 3.7 2.0 1.8
01 21 1.8 3.0 1.0
C
Q2 1.0 2.9 2.4 1.4
D Q1 3.6 5.4 1.2 1.4
Q2 6.8 3.3 1.8 2.0

Q1 What is being calculated in row/column/cell X?
Q2 How are the values in row/column/cell X calculated?

Results. We present the results of the study in Table 1. For
each spreadsheet and its explanation we show the average
time (in minutes) participants took to answer each question
and the average score of the answers. We scored each answer
with a value from 0 (wrong answer) to 3 (entirely correct).

Discussion. The user evaluation produced mixed results.
Explanation sheets led to higher scores in 3 out of the 4 sce-
narios, with the exception of C, which produced significantly
lower results. Here we note that the explanation sheet for
C employed a column header (S) as a label where none was
provided by the subject spreadsheet. As the participants had
no prior knowledge of explanations, this could have made
it hard to infer the meaning of the column reference, thus
impacting understandability.

There is no significant difference between the average
times it took participants to answer the questions. With the
exception of D, participants were able to determine how a
computation was performed faster using the explanation.
However, explanations were only faster at explaining what
a computation calculated in cases B and C.

Interestingly, participants took longer to answer questions
for simple spreadsheets using explanations. This can possi-
bly be attributed to the fact that the participants have had
extensive experience with spreadsheets, while none with
explanations. This also seems to indicate that explanation
sheets are probably more useful for complex spreadsheets.

These results indicate the potential of explanation sheets
for providing a better understanding of spreadsheets. In their
answers to a post-study survey eight out of ten participants
said that they found explanation sheets somewhat or very
helpful. (For the two other participants they didn’t make a
difference.) Also, eight of the participants would want to use
explanation sheets in the future.

6 Related Work

Amalfitano et al. have developed a tool to help end users to
comprehend VBA-based Excel applications [6]. This tool is
designed to work with Excel programs that heavily depend
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on VBA macros, explaining the relation between the macros
and the cells, and cannot be used to understand the data or
cell computations in a spreadsheet as we propose.

Kankuzi and Sajaniemi have investigated spreadsheet au-
thors’ mental models [27]. Based on that, they proposed a
tool that translates cell references into domain/real-world
terms using the labels in the spreadsheet. However, their
focus is on error detection, while ours in on understanding
the content of a spreadsheet.

Several authors have proposed techniques to identify
structural information in spreadsheets [2, 5, 7, 11-15, 23].
Although identified structures may help understand spread-
sheets, there is no direct evidence for this, and none of the
mentioned approaches was meant to help understanding
spreadsheets, but instead to give some kind of support to
manipulate spreadsheet content.

The use of spreadsheets labels is not new [19]. In fact,
several approaches have been proposed for the inference of
cell labels [1], to reason about spreadsheets [10] using their
labels, and to use them for error checking [3]. And while
sometimes labels are used to explain spreadsheet errors [4],
none of this work was intended to explain spreadsheets
purpose. Some tools provide named ranges for defining a
name for a range of cells, which can then be used instead of
regular references. Although this feature has been shown to
make debugging less effective [28], there is no evidence of
its impact in understanding spreadsheets.

Hermans has proposed techniques to understand the de-
pendencies between different worksheets [24, 25]. In con-
trast, our work improves the understandability of each work-
sheet. Thus, these two approaches are complementary.

Some researchers have proposed tools to support users
in documenting their spreadsheets [9]. However, such tools
require users to write documentation, which they usually do
not do. While our approach also relies on an additional arti-
fact, this has a familiar structure and can be added incremen-
tally. Most importantly, the formal structure of explanation
sheets and their relationship to spreadsheets offers oppor-
tunities for the automatic inference of explanation sheets,
which is something we plan to work on in the future.

7 Conclusions

We have presented the concept of explanation sheets to sup-
port the understanding of spreadsheets. The design of ex-
planation sheets has some appealing properties: First, they
facilitate the gradual and incremental construction of spread-
sheet explanations. Second, their formalization supports the
definition of tools for checking, for example, the correctness
of explanation, which we have already exploited. There are
many other support tools that can be envisioned and that we
will investigate in future work, such as checking the cover-
age of explanations, checking the compatibility of alternative
explanations, and the inference of explanation sheets.
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