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Abstract

Partial differential equation is a powerful tool to characterize various physics

systems. In practice, measurement errors are often present and probability

models are employed to account for such uncertainties. In this paper, we

present a Monte Carlo scheme that yields unbiased estimators for expectations

of random elliptic partial differential equations. This algorithm combines

multilevel Monte Carlo [8] and a randomization scheme proposed by [12, 13].

Furthermore, to obtain an estimator with both finite variance and finite

expected computational cost, we employ higher order approximations.
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1. Introduction

Elliptic partial differential equation is a classic equation that is employed to describe

various static physics systems. In practical life, such systems are usually not described

precisely. For instance, imprecision could be due to microscopic heterogeneity or
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measurement errors of parameters. To account for this, we introduce uncertainty

to the system by letting certain coefficients contain randomness. To be precise, let

U ⊂ Rd be a simply connected domain. We consider the following differential equation

concerning u : U → R

−∇ · (a(x)∇u(x)) = f(x) for x ∈ U, (1)

where f(x) is a real-valued function and a(x) is a strictly positive function. Just to

clarify the notation, ∇u(x) is the gradient of u(x) and “∇·” is the divergence of a

vector field. For each a and f , one solves u subject to certain boundary conditions

that are necessary for the uniqueness of the solution. This will be discussed in the

sequel. The randomness is introduced to the system through a(x) and f(x). Thus,

the solution u as an implicit functional of a and f is a real-valued stochastic process

living on U . More precisely, consider a probability space (Ω,F ,P). The functions a, f ,

and u are maps from U ×Ω to R, where the function a is in fact almost surely strictly

positive. In the rest of this paper, we omit the second argument in a(x, ω), f(x, ω), and

u(x, ω) and write a(x), f(x), and u(x) instead that satisfy equation (1) and boundary

conditions almost surely. Throughout this paper, we consider d ≤ 3 that is sufficient

for most physics applications.

Of interest is the distributional characteristics of {u(x) : x ∈ U}. The solution is

typically not in an analytic form of a and f and thus closed form characterizations are

often infeasible. In this paper, we study the distribution of u via Monte Carlo. Let

C(Ū) be the set of continuous functions on Ū . For a real-valued functional

Q : C(Ū)→ R

satisfying certain regularity conditions, we are interested in computing

wQ = E{Q(u)} =

∫
Q(u(·, ω))P(dω).

The expectation in the above display is taken with respect to the uncertainty in the

random fields a(x) and f(x). Such problems appear often in the studies of physics

systems; see, for instance, [5, 6].

The contribution of this paper is the development of an unbiased Monte Carlo

estimator of wQ with finite variance. Furthermore, the expected computational cost



Unbiased Sampling of Random Elliptic Partial Differential Equations 3

of generating one such estimator is finite. The analysis strategy is a combination of

multilevel Monte Carlo and a randomization scheme. Multilevel Monte Carlo is a

recent advance in simulation and approximation of continuous processes [8, 4, 9]. The

randomization scheme is developed by [12, 13]. Under the current setting, a direct

application of these two methods leads to either an estimator with infinite variance or

infinite expected computational cost. This is mostly due to the fact that the accuracy

of regular numerical methods of the partial differential equations is insufficient. More

precisely, the mean squared error of a discretized Monte Carlo estimator is proportional

to the square of mesh size [2, 15]. The technical contribution of this paper is to employ

the finite element method with quadratic isoparametric elements to solve PDE under

certain smoothness conditions of a(x) and f(x) and to perform careful analysis of the

numerical solver for equation (1).

Physics applications. Equation (1) has been widely used in many disciplines to

describe time-independent physical problems. The well-known Poisson equation or

Laplace equation is a special case when a(x) is a constant. In different disciplines, the

solution u(x) and the coefficients a(x) and f(x) have their specific physics meanings.

When the elliptic PDE is used to describe the steady-state distribution of heat (as

temperature), u(x) carries the meaning of temperature at x and the coefficient a(x)

is the heat conductivity. In the study of electrostatics, u is the potential (or voltage)

induced by electronic charges, ∇u is the electric field, and a(x) is the permittivity

(or resistance) of the medium. In groundwater hydraulics, the meaning of u(x) is

the hydraulic head (water level elevation) and a(x) is the hydraulic conductivity (or

permeability). The physics laws for the above three different problems to derive the

same type of elliptic PDE are called Fourier’s law, Gauss’s law, and Darcy’s law,

respectively. In classical continuum mechanics, equation (1) is known as the generalized

Hook’s law where u describes the material deformation under the external force f . The

coefficient a(x) is known as the elasticity tensor.

In this paper, we consider that both a(x) and f(x) possibly contain randomness. We

elaborate its physics interpretation in the context of material deformation application.

In the model of classical continuum mechanics, the domain U is a smooth manifold

denoting the physical location of the piece of material. The displacement u(x) depends
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on the external force f(x), boundary conditions, and the elasticity tensor {a(x) : x ∈

U}. The elasticity coefficient a(x) is modeled as a spatially varying random field to

characterize the inherent heterogeneity and uncertainties in the physical properties of

the material (such as the modulus of elasticity, c.f. [14, 11]). For example, metals,

which lend themselves most readily to the analysis by means of the classical elasticity

theory, are actually polycrystals, i.e., aggregates of an immense number of anisotropic

crystals randomly oriented in space. Soils, rocks, concretes, and ceramics provide

further examples of materials with very complicated structures. Thus, incorporating

randomness in a(x) is necessary to take into account of the heterogeneities and the

uncertainties under many situations. Furthermore, there may also be uncertainty

contained in the external force f(x).

The rest of the paper is organized as follows. In Section 2, we present the problem

settings and some preliminary materials for the main results. Section 3 presents the

construction of the unbiased Monte Carlo estimator for wQ and rigorous complexity

analysis. Numerical implementations are included in Section 4. Technical proofs and

detailed definition of finite element methods are included in the appendix.

2. Preliminary analysis

Throughout this paper, we consider equation (1) living on a bounded domain U ⊂

Rd with twice differentiable boundary denoted by ∂U . To ensure the uniqueness of the

solution, we consider the Dirichlet boundary condition

u(x) = 0, for x ∈ ∂U . (2)

We let both exogenous functions f(x) and a(x) be random processes, that is,

f(x, ω) : U × Ω→ R and a(x, ω) : U × Ω→ R (3)

where (Ω,F ,P) is a probability space. To simplify notation, we omit the second

argument and write a(x) and f(x). As an implicit function of the input processes

a(x) and f(x), the solution u(x) is also a stochastic process living on U . We are

interested in computing the distribution of u(x) via Monte Carlo. In particular, for

some functional Q : C(Ū) → R satisfying certain regularity conditions that will be
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specified in the sequel, we compute the expectation

wQ = E[Q(u)] (4)

by Monte Carlo. The notation Ū is the closure of domain U and C(Ū) is the set of

real-valued continuous functions on Ū .

Let Ẑ be an estimator (possibly biased) of EQ(u). The mean square error (MSE)

E(Ẑ − wQ)2 = V ar(Ẑ) + {E(Ẑ)− wQ}2. (5)

consists of a bias term and a variance term. For the Monte Carlo estimator in this

paper, the bias is removed via a randomization scheme combined with multilevel

Monte Carlo. To start with, we present the basics of multilevel Monte Carlo and

the randomization scheme.

2.1. Multilevel Monte Carlo

Consider a biased estimator of wQ denote by Zn. In the current context, Zn is

the estimator corresponding to some numerical solution based on certain discretization

scheme, for instance, Zn = Q(un) where un is the solution of the finite element method.

The subscript n is a generic index of the discretization size. The detailed construction

of Zn will be provided in the sequel. As n→∞, the estimator becomes unbiased, that

is, E(Zn)→ wQ. Multilevel Monte Carlo is based on the following telescope sum

wQ = E(Z0) +

∞∑
i=0

E(Zi+1 − Zi). (6)

One may choose Z0 to be some simple constant. Without loss of generality, we choose

Z0 ≡ 0 and thus the first term vanishes. The advantage of writing wQ as the telescope

sum is that one is often able to construct Zi and Zi+1 carefully such that they are

appropriately coupled and the variance of Yi = Zi+1 − Zi decreases fast as i tends

infinity. The coupling is commonly done by constructing Zi+1 and Zi with the same

sample path ω (that is, same a(·, ω) and f(·, ω)). The specific choice of our Yi and Zi

in this paper is given on page 14. Let

∆i = E(Zi+1 − Zi) (7)

be estimated by

∆̂i =
1

ni

ni∑
j=1

Y
(j)
i
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where Y
(j)
i , j = 1, ..., ni are independent replicates of Yi. The multilevel Monte Carlo

estimator is

Ẑ =

I∑
i=1

∆̂i (8)

where I is a large integer truncating the infinite sum (6).

2.2. An unbiased estimator via a randomization scheme

In the construction of the multilevel Monte Carlo estimator (8), the truncation level

I is always finite and therefore the estimator is always biased. In what follows, we

present an estimator with the bias removed. It is constructed based on the telescope

sum of the multilevel Monte Carlo estimator and a randomization scheme that is

originally proposed by [12, 13].

LetN be a positive-integer-valued random variable that is independent of {Zi}i=1,2,....

Let pn = P(N = n) be the probability mass function of N such that pn > 0 for all

n > 0. The following identity holds trivially

wQ =

∞∑
i=1

E(Zn − Zn−1) =

∞∑
n=1

E[Zn − Zn−1;N = n]

pn
= E

(ZN − ZN−1

pN

)
,

where we use the notation E[X;B] = E[X1B ] with X, 1B being a random variable and

the indicator function of an event B, respectively. Therefore, an unbiased estimator of

wQ is given by

Z̃ =
ZN − ZN−1

pN
. (9)

Let Z̃i, i = 1, ...,M be independent copies of Z̃. The averaged estimator

Z̃M =
1

M

M∑
i=1

Z̃i

is unbiased for wQ with variance V ar(Z̃)/M if finite.

We provide a complexity analysis of the estimator Z̃. This consists of the calculation

of the variance of Z̃ and of the computational cost to generate Z̃. We start with the

second moment

E(Z̃2) = E
[ (ZN − ZN−1)2

p2
N

]
=

∞∑
n=1

E(Zn − Zn−1)2

pn
. (10)

In order to have a finite second moment, the sequence E(Zn−Zn−1)2

pn
needs to tend to

zero no slower than n−1. Thus, we would like to choose the random variable N such
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that

pn > nE(Zn − Zn−1)2 for all n sufficiently large. (11)

Furthermore, pn must also satisfy the natural constraint that

∞∑
n=1

pn = 1,

which suggests pn < n−1 for sufficiently large n. Combining with (11), we have

n−1 > pn > nE(Zn − Zn−1)2 (12)

Notice that we have not yet specified a discretization method, thus (12) can typically

be met by appropriately indexing the mesh size. For instance, in the context of solving

PDE numerically, one may choose the mesh size converging to 0 at a super exponential

rate with n (such as e−n
2

) and thus E(Zn − Zn−1)2 decreases sufficiently fast that

allows quite some flexibility in choosing pn. Thus, constraint (12) alone can always be

satisfied and it is not intrinsic to the problem. It is the combination with the following

constraint that forms the key issue.

We now compute the expected computational cost for generating Z̃. Let cn be the

computational cost for generating Zn − Zn−1. Then, the expected cost is

C =

n∑
i=1

pncn. (13)

In order to have C finite, for n sufficiently large,

pn < n−1c−1
n . (14)

Based on the above calculation, if the estimator Z̃ has a finite variance and a finite

expected computation time, then pn must satisfy both (12) and (14), which suggests

E(Zn − Zn−1)2 < n−2c−1
n . (15)

That is, one must be able to construct a coupling between Zn and Zn−1 such that

(15) is in place. In Section 3, we provide detailed complexity analysis for the random

elliptic PDE illustrating the challenges and presenting the solution.
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2.3. Function spaces and norms

In this section, we present a list of notation that will be frequently used in later

discussion. Let U ⊂ Rd be a bounded open set. We define the following spaces of

functions.

Ck(Ū) = {u : Ū → R|u is k-time continuously differentiable over Ū }

That is, u ∈ Ck(Ū) means that all the k-th partial derivatives of u are continuous

over Ū .

Lp(U) = {u : U → R|
∫
U

|u(x)|pdx <∞}

Lploc(U) = {u : U → R|u ∈ Lp(K) for any compact subset K ⊂ U}

C∞c (U) = {u : U → R|u is infinitely differentiable with a compact support that is a subset of U}.

Definition 1. For u,w ∈ L1
loc(U) and a multiple index α, we say w is the α-weak

derivative of u, and write Dαu = w if
∫
U
uDαφdx = (−1)|α|

∫
U
wφdx for all φ ∈

C∞c (U), where Dαφ in the above expression denote the usual α-partial derivative of φ.

If u ∈ Ck(Ū) and |α| ≤ k, then the α-weak derivative and the usual partial derivative

are the same. Therefore, we can write Dαφ for both continuously differentiable and

weakly differentiable functions without ambiguous.

We further define norms ‖ · ‖Ck(Ū) and ‖ · ‖Lp(U) on Ck(Ū) and Lp(U) respectively

as follows.

‖u‖Ck(Ū) = sup
|α|≤k,x∈Ū

|Dαu(x)|, (16)

and

‖u‖Lp(U) =
(∫

U

|u|pdx
)1/p

. (17)

We proceed to the definition of Sobolev space Hk(U) and Hk
loc(U)

Hk(U) = {u : U → R|Dαu ∈ L2(U) for all multiple index α such that |α| ≤ k}, (18)

and Hk
loc(U) = {u : U → R| u|V ∈ Hk(V ) for all V ( U}. For u ∈ Hk(U), the norm

‖u‖Hk(U) and semi-norm |u|Hk(U) are defined as

‖u‖Hk(U) =
( ∑
|α|≤k

‖Dαu‖2L2(U)

)1/2

, (19)
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and

|u|Hk(U) =
( ∑
|α|=k

‖Dαu‖2L2(U)

)1/2

. (20)

We define the space H1
0 (U) as

H1
0 (U) = {u ∈ H1(U) : u(x) = 0 for x ∈ ∂U}. (21)

On the space H1
0 (U) the norm ‖ · ‖H1(U) and the semi-norm | · |H1(U) are equivalent.

2.4. Finite element method for partial differential equation

We briefly describe the finite element method for partial differential equations. The

weak solution u ∈ H1
0 (U) to (1) under the Dirichlet boundary condition (2) is defined

through the following variational form

b(u, v) = L(v) for all v ∈ H1
0 (U), (22)

where we define the bilinear and linear forms

b(u, v) =

∫
U

a(x)∇u(x) · ∇v(x)dx and L(v) =

∫
U

f(x)v(x)dx,

and “·” is the vector inner product. When the coefficients a and f are sufficiently

smooth, say, infinitely differentiable, the weak solution u becomes a strong solution.

That is, u is the solution of (1). The key step of the finite element method is to

approximate the infinite dimensional space H1
0 (U) by some finite dimensional linear

space Vn = span{φ1, ..., φLn
}, where Ln is the dimension of Vn. The approximate

solution un ∈ Vn is defined through the set of equations

b(un, v) = L(v) for all v ∈ Vn. (23)

Both sides of the above equations are linear in v. Then, (23) is equivalent to b(un, φi) =

L(φi) for i = 1, ..., Ln. We further write un =
∑Ln

i=1 diφi as a linear combination of the

basis functions. Then, (23) is equivalent to solving linear equations

Ln∑
j=1

djb(φj , φi) = L(φi) for i = 1, ..., Ln. (24)

The basis functions φ1, ..., φLn are often chosen such that (24) is a sparse linear system.

That is, the order of the number of non-zero b(φj , φi)’s is O(Ln). Such a sparse linear
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system can be solved using an iterative method with a computational cost of the order

O(Ln log(Ln)) as Ln →∞. See Chapter 5 of [10] for more details.

Several choices of Vn have been studied for elliptic PDEs. For example, Vn may

consists of all the piecewise linear functions over a triangularization of U . Such a

linear element method has been adopted in [2] and [4] to construct multilevel Monte

Carlo estimators for random elliptic PDEs.

In this paper, our choice Vn is a function space induced by quadratic isoparametric

elements, which is suitable when U has a smooth boundary. The intuitive explanation

of isoparametric elements is given in page 11, and the precise definition will be delayed

to the Appendix C. The advantage of using quadratic isoparametric elements over the

linear elements is twofold. First, the quadratic approximation provides better conver-

gence rate when the solution has a higher order regularity (‖u‖H3(D) < ∞). Second,

isoparametric triangularization provides a better approximation for the boundary ∂U ,

yielding a better approximation of the solution. For more details of finite element

methods for elliptic PDEs, we refer the readers to the book [3] and the references

therein.

3. Main results

In this section, we present the construction of Z̃ and its complexity analysis. We

use finite element method to solve the PDE numerically and then construct Zn. To

illustrate the challenge, we start with the complexity analysis of Z̃ based on usual

finite element method with linear basis functions, with which we show that (12) and

(14) cannot be satisfied simultaneously. Thus, Z̃ either has infinite variance or has

infinite expected computational cost. We improve upon this by means of quadratic

approximation under smoothness assumptions on a and f . The estimator Z̃ thus can

be generated in constant time and has a finite variance.

3.1. Finite element method

Piecewise linear basis functions. A popular choice of Vn is the space of piecewise

linear functions defined on a triangularization Tn of U . In particular, Tn is a partition of

U that is each element of Tn is a triangle partitioning U . The maximum edge length of
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triangles is proportional to 2−n and Vn is the space of all the piecewise linear functions

over Tn that vanish on the boundary ∂U . The dimension of Vn is Ln = O(2dn). Detailed

construction of Tn and piecewise linear basis functions is provided in Appendix C.

Once a set of basis functions has been chosen, the coefficients di’s are solved ac-

cording to the linear equations (24) and the numerical solution is given by un(x) =∑Ln

i=1 diφi(x). For each functional Q, the biased estimator is Zn = Q(un). It is impor-

tant to notice that, for different n, un are computed based on the same realizations of

a and f . Thus, Zn and Zn−1 are coupled.

We now proceed to verifying (15) for linear basis functions. The dimension of Vn is

of order Ln = O(2dn) where d = dim(U). We consider the case when Q is a functional

that involves weak derivatives of u. For instance, Q could be in the form q(| · |H1(U))

for some smooth function q and Z = Q(u), where | · |H1(U) is defined as in (20).

According to Proposition 4.2 of [2], under the conditions that E[ 1
minx∈U ap(x) ] <∞,

E(‖a‖p
C1(Ū)

) < ∞, and E(‖f‖pL2(U)) < ∞ for all p > 0, E(Zn − Zn−1)2 = O(2−2n)

if un and un−1 are computed using the same sample of a and f . The condition (15)

becomes n2−2(n−1) < n−12−dn| log 2−nd|−1. A simple calculation yields that the above

inequality holds only if d = 1. Therefore, it is impossible to pick pn such that the

estimator Z̃ has a finite variance and a finite expected computational cost using the

finite element method with linear basis functions if d ≥ 2. The one-dimensional case

is not of great interest given that u can be solved explicitly. To establish (15) for higher

dimensions, we need a faster convergence rate of the PDE numerical solver.

Quadratic isoparametric elements. We improve the accuracy of the finite element

method by means of quadratic isoparametric elements, whose precise definition is given

in Appendix C, under smoothness conditions on a(x) and f(x). Classic results (e.g.

[3, Chapter VI]) show that if the solution u of the PDE is smooth enough and U has a

smooth boundary ∂U , then the accuracy of the finite element method can be improved

by means of isoparametric elements. We obtain similar results for random coefficients.

In this paper, we let Vn be defined as in (78) (Appendix C) with a mesh size O(2−n).

We explain the space Vn intuitively. In general, the construction of Vn consists of two

steps: 1) partition the space U into small and curved triangles. We will refer this

partition as Tn, whose precise definition is given in Appendix C. 2) For each T ∈ Tn,
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we need to define a linear space of functions over T , denoted by PT . Then, we put

the spaces PT for T ∈ Tn together and define Vn = {v ∈ C(Ū) : v|∂U = 0 and v|T ∈

PT for T ∈ Tn}. Step 1) is usually done by certain mesh generating algorithm and

step 2) is done through isoparametric mapping of a reference element. We provide a

graphical illustration of the construction in the next example.

Example 1. Let U = B(0, 1) = {(x, y) : x2 + y2 < 1}. For simplicity, we restrict

our illustration to a subset U ′ = B(0, 1) ∩ R2
+. The analysis on U \ U ′ can be done

similarly. The left panel of Figure 1 shows a possible choice of the partition when

n = 1. The right panel of Figure 1 shows a refinement of the partition when n = 2. In

this example, if T ∈ Tn does not have an edge (possibly curved) lying on the boundary

of U (e.g. black region in Figure 1), then T is a triangle; if an edge of T lies on the

boundary (e.g. gray region in Figure 1), then T has a curved boundary along ∂U . We

can see that if we only allow a partition using straight triangles, it is not possible to

have U exactly covered due to its curved boundary.

Now we explain how to define a linear space on each T ∈ Tn. Typically, this is done

by the so-called isoparametric mapping from a reference element. The procedure is as

follows. First, we take the simplex T̂ = {(x, y) : x, y ≥ 0, x+y ≤ 1} to be the reference

element, and define the space P̂ to be the space containing all quadratic functions over

T̂ .

Then, for each T ∈ Tn shown in Figure 1, there is an invertible quadratic function

FT : T̂ → R2 such that T = FT (T̂ ). Now, we define a linear space PT over T as

PT = {v : T → R : v(x) = v̂(F−1
K (x)) for some v̂ ∈ P̂}. Of note, when T is a triangle,

the linear space PT contains all quadratic functions over T ; when T is curved, then PT

is induced by, but not necessarily be, the space of quadratic functions.

Figure 1: Isoparametric triangularization for Example 1. Left: n = 1; Right: n = 2.
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With the finite dimensional space Vn constructed, we obtain an approximate solution

un by solving (23) with Vn.

Isoparametric Numerical Integration. The numerical solution un in (23) re-

quires the evaluation of the integrals b(w, v) =
∑
T∈Tn

∫
T
a(x)∇w(x) · ∇v(x)dx and

L(v) =
∑
T∈Tn

∫
T
f(x)v(x)dx. For the evaluation of these integrals we apply quadra-

ture approximation, which approximates the integral in the form of
∫
T
φ(x)dx by∑M

l=1 wl,Tφ(bl,T ) for some pre-specified weights wl,T and points bl,T for a positive

integer M and 1 ≤ l ≤ M . The precise choice of wl,T and bl,T are given in Appendix

C. We point out that the choice of wl,T and bl,T depends on the isoparametric trian-

gularization only, and is independent with the integrand φ(·). By setting the function

φ to be a(x)∇w(x) · ∇v(x), and f(x)v(x), we approximate the bilinear form b(w, v)

and linear form L(v) with their numerical approximation, denoted by b̃(w, v) and L̃(v),

respectively. Based on the numerical integration, we define ũn such that

b̃n(ũn, v) = L̃(v), for all v ∈ Vn. (25)

Error analysis for isoparametric finite element method. In what follows, we

present an upper bound of the convergence rate of ‖ũn−u‖H1(U), where u is the solution

to (22) and ũn is the solution to (25). Define the minimum and maximum of a(x) as

amin = minx∈Ū a(x) and amax = maxx∈Ū a(x). We make the following assumptions on

the random coefficients a(x) and f(x).

A1. amin > 0 almost surely and E(1/apmin) <∞, for all p ∈ (0,∞).

A2. a is almost surely continuously twice differentiable and E(‖a‖p
C2(Ū)

) <∞ for all

p ∈ (0,∞).

A3. f ∈ H2(U) almost surely and E(‖f‖pH2(U)) <∞ for all p ∈ (0,∞).

A4. There exist non-negative constants p′ and κq such that for all w1, w2 ∈ H1
0 (U),

|Q(w1)−Q(w2)| ≤ κq max{‖w1‖p
′

H1(U), ‖w2‖p
′

H1(U)}‖w1 − w2‖H1(U).

With the assumptions A1-A4, we are able to construct an unbiased estimator for

wQ = E[Q(u)] with both finite variance and finite expected computational time.
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We start with the existence and the uniqueness of the solution. Notice that a(x) is

bounded below by positive random variables amin and above by amax. According to

[2], Lemma 2.1., (22) has a unique solution u ∈ H1
0 (U) almost surely satisfying

‖u‖H1(U) ≤ κ
‖f‖L2(U)

amin
. (26)

The next theorem establishes the convergence rate of the approximate solution ũn

to the exact solution u.

Theorem 1. Let ũn be the solution to (25). For dim(U) ≤ 3 with a 3-time differen-

tiable boundary ∂U , if a(x) ∈ C2(Ū) and f(x) ∈ H2(U), then we have

‖u− ũn‖H1(U) = O
(max(‖a‖C2(Ū), 1)12

min(amin, 1)11
‖f‖H2(U)2

−2n
)
. (27)

The proof of Theorem 1 is given in Appendix A.

3.2. Construction of the unbiased estimator

In this section, we apply the results obtained in Section 3.1 to construct an unbiased

estimator with both finite variance and finite expected computational cost through (9).

We start with providing an upper bound of E[Q(u)−Q(ũn)]2.

Proposition 1. Under assumptions A1-A4, we have

E[Q(u)−Q(ũn)]2 = O(κq2
−4n), (28)

where u is the solution to (22) and ũn be the solution to (25), and κq the Lipschitz

constant appeared in condition A4.

The proof is a direct application of (26), Theorem 1 and A4 and therefore is omitted.

We proceed to the construction of the unbiased estimator Z̃ via (9). Choose P(N =

n) = pn ∝ 2−
4+d

2 n. For each n, let ũn−1 and ũn be defined as in (25) with respect to

the same a and f . Notice that the computation of ũn requires the values of a and f

only on the vertices of Tn. Then, Zn−1 and Zn are given by Zn−1 = Q(ũn−1) and Zn =

Q(ũn). With this coupling, according to Proposition 1, we have that E(Zn−Zn−1)2 ≤

2E[Q(ũn)−Q(u)]2 + 2E[Q(ũ
(2)
n−1)−Q(u)]2 = O(2−4n). According to equation (10), for

d = dim(U) ≤ 3, we have E(Z̃2) ≤
∑∞
n=1 2−4n/2−(4+d)n/2 < ∞. Furthermore, (25)
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requires solving O(2dn) sparse linear equations. The computational cost of obtaining

un is O(n2dn). According to (13), the expected cost of generating a single copy of Z̃ is

E(C) =

∞∑
n=1

pncn ≤
∞∑
i=1

n2dn · 2−(4+d)n/2 <∞.

This guarantees that the unbiased estimator Z̃ has a finite variance and can be gener-

ated in finite expected time.

Sampling of the random coefficients. In some cases, we also need to consider the

computational complexity for simulating a and f in addition to the computational cost

of solving the PDE. For example, if log a(x) is modeled as a Gaussian random field,

then the computational complexity for generating log a(x) over O(2dn) grid points is

O(23dn) if the Cholesky decomposition is adopted. This computational complexity is

of a higher order than that of solving an isoparametric FEM with a grid size 2−n,

and the corresponding unbiased estimator may not have a finite variance and finite

computational cost at the same time.

If the random fields a and f can be approximated by {ak} and {fk} with a relatively

low computational cost, then we can still achieve a similar error bound for the resulting

numerical solver. In the next example, we show a situation where we can construct

such an approximation for a(·).

Example 2. Assume that log a(x) = g(x), and g(x) has the following expansion.

For all x ∈ U , g(x) =
∑∞
l=0 λlWlφl(x), where W1,W2, ... are i.i.d. random variables

following the standard normal distribution, {λl} is a sequence of numbers that tend to

0 as l→∞ and {φl} is a sequence of functions over U . To approximate the Gaussian

random field g(x), we could use the truncated field gk(x) =
∑k
l=0 λlWlφl(x).The

computational cost for simulating gk(x) over O(2dn) grid points is of the order O(k ×

2dn). We can see that if k = kn grows in a speed no faster than O(n2dn), then

the computational complexity for generating gkn(x) is much smaller than the cost

for simulating g(x) exactly. The approximation accuracy of gk can be obtained via

standard analysis of g(x) − gk(x) with additional assumptions on the decaying speed

of λl‖φl‖C2(Ū). For more detailed analysis, see, for example, [1].

We omit details of the precise requirement of λl and φl(x) and present the following
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results under generic assumptions on an.

Theorem 2. Define

W̃n = 22n‖a− an‖C2(Ū).

We make the following additional assumptions on the sequence {an}.

B1. maxn Eminx∈U (an(x), 1)−p <∞ for all p > 0.

B2. maxn E‖an‖pC2(Ū)
<∞ for all p > 0.

B3. There exists a constant δ > 0 such that maxn EW̃ 2+δ
n <∞.

B4. Simulating an(·) at the nodes of Tn requires a computational cost of the order

O(n2dn).

Let the solution ūn be the solution to (25) with a(·) replaced by an(·) in the bilinear

form b̃n. Furthermore, let Zn = Q(ūn) and Zn−1 = Q(ūn−1) be constructed with the

same sample path ω. Then, the unbiased estimator Z̃ constructed via (9) has a finite

variance and a finite computational cost.

Similar to the simulation of a(·), we could approximate the random field f(·) as well.

The analysis is similar and we omit the repetitive details.

4. Simulation Study

4.1. An illustrating example

We start with a simple example for which closed form solution is available and

therefore we are able to check the accuracy of the simulation. Let U = B(0, 1), f(x) =

2eW1+W2x1+W3x2(2 + W2x1 + W3x2) and a(x) = eW2x1+W3x2 , where W1,W2,W3 are

independent and identically distributed standard normal random variable. In this

example, the solution to (1) is

u(x1, x2) = eW1(1− x2
1 − x2

2). (29)

We are interested in the output functional Q(u) = |u|2H1(U) whose expectation is in a

closed form.

E|u|2H1(U) = E[2πe2W1 ] = 2πe2 ≈ 46.4268.
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Let pn = 0.875× 0.125n and Zn = Q(ũn) for n > 0. Here we define Z0 = 0. Thus, the

estimator according to (9) is

Z̃ =
ZN − ZN−1

pN
. (30)

We perform Monte Carlo simulation with M = 300000 replications. The averaged

estimator is 46.5572 with the standard deviation 0.8212. Figure 2 shows the histogram

of samples of Z̃ and log Z̃.
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Figure 2: Histogram of Monte Carlo sample of Z̃ and log Z̃ that are defined in Section 4.1.

4.2. Log-normal random field

In this example, we let U = B(0, 1), f(x) = 1 for all x ∈ B(0, 1) and we consider a

more complicated random field a(x). In particular, we let

log a(x1, x2) =

∞∑
m=1

1

2m
(W2m−1x

m
1 +W2mx

m
2 ), (31)

where W1,W2, ... are independent and identically distributed standard normal random

variable. It is not hard to verify that a(x1, x2) satisfies Assumptions A1 and A2. We

further approximate the field a by

an(x1, x2) = exp{
3n∑
m=1

1

2m
(W2m−1x

m
1 +W2mx

m
2 )}, (32)

and compute the finite element solution based on this approximation. We let Zn =

Q(ūn) as discussed on page 16 and take the same estimator (30) and functionalQ as the

previous example. We perform Monte Carlo simulation for M = 300000 replications.

The averaged estimator for the expectation EQ(u) is 0.4608 and the standard deviation

is 0.0004 for the averaged estimator. Figure 3 shows the histogram of the Monte Carlo

sample.
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Figure 3: Histogram of Monte Carlo sample of Z̃ when log a has a Gaussian covariance.

Appendix A. Proof of the Theorems

In this section, we provide technical proofs of Theorem 1 and Theorem 2. Through-

out the proof we will use κ as a generic notation to denote large and not-so-important

constants whose value may vary from place to place. Similarly, we use ε as a generic

notation for small positive constants.

Before we start the main proof, we first present a proposition on the higher oder

regularity of the solution u, whose proof is given after the proofs of theorems.

Proposition 2. For dim(U) ≤ 3 with a (k + 1)-time differentiable boundary ∂U , if

a(x) ∈ Ck(Ū) and f(x) ∈ Hk−1(U) for some positive integer k, then we have

‖u‖Hk+1(U) ≤ κ
max(‖a‖Ck(Ū), 1)

k2

2 + 9
2k−1

min(amin, 1)
k2

2 + 7
2k

(
‖f‖Hk−1(U) + ‖u‖L2(U)

)
.

Proof of Theorem 1. We start with a useful lemma, which is essentially Theorem

43.1 in [3] with the constant C = κ
‖a‖C(Ū)

min(amin,1) being explicit. We omit the details of

the proof of this lemma.

Lemma 1.

‖u− ũn‖H1(U) ≤ κ
‖a‖C(Ū)

min(amin, 1)
2−2n ×

{
‖u‖H3(U) + ‖a‖C2(Ū)‖u‖H3(U) + ‖f‖H2(U)

}
.

(33)

Combining the above display with Proposition 2 with k = 2, we have

‖u− ũn‖H1(U) = O

(
2−2nκ(a, 2)

‖a‖2
C2(Ū)

min(amin, 1)
(‖f‖H2(U) + ‖u‖L2(U))

)
, (34)
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where κ(a, k) =
max(‖a‖

Ck(Ū)
,1)

k2

2
+ 9

2
k−1

min(amin,1)
k2
2

+ 7
2
k

. That is,

‖u− ũn‖H1(U) = O

(
2−2n

max(‖a‖C2(Ū), 1)12

min(amin, 1)10
(‖f‖H2(U) + ‖u‖L2(U))

)
. (35)

Thanks to (26), the above display can be further bounded by

‖u‖L2(U) ≤ κ
‖f‖L2(U)

min(amin, 1)
.

We complete the proof by combining the above expression and (35). �

Proof of Theorem 2. We start with the inequality,

‖ūn − u‖H1(U) ≤ ‖ūn − ũn‖H1(U) + ‖ũn − u‖H1(U). (36)

The second term on the right-hand side of the above inequality is already bounded

from above by Theorem 1. That is,

‖ūn − u‖H1(U) ≤ ‖un − ũn‖H1(U) +O(2−2n
max(‖a‖C2(Ū), 1)12

min(amin, 1)11
‖f‖H2(U)). (37)

We proceed to an upper bound of the first term. Let b̄n be the bilinear form with a

being replaced by an in the bilinear form b̃n. Note that ūn is obtained by replacing b̃n

by b̄n in (25), we have

b̄n(ūn, w) = L̃n(w) = b̃n(ũn, w) (38)

for all w ∈ Vn. Subtracting b̃n(ūn, w) on both sides, we arrive at

(b̄n − b̃n)(ūn, w) = b̃n(ũn − ūn, w), (39)

where we write (b̄n − b̃n)(v, w) = b̄n(v, w) − b̃n(v, w). Set w = ũn − ūn in the above

display, we arrive at

(b̄n − b̃n)(ũn, ũn − ūn) = b̃n(ũn − ūn, ũn − ūn). (40)

According to the same arguments as those on [3, page 258-260], the right-hand side of

the above display is bounded from below by

b̃n(ũn − ūn, ũn − ūn) ≥ εamin‖ũn − ūn‖2H1(U). (41)

On the other hand, we have

|(b̄n − b̃n)(ūn, ũn − ūn)| ≤ ‖a− an‖C(Ū)‖ūn − ũn‖H1(U)‖ūn‖H1(U). (42)



20 Xiaoou Li, Jingchen Liu, and Shun Xu

Combining (40), (41) and (42), we arrive at

‖ũn − ūn‖H1(U) ≤ κ
‖a− an‖C(Ū)‖ūn‖H1(U)

amin
≤ κ2−2n ‖ūn‖H1(U)

amin
W̃n. (43)

Because an satisfies Assumptions A1-A2, we can apply Theorem 1 to the solution ūn

and arrive at

‖ūn‖H1(U) = O
( max(‖an‖C2(Ū), 1)12

min(minx∈U (an(x)), 1)11
‖f‖H2(U)

)
. (44)

Combining (37), (43) and (44), we arrive at

‖ūn−u‖H1(Ū) = O

(
{

max(‖a‖C2(Ū), 1)12

min(amin, 1)11
+

max(‖an‖C2(Ū), 1)12

min(minx∈U (an(x)), 1)11 min(amin, 1)
W̃n}‖f‖H2(U)2−2n

)
.

(45)

The rest of the proof is similar to the analysis under Proposition 1. We omit the

details. �

For the rest of the section, we provide the proof for Proposition 2. Proposition 2 is

similar to Theorem 5 in Chapter 6.3 of [7] but we provide explicitly the dependence of

constants on a and f .

Proof of Proposition 2. We prove Proposition 2 by proving the following result for

the weak solution w ∈ H1
0 (U) to a more general PDE, −∇ · (A∇w) = f in U

w = 0 on ∂U,
(46)

where A(x) = (Aij(x))1≤i,j≤d is a symmetric positive definite matrix function in the

sense that there exist Amin > 0 satisfying

ξTA(x)ξ ≥ Amin|ξ|2 (47)

for all x ∈ Ū and ξ ∈ Rd. Assume that Aij(x) ∈ Ck(Ū) for all i, j = 1, ..., d. Then, it

is sufficient to show that

‖w‖Hk+1(U) ≤ κr(A, k)
(
‖f‖Hk−1(U) + ‖w‖L2(U)

)
, (48)

where κr(A, k) = κ
max(‖A‖

Ck(Ū)
,1)

k2

2
+ 9

2
k−1

min(Amin,1)
k2
2

+ 7
2
k

, and ‖A‖Ck(Ū) = max1≤i,j≤d ‖Aij‖Ck(Ū).
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Let B0(0, r) denote the open ball {x : |x| < r} and Rd+ = {x ∈ Rd : xd > 0}. We

will first prove that if U = B0(0, r) ∩ Rd+ and V = B0(0, t) ∩ Rd+, then for all t and r

such that and 0 < t < r,

‖w‖Hm+2(V ) ≤ κr,t,m+1

max(‖A‖Ck(Ū), 1)
(m+1)2

2 + 9
2 (m+1)−1

min(Amin, 1)
(m+1)2

2 + 7
2 (m+1)

(
‖f‖Hm(U) + ‖w‖L2(U)

)
,

(49)

where κr,t,m+1 is a constant depending only on r, t, and m+ 1. The following lemma

establish (49) for m = 0.

Lemma 2. (Boundary H2-regularity.) Assume ∂U is twice differentiable and A(x)

satisfies (47). Assume that Aij(x) ∈ C1(Ū) for all i, j = 1, ..., d. Suppose furthermore

w ∈ H1
0 (U) is a weak solution to the elliptic PDE with boundary condition (46). Then

w ∈ H2(U) and

‖w‖H2(U) ≤ κ
max(‖A‖C1(Ū), 1)4

min(Amin, 1)4

(
‖f‖L2(U) + ‖w‖L2(U)

)
.

We establish (49) by induction. Suppose for some m

‖w‖Hm+1(W ) ≤ κt,s,m
max(‖A‖Ck(Ū), 1)

m2

2 + 9
2m−1

min(Amin, 1)
m2

2 + 7
2m

(‖f‖Hm−1(U) + ‖w‖L2(U)), (50)

where

W = B0(0, s) ∩Rd+, and s =
t+ 1

2
. (51)

Since w is a weak solution to (46), it satisfies the integration equation∫
D

∇w(x)TA(x)∇v(x)dx =

∫
D

f(x)v(x)dx, for all v ∈ H1
0 (U). (52)

Let α = (α1, ..., αd) be a multiple index with such that αd = 0 and |α| = m. We

consider the multiple weak derivative w̄ = Dαw and investigate the PDE that w̄

satisfies. For any v̄ ∈ C∞c (W ), where C∞c (W ) is the space of infinitely differentiable

functions that have compact support in W , we plug v = (−1)|α|Dαv̄ into (52). With

some calculations, we have∫
W

(∇w̄(x))TA(x)∇v̄(x) =

∫
W

f̄(x)v̄(x)dx,

where

f̄ = Dαf −
∑

β≤α,β 6=α

(
α

β

)[
−∇ · (Dα−βA∇Dβw)

]
. (53)
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Consequently, w̄ is a weak solution to the PDE

−∇ · (A∇w̄) = f̄ for x in W. (54)

Furthermore, we have the boundary condition w̄(x) = 0 for x ∈ ∂W ∩ {xd = 0}. By

the induction assumption (50) and (53), we have

‖f̄‖L2(W ) ≤ ‖f‖Hm(U)+κt,s,m
max(‖A‖Ck(Ū), 1)

m2

2 + 9
2m−1

min(Amin, 1)
m2

2 + 7
2m

‖A‖Cm+1(Ū)

(
‖f‖Hm−1(U)+‖w‖L2(U)

)
.

(55)

According to the definition of w̄, we have

‖w̄‖L2(W ) ≤ ‖w‖Hm(W ). (56)

Applying Lemma 2 to w̄ with (55) and (56), we have

‖Dαw‖H2(V )

≤κt,s,mκ
max(‖A‖C1(Ū), 1)4

min(Amin, 1)4

max(‖A‖Ck(Ū), 1)
m2

2 + 9
2m−1

min(Amin, 1)
m2

2 + 7
2m

‖A‖Cm+1(Ū)

(
‖f‖Hm(U) + ‖w‖L2(U)

)
.

(57)

Because α is an arbitrary multi-index such that αd = 0, and |α| = m, (57) implies

that Dβw ∈ L2(W ) for any multiple index β such that |β| ≤ m + 2 and βd = 0, 1, 2.

We now extend this result to multiple index β whose last component is greater than

2. Suppose for all β such that |β| ≤ m+ 2 and βd ≤ j , we have

‖Dβw‖H2(V ) ≤ κ(j)
r

(
‖f‖Hm(U) + ‖w‖L2(U)

)
, (58)

where κ
(j)
r is a constant depending on A, m and j that we are going to determine later.

We establish the relationship between κ
(j)
r and κ

(j+1)
r . For any γ that is a multiple

index such that |γ| = m + 2 and γd = j + 1, we use (58) to develop an upper bound

for ‖Dγw‖H2(V ). In particular, let β = (γ1, .., γd−1, j − 1). According to the remark

(ii) after Theorem 1 of Chapter 6.3 in [7], we have that

−∇ · (A∇(Dβw)) = f† in W a.e, (59)

where

f† = Dβf −
∑

δ≤β,δ 6=β

(
β

δ

)[
−∇ · (Dβ−δA∇Dδw)

]
. (60)
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Notice that

−∇ · (A∇(Dβw)) = −AddDγw + sum of terms involves at most j times weak derivatives of w

with respect to xd and at most m+ 2 times derivatives in total.

According to (58), (59), (60), and the above display, we have

‖Dγw‖L2(U) ≤ κ
1

min(Amin, 1)

{
‖A‖Cm+1(Ū)κ

(j)
r

(
‖f‖Hm(U) + ‖w‖L2(U)

)
+ ‖f‖Hm(U)

}
.

Therefore,

‖Dγw‖L2(U) ≤ κ(j+1)
r

(
‖f‖Hm(U) + ‖w‖L2(U)

)
,

where

κ(j+1)
r = κ(j)

r

max(‖A‖Cm+1(Ū), 1)

min(Amin, 1)
. (61)

The above expression provides a relationship for κ
(j+1)
r and κ

(j)
r . According to (57),

κ(2)
r = κt,s,mκ

max(‖A‖C1(Ū), 1)4

min(Amin, 1)4

max(‖A‖Ck(Ū), 1)
m2

2 + 9
2m−1

min(Amin, 1)
m2

2 + 7
2m

max(‖A‖Cm+1(Ū), 1).

Using (61) and the above initial value for the iteration, we have

κ(m+2)
r

=κt,s,mκ
max(‖A‖C1(Ū), 1)4

min(Amin, 1)4

max(‖A‖Ck(Ū), 1)
m2

2 + 9
2m−1

min(Amin, 1)
m2

2 + 7
2m

×max(‖A‖Cm+1(Ū), 1)
{max(‖A‖Cm+1(Ū), 1)

min(Amin, 1)

}m
.

Consequently,

‖w‖Hm+2(V ) ≤ κt,s,mκ
max(‖A‖Ck(Ū), 1)

m2

2 + 11
2 m+4

min(Amin, 1)
m2

2 + 9
2m+4

(
‖f‖Hm(U) + ‖w‖L2(V )

)
.

Using induction, we complete the proof of (48) for the case where U is a half ball.

Now we extend the result to the case that U has a Ck+1 boundary ∂U . We first prove

the theorem locally for any point x0 ∈ ∂U . Because ∂U is (k + 1)-time differentiable,

with possibly relabeling, the coordinates of x there exist a function γ : Rd−1 → R and

r > 0 such that,

B(x0, r) ∩ U = {x ∈ B(x0, r) : xd > γ(x1, ..., xd−1)}.
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Let Φ = (Φ1, ...,Φd)
T : Rd → Rd be a function such that

Φi(x) = xi for i = 1, ..., d− 1 and Φd(x) = xd − γ(x1, ..., xd−1).

Let y = Φ(x) and choose s > 0 sufficiently small such that

U∗ = B0(0, s) ∩ {yd > 0} ⊂ Φ(U ∩B(x0, r)).

Furthermore, we let V ∗ = B0(0, s2 ) ∩ {yd > 0} and set

w∗(y) = w(x) = w(Φ−1(y)).

With some calculation, we have that w∗ is a weak solution to the PDE

−∇ ·
(
A∗(y)∇w∗(y)

)
= f∗(y),

where A∗(y) = J(y)A(Φ−1(y))JT (y) and J(y) is the Jacobian matrix for Φ with

Jij(y) = ∂Φi(x)
∂xj
|x=Φ−1(y), and f∗(y) = f(Φ−1(y)). In addition, w∗ ∈ H1(U∗) and

w∗(y) = 0 for y ∈ ∂U∗∩{yd = 0}. It is easy to check A∗ is symmetric and A∗ij ∈ Ck(Ū)

for all 1 ≤ i, j ≤ d. Furthermore, according to the definition of J and Φ, all the

eigenvalues of J(y) are 1 and thus ζTA∗(y)ξ ≥ Amin|JT (y)ξ|2 ≥ εAmin|ξ|2 for all

ξ ∈ Rd. By substituting U , V , A, f with U∗, V ∗, A∗ and f∗ in (49) we have

‖w∗‖H2(V ∗) ≤ κr(A, k)
(
‖w∗‖L2(U∗) + ‖f∗‖Hk−1(U∗)

)
.

According to the definitions of w∗ and f∗, the above display implies

‖w‖H2(Φ−1(V ∗)) ≤ κr(A, k)
(
‖w‖L2(U) + ‖f‖Hk−1(U)

)
.

Because U is bounded, ∂U is compact and thus can be covered by finitely many sets

Φ−1(V ∗1 ), ..,Φ−1(V ∗K) that are constructed similarly as Φ−1(V ∗). We finish the proof

by combining the result for points around ∂U and the following Lemma 3 for interior

points.

Lemma 3. (Higher order interior regularity.) Under the setting of Lemma 2, we

assume that ∂U is Ck+1, Aij(x) ∈ Ck(U) for all i, j = 1, ..., d, and f ∈ Hk−1(U),

and that w ∈ H1(U) is one of the weak solutions to the PDE (46) without boundary

condition. Then, w ∈ Hk+1
loc (U). For each open set V $ U

‖w‖Hk+1(V ) ≤ κi(A, k)
(
‖f‖Hk−1(U) + ‖w‖L2(U)

)
,

where κi(A, k) =
max(‖A‖

Ck(Ū)
,1)3k−1

min(Amin,1)2k κ, and κ is a constant depending on V .
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�

Appendix B. Proof of supporting lemmas

In this section, we provide the proofs for lemmas that are necessary for the proof of

Proposition 2. We start with a useful lemma showing w ∈ H2
loc(U) which will be used

in the proof of Lemma 2

Lemma 4. (Interior H2-regularity.) Under the setting of Lemma 2, we further assume

that Aij(x) ∈ C1(Ū) for all i, j = 1, ..., d, and f ∈ L2(U), and that w ∈ H1(U) is one

of the weak solutions to the PDE (46) without boundary condition. Then, w ∈ H2
loc(U).

For each open subset V $ U , there exist κ depending on V such that

‖w‖H2(V ) ≤ κ
max(‖A‖C1(U), 1)2

min(Amin, 1)2

(
‖f‖L2(U) + ‖w‖L2(U)

)
,

where we define the norm ‖A‖C1(Ū) = max1≤i,j≤d ‖Aij‖C1(Ū).

Proof of Lemma 4. Let h be a real number whose absolute value is sufficiently small,

we define the difference quotient operator

Dh
kw(x) =

w(x+ hek)− w(x)

h
,

where ek is the kth unit vector in Rd. According to Theorem 3 in Chapter 5.8 of [7], if

there exist a positive constant κ such that ‖Dh
kw‖L2(U) ≤ κ for all h, then ∂w

∂xk
∈ L2(U)

and ‖ ∂w∂xk
‖L2(U) ≤ κ. We use this theorem and seek for an upper bound of∫

V

|Uhk∇w|2dx, (62)

for k = 1, ..., d for the rest of the proof.

We derive a bound of (62) by plugging an appropriate v in (52). Let W be an open

set such that V $W $ U . We select a smooth function ζ such that

ζ = 1 on V, ζ = 0 on W c, and 0 ≤ ζ ≤ 1.

We plug

v = −D−hk (ζ2Dh
kw)

into (52), and have

−
∫
D

∇wTA∇[D−hk (ζ2Dh
kw)]dx = −

∫
D

fD−hk (ζ2Dh
kw)dx. (63)
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We give a lower bound of the left-hand side of (63) and an upper bound of the right-

hand. We use two basic formulas that are similar to integration by part and derivative

of product respectively. For any functions w1, w2 ∈ L2(U), such that w2(x) = 0 if

dist(x, ∂U) < h, we have∫
D

w1D
−h
k w2dx = −

∫
D

Dh
kw1w2dx and Dh

k (w1w2) = wh1D
h
kw2 + w2D

h
kw1,

where we define wh1 (x) = w1(x + hek). Similarly, we define the matrix function Ah =

A(x+ hek). Applying the above formulas to the left hand side of (63), we have

−
∫
D

∇wTA∇[D−hk (ζDh
kw)]dx

=

∫
D

Dh
k (∇wTA)∇(ζ2Dh

kw)dx

=

∫
D

Dh
k (∇wT )Ah∇(ζ2Dh

kw) +∇wTDh
kA∇(ζ2Dh

kw)dx

=

∫
D

ζ2Dh
k∇wTAhDh

k∇wdx︸ ︷︷ ︸
J1

+

∫
D

2ζ(Dh
k∇wTAh∇ζ)Dh

kw + 2ζ(∇wTDh
kA∇ζ)Dh

kw + ζ2∇wTDh
kAD

h
k∇wdx︸ ︷︷ ︸

J2

.

J1 in the above expression has a lower bound

J1 ≥ Amin

∫
D

ζ2|Dh
k∇w|2dx

due to the positively definitiveness of A(x). |J2| is bounded above by

|J2| ≤ κ‖A‖C1(Ū)

(∫
D

ζ|Dh
k∇w||Dh

kw|+ ζ|∇w||Dh
kw|+ ζ|∇w||Dh

k∇w|dx
)
. (64)

The expression (64) can be further bounded by

|J2| ≤
Amin

2

∫
D

ζ2|Dh
k∇w|2dx+ κ‖A‖C1(Ū) × (1 +

‖A‖C1(Ū)

Amin
)

∫
W

|∇w|2 + |Dh
kw|2dx.

(65)

thanks to Cauchy-Schwarz inequality. According to Theorem 3 in Chapter 5.8 of [7],∫
W

|Dh
kw|2dx ≤ κ

∫
W

|∇w|2dx. (66)

Therefore, (65) is bounded above by

|J2| ≤
Amin

2

∫
D

ζ2|Dh
k∇w|2dx+ κ2‖A‖C1(Ū) × (1 +

‖A‖C1(Ū)

Amin
)

∫
W

|∇w|2dx. (67)
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Combining (64) and (67), we have

LHS of (63)

=J1 + J2

≥J1 − |J2|

≥Amin

2

∫
D

ζ2|Dh
k∇w|2dx− κ2‖A‖C1(Ū) × (1 +

‖A‖C1(Ū)

Amin
)

∫
W

|∇w|2dx.

(68)

We proceed to an upper bound of the right hand side of (63). According to (66), we

have ∫
D

|D−hk (ζ2Dh
kw)|2dx

≤ κ

∫
D

|∇(ζ2Dh
kw)|2dx

≤ κ

∫
W

4|Dh
kw|2|∇ζ|2ζ2 + ζ2|Dh

k∇w|2dx

≤ κ3

∫
W

|∇w|2 + ζ2|Dh
k∇w|2dx. (69)

Apply Cauchy’s inequality to the right-hand side of (63), we have

RHS of (63) ≤
∫
D

|f ||D−hk (ζ2Dh
kw)|dx ≤ 2κ3

Amin

∫
D

|f |2dx+
Amin

4κ3

∫
D

|D−hk (ζ2Dh
kw)|2dx.

(70)

We combine (69) and (70),

RHS of (63) ≤ Amin

4

∫
W

ζ2|Dh
k∇w|2dx+

Amin

4

∫
W

|∇w|2dx+
2κ3

Amin

∫
W

|f |2dx. (71)

Combining (68) and (71), we have∫
D

ζ2|Dh
k∇w|2dx ≤

8κ3

A2
min

∫
W

|f |2dx+
[
1+4κ2‖A‖C1(Ū)

‖A‖C1(Ū) +Amin

A2
min

] ∫
W

|∇w|2dx.

(72)

Therefore,∫
D

ζ2|Dh
k∇w|2dx ≤ κ

max(‖A‖C1(Ū), 1)2

min(Amin, 1)2

(∫
W

|f |2dx+

∫
W

|∇w|2
)
. (73)

Now we give an upper bound of
∫
D
|∇w| by taking v = ζ̃2w in (52), where we choose

ζ̃ to be a smooth function such that ζ̃ = 1 on W and ζ̃ = 0 on U c. Using similar

arguments as that for (73), we have∫
W

|∇w|2dx ≤ κ
max(‖A‖C1(Ū), 1)2

min(Amin, 1)2

(∫
W

|f |2dx+

∫
W

|∇w|2
)
. (74)
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(73) and (74) together give∫
D

ζ2|Dh
k∇w|2dx ≤ κ

max(‖A‖C1(Ū), 1)4

min(Amin, 1)4

∫
D

|f |2 + |w|2dx. (75)

We complete our proof by combining (75) for all k = 1, ..., d. �

Proof of Lemma 2. We first consider a special case when U is a half ball

U = B0(0, 1) ∩Rd+.

Let V = B0(0, 1
2 ) ∩Rd+, and select a smooth function ζ such that

ζ = 1 on B(0,
1

2
), ζ = 0 on B(0, 1)c, and 0 ≤ ζ ≤ 1.

For k = 1, ..., d− 1, we plug

v = −D−hk (ζ2Dh
kw)

into (52). Using the same arguments for deriving (72) as in the proof for Lemma 4, we

obtain that ∫
V

|Dh
k∇w|2dx ≤ κ

max(‖A‖C1(Ū), 1)2

min(Amin, 1)2

∫
W

|f |2 + |∇w|2dx.

The above display holds for arbitrary h, so we have

d∑
i,j=1,i+j<2d

∫
V

| ∂
2w

∂xi∂xj
|2dx ≤ κ

max(‖A‖C1(Ū), 1)2

min(Amin, 1)2

∫
W

|f |2 + |∇w|2dx. (76)

We proceed to an upper bound for∫
V

| ∂2w

∂xd∂xd
|2dx.

According to the remark (ii) after Theorem 1 in Chapter 6.3 of [7], with the interior

regularity obtained by Lemma 4, w solves (46) almost everywhere in U . Consequently,

Add
∂2w

∂xd∂xd
= −

d∑
i,j=1,i+j<2d

Aij
∂2w

∂xi∂xj
−

d∑
i,j=1

∂Aij
∂xj

∂w

∂xi
− f a.e.

Note that Add ≥ Amin, so the above display implies that

| ∂2w

∂xd∂xd
| ≤ κ

‖A‖C1(Ū)

Amin

( d∑
i,j=1,i+j<2d

| ∂
2w

∂xi∂xj
|+ |∇w|+ |f |

)
.
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Combining the above display with (76), we have

‖w‖H2(V ) ≤ κ
max(‖A‖C1(Ū), 1)2

min(Amin, 1)2

(
‖|∇w|‖L2(U) + ‖f‖L2(U)

)
.

According to (74), the above display implies

‖w‖H2(V ) ≤
max(‖A‖C1(Ū), 1)4

min(Amin, 1)4

(
‖w‖L2(U) + ‖f‖L2(U)

)
.

Similar to the proof for Proposition 2, this result can be extended to the case where U

has a twice differentiable boundary. We omit the details. �

Proof of Lemma 3. We use induction to prove Lemma 3. When k = 1, Lemma 4

gives

‖w‖H2(V ) ≤ κi(A, 1)
(
‖f‖L2(U) + ‖w‖L2(U)

)
.

Suppose for k = 1, ...,m, Lemma 3 holds. We intend to prove that for k = m+ 1,

‖w‖Hm+2(V ) ≤ κi(A,m+ 1)
(
‖f‖Hm(U) + ‖w‖L2(U)

)
.

By induction assumption, we have w ∈ Hm+1
loc (U) and for any W such that V (W ( U

‖w‖Hm+1(W ) ≤ κi(A,m)
(
‖f‖Hm−1(U) + ‖w‖L2(U)

)
. (77)

Denote by α = (α1, .., αd)
T a multiple index with |α| = α1 + ...+αd = m. With similar

arguments as for (54), we have that w̄ = Dαw is a weak solution to the PDE (54)

without boundary condition. Similar to the derivation for (57), w ∈ Hm+2(V ) and

‖w‖Hm+2(V ) ≤ κi(A, 1)κi(A,m) max(‖A‖Cm+1(Ū), 1)
(
‖f‖Hm(U) + ‖w‖L2(U)

)
.

We complete the proof by induction. �

Appendix C. Isoparametric finite element method

In this section, we present the precise definition of the finite element method being

used. For more details, see [3] and the references therein.

Finite element triplet. The triplet (T, P,Σ) is called an element if T is a Lipschitz

domain in Rd; P is a space of functions over T with a finite dimension M ; and Σ is a

set of linear forms η1, ..., ηM with the following P -unisolvent property: given any real

numbers α1, ..., αM , there exists a unique p ∈ P such that ηi(p) = αi, 1 ≤ i ≤M .
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Degree of freedom. By the definition of P -unisolvent, there exists p1, ..., pM ∈ P

such that ηi(pj) = δij for 1 ≤ i, j ≤ M . Consequently, for all p ∈ P , the following

holds:

p =

M∑
i=1

ηi(p)pi.

Then, η1, ..., ηM are called the degree of freedom of the finite element and p1, ..., pM

are called the basis functions of P .

Lagrange element. If there exists a1, .., aM such that ηi(p) = p(ai) for all 1 ≤

i ≤ M , then the finite element is called a Lagrange finite element. In other words, if

(T, P,Σ) is a Lagrange finite element and p ∈ P , then p is completely determined by its

value at the nodes a1, ..., aM . Throughout this paper, we will only consider Lagrange

elements.

Affine-equivalence. Let (T, P, {p(ai); 1 ≤ i ≤ M}) and (T̂ , P̂ , {p̂(âi); 1 ≤ i ≤ M})

be two Lagrange finite elements. They are called affine-equivalent if there exists an

invertible linear operator BT : T̂ → T and bT ∈ Rd such that (i) FT : T̂ → T , FT (x̂) =

BT x̂ + bT , (ii) ai = FT (âi), 1 ≤ i ≤ M , and (iii) pi(x) = p̂i(F
−1
T (x)), 1 ≤ i ≤ M . The

mapping FT is called affine mapping.

Isoparametric equivalent elements. A Lagrange finite element (T, P, {p(ai); 1 ≤

i ≤M}) is called isoparametric equivalent to (T̂ , P̂ , {p̂(âi); 1 ≤ i ≤M}) if there exists

an invertible mapping F : x̂ ∈ T̂ → F (x̂) = (Fi(x̂))di=1 such that Fi ∈ P̂ , 1 ≤ i ≤ M

and (i) T = F (T̂ ), (ii) P = {p = p̂◦F−1; p̂ ∈ P̂}, and (iii) ai = F (âi) for 1 ≤ i ≤M . In

particular, when F is a linear mapping, these two finite elements are affine equivalent.

d-simplex. The set {(x1, .., xd) :
∑d
i=1 xi = 1, xi ≥ 0, i = 1, .., d} is called a d-

simplex. When d = 1, 2, 3, the d-simplex is a line segment, triangle, and a tetrahedron

respectively.

Isoparametric family and reference element Consider a class of Lagrange finite

elements indexed by T , F = {(T, PT , {pT (ai,T ); 1 ≤ i ≤ M})}. It is called an

isoparametric family if there exists a finite element (T̂ , P̂ , {p̂(âi); 1 ≤ i ≤M}) such that
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all (T, PT , {pT (ai,T ); 1 ≤ i ≤M}) ∈ F is isoparametric-equivalent to (T̂ , P̂ , {p̂(âi); 1 ≤

i ≤M}). The finite element (T̂ , P̂ , {p̂(âi); 1 ≤ i ≤M}) is called the reference element.

For the simplicity of notation, we will sometime omit the index T in PT and ai,T and

write the element as (T, P, {p(ai); 1 ≤ i ≤M}) later.

Choice of the reference element. Throughout this paper, we consider the refer-

ence element T̂ to be the d-simplex. In addition, the space P̂ is chosen to be the space

of quadratic polynomials over T̂ . The dimension of P̂ is dim(P̂ ) = d(d−1)
2 + d. The

degree of freedom is chosen as follows: (i) âi is the vector with the i-th entry being 1

and the other entries being 0, and (ii) âij = 1
2 (âi + âj) is the mid point of âi and âj

for 1 ≤ i, j ≤ d.

Triangularization of a domain. With the reference element specified, one can

generate a family of finite elements that are isoparametric-equivalent to the reference

element and form a partition of a domain of interest. If a partition is not possible, one

may choose to partition the domain approximately. We elaborate on the requirement

on the partition.

If a domain is a polygon, one can define a triangularization based on affine-equivalent

elements only. However, when the domain U is curved with a smooth boundary, it is

not possible to partition Ū into triangles. Indeed, if affine family with a mesh size

maxT∈Tn diam(T ) = O(2−n) is used to approximately cover the space U , that is, only

straight triangle is in use, then the error rate of the finite element method ‖un−u‖H1(U)

is known to be at most O(2−3/2n), even with quadratic basis functions. See [3, page 268]

for more details. In this case, isoparametric triangularization can be used to ensure the

convergence rate of ‖un−u‖H1
0 (U) = O(2−2n), when a and f are deterministic functions

with sufficient smoothness. The precise definition of an isoparametric triangularization

of a domain U is given as follows. Let {(T, PT ,ΣT ) : T ∈ Tn} be a family of finite

elements that are isoparametric-equivalent to the reference element (T̂ , P̂ , {p̂(âi), i =

1, ...,M}) with maxT∈Tn diam(T ) = O(2−n) satisfying the following requirements.

(1) Ū = ∪T∈TnT ;

(2) For any T ∈ Tn, the corresponding degree of freedom ai, aij is either inside the

domain U or on the boundary ∂U for all 1 ≤ i, j ≤M .
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(3) For T, T ′ ∈ Tn, T 6= T ′, int(T )∩ int(T ′) = ∅, where int(T ) denote the interior of

the triangle T ;

(4) If T 6= T ′ but T ∩ T ′ 6= ∅, then T ∩ T ′ is either a point or a common edge of T

and T ′.

Here, the edges and vertices of an isoparametric element is the image of the corre-

sponding isoparametric mapping of the edges and vertices of the reference element,

respectively.

Remark 1. Among the requirement (1)-(4), (2)-(4) are standard assumptions and

can be satisfied by many applications of interest. Assumption (1) requires that the

domain U is covered exactly by the isoparametric elements, which can be satisfied

when the boundary ∂U is piecewise quadratic. It is also possible, but may require

more tedious analysis, to extend our result to the case where ∂U is smooth but not

piecewise quadratic. We omit the details for the simplicity of the presentation. For

the analysis of such a case when a and f are deterministic, see [3, Chapter VI].

Regular isoparametric family. Define

hT = diam(T ) and ρT = sup{diam(S) : S is a ball in Rd and S ⊂ T}

for each T ∈ Tn. The the isoparametric family {(T, P,Σ), T ∈ Tn} is called regular if

it satisfies the following two conditions.

(1) There exists a constant σ > 0 such that for all n and all T ⊂ Tn,

ρT ≥ σhT .

(2) For each T ∈ Tn, let ãij = 1
2 (ai + aj) for all 1 ≤ i, j ≤ d and ai, aj being the

vertices of T . We assume

‖aij − ãij‖ = O(2−2n)

uniformly for all T ∈ Tn.

Throughout the paper, we will only consider regular isoparametric family. In addition,

we will assume that the inner elements are affine elements and only the boundary

elements are other isoparametric elements. That is, for a finite element (T, P,Σ) that

is not on the boundary of the domain, T is a triangle (tetrahedron) for d = 2 (d = 3).
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The function space Vn. Based on a regular isoparametric family {(T, P,Σ), T ∈ Tn}

defined above, we are able to state the definition of the space Vn as below,

Vn =
{
v ∈ C(Ū) : v|T ∈ PT for each T ∈ Tn and v|∂D = 0

}
. (78)

Isoparametric numerical integral. For isoparametric elements, the numerical in-

tegral is done by first performing quadrature approximation over the reference element,

and then transforming it to the isoparametric family. We first describe the integral

approximation over the reference element T̂ = {(x1, .., xd) : xi ≥ 0,
∑d
i=1 xi ≤ 1; 1 ≤

i ≤ d}. Typically, a quadrature scheme for numerical integration is described in the

following form. For a function φ̂ : T̂ → R, the integral
∫
T̂
φ̂(x̂)dx̂ is approximated by∑M

l=1 ŵlφ̂(b̂l) for some weights ŵl > 0, points b̂l, l = 1, ...,M , and a positive integer M .

In order to control the numerical error of the finite element method, we assumes that

ŵl’s and b̂l’s are exact for quadratic functions. That is, if φ̂ is a quadratic function

over T̂ , then
∫
T̂
φ̂(x̂)dx̂ =

∑M
l=1 ŵlφ̂(b̂l). The choice of such a quadrature scheme

is not unique. For example, a popular choice for d = 2 is M = 3, b1 = (0.5, 0),

b2 = (0, 0.5), b3 = (0.5, 0.5), w1 = w2 = w3 = 1
6 . We proceed to the numerical

integration over an isoparametric element T with an isoparametric mapping FT . The

standard approximation for the integral in the form
∫
T
φ(x)dx is based on the change

of variable, where the weights are defined as wl,T = ŵlJ(FT )(b̂l,T ), bl,T = FT (b̂l), and

J(FT ) denotes the Jacobian of the mapping FT .
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