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Abstract

Partial differential equation is a powerful tool to characterize various physics
systems. In practice, measurement errors are often present and probability
models are employed to account for such uncertainties. In this paper, we
present a Monte Carlo scheme that yields unbiased estimators for expectations
of random elliptic partial differential equations. This algorithm combines
multilevel Monte Carlo [8] and a randomization scheme proposed by [12, 13].
Furthermore, to obtain an estimator with both finite variance and finite

expected computational cost, we employ higher order approximations.
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1. Introduction

Elliptic partial differential equation is a classic equation that is employed to describe
various static physics systems. In practical life, such systems are usually not described

precisely. For instance, imprecision could be due to microscopic heterogeneity or
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measurement errors of parameters. To account for this, we introduce uncertainty
to the system by letting certain coefficients contain randomness. To be precise, let
U C R? be a simply connected domain. We consider the following differential equation

concerning u : U — R
=V - (a(x)Vu(z)) = f(z) for z € U, (1)

where f(z) is a real-valued function and a(z) is a strictly positive function. Just to
clarify the notation, Vu(z) is the gradient of u(z) and “V.” is the divergence of a
vector field. For each a and f, one solves u subject to certain boundary conditions
that are necessary for the uniqueness of the solution. This will be discussed in the
sequel. The randomness is introduced to the system through a(xz) and f(z). Thus,
the solution u as an implicit functional of @ and f is a real-valued stochastic process
living on U. More precisely, consider a probability space (2, F,P). The functions a, f,
and u are maps from U x  to R, where the function a is in fact almost surely strictly
positive. In the rest of this paper, we omit the second argument in a(z,w), f(z,w), and
u(z,w) and write a(x), f(x), and u(x) instead that satisfy equation (1) and boundary
conditions almost surely. Throughout this paper, we consider d < 3 that is sufficient
for most physics applications.

Of interest is the distributional characteristics of {u(z) : * € U}. The solution is
typically not in an analytic form of ¢ and f and thus closed form characterizations are
often infeasible. In this paper, we study the distribution of u via Monte Carlo. Let

C(U) be the set of continuous functions on U. For a real-valued functional
Q:C(U)— R
satisfying certain regularity conditions, we are interested in computing

wg = E{Q(u)} = / Q- w))P(dw).

The expectation in the above display is taken with respect to the uncertainty in the
random fields a(x) and f(z). Such problems appear often in the studies of physics
systems; see, for instance, [5, 6].

The contribution of this paper is the development of an unbiased Monte Carlo

estimator of wg with finite variance. Furthermore, the expected computational cost
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of generating one such estimator is finite. The analysis strategy is a combination of
multilevel Monte Carlo and a randomization scheme. Multilevel Monte Carlo is a
recent advance in simulation and approximation of continuous processes [8, 4, 9]. The
randomization scheme is developed by [12, 13]. Under the current setting, a direct
application of these two methods leads to either an estimator with infinite variance or
infinite expected computational cost. This is mostly due to the fact that the accuracy
of regular numerical methods of the partial differential equations is insufficient. More
precisely, the mean squared error of a discretized Monte Carlo estimator is proportional
to the square of mesh size [2, 15]. The technical contribution of this paper is to employ
the finite element method with quadratic isoparametric elements to solve PDE under
certain smoothness conditions of a(z) and f(z) and to perform careful analysis of the

numerical solver for equation (1).

Physics applications. Equation (1) has been widely used in many disciplines to
describe time-independent physical problems. The well-known Poisson equation or
Laplace equation is a special case when a(x) is a constant. In different disciplines, the
solution u(z) and the coefficients a(x) and f(z) have their specific physics meanings.
When the elliptic PDE is used to describe the steady-state distribution of heat (as
temperature), u(x) carries the meaning of temperature at « and the coefficient a(x)
is the heat conductivity. In the study of electrostatics, u is the potential (or voltage)
induced by electronic charges, Vu is the electric field, and a(x) is the permittivity
(or resistance) of the medium. In groundwater hydraulics, the meaning of u(z) is
the hydraulic head (water level elevation) and a(z) is the hydraulic conductivity (or
permeability). The physics laws for the above three different problems to derive the
same type of elliptic PDE are called Fourier’s law, Gauss’s law, and Darcy’s law,
respectively. In classical continuum mechanics, equation (1) is known as the generalized
Hook’s law where u describes the material deformation under the external force f. The
coefficient a(x) is known as the elasticity tensor.

In this paper, we consider that both a(z) and f(x) possibly contain randomness. We
elaborate its physics interpretation in the context of material deformation application.
In the model of classical continuum mechanics, the domain U is a smooth manifold

denoting the physical location of the piece of material. The displacement u(x) depends
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on the external force f(x), boundary conditions, and the elasticity tensor {a(z) : x €
U}. The elasticity coefficient a(z) is modeled as a spatially varying random field to
characterize the inherent heterogeneity and uncertainties in the physical properties of
the material (such as the modulus of elasticity, c.f. [14, 11]). For example, metals,
which lend themselves most readily to the analysis by means of the classical elasticity
theory, are actually polycrystals, i.e., aggregates of an immense number of anisotropic
crystals randomly oriented in space. Soils, rocks, concretes, and ceramics provide
further examples of materials with very complicated structures. Thus, incorporating
randomness in a(z) is necessary to take into account of the heterogeneities and the
uncertainties under many situations. Furthermore, there may also be uncertainty
contained in the external force f(zx).

The rest of the paper is organized as follows. In Section 2, we present the problem
settings and some preliminary materials for the main results. Section 3 presents the
construction of the unbiased Monte Carlo estimator for wg and rigorous complexity
analysis. Numerical implementations are included in Section 4. Technical proofs and

detailed definition of finite element methods are included in the appendix.

2. Preliminary analysis

Throughout this paper, we consider equation (1) living on a bounded domain U C
R? with twice differentiable boundary denoted by OU. To ensure the uniqueness of the

solution, we consider the Dirichlet boundary condition
u(z) =0, forx e U. (2)
We let both exogenous functions f(z) and a(z) be random processes, that is,
flz,w): UxQ =R and a(z,w):UxQ— R (3)

where (2, F,P) is a probability space. To simplify notation, we omit the second
argument and write a(z) and f(z). As an implicit function of the input processes
a(xz) and f(z), the solution u(x) is also a stochastic process living on U. We are
interested in computing the distribution of u(z) via Monte Carlo. In particular, for

some functional Q : C(U) — R satisfying certain regularity conditions that will be
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specified in the sequel, we compute the expectation
wo = E[Q(u)] (4)

by Monte Carlo. The notation U is the closure of domain U and C(U) is the set of
real-valued continuous functions on U.

Let Z be an estimator (possibly biased) of EQ(u). The mean square error (MSE)

E(Z —wg)? = Var(Z) + {E(Z) — wo}>. (5)

consists of a bias term and a variance term. For the Monte Carlo estimator in this
paper, the bias is removed via a randomization scheme combined with multilevel
Monte Carlo. To start with, we present the basics of multilevel Monte Carlo and

the randomization scheme.

2.1. Multilevel Monte Carlo

Consider a biased estimator of wg denote by Z,. In the current context, Z, is
the estimator corresponding to some numerical solution based on certain discretization
scheme, for instance, Z,, = Q(u,,) where u,, is the solution of the finite element method.
The subscript n is a generic index of the discretization size. The detailed construction
of Z,, will be provided in the sequel. As n — oo, the estimator becomes unbiased, that
is, E(Z,) = wg. Multilevel Monte Carlo is based on the following telescope sum

o0
wo =E(Zy) + Y _E(Ziy1 — Z)). (6)
i=0
One may choose Z; to be some simple constant. Without loss of generality, we choose
Zp = 0 and thus the first term vanishes. The advantage of writing wg as the telescope
sum is that one is often able to construct Z; and Z;;; carefully such that they are
appropriately coupled and the variance of Y; = Z;11 — Z; decreases fast as ¢ tends
infinity. The coupling is commonly done by constructing Z; 1 and Z; with the same
sample path w (that is, same a(-,w) and f(-,w)). The specific choice of our Y; and Z;
in this paper is given on page 14. Let

Ay =E(Ziy1 — Zi) (7)

be estimated by

A Ly
A= =Nyl
m; v



6 Xiaoou Li, Jingchen Liu, and Shun Xu

where Yi(j ), 7 =1,...,n; are independent replicates of Y;. The multilevel Monte Carlo

estimator is s
Z=Y"A; (8)
i=1
where I is a large integer truncating the infinite sum (6).

2.2. An unbiased estimator via a randomization scheme

In the construction of the multilevel Monte Carlo estimator (8), the truncation level
I is always finite and therefore the estimator is always biased. In what follows, we
present an estimator with the bias removed. It is constructed based on the telescope
sum of the multilevel Monte Carlo estimator and a randomization scheme that is
originally proposed by [12, 13].

Let N be a positive-integer-valued random variable that is independent of {Z;};=12.....
Let p, = P(N = n) be the probability mass function of N such that p,, > 0 for all
n > 0. The following identity holds trivially

wo= Y E(Zy~ 2,y = Y Al Dt E (D By
i=1 n=1

where we use the notation E[X; B] = E[X1p] with X, 15 being a random variable and
the indicator function of an event B, respectively. Therefore, an unbiased estimator of

wg is given by
ZN —ZN-1

PN
Let Z;,i = 1,..., M be independent copies of Z. The averaged estimator

. 1 M
Iy = MZZZ
i=1

is unbiased for wg with variance Var(Z)/M if finite.

Z= (9)

We provide a complexity analysis of the estimator Z. This consists of the calculation
of the variance of Z and of the computational cost to generate Z. We start with the
second moment

E(Z%) =E (Zn — ZN—l)Z} _ i E(Zn — Zn-1)*
n=1

Elln = Zn1)” (10
Py P )

E(Zp—Zp_1)?
Dn

In order to have a finite second moment, the sequence needs to tend to

zero no slower than n~'. Thus, we would like to choose the random variable N such
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that

pn > nE(Z, — Zn,l)2 for all n sufficiently large. (11)

Furthermore, p,, must also satisfy the natural constraint that

)
an =1,
n=1

which suggests p, < n~! for sufficiently large n. Combining with (11), we have
nt > pp > nE(Z, — Z,_1)? (12)

Notice that we have not yet specified a discretization method, thus (12) can typically
be met by appropriately indexing the mesh size. For instance, in the context of solving
PDE numerically, one may choose the mesh size converging to 0 at a super exponential
rate with n (such as e‘"2) and thus E(Z, — Z,_1)? decreases sufficiently fast that
allows quite some flexibility in choosing p,. Thus, constraint (12) alone can always be
satisfied and it is not intrinsic to the problem. It is the combination with the following
constraint that forms the key issue.

We now compute the expected computational cost for generating Z. Let ¢, be the

computational cost for generating Z,, — Z,,_1. Then, the expected cost is

C = ancn, (13)
i=1
In order to have C finite, for n sufficiently large,
pn<nlel (14)

Based on the above calculation, if the estimator Z has a finite variance and a finite

expected computation time, then p, must satisfy both (12) and (14), which suggests
E(Zp — Zn-1)* <n”2c;t (15)

That is, one must be able to construct a coupling between Z, and Z,_; such that
(15) is in place. In Section 3, we provide detailed complexity analysis for the random

elliptic PDE illustrating the challenges and presenting the solution.
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2.3. Function spaces and norms

In this section, we present a list of notation that will be frequently used in later

discussion. Let U C R? be a bounded open set. We define the following spaces of

functions.

c*(0)

= {u:U — R|u is k-time continuously differentiable over U }

That is, u € C*(U) means that all the k-th partial derivatives of u are continuous

over U .

PU) =

LP

loc

v) =
CrW) =

Definition

{u:U— R|/ lu(z)|Pde < oo}
U
{u:U — RJu € LP(K) for any compact subset K C U}

{u : U — RJu is infinitely differentiable with a compact support that is a subset of U}.

1. For u,w € L},.(U) and a multiple index o, we say w is the a-weak

derivative of u, and write D = w if [, uD*¢dz = (—1)led Jy wodz for all ¢ €

C°(U), where D¢ in the above expression denote the usual a-partial derivative of ¢.

If u € CF(U) and |a| < k, then the a-weak derivative and the usual partial derivative

are the same. Therefore, we can write D%¢ for both continuously differentiable and

weakly differentiable functions without ambiguous.

We further define norms || - ||cx gy and || - [[L» () on C*(U) and LP(U) respectively

as follows.

and

lullor@y = sup [D%u(z)], (16)
|| <k,z€U

1/p
) = ( [ 1) ™. (1)

We proceed to the definition of Sobolev space H*(U) and Hf .(U)

H*(U) = {u:U — R|D%u € L*(U) for all multiple index « such that |a| <k}, (18)

and HE (U) = {u:U — R| uly € H*(V) for all V. C U}. For u € H*(U), the norm

|l g+ 0y and semi-norm |u| g (i) are defined as

1/2
llre oy = (30 ID"ulewy) (19)
la|<k
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and

1/2
wlien = (D2 I1D%ulan) - (20)
||=k

We define the space H}(U) as
H3(U) ={ue€ H'(U) : u(x) = 0 for x € OU}. (21)
On the space Hj(U) the norm | - || g1 () and the semi-norm | - |1 () are equivalent.

2.4. Finite element method for partial differential equation

We briefly describe the finite element method for partial differential equations. The
weak solution u € H}(U) to (1) under the Dirichlet boundary condition (2) is defined

through the following variational form
b(u,v) = L(v) for all v € H}(U), (22)
where we define the bilinear and linear forms

b(u,v):/Ua(az)Vu(x)~Vv(z)d9: and L(v):/Uf(z)v(:c)d:r,

and “” is the vector inner product. When the coefficients a and f are sufficiently
smooth, say, infinitely differentiable, the weak solution u becomes a strong solution.
That is, u is the solution of (1). The key step of the finite element method is to
approximate the infinite dimensional space H}(U) by some finite dimensional linear
space V,, = span{¢i,...,¢r,}, where L, is the dimension of V,,. The approximate

solution u,, € V,, is defined through the set of equations
b(un,v) = L(v) for all v € V,,. (23)

Both sides of the above equations are linear in v. Then, (23) is equivalent to b(uy, ¢;) =
L(¢;) for i =1, ..., L,,. We further write u,, = Zf:”i d;¢; as a linear combination of the

basis functions. Then, (23) is equivalent to solving linear equations
L?’I,
> dib(¢s, ¢i) = L() for i =1, ..., L. (24)
j=1

The basis functions ¢1, ..., ¢, are often chosen such that (24) is a sparse linear system.

That is, the order of the number of non-zero b(¢;, ¢;)’s is O(L,,). Such a sparse linear
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system can be solved using an iterative method with a computational cost of the order

O(Ly,log(Ly,)) as L,, — oo. See Chapter 5 of [10] for more details.

Several choices of V,, have been studied for elliptic PDEs. For example, V,, may
consists of all the piecewise linear functions over a triangularization of U. Such a
linear element method has been adopted in [2] and [4] to construct multilevel Monte

Carlo estimators for random elliptic PDEs.

In this paper, our choice V,, is a function space induced by quadratic isoparametric
elements, which is suitable when U has a smooth boundary. The intuitive explanation
of isoparametric elements is given in page 11, and the precise definition will be delayed
to the Appendix C. The advantage of using quadratic isoparametric elements over the
linear elements is twofold. First, the quadratic approximation provides better conver-
gence rate when the solution has a higher order regularity (||u|gspy < o0). Second,
isoparametric triangularization provides a better approximation for the boundary oU,
yielding a better approximation of the solution. For more details of finite element
methods for elliptic PDEs, we refer the readers to the book [3] and the references

therein.

3. Main results

In this section, we present the construction of Z and its complexity analysis. We
use finite element method to solve the PDE numerically and then construct Z,,. To
illustrate the challenge, we start with the complexity analysis of Z based on usual
finite element method with linear basis functions, with which we show that (12) and
(14) cannot be satisfied simultaneously. Thus, Z either has infinite variance or has
infinite expected computational cost. We improve upon this by means of quadratic
approximation under smoothness assumptions on a¢ and f. The estimator Z thus can

be generated in constant time and has a finite variance.

3.1. Finite element method

Piecewise linear basis functions. A popular choice of V,, is the space of piecewise
linear functions defined on a triangularization 7,, of U. In particular, 7, is a partition of

U that is each element of 7, is a triangle partitioning U. The maximum edge length of
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triangles is proportional to 27" and V, is the space of all the piecewise linear functions
over T, that vanish on the boundary OU. The dimension of V,, is L,, = O(Qd”). Detailed
construction of 7,, and piecewise linear basis functions is provided in Appendix C.

Once a set of basis functions has been chosen, the coefficients d;’s are solved ac-
cording to the linear equations (24) and the numerical solution is given by u,(z) =
ZiL:”’l d;¢;(x). For each functional Q, the biased estimator is Z,, = Q(u,,). It is impor-
tant to notice that, for different n, u,, are computed based on the same realizations of
a and f. Thus, Z, and Z,_1 are coupled.

We now proceed to verifying (15) for linear basis functions. The dimension of V,, is
of order L, = O(2%") where d = dim(U). We consider the case when Q is a functional
that involves weak derivatives of u. For instance, Q could be in the form ¢(| - |g1(17))

for some smooth function ¢ and Z = Q(u), where | - |1 (¢ is defined as in (20).

1
mingcy aP(x)

]E(||a||gl([7)) < o0, and E(||f||[£2(U)) < oo for all p > 0, E(Z, — Z,-1)* = O(27?")

According to Proposition 4.2 of [2], under the conditions that E[ ] < o0,
if uw, and u,_1 are computed using the same sample of @ and f. The condition (15)
becomes n2~2("—1) < n~1279|1og 2 "4|=1. A simple calculation yields that the above
inequality holds only if d = 1. Therefore, it is impossible to pick p, such that the
estimator Z has a finite variance and a finite expected computational cost using the
finite element method with linear basis functions if d > 2. The one-dimensional case
is not of great interest given that u can be solved explicitly. To establish (15) for higher

dimensions, we need a faster convergence rate of the PDE numerical solver.

Quadratic isoparametric elements. We improve the accuracy of the finite element
method by means of quadratic isoparametric elements, whose precise definition is given
in Appendix C, under smoothness conditions on a(z) and f(x). Classic results (e.g.
[3, Chapter VI]) show that if the solution u of the PDE is smooth enough and U has a
smooth boundary 9U, then the accuracy of the finite element method can be improved
by means of isoparametric elements. We obtain similar results for random coefficients.
In this paper, we let V,, be defined as in (78) (Appendix C) with a mesh size O(27").
We explain the space V,, intuitively. In general, the construction of V,, consists of two
steps: 1) partition the space U into small and curved triangles. We will refer this

partition as T, whose precise definition is given in Appendix C. 2) For each T € Ty,
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we need to define a linear space of functions over T, denoted by Pp. Then, we put
the spaces Pr for T' € T, together and define V;,, = {v € C(U) : v|py = 0 and v|r €
Pr for T € T,}. Step 1) is usually done by certain mesh generating algorithm and
step 2) is done through isoparametric mapping of a reference element. We provide a

graphical illustration of the construction in the next example.

Example 1. Let U = B(0,1) = {(z,y) : 22 + y*> < 1}. For simplicity, we restrict
our illustration to a subset U’ = B(0,1) N R%. The analysis on U \ U’ can be done
similarly. The left panel of Figure 1 shows a possible choice of the partition when
n = 1. The right panel of Figure 1 shows a refinement of the partition when n = 2. In
this example, if T' € 7,, does not have an edge (possibly curved) lying on the boundary
of U (e.g. black region in Figure 1), then T is a triangle; if an edge of T lies on the
boundary (e.g. gray region in Figure 1), then T has a curved boundary along OU. We
can see that if we only allow a partition using straight triangles, it is not possible to
have U exactly covered due to its curved boundary.

Now we explain how to define a linear space on each T' € T,,. Typically, this is done
by the so-called isoparametric mapping from a reference element. The procedure is as
follows. First, we take the simplex T'= {(z,y) : 2,y > 0,2 +y < 1} to be the reference
element, and define the space P to be the space containing all quadratic functions over
T.

Then, for each T' € 7T,, shown in Figure 1, there is an invertible quadratic function
Fr : T — R? such that T = FT(T) Now, we define a linear space Pr over T as
Pr={v:T = R:v(z) =(Fg'(z)) for some o € P}. Of note, when T is a triangle,
the linear space Pr contains all quadratic functions over T'; when T is curved, then Pr

is induced by, but not necessarily be, the space of quadratic functions.

FIGURE 1: Isoparametric triangularization for Example 1. Left: n = 1; Right: n = 2.
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With the finite dimensional space V,, constructed, we obtain an approximate solution

uy, by solving (23) with V,.

Isoparametric Numerical Integration. The numerical solution u, in (23) re-
quires the evaluation of the integrals b(w,v) = Y cr [ a(z)Vw(z) - Vo(z)dr and
L(v) = Y rer. Jp f(z)v(x)dz. For the evaluation of these integrals we apply quadra-
ture approximation, which approximates the integral in the form of fT ¢(x)dx by
vail wy,r¢(by,r) for some pre-specified weights w;r and points b, for a positive
integer M and 1 <[ < M. The precise choice of w; r and b, 1 are given in Appendix
C. We point out that the choice of w; 7 and b; 7 depends on the isoparametric trian-
gularization only, and is independent with the integrand ¢(-). By setting the function
¢ to be a(x)Vw(x) - Vu(z), and f(z)v(z), we approximate the bilinear form b(w,v)
and linear form L(v) with their numerical approximation, denoted by b(w, v) and L(v),

respectively. Based on the numerical integration, we define ,, such that

by (iiy,v) = L(v), for all v € V. (25)

Error analysis for isoparametric finite element method. In what follows, we
present an upper bound of the convergence rate of ||@, —u| 1 (1), where u is the solution
to (22) and @, is the solution to (25). Define the minimum and maximum of a(x) as
Amin = Ming 7 a(z) and amax = max, g a(z). We make the following assumptions on

the random coeflicients a(z) and f(x).

Al. amin > 0 almost surely and E(1/a?.. ) < oo, for all p € (0, c0).

min

A2. a is almost surely continuously twice differentiable and E(||al| ) < oo for all

p _

c2(U)
p € (0,00).

A3. f € H?*(U) almost surely and E(|| |32 (;;)) < oo for all p € (0, 00).

A4. There exist non-negative constants p’ and r, such that for all wy,ws € Hg(U),

1QGwn) — Qw2)| < g mac{lles % g w5 iy Hlwr = wall 2o,

With the assumptions Al-A4, we are able to construct an unbiased estimator for

wg = E[Q(u)] with both finite variance and finite expected computational time.
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We start with the existence and the uniqueness of the solution. Notice that a(x) is
bounded below by positive random variables an,i, and above by amax. According to

[2], Lemma 2.1., (22) has a unique solution u € H}(U) almost surely satisfying

H”fHLZ(U).

llull gy < (26)

Gmin

The next theorem establishes the convergence rate of the approximate solution ,,

to the exact solution wu.

Theorem 1. Let @, be the solution to (25). For dim(U) < 3 with a 3-time differen-
tiable boundary U, if a(x) € C?(U) and f(x) € H*(U), then we have

max(all ¢y, 1)1 _
Q1 ar2an2 ™). (27)

= dinl 200y = O

min(amin, 1)

The proof of Theorem 1 is given in Appendix A.

3.2. Construction of the unbiased estimator

In this section, we apply the results obtained in Section 3.1 to construct an unbiased
estimator with both finite variance and finite expected computational cost through (9).

We start with providing an upper bound of E[Q(u) — Q(,)]?.

Proposition 1. Under assumptions A1-A4, we have
E[Q(u) — Q(iin)]* = O(rg2™*"), (28)

where u is the solution to (22) and U, be the solution to (25), and kg the Lipschitz

constant appeared in condition A4.

The proof is a direct application of (26), Theorem 1 and A4 and therefore is omitted.
We proceed to the construction of the unbiased estimator Z via (9). Choose P(N =
n) = pp, X 2=* 7 For each n, let @,—1 and 4, be defined as in (25) with respect to

the same a and f. Notice that the computation of 4, requires the values of a and f

only on the vertices of T,,. Then, Z,,_1 and Z,, are given by Z,,_1 = Q(@,—1) and Z,

N

(i, ). With this coupling, according to Proposition 1, we have that E(Z,, — Z,,_1)? <

2E[Q(1i,) — Q(u)]? + QE[Q(ﬂle) — Q(u)]?* = O(27%"). According to equation (10), for
d = dim(U) < 3, we have E(Z?) < 300 274 /2= (4+dn/2 < o0 Furthermore, (25)
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requires solving O(29") sparse linear equations. The computational cost of obtaining

Uy is O(n2%). According to (13), the expected cost of generating a single copy of 7 is

E(C) = puca <3 n2tn . 27 (H0n/2 < o,

n=1 i=1

This guarantees that the unbiased estimator Z has a finite variance and can be gener-

ated in finite expected time.

Sampling of the random coefficients. In some cases, we also need to consider the
computational complexity for simulating a and f in addition to the computational cost
of solving the PDE. For example, if loga(x) is modeled as a Gaussian random field,
then the computational complexity for generating log a(x) over O(29") grid points is
0O(234") if the Cholesky decomposition is adopted. This computational complexity is
of a higher order than that of solving an isoparametric FEM with a grid size 277,
and the corresponding unbiased estimator may not have a finite variance and finite
computational cost at the same time.

If the random fields a and f can be approximated by {as} and {fx} with a relatively
low computational cost, then we can still achieve a similar error bound for the resulting
numerical solver. In the next example, we show a situation where we can construct

such an approximation for a(-).

Example 2. Assume that loga(z) = g(x), and g(z) has the following expansion.
For all z € U, g(z) = > ;29 NWi¢i(x), where Wy, Wo, ... are ii.d. random variables
following the standard normal distribution, {\;} is a sequence of numbers that tend to
0 as | — oo and {¢;} is a sequence of functions over U. To approximate the Gaussian
random field g(x), we could use the truncated field gi(z) = E;ﬂ:o MW (x). The
computational cost for simulating gx(z) over O(29") grid points is of the order O(k x
29m). We can see that if k = k, grows in a speed no faster than O(n2%"), then
the computational complexity for generating g, (z) is much smaller than the cost
for simulating g(x) exactly. The approximation accuracy of gy can be obtained via
standard analysis of g(z) — gx(x) with additional assumptions on the decaying speed

of Ai[|#1]|c2(gy- For more detailed analysis, see, for example, [1].

We omit details of the precise requirement of A; and ¢;(x) and present the following
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results under generic assumptions on a,.

Theorem 2. Define

W, = 22n||a - anHC?(U)-
We make the following additional assumptions on the sequence {a,}.

B1. max, Emin,cy(an(z),1)™P < oo for all p > 0.

B2. max, Ellan |7, 5 < 00 for allp > 0.

()
B3. There exists a constant § > 0 such that max,, EW2 < co.

Bj4. Simulating a, () at the nodes of T,, requires a computational cost of the order

O(n2m).

Let the solution @, be the solution to (25) with a(-) replaced by an(-) in the bilinear
form b,,. Furthermore, let Z,, = Q(uy,) and Z,—1 = Q(un—1) be constructed with the
same sample path w. Then, the unbiased estimator Z constructed via (9) has a finite

variance and a finite computational cost.

Similar to the simulation of a(-), we could approximate the random field f(-) as well.

The analysis is similar and we omit the repetitive details.

4. Simulation Study

4.1. An illustrating example

We start with a simple example for which closed form solution is available and
therefore we are able to check the accuracy of the simulation. Let U = B(0,1), f(z) =
2eWi1tWoritWaza (9 4 Wozy + Waxs) and a(x) = eW2@1tWsz2 where Wy, Wy, W3 are
independent and identically distributed standard normal random variable. In this

example, the solution to (1) is
u(zy, z0) = eV (1 — 22 — 22). (29)

We are interested in the output functional Q(u) = |u|§{1(U) whose expectation is in a

closed form.

Elul?: o) = E[2me*™!] = 2me? ~ 46.4268.
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Let p, = 0.875 x 0.125" and Z,, = Q(u,,) for n > 0. Here we define Zy = 0. Thus, the

estimator according to (9) is

ZN — ZN-1
PN .

We perform Monte Carlo simulation with M = 300000 replications. The averaged

Z = (30)

estimator is 46.5572 with the standard deviation 0.8212. Figure 2 shows the histogram
of samples of Z and log Z.

Histogram Histogram

nnnnnnnnnnnnnnnnn

FIGURE 2: Histogram of Monte Carlo sample of Z and log Z that are defined in Section 4.1.

4.2. Log-normal random field

In this example, we let U = B(0,1), f(x) =1 for all z € B(0,1) and we consider a
more complicated random field a(z). In particular, we let

oo

1 m m

log a(zy,z2) = Z_l z—m(ng_lxl + Wamzy'), (31)
where W1y, Wa, ... are independent and identically distributed standard normal random
variable. It is not hard to verify that a(z1,z2) satisfies Assumptions Al and A2. We

further approximate the field a by
3n

an(z1,z2) = exp{ Z %(ng_laﬂ” + Womay')}, (32)

m=1
and compute the finite element solution based on this approximation. We let 7, =
Q(1,,) as discussed on page 16 and take the same estimator (30) and functional Q as the
previous example. We perform Monte Carlo simulation for M = 300000 replications.
The averaged estimator for the expectation EQ(u) is 0.4608 and the standard deviation
is 0.0004 for the averaged estimator. Figure 3 shows the histogram of the Monte Carlo

sample.
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Histogram

FIGURE 3: Histogram of Monte Carlo sample of Z when log a has a Gaussian covariance.

Appendix A. Proof of the Theorems

In this section, we provide technical proofs of Theorem 1 and Theorem 2. Through-
out the proof we will use x as a generic notation to denote large and not-so-important
constants whose value may vary from place to place. Similarly, we use € as a generic
notation for small positive constants.

Before we start the main proof, we first present a proposition on the higher oder

regularity of the solution u, whose proof is given after the proofs of theorems.

Proposition 2. For dim(U) < 3 with a (k + 1)-time differentiable boundary OU, if
a(x) € CF(U) and f(x) € H*=Y(U) for some positive integer k, then we have
max([aflox gy, 1) 7+

min(amm, 1)+ 55

lull e o) < (1S 10 + el 220 )-

Proof of Theorem 1. We start with a useful lemma, which is essentially Theorem

43.1 in [3] with the constant C' = p—lelow being explicit. We omit the details of

min(amin,1)

the proof of this lemma.

Lemma 1.

”aHC(U)

lu — tin || g1 () < ﬁmT% < {lull sy + lallcz @ lull 3wy + 1l m2y } -

(33)
Combining the above display with Proposition 2 with k = 2, we have
. —2n lalié=o)
lu = tn ||z @y =0 | 2 K(G,Z)m(nfﬂmw) + llullz2@y) | » (34)
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ﬁ_'_ﬂk
maX(HaHCk((]),l) 2 T2V -1

where k(a, k) = e That is,

min(amin,1) 2 2

-z max(allca o). 1)

min(amin, 1)19

lu — T || g1y = O < (SN &2y + |u||L2(U))> . (35)

Thanks to (26), the above display can be further bounded by

Il fllz2

i Y
lllzw) < mmr

We complete the proof by combining the above expression and (35). d
Proof of Theorem 2. We start with the inequality,
[tn — ull g ) < tn = Gnllm @) + l8n = ullgr@)- (36)

The second term on the right-hand side of the above inequality is already bounded
from above by Theorem 1. That is,

o—2n max(|[al|cz2 7y, 1)
min(@min, 1)1

12
1t — ull gy < llun — Gnll g1 @) + O( \flle2@y)-  (37)

We proceed to an upper bound of the first term. Let b, be the bilinear form with a
being replaced by a,, in the bilinear form b,. Note that @, is obtained by replacing bn,
by b, in (25), we have

by (i, W) = L (w) = by, (i, w) (38)

for all w € V,,. Subtracting by, (tn,w) on both sides, we arrive at

(bn - bn)(ﬂnaw) = Bn(ﬂn - ﬁn7’LU), (39)

where we write (b, — b,)(v,w) = by(v,w) — by (v,w). Set w = i, — @, in the above
display, we arrive at

(bn - bn)(ﬂ/n; an - 'U/n) = Bn(’&n - a’ru’l]n - an) (40)

According to the same arguments as those on [3, page 258-260], the right-hand side of
the above display is bounded from below by

by, (Tl — T, Ty — Un) > Eunin|in, — T || F11 1) (41)

On the other hand, we have

|(Bn - En)(am Up — an)l < ||a - an”C(U)Han - anHHl(U)Hun”Hl(U)' (42)
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Combining (40), (41) and (42), we arrive at

a — Qp 7)1 tUn Un it
[ leaylanllm@ _\omznllEnlliw) (43)

Amin Gmin

||ﬂn - anHHl(U) <k

Because a,, satisfies Assumptions A1-A2, we can apply Theorem 1 to the solution @,
and arrive at

max([lanlca gy, 1)12
min(mingcy (a,(x)),1)

Combining (37), (43) and (44), we arrive at

il 0y = O( Tl w)- (44)

12 12

max(||an |2 (7), 1)
min(minazEU(a’n (.T)), 1)11 min(a'mim 1)

max(|lallc2 gy, 1)
min(amin, 1)1

[t =l g1y = O ({ Wn}||f||H2(U)22"> :
(45)
The rest of the proof is similar to the analysis under Proposition 1. We omit the

details. O

For the rest of the section, we provide the proof for Proposition 2. Proposition 2 is
similar to Theorem 5 in Chapter 6.3 of [7] but we provide explicitly the dependence of

constants on a and f.

Proof of Proposition 2. We prove Proposition 2 by proving the following result for

the weak solution w € H}(U) to a more general PDE,

-V -(AVw) = finU
w = 0ondU,

(46)

where A(z) = (Aij(2))1<i,j<d i @ symmetric positive definite matrix function in the

sense that there exist A, > 0 satisfying
T A(2)€ > Apinle)? (47)

for all z € U and £ € R%. Assume that A4;;(z) € C*(U) for all i,j = 1,...,d. Then, it

is sufficient to show that

ol @) < e (AR (I Ly + lollzan), (48)

ﬁ+2k—1
max(”A”Ck(U)J) 2 T2

where k,.(A, k) =k

a2 A love) = maxicig<alldiller o).
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Let B%(0,7) denote the open ball {z : |z| < r} and R = {z € R : z4 > 0}. We
will first prove that if U = B%(0,7) N RY and V = B°(0,¢) N R%, then for all ¢ and r

such that and 0 <t < r,
m 2
max(||Allor gy, 1) "2 DL

. (m+1)2 | 7
min(Apin, 1)~ 2z T2m+D)

leollsmsav) < framst (I + Iewllzzen )
(49)
where K, ;41 is a constant depending only on r, ¢, and m + 1. The following lemma

establish (49) for m = 0.

Lemma 2. (Boundary HZ2-regularity.) Assume OU is twice differentiable and A(z)
satisfies (47). Assume that A;j(z) € CY(U) for all i,j = 1,...,d. Suppose furthermore
w € HE(U) is a weak solution to the elliptic PDE with boundary condition (46). Then
w € H*(U) and

max(||Allcr gy, 1)*
el ) < m—o 3 Q= (Wl + el )

We establish (49) by induction. Suppose for some m

m2 9
max(| 4]l ov (o), 1) 3!
]l ) < Feom -(A()Mwm (s + w2, (50)
min{ Amin, 2 2

where

t+1
W = B°0,s) N RL, andSZ%. (51)

Since w is a weak solution to (46), it satisfies the integration equation
/ Vw(z)T A(z)Vo(z)de = / f(x)v(z)dz, for all v € HY(U). (52)
D D

Let a« = (aq,...,aq) be a multiple index with such that ay = 0 and |a] = m. We
consider the multiple weak derivative w = D®w and investigate the PDE that w
satisfies. For any © € C°(W), where C2°(W) is the space of infinitely differentiable
functions that have compact support in W, we plug v = (—1)/*/ D% into (52). With

some calculations, we have

/ (Vo ()T Ax) V() = / Fla)o(x)d,
w w
where

f=Df— NV —v. (s Fuw)|.
F=Dof %az,/;#a(ﬂ){ V- (D PAVD )} (53)
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Consequently, w is a weak solution to the PDE
-V - (AVw) = f for z in W. (54)

Furthermore, we have the boundary condition @w(z) = 0 for x € OW N {x4 = 0}. By

the induction assumption (50) and (53), we have

m—2+%m—1

- max([| Al gx ), 1)
I fllzzowy < N fllzzm @y +hesm . — | A| C"“rl(l_f)(Hf”Hm*l(U)'i‘Hw”Lz(U))-
min(Apin, 1)z T2™
(55)
According to the definition of w, we have
@]l 2wy < llwllzm ow).- (56)
Applying Lemma 2 to @ with (55) and (56), we have
HDawHHQ(V)
m2 9
max([|Al gy, 1)* max([| Al|or gy, 1) T2m 7t
<K am . All o 1 ( . )
S i A )T min(Agg 1) i e @ e el
(57)
Because « is an arbitrary multi-index such that ag = 0, and |o| = m, (57) implies

that D%w € L?(W) for any multiple index B such that |3| < m + 2 and B3 = 0,1, 2.
We now extend this result to multiple index § whose last component is greater than

2. Suppose for all 8 such that |3] < m +2 and 84 < j , we have

ID%wl a2y < 69 (I lm e + Il 2@, (58)

where nﬁj ) is a constant depending on A, m and j that we are going to determine later.

We establish the relationship between £ and k9. For any v that is a multiple
index such that |y| = m + 2 and 74 = j + 1, we use (58) to develop an upper bound
for || DYw||g2(vy. In particular, let 8 = (y1,..,74-1,5 — 1). According to the remark

(ii) after Theorem 1 of Chapter 6.3 in [7], we have that
—V - (AV(DPw)) = f1 in W a.e, (59)

where

t_phf_ P\ _ v . (DF5 AV Dow)|.
ft=Dff 6S§ﬁ(5)[ V- (DS AVD )} (60)
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Notice that

—V - (AV(DPw)) = —AgqD"w + sum of terms involves at most j times weak derivatives of w

with respect to x4 and at most m + 2 times derivatives in total.

According to (58), (59), (60), and the above display, we have

1
107wl < o —s { Mm@y (Il + el e ) + 1 o }-
Therefore,
1D7wllzawy < 9D (I lim oy + lollaw))
where
R Hg_J)maX(IIAI omri(@)) 1) (61)

min(Amin, 1)

The above expression provides a relationship for k9T and kY . According to (57),

m2 9,
max([| Al gy, 1)* max([|Al|ox gy, 1) 5 T2

: max([| Al gm+1 (@), 1)-

t, :
" o min(Amin, 1)* min(Amin, 1)%+%m

Using (61) and the above initial value for the iteration, we have

H$m+2)
m2 9,
o max( Aoy, 1 max(lAllos ey, DF i
—NMt.s,m : “3
min(Ampin, 1)* min( Ay, 1)% 7
max(||A||Cm+1 U 31 m
xmaX(||A||cm+1(U)’1){ min( Ay, (1)) } '
Consequently,
m?2 | 11
max (|| Al o). >T*7"’+“
oy < fami ) (1l + sy
mm( min ) Tam

Using induction, we complete the proof of (48) for the case where U is a half ball.
Now we extend the result to the case that U has a C**! boundary OU. We first prove

the theorem locally for any point z° € dU. Because U is (k + 1)-time differentiable,

with possibly relabeling, the coordinates of = there exist a function v : R! — R and

r > 0 such that,

B, r)nU = {x € B(z°7r): 24 >v(x1, ..., z4-1)}-
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Let ® = (®y,...,®4)T : R — R be a function such that
O;i(z)=wx;fori=1,....d—1and ®y4(z) = xg — y(x1, .., Tag—1)-
Let y = ®(z) and choose s > 0 sufficiently small such that
U* = B%0,s) N {ya >0} € ®(U N B(2",7)).
Furthermore, we let V* = B°(0, %) N {yq > 0} and set

w*(y) = w(z) = w(®(y)).

With some calculation, we have that w* is a weak solution to the PDE

V- (4 )V () = ().
where A*(y) = J(y)A(® 1(y))JT (y) and J(y) is the Jacobian matrix for ® with
Tis(y) = 252y, and f5(y) = f(@ ' (y)). In addition, w* € H'(U*) and
w*(y) = 0 for y € U*N{ya = 0}. It is easy to check A* is symmetric and Aj; € C*(U)
for all 1 < 4,j < d. Furthermore, according to the definition of J and &, all the
eigenvalues of J(y) are 1 and thus (TA*(y)¢ > Apin|JT (W)E? > cAminlé]? for all

¢ € R%. By substituting U, V, A, f with U*, V*, A* and f* in (49) we have

lw* |2 vey < &-(A,k)(HW*HL?(U*) + Hf*||Hk—1(U*))-

According to the definitions of w* and f*, the above display implies

lwll g2@-1(v)) < ﬁr(Aa/f)(HwHLz(U) + ”fHHk'*l(U))‘

Because U is bounded, dU is compact and thus can be covered by finitely many sets
=1 (V), .., @7 1(V}) that are constructed similarly as ®~1(V*). We finish the proof
by combining the result for points around 90U and the following Lemma 3 for interior

points.

Lemma 3. (Higher order interior regularity.) Under the setting of Lemma 2, we
assume that OU is C**1 A;;(z) € CF(U) for all i,j = 1,...,d, and f € H*Y(U),
and that w € HY(U) is one of the weak solutions to the PDE (46) without boundary

condition. Then, w € HFTH(U). For each open set V U

loc

||wHH’C+1(V) < Ki(Avk)<”fHH’f*1(U) + ||'LUHL2(U)),

max([| All gk gy,1)%F

min(Amin,1)2k

where rk;(A, k) =

K, and Kk is a constant depending on V.
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Appendix B. Proof of supporting lemmas

In this section, we provide the proofs for lemmas that are necessary for the proof of
Proposition 2. We start with a useful lemma showing w € HZ (U) which will be used

in the proof of Lemma 2

Lemma 4. (Interior H2-regularity.) Under the setting of Lemma 2, we further assume
that A;j(z) € CH(U) for alli,j = 1,...,d, and f € L*(U), and that w € H*(U) is one
of the weak solutions to the PDE (46) without boundary condition. Then, w € H2 (U).

loc

For each open subset V g U, there exist k depending on V' such that

max (|| A cr ), 1)?
min(Amin, 1)?

el vy < (171220 + el 2w,

where we define the norm ||Allc1 gy = maxi<i j<d | Aijllcr oy -

Proof of Lemma 4. Let h be a real number whose absolute value is sufficiently small,
we define the difference quotient operator
w(z + heg) —w(x)
h )
where ey, is the kth unit vector in R?. According to Theorem 3 in Chapter 5.8 of [7], if

Diw(z) =

there exist a positive constant  such that || D}'wl| () < & for all h, then g—;’; € L*(U)

and ||597“;|| r2w) < . We use this theorem and seek for an upper bound of

/V | U Vw|?dz, (62)

for k =1,...,d for the rest of the proof.
We derive a bound of (62) by plugging an appropriate v in (52). Let W be an open
set such that V-G W G U. We select a smooth function ¢ such that

(=1onV, ¢ =0o0n W€, and 0 < (¢ < 1.

We plug
v=—D;"(¢(*Djw)

into (52), and have

—/ VuT AV[D (P Diw)|dr = —/ D (2 Dw)da. (63)
D D
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We give a lower bound of the left-hand side of (63) and an upper bound of the right-
hand. We use two basic formulas that are similar to integration by part and derivative
of product respectively. For any functions wq,ws € L?(U), such that we(z) = 0 if

dist(x,0U) < h, we have
—h _ h h _ . hph h
/ w1 Dy "wodr = —/ Dipwiwadx and Dy (wywe) = wi Diwse + weDiwy,
D D

where we define w (z) = wy(z + hey). Similarly, we define the matrix function A" =

A(x + hey). Applying the above formulas to the left hand side of (63), we have

- / VT AV[D " (¢ Dlw)]da
D

/ DY (VwT AV (¢ Diw)dx
D

/ DH VW) AP (P Dlw) + VT DEAV(¢? Dlw)da
D

= / ¢2DvwT AP D Vwda
D

Ji
+ / 20(DIVwT APV DIw + 2 (VwT DFAVE) Diw + (2Vw! D ADPVwdz .
D

Jo

J1 in the above expression has a lower bound

[an

Jl 2 Amin/ <2|Dsz|2d{b
D
due to the positively definitiveness of A(z). |J2| is bounded above by
2] < Al Alle o /D CIDEVw]| D] + |Vl Dj] + ¢Vl DEVwldz). — (64)

The expression (64) can be further bounded by

1Al e @)

Amin
|J2\§—2 /(2|DZ’Vw|2dx+/¢||A||Cl(U) x (14 -
D min

)/ Vuwl? + |Dlw|dz.
w
(65)

thanks to Cauchy-Schwarz inequality. According to Theorem 3 in Chapter 5.8 of [7],

/ | DRw|?dx < n/ |Vw|?dz. (66)
w w

Therefore, (65) is bounded above by

Amin H‘4||C'1 U
o] < T/DC2|DZVw|2dm—i—/-@QHAHCl(U) x (1+T())/W|Vw|2dx. (67)
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Combining (64) and (67), we have
LHS of (63)
=J1 + Jo
>J1 — | J2]
>4 [ vl - Al x (41 4ED) [ [wul

We proceed to an upper bound of the right hand side of (63). According to (66), we

have

/D D (¢2 D) Pdr

< [ VE@Dhw)ds
D

< n/ 4| DRw[*IV |2 ¢ + DV w|?dx
w

< HS/ \Vw|* + ¢ DEVw|?da. (69)
w

Apply Cauchy’s inequality to the right-hand side of (63), we have

/|f| dot “““/ DM (D)) 2da.
(70)

2k3

RHS of (63) /|f||D (¢*Djtw)ld < —

We combine (69) and (70),

Amin Amin 2 3
RHS of (63) < / C|DIVw|?ds + —/ Vw|dz + —
1 Jw 1 Jw A

min

/ f2dz. (71)
w

Combining (68) and (71) we have

||"4||C1 +Am1n
/|f\ da:+{1+4n2||A||C1(U) (U) /|Vw|2dx.

mm

/ C|DpVw|?dr <

2
Amln

Therefore,

max(||A 1 B
/D§2|D,}3Vw|2dx§ (Al (U) / Vi da:+/ |Vw| (73)

mln min; 1

Now we give an upper bound of [, |Vw| by taking v = C?w in (52), where we choose
6 to be a smooth function such that 5 =1 on W and C~ = 0 on U°. Using similar
arguments as that for (73), we have

ma: A 1 s
/ Vot < p2xUAllex U> / /] dx+/ Vul?) (74)
w

min(Amin, 1
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(73) and (74) together give

21 h 2 (HAHCl(U)7 / 2
D dr <k d 7
[ pivufis < h R E O [ 1R 4 ol (75)
We complete our proof by combining (75) for all k =1, ...,d. O

Proof of Lemma 2. We first consider a special case when U is a half ball
d
U= B%0,1)NRYL.
Let V = B%(0, 3) N R4, and select a smooth function ¢ such that
1
¢=1lon B(0,5).¢=00nB(0,1)°, and 0<( < 1.

For k=1,...,d — 1, we plug

v =D "(*Dyw)
into (52). Using the same arguments for deriving (72) as in the proof for Lemma 4, we
obtain that

max ([ Allcr @
mln(Amm,

/V|D,’;W|2dxg / 2 + [V 2da.

The above display holds for arbitrary h, so we have

24 maX(HAHCl(U / 2 2
Z /|81:18xj| s A min(Amin, 1) FI7+ [Vl de. (76)

i,j=1,i4+7<2d

We proceed to an upper bound for

/| 0w |2
% 3xd8zd

According to the remark (ii) after Theorem 1 in Chapter 6.3 of [7], with the interior

regularity obtained by Lemma 4, w solves (46) almost everywhere in U. Consequently,
d

O%w
A = - A;
dd 0xq0x4 Z J 89518%

i,j=1,i+j<2d

0A;; ow
ZZ_ Ox; Ox; —fae

Note that Agq > Amin, so the above display implies that

82w 1Al o d 82w
| | < O3

Ora0rg =" A 9,01 '*'V“’H'f')

i,j=1,i+j<2d



Unbiased Sampling of Random Elliptic Partial Differential Equations 29

Combining the above display with (76), we have

max(||All o1 (g, 1)
min(Amin, 1)?

leollzvy < (N9l z20) + 1220 )

According to (74), the above display implies

max([[4] g, 1)*
ol < =g g (lellzzey + 12w ).

Similar to the proof for Proposition 2, this result can be extended to the case where U

has a twice differentiable boundary. We omit the details. O

Proof of Lemma 3. We use induction to prove Lemma 3. When k = 1, Lemma 4
gives
lwllzvy < w4 D) (1 2@y + lollzaw))-

Suppose for k =1, ...,m, Lemma 3 holds. We intend to prove that for k = m + 1,

lwlmez (V) < i A+ 1) (1 L) + Il 2@)-

By induction assumption, we have w € H ' (U) and for any W such that V.C W C U

loc

llwl| grm+1 ) < kil A, m)(”fHHm*l(U) + Hw||L2(U))- (77)

Denote by a = (ay, .., ag)” a multiple index with || = a1 +... +ag = m. With similar
arguments as for (54), we have that @ = D%w is a weak solution to the PDE (54)

without boundary condition. Similar to the derivation for (57), w € H™*2(V) and

il sy < il A, i Ay m) max( All e oy, 1) (1 Lo + el

We complete the proof by induction. O

Appendix C. Isoparametric finite element method

In this section, we present the precise definition of the finite element method being

used. For more details, see [3] and the references therein.

Finite element triplet. The triplet (T, P,Y) is called an element if T is a Lipschitz
domain in R?; P is a space of functions over T with a finite dimension M; and ¥ is a
set of linear forms 7y, ...,y with the following P-unisolvent property: given any real

numbers aq, ..., apr, there exists a unique p € P such that n;(p) = a;, 1 <i < M.
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Degree of freedom. By the definition of P-unisolvent, there exists pi,...,pp € P
such that n;(p;) = d;; for 1 < ¢, < M. Consequently, for all p € P, the following
holds:

Then, 7y, ...,mp are called the degree of freedom of the finite element and p1, ..., ppr

are called the basis functions of P.

Lagrange element. If there exists aq,..,ap such that 7;(p) = p(a;) for all 1 <
1 < M, then the finite element is called a Lagrange finite element. In other words, if
(T, P,X) is a Lagrange finite element and p € P, then p is completely determined by its
value at the nodes aq, ...,aps. Throughout this paper, we will only consider Lagrange

elements.

Affine-equivalence. Let (T, P,{p(a;);1 < i < M}) and (T, P, {p(a;);1 < i < M})
be two Lagrange finite elements. They are called affine-equivalent if there exists an
invertible linear operator By : T'— T and by € R? such that (i) Fp : T — T, Fp(i) =
Bri + by, (i) a; = Fr(d;),1 <4 < M, and (iii) pi(z) = p;(Fr'(z)),1 <i < M. The
mapping Fr is called affine mapping.

Isoparametric equivalent elements. A Lagrange finite element (T, P, {p(a;);1 <
i < MY}) is called isoparametric equivalent to (T, P, {p(a;); 1 < i < M}) if there exists
an invertible mapping F : & € T — F(&) = (Fy(&))%, such that F; e P, 1 <i < M
and (i) T = F(T), (ii) P = {p = poF~';p € P}, and (iii) a; = F(d;) for 1 <i < M. In

particular, when F' is a linear mapping, these two finite elements are affine equivalent.

d-simplex. The set {(z1,..,2q) : Z?:l x; = Lz; > 0,0 = 1,..,d} is called a d-
simplex. When d = 1, 2, 3, the d-simplex is a line segment, triangle, and a tetrahedron

respectively.

Isoparametric family and reference element Consider a class of Lagrange finite
elements indexed by T, F = {(T,Pr,{pr(a;r);1 < i < M})}. It is called an
isoparametric family if there exists a finite element (', P, {p(a;); 1 < i < M}) such that
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all (T, Pr, {pr(a;r);1 <i< M}) € F is isoparametric-equivalent to (T, P, {p(a;); 1 <
i < MY}). The finite element (7', P, {p(a;);1 < i < M}) is called the reference element.
For the simplicity of notation, we will sometime omit the index 7" in Pr and a; 7 and

write the element as (T, P, {p(a;);1 <i < M}) later.

Choice of the reference element. Throughout this paper, we consider the refer-
ence element 7' to be the d-simplex. In addition, the space P is chosen to be the space
of quadratic polynomials over T. The dimension of P is dim(P) = @ +d. The
degree of freedom is chosen as follows: (i) a; is the vector with the i-th entry being 1
and the other entries being 0, and (ii) @;; = %(a; + @;) is the mid point of @; and a;

for 1 <id,5 <d.

Triangularization of a domain. With the reference element specified, one can
generate a family of finite elements that are isoparametric-equivalent to the reference
element and form a partition of a domain of interest. If a partition is not possible, one
may choose to partition the domain approximately. We elaborate on the requirement
on the partition.

If a domain is a polygon, one can define a triangularization based on affine-equivalent
elements only. However, when the domain U is curved with a smooth boundary, it is
not possible to partition U into triangles. Indeed, if affine family with a mesh size
maxyer, diam(7T) = O(27™) is used to approximately cover the space U, that is, only
straight triangle is in use, then the error rate of the finite element method |[u, —u|| g1 (1)
is known to be at most O(273/2"), even with quadratic basis functions. See [3, page 268]
for more details. In this case, isoparametric triangularization can be used to ensure the
convergence rate of [|u, —ul| g1 vy = O(272"), when a and f are deterministic functions
with sufficient smoothness. The precise definition of an isoparametric triangularization
of a domain U is given as follows. Let {(T,Pr,Xr) : T € T,} be a family of finite
elements that are isoparametric-equivalent to the reference element (7', P, {p(as),i =

1,..., M}) with maxrper, diam(7T) = O(27™) satisfying the following requirements.

(1) U = Uper,T;
(2) For any T € 7, the corresponding degree of freedom a;, a;; is either inside the

domain U or on the boundary oU for all 1 <i,j < M.
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(3) For T, T" € Tp, T # T, int(T) Nint(T') = O, where int(T) denote the interior of
the triangle T’;

(4) T #T but TNT' # 0, then T NT’ is either a point or a common edge of T
and T".

Here, the edges and vertices of an isoparametric element is the image of the corre-
sponding isoparametric mapping of the edges and vertices of the reference element,

respectively.

Remark 1. Among the requirement (1)-(4), (2)-(4) are standard assumptions and
can be satisfied by many applications of interest. Assumption (1) requires that the
domain U is covered exactly by the isoparametric elements, which can be satisfied
when the boundary OU is piecewise quadratic. It is also possible, but may require
more tedious analysis, to extend our result to the case where QU is smooth but not
piecewise quadratic. We omit the details for the simplicity of the presentation. For

the analysis of such a case when a and f are deterministic, see [3, Chapter VI].

Regular isoparametric family. Define

hy = diam(T) and pr = sup{diam(S) : S is a ball in R? and S C T’}
for each T € T,. The the isoparametric family {(T, P,X),T € T,} is called regular if
it satisfies the following two conditions.

(1) There exists a constant o > 0 such that for all n and all T' C Ty,
pr = ohr.

(2) For each T € T, let a;; = 3(a; + a;) for all 1 < i,j < d and a;,a; being the
vertices of T'. We assume
laij — aill = O(27")
uniformly for all T € T,,.
Throughout the paper, we will only consider regular isoparametric family. In addition,
we will assume that the inner elements are affine elements and only the boundary

elements are other isoparametric elements. That is, for a finite element (7', P, ¥) that

is not on the boundary of the domain, T is a triangle (tetrahedron) for d = 2 (d = 3).
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The function space V,,. Based on a regular isoparametric family {(T, P,X),T € T,}

defined above, we are able to state the definition of the space V,, as below,

Vi = {v € C(U) : v|r € Pr for each T € T,, and v|sp = 0}. (78)

Isoparametric numerical integral. For isoparametric elements, the numerical in-
tegral is done by first performing quadrature approximation over the reference element,
and then transforming it to the isoparametric family. We first describe the integral
approximation over the reference element 7' = {(z1,..,xq) : 2y > O,Z?Zl x <1;1<
1 < d}. Typically, a quadrature scheme for numerical integration is described in the
following form. For a function ¢ : 7' — R, the integral J7 ¢(#)d is approximated by
Zf\il wm@(z}l) for some weights @; > 0, points by, { = 1, ..., M, and a positive integer M.
In order to control the numerical error of the finite element method, we assumes that
wy’s and by’s are exact for quadratic functions. That is, if qg is a quadratic function
over T, then J7 b(#)di = Zl]\il wp(b). The choice of such a quadrature scheme
is not unique. For example, a popular choice for d = 2 is M = 3, by = (0.5,0),
by = (0,0.5), by = (0.5,0.5), w1 = wy = w3 = 5. We proceed to the numerical
integration over an isoparametric element T" with an isoparametric mapping Frp. The
standard approximation for the integral in the form [. ¢(z)dz is based on the change
of variable, where the weights are defined as w;r = le(FT)(lA)LT), b= FT(BZ), and

J(Fr) denotes the Jacobian of the mapping Fr.
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