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Partial differential equations with random inputs have become
popular models to characterize physical systems with uncertainty
coming from imprecise measurement and intrinsic randomness. In
this paper, we perform asymptotic rare-event analysis for such ellip-
tic PDEs with random inputs. In particular, we consider the asymp-
totic regime that the noise level converges to zero suggesting that the
system uncertainty is low, but does exist. We develop sharp approx-
imations of the probability of a large class of rare events.

1. Introduction. The study of rare events due to system uncertainty,
for example the failure of materials due to intrinsic randomness, is crucial
and yet challenging. While those events do not often occur, they lead to
catastrophic consequences. Therefore it is important to estimate the prob-
abilities of such events and to characterize those events which help finding
interventions to prevent them from happening. In this paper, we consider
the following classical continuum mechanical model in the form of a linear
elliptic partial differential equation (PDE) defined on a domain U ⊂ Rd,

(1) −∇ · (a(x)∇u(x)) = f(x),

subject to certain boundary conditions that will be specified in the sequel.
The solution u to the above equation describes the deformation of a piece
of elastic material under the external force f . The function a(x) is known
as the elasticity determined by the property of the specific material and
it is strictly positive. Instead of assuming that a is deterministic, we are
interested in the situations when the tensor a contains randomness. The
randomness is introduced to incorporate the uncertainties of simple elastic
materials at the macroscopic level or heterogeneity in the microstructures
of complex materials. Under this setting, the solution u(x) (as a function of
a(x)) is also a stochastic process whose law is determined by that of a(x).
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Besides material mechanics, the elliptic PDE (1) arises also in many other
fields of applications, such as hydrogeology and porous medium. The tensor
a(x) carries different names such as conductivity and permeability. It is rec-
ognized that the modeling of the random field a(x) is of primal importance
for the analysis. In this paper, we consider the following stylized model

(2) a(x) = a0(x)e−σξ(x) x ∈ U,

where ξ(x) is a Gaussian random field defined on U and a0(x) is a deter-
ministic function. The scalar σ > 0 is a parameter indexing the noise level.
Many studies by practitioners, e.g., [Freeze, 1975, p.728-729] and [Charbe-
neau, 2000, p. 40], have shown that the log-normal distribution provides a
good fit to the empirical data. Hence, the log-normal assumption is well
justified in applications and is used in mathematical analysis and numerical
computation of the random PDE (1). In our paper, we follow this convention
of log-normal assumption for the rare-event analysis.

In this work, we consider the small noise asymptotic regime that σ tends
to zero. Yet, even small noise can lead to a drastic difference of the PDE
solution from that of the deterministic case when the noise level is zero. Our
results characterize such rare events, more precisely, the deviation of the
solution of the random elliptic PDE in presence of small noise. In particular,
we focus on the deviation from the deterministic solution as the uncertainty
level goes to 0. Let H be a mapping from C(Ū) to R. Of primary interest is

ω(σ) = P{H(u) > H(u0) + bσ} as σ → 0.

where u is the solution to equation (1) and u0 is the solution when the
noise level is zero, i.e., a(x) = a0(x). The level bσ will be sent to zero as
the noise level σ goes to zero, which will be specified in the sequel. The
main contribution of this paper is to derive sharp closed-form asymptotic
approximations of ω(σ) as σ → 0. To the authors best knowledge, this is the
first rigorous asymptotic analysis of random elliptic PDE for d > 1.

Given that H(u) is a (complicated) functional of the input Gaussian pro-
cess ξ(x), the analysis of the tail probability ω(σ) links naturally to the
rare-event analysis of Gaussian random field. The study of the extremes of
Gaussian random fields focuses mostly on the tail probabilities of the supre-
mum of the field. The results contain general bounds on P (max ξ(x) > b)
as well as sharp asymptotic approximations as b → ∞. A partial literature
contains [Landau and Shepp, 1970, Marcus and Shepp, 1970, Sudakov and
Tsirelson, 1974, Borell, 1975, Borell, 2003, Ledoux and Talagrand, 1991, Ta-
lagrand, 1996, Berman, 1985]. Several methods have been introduced to
obtain bounds and asymptotic approximations. A general upper bound for



RANDOM ELLIPTIC PDE WITH SMALL NOISE 3

the tail of max ξ(x) is developed in [Borell, 1975, Tsirelson et al., 1976],
which is known as the Borel–TIS inequality. For asymptotic results, there
are several methods, such as the double sum method ([Piterbarg, 1996]) , the
Euler–Poincaré characteristics of the excursion set approximation ([Adler,
1981, Taylor et al., 2005, Adler and Taylor, 2007, Taylor and Adler, 2003]),
the tube method ([Sun, 1993]), and the Rice method ([Azais and Wschebor,
2008, Azais and Wschebor, 2009]). Recently, the exact tail approximation
of integrals of exponential functions of Gaussian random fields is developed
by [Liu, 2012, Liu and Xu, 2012]. Efficient computations via importance
sampling have been developed by [Adler et al., 2008, Adler et al., 2012]. For
the analysis of the tail probabilities of lognormal random fields with small
noise, refer to the recent work in [Li et al., 2016].

There are also existing work in the context of PDE with random coef-
ficients. [Liu and Zhou, 2013, Liu and Zhou, 2014] study the asymptotic
behavior of one-dimensional (d=1) elliptic PDE. [Liu et al., 2015] presents
the corresponding rare-event simulation algorithms. The main difference be-
tween the cases d = 1 and d > 1 is that u(x) can be written analytically
as a function of a(x) for d = 1 and there is no closed-form solution of u(x)
for d > 1. Furthermore, [Xu et al., 2014] presents asymptotic analysis for
stochastic KdV equation. Recently, [Berglund et al., 2017] presents analy-
sis on an Eyring-Kramers law for an Allen-Cahn equation driven by weak
space-time white noise when d = 2. The recent book [Armstrong et al.,
2017] discusses stochastic homogenization of elliptic operators with random
coefficients. In particular, Theorem 2.15 of [Armstrong et al., 2017] could be
interpreted as a large deviation estimate, and Theorem 5.24 of [Armstrong
et al., 2017] presents a central limit theory type of result.

The rest of the paper is organized as follows. Section 2 presents the prob-
lem setup and the main asymptotic results. The technical proofs are given
in Section 3.

2. Main results.

2.1. The problem setup. We consider the following elliptic PDE. Let U ⊂
Rd be an open, bounded domain with a smooth boundary. The differential
equation concerning u : U → R with Dirichlet boundary condition is given
by

(3)

{
−∇ · (a(x)∇u(x)) = f(x) for x ∈ U ;

u(x) = 0 for x ∈ ∂U.

In the context of elastic mechanics, u characterizes the material deformation
due to external force f and a : U → R gives the stiffness of the material. We
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assume that the material is clamped to a frame on the boundary ∂U and
hence the Dirichlet boundary condition u(∂U) = 0 in (3) is assumed. The
external force f is sufficiently smooth and bounded, that is, there exists a
constant c ∈ R such that

(4) |f(x)| ≤ c, ∀x ∈ U.

We study the behavior of the material under the influence of internal ran-
domness, which may be the result of manufacturing processing or the un-
certainty of the material properties at the microscopic level. We adopt a
probabilistic viewpoint of the complexity and heterogeneity inherent in the
material and view the coefficient a(x) as a random field. The process a(x)
is physically restricted to be positive and is modeled as a lognormal random
field given as in (2). Furthermore, the Gaussian random function ξ has mean
zero and its covariance function is denoted by

(5) C(x, y) = E{ξ(x)ξ(y)},

which does not depend on σ.
The solution u(x) depends implicitly on a(x) through equation (3) and

further ξ(x) via a logarithmic change of variable. It is useful to define a
mapping from the coefficient ξ to the solution u

J[ξ] , uξ

where uξ is the solution to equation (3) with a(x) = a0(x)e−ξ(x). This map-
ping depends only on the deterministic function a0, the external force f , the
domain U , and the boundary condition. In this paper, we are interested in
the asymptotic regime that the amplitude of the uncertainty level σ tends to
zero. Then the failure problem concerns the random solution uσξ = J(σξ) by
noting the definition of J above. As σ → 0, the process a(x) tends to its lim-
iting field a0(x). Let u0(x) be the corresponding limiting solution satisfying
equation

(6)

{
−∇ · (a0(x)∇u0(x)) = f(x) for x ∈ U ;

u0(x) = 0 for x ∈ ∂U.

Then, under mild conditions, we have u(x)→ u0(x) as σ → 0.
We provide asymptotic analysis of the event that u deviates from its lim-

iting solution u0. Let H be a functional from C(Ū) to R characterizing the
deviation. For instance H(u) =

∫
U (u(x)− u0(x)) dx. Let G be the composi-

tion of J and H, that is,

(7) G(ξ) = H(J[ξ]).
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To simplify notation, we always choose H such that G(0) = H(u0) = 0. We
are interested the tail probability of G(σξ) as σ → 0. In particular, we derive
asymptotic approximations for

(8) ω(σ) = P{G(σξ) > b} as σ → 0,

where the deviation level is chosen to be b = κσα for some fixed α ∈ (0, 1)
and κ > 0. In particular, the deviation level b also goes to 0 as the uncertainty
vanishes. Without loss of generality, we fix κ = 1 and b = σα in the following
discussion, as κ can be absorbed in the functional G.

2.2. Notation. We first introduce some notation that will be used in
the sequel. Throughout this analysis, we consider G to be a differentiable
functional and let G′ be its Fréchet derivative, that is,

G(ξ + εη) = G(ξ) + ε

∫
U
G′[ξ](x)η(x)dx+ o(ε), as ε→ 0, ∀ ξ, η ∈ C(Ū).

For 0 < β < 1, we say that a function w is Hölder continuous with order β
if the Hölder coefficient

(9) [w]β = sup
x,y∈Ū ,x6=y

|w(x)− w(y)|
|x− y|β

<∞.

We use Ck(Ū) to denote the space containing all k-time continuously dif-
ferentiable functions. For nonnegative integer k and 0 ≤ β < 1, we use
Ck,β(Ū) to denote the set of functions in Ck(Ū) whose k-th order partial
derivatives are Hölder continuous with coefficient β. For simplicity, we write
C0,β(Ū) = Cβ(Ū). We proceed to the definition of norms over Ck,β(Ū). We
first define the seminorms

[w]k,0 = max
|γ|=k

sup
Ū

|Dγw| and [w]k,β = max
|γ|=k

[Dγw]β,

where γ is a multi-index γ = (γ1, ..., γd), |γ| =
∑d

i=1 γi, andDγw = ∂|γ|w
∂γ1x1...∂

γdxd
.

We further define the norms

‖w‖Ck(Ū) =

k∑
j=0

[w]j,0 and ‖w‖Ck,β(Ū) = ‖w‖Ck(Ū) + [w]k,β.

Equipped with ‖ · ‖Ck,β(Ū), the space Ck,β(Ū) is a Banach space for all non-
negative integer k and 0 ≤ β < 1. To simplify notation, we write

|w|k = ‖w‖Ck(Ū), |w|k,β = ‖w‖Ck,β(Ū), |w|β = |w|0,β.
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2.3. Asymptotic results. We make the following assumptions on the smooth-
ness of functional H and the elliptic PDE, as well as the covariance function
C(x, y).

H1. There exist constants β, δH , κH such that δH > 0, 0 < β < 1 and
H′(u) ∈ Cβ(Ū) for all |u− u0|2,β ≤ δG. In addition, H′ is Lipschitz in
the sense that

|H′[u1]−H′[u2]|β ≤ κH |u1 − u2|2,β

for all |u1−u0|2,β, |u2−u0|2,β ≤ δH . Here, u0 ∈ C2,β(Ū) is the solution
to (6) when ξ is set to be 0.

H2. There exists x ∈ Ū such that ∇g0(x) ·∇u0(x) 6= 0, where g0 ∈ C2,β(Ū)
is the solution to the PDE

(10)

{
−∇ · (a0(x)∇g0(x)) = H′[u0](x) for x ∈ U ;

g0(x) = 0 for x ∈ ∂U.

H3. The set U is a bounded domain with a C2,β boundary ∂U , a0 ∈
C1,β(Ū), minx∈Ū a0(x) > 0 and f ∈ Cβ(Ū).

H4. The Gaussian random field {ξ(x), x ∈ U} belongs to the space C1,β(Ū)
almost surely. Its covariance function C(·, ·) is positive definite and
satisfies supy∈Ū |C(·, y)|1,2β < ∞. Moreover, we assume that for all γ
such that |γ| ≤ 1, supy∈Ū |CDγξ(·, y)|2β <∞, where CDγξ is defined in
(14).

Define a mapping C : C(Ū)→ C(Ū)

Cw ,
∫
C(·, y)w(y) dy.

We consider the optimization problem

(11) K∗σ = min
ξ∈B,G(σCξ)=σα

K(ξ)

where the functional K : C(Ū)→ R is

(12) K(w) ,
∫
U
w(x)C(x, y)w(y)dxdy,

and the set B is defined as

(13) B ,
{
w ∈ Ck,β(Ū) : |w|k,β ≤ σα−1−ε

}
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for some k ≥ 0, ε ∈ (0,min(α/2, (1 − α)/2)) and α is given as below (8).
Because B is a compact subset of Ck,β(Ū) and the functionals K and G are
continuous over B, the above optimization problem has at least one solution.
Later in the current section, we will show that this solution is also unique.
The sharp asymptotic approximation for the elliptic PDE with small noise
is presented in the next theorem.

Theorem 1. Under the Assumptions H1-H4, for 0 < α < 1, we have

P{G(σξ) > σα} = (c1 + o(1))σ1−α exp
(
− 1

2
K∗σ

)
as σ → 0,

where c1 = {(2π)−1K(a∇g0 · ∇u0)}
1
2 and K∗σ is the minimum obtained in

(11) with k = 1 in (13) and β being defined as in Assumptions H1-H4.

Under Assumption H3, the PDE (3) has a unique solution u0 ∈ C2,β(Ū)
when ξ is set to be 0. Furthermore, under Assumptions H1 and H3, (10)
also has a unique solution in C2,β(Ū). Therefore, g0 and u0 in the above
theorem are well defined. See Lemma 6 on page 19 for the existence and the
uniqueness of the Hölder continuous solution to elliptic PDEs.

The solution of the optimization in (11) is generally not in a closed form,
and so is K∗σ. In what follows, we present results on asymptotic approxima-
tion of K∗σ as well as its numerical approximation. Our strategy for develop-
ing these results and proving Theorem 1 is to consider a general functional
G, which is not necessary to be H(J) as defined in (7), and develop general
theories accordingly.

2.4. Asymptotic results for general functionals. We present sharp asymp-
totic approximations of the tail probabilities w(σ) under the following as-
sumptions on a functional G, which is not necessary in the form as is defined
in (7), and the covariance function C(x, y).

Assumption.

A1. There exist constants k, β, δG, κG such that k is a non-negative integer,
0 ≤ β < 1, δG > 0 and for all |w|k,β ≤ δG, G′[w] ∈ Ck,β(Ū). In
addition G′ is a (local) Lipschitz operator in the sense that for all
|w1|k,β, |w2|k,β ≤ δG, we have∣∣G′[w1]− G′[w2]

∣∣
k,β
≤ κG|w1 − w2|k,β.

A2. There exists x ∈ Ū such that G′[0](x) 6= 0.
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A3. The Gaussian random field {ξ(x) : x ∈ U} belongs to the space Ck,β(Ū)
almost surely, that is, P(|ξ|k,β < ∞) = 1. The covariance function
C(·, ·) is positive definite and satisfies supy∈Ū |C(·, y)|k,2β <∞. More-
over, we assume that supy∈Ū |CDγξ(·, y)|2β < ∞ for all γ such that
|γ| ≤ k, where we define

(14) CDγξ(x, y) , E{Dγξ(x)Dγξ(y)}.

With the above assumptions, we have the following sharp asymptotic
approximation for the tail probability of ω(σ).

Theorem 2. Under Assumptions A1-A3, for 0 < α < 1, we have

P{G(σξ) > σα} = (c2 + o(1))σ1−α exp
(
− 1

2
K∗σ

)
as σ → 0,

where c2 = {(2π)−1K(G′[0])}
1
2 and

K∗σ = min
w∈B,G(σCw)=σα

K(w),

where K is defined as in (12) and B is defined as in (13) with the same β
and k as in Assumptions A1-A3.

The constants k and β in Assumptions A1-A3 are problem-dependent. For
example, [Li et al., 2016] consider the functional G(ξ) =

∫
U e

σξ(t)+µ(t)dt −∫
U e

µ(t)dt, where µ(·) ∈ C(Ū) is a deterministic function. This particular G
satisfies Assumptions A1 and A2 with k = 0 and β = 0.

Now we proceed to characterizing the solution to the optimization (11).

Theorem 3. Under Assumptions A1-A3,

(i) the optimization problem (11) has a unique solution for σ sufficiently
small, denoted by ξ∗;

(ii) we have the following approximation as σ → 0

ξ∗ = (1 + ok,β(1))σα−1 G′[0]

K(G′[0])
,

where we write hσ(·) = ok,β(1) if |hσ|k,β = o(1) as σ → 0.

Combining Theorem 2 and Theorem 3, we arrive at the following approx-
imation.
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Corollary 1. Under the Assumptions A1-A3, for 0 < α < 1, we have

logP {G(σξ) > σα} = −(1 + o(1))
σ2α−2

2K(G′[0])
.

Intuitively, G(σξ) − G(0) ≈ σ
∫
U G
′[0](x)ξ(x)dx according to the first-

order approximation of G. Thus, the above corollary serves as a rigorous
justification for the approximation

logP{G(σξ) > σα} ≈ logP
[
σ

∫
U
G′[0](x)ξ(x)dx > σα

]
≈ − σ2α−2

2K(G′[0])
.

If we are only interested in obtaining Corollary 1, it may be possible to
rely on the above heuristic and simplify the proof. However, if we would
like to obtain a sharp asymptotic approximation as shown in Theorem 2,
the first-order approximation is insufficient for obtaining the subexponential
terms. To see this, we consider a simple example where U = [0, 1], ξ is
a centered Gaussian random field living on U with V ar(

∫ 1
0 ξ(x)dx) = 1,

G(σξ) = eσ
∫ 1
0 ξ(x)dx − 1. Then,

P{G(σξ) > σα} = P(eσZ − 1 > σα), and σ

∫
U
G′[0](x)ξ(x)dx = σZ,

where Z a standard Gaussian variable. With some careful calculations, it is
not hard to show that

P(eσZ − 1 > σα) = (1 + o(1))P(σZ > σα)

if and only if 2
3 < α < 1. Thus, for 0 < α < 2

3 , we cannot prove Theorem 2
by simply employing the first-order approximation.

2.5. Numerical approximation. In this section, we present a numerical
method, more precisely, an iterative algorithm, for computing the solution
ξ∗ to (11). To solve the optimization, we introduce the Lagrangian multiplier
λ ∈ R and define the Lagrangian function L

L(ξ) =

∫∫
ξ(x)C(x, y)ξ(y)dxdy − 2

λ

σ
(G(σCξ)− σα).

The first-order condition ∂L
∂ξ ≡ 0 implies the KKT condition for λ and ξ

Cξ = λCG′[σCξ].
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Since the covariance function C(x, y) is positive definite and thus the linear
map C is a bijection. The above condition becomes

(15) ξ = λG′[σCξ].

The solution (ξ∗, λ∗) to the constrained optimization problem is determined
by

(16a)

(16b)

{
ξ∗ = λ∗G′[σCξ∗],
G(σCξ∗) = σα.

Our strategy is to first find λ given ξ to satisfy the constraint (16b); and then
we look for ξ and the corresponding λ = Λ(ξ) determined by the previous
step to satisfy the fix point equation (16a). Motivated by this, we define a
functional

Λ : B → [−σα−1−ε, σα−1−ε]

such that for each w ∈ B, λ = Λ(w) solves the following equation

(17) G(σCλG′[σCw]) = σα.

To see that Λ(·) is well defined, for each w ∈ B we define the function
Tw : [−σα−1−ε, σα−1−ε]→ R,

Tw(λ) = λ−K(G′[0])−1σ−1
(
G(σCλG′[σCw])− σα

)
.

Clearly, solutions to (17) are fixed points of the function Tw(·). The well-
posedness of the function Λ(·) is then established by the next proposition.

Proposition 1. For σ sufficiently small, w ∈ B, and |λ1|, |λ2| ≤ σα−1−ε,
we have that |Tw(λ1)|, |Tw(λ2)| ≤ σα−1−ε and there exists a constant κT in-
dependent of σ and w, such that

|Tw(λ1)− Tw(λ2)| ≤ κTσα−ε|λ1 − λ2|.

The above proposition and the contraction mapping theorem guarantee
that for each w ∈ B, Tw(·) has a unique fixed point in [−σα−1−ε, σα−1−ε].
Therefore, there is a unique solution Λ(w) ∈ [−σα−1−ε, σα−1−ε] satisfying
(17). Furthermore, it ensures the convergence of the iterative algorithm
based on the contraction mapping Tw(λ). We further define an operator
Ξ.

(18) Ξ[w] = Λ(w)G′[σCw].

The solution ξ∗ to (11) and equivalently (16) is a fixed point of Ξ.
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Proposition 2. For σ sufficiently small, Ξ is a contraction mapping
over B. More specifically, there exists a constant κΞ such that for all w1, w2 ∈
B, we have

|Ξ[w1]− Ξ[w2]|k,β ≤ κΞσ
α|w1 − w2|k,β.

The above proposition and the contraction mapping theorem guarantee
that (16) has a unique solution that is (λ∗, ξ∗) in [−σα−1−ε, σα−1−ε] × B.
Furthermore, this solution can be computed numerically via the following
iterative algorithm.

1. Initialize ξ̂∗0 = σα−1 G′[0]
K(G′[0]) .

2. At l-th iteration, update ξ̂∗l by

ξ̂∗l = Ξ[ξ̂∗l−1].

According to the contraction mapping theorem, the rate of convergence is

|ξ̂∗l − ξ∗|k,β ≤ (κΞσ
α)l|ξ̂∗0 − ξ∗|k,β = O(σαl+α−1).

Therefore, if we run l > 2(1−α)
α iterations, then |ξ̂∗l − ξ∗|k,β = o(σ1−α), and

we could use K(ξ̂∗l ) to approximate K∗σ in Theorem 2.

3. Technical Proofs. Throughout the proof we will use κ0 as generic
notation for large and not-so-important constants whose value may vary
from place to place. Similarly, we use ε0 as generic notation for small positive
constants. Furthermore, for two sequences aσ and bσ, we write aσ = o(bσ)
if bσ/aσ → 0 as σ tend to zero and aσ = O(bσ) if bσ/aσ is bounded when
σ varies. Moreover, for two sequences of functions aσ(·) and bσ(·), we write
aσ = ok,β(bσ) if |aσ|k,β = o(|bσ|k,β) and aσ = Ok,β(bσ) if |aσ|k,β = O(|bσ|k,β).

The proofs in this sections are organized as follows. The proof of Theo-
rem 2 is presented in Section 3.1. Section 3.2 presents proofs of Proposition 1,
2 and Theorem 3. Section 3.3 shows the proof of Theorem 1. The proofs of
supporting lemmas are postponed to Appendix A.

3.1. Proof of Theorem 2. We start with a useful lemma that restrict our
analysis on the event L = {ξ −Cξ∗ ∈ B}, whose proof will be presented in
Section A.

Lemma 1. There exists a positive constant ε0 such that

P(ξ −Cξ∗ ∈ Bc) ≤ e−ε0σ2α−2−2ε
.
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Proof for Theorem 2. Let ξ∗ be the solution to (11). We define an
exponential change of measure

(19)
dQ
dP

= exp
(∫

U
ξ∗(x)ξ(x)dx− 1

2

∫
U

∫
U
ξ∗(x)C(x, y)ξ∗(y)dxdy

)
.

Under measure Q, ξ(x) is a Gaussian random field with mean function
Cξ∗(x) and covariance function C(x, y). Let

L = {ξ −Cξ∗ ∈ B}.

According to Lemma 1, we only need to consider the event restricted to L.
By means of the change of measure Q, we have

P (G(σξ) > σα,L)

= EQ
[
dP
dQ

; G(σξ) > σα, L
]

= exp

(
1

2

∫
U×U

ξ∗(x)C(x, y)ξ∗(y)dxdy

)
×EQ

[
e−

∫
U ξ
∗(x)ξ(x)dx;G(σξ) > σα,L

]
,(20)

where EQ denotes the expectation with respect to the measure Q. It is
easy to check that the random field Cξ∗(x) + ξ(x) under P has the same
distribution as ξ(x) under Q. Thus, we replace the probability measure Q
and ξ with P and Cξ∗ + ξ in (20) and obtain

P (G(σξ) > σα,L)

= exp

(
1

2

∫
U×U

ξ∗(x)C(x, y)ξ∗(y)dxdy

)
×E

[
e−

∫
U ξ
∗(x)(Cξ∗(x)+ξ(x))dx;G(σ(ξ + Cξ∗)) > σα, ξ ∈ B

]
= exp

(
−1

2

∫
U×U

ξ∗(x)C(x, y)ξ∗(y)dxdy

)
×E

[
e−

∫
U ξ
∗(x)ξ(x)dx;G(σ(ξ + Cξ∗))− G(σCξ∗) > 0, ξ ∈ B

]
= e−

1
2
K∗σ ×E

[
e−

∫
U ξ
∗(x)ξ(x)dx;G(σ(ξ + Cξ∗))− G(σCξ∗) > 0, ξ ∈ B

]
.

We define two events

F = {G(σ(ξ+Cξ∗))−G(σCξ∗) > 0}, and F1 =
{∫

U
G′[σCξ∗](x)σξ(x)dx > 0

}
.
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Let the event L1 = {ξ ∈ B}. We will present an approximation for

I1 = E
[
e−

∫
U ξ
∗(x)ξ(x)dx;F1

]
and show that

I2 = E
[
e−

∫
U ξ
∗(x)ξ(x)dx; (F14F ) ∩ L1

]
is ignorable, where “4” denotes the symmetric difference between two sets.
First, we compute

(21) I1 = E

[
e−

∫
U ξ
∗(x)ξ(x)dx;

∫
U
G′[σCξ∗](x)ξ(x)dx > 0

]
.

According to Proposition 2 whose proof is independent of the current one,
ξ∗ is the fixed point of the contraction map Ξ and thus

ξ∗ = Ξ[ξ∗] = Λ(ξ∗)G′[σCξ∗].

Therefore, ξ∗ and G′[σCξ∗] are different only by a factor of Λ(ξ∗). Thus,∫
U ξ
∗(x)ξ(x)dx and

∫
U G
′[σCξ∗](x)ξ(x)dx > 0 are different by a factor Λ(ξ∗).

The following lemma establishes an approximation for Λ(ξ∗).

Lemma 2. For all w ∈ B, Λ(w) = K(G′[0])−1σα−1(1 + o(1)). This ap-
proximation is uniform in w.

Thanks to Lemma 2, we have

Λ(ξ∗) = (1 + o(1))
κσα−1

K(G′[0])
.

Let Z1 =
∫
U ξ
∗(x)ξ(x)dx, then Z1 is a normally distributed random variable

with a zero mean. The expectation (21) can be computed as follows

E
[
e−Z1 ;Z1 > 0

]
=

∫ ∞
0

1√
2πVar(Z1)

e
− z21

2 Var(Z1)
−z1dz1

=
1√

2πVar(Z1)
E[e
− V 2

2 Var(Z1) ],(22)

where V is a random variable following the exponential distribution with
rate 1. Notice that

(23) Var(Z1) =

∫
U×U

ξ∗(x)C(x, y)ξ∗(y)dxdy = (1 + o(1))σ2α−2K−1[G′[0]].
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The second equality is obtained with the aid of Theorem 3(ii). The above
display, (22) and dominated convergence theorem give

I1 = {(2π)−1K(G′[0])}1/2σ1−α(1 + o(1)).

Now, we proceed to the term I2.

Lemma 3. Under Assumption A1, we have that for |w1|k,β, |w2|k,β ≤ δG,

|w1−w2|−2
k,β

∣∣∣G(w1)−G(w2)−
∫
U
G′[w2](x)(w1(x)−w2(x))dx

∣∣∣ ≤ meas(U)κG,

where meas(U) is the Lebesgue measure of U and k, β, δG, κG are constants
appeared in Assumption A1.

According to Lemma 3, we have that for σ sufficiently small and ξ ∈ B,
(24)∣∣∣G(σ(ξ+Cξ∗))−G(σCξ∗)−σ

∫
U
G′[σCξ∗](x)ξ(x)dx

∣∣∣ ≤ meas(U)κGσ
2|ξ|2k,β.

Note that on the event F14F , G(σ(ξ+Cξ∗))−G(σCξ∗) and σ
∫
U G
′[σCξ∗](x)ξ(x)dx

have opposite signs and thus
(25)∣∣∣G(σ(ξ+Cξ∗))−G(σCξ∗)−σ

∫
U
G′[σCξ∗](x)ξ(x)dx

∣∣∣ ≥ |σ ∫
U
G′[σCξ∗](x)ξ(x)dx|.

We combine (24) and (25) and arrive at

(F4F1) ∩ L1 ⊂
{
meas(U)κG‖ξ‖2k,β ≥ σ−1|

∫
U
G′[σCξ∗](x)ξ(x)dx|

}
∩ L1.

We write Z2 = ‖ξ‖2k,β, then the above display implies that

(F4F1) ∩ L1 ⊂ {meas(U)κGZ2 ≥ σ−1Λ(ξ∗)−1|Z1|} ∩ L1.

This gives an upper bound of the expectation

E
[
e−

∫
U ξ
∗(x)ξ(x)dx; (F4F1) ∩ L1

]
≤ E

[
e−Z1 ;κGZ2 ≥ σ−1Λ(ξ∗)−1|Z1|,L1

]
.

On the event {0 < |Z1| ≤ σε}, this expectation is negligible compared to I1,
that is,

(26) E[eZ1 ; 0 < |Z1| < σε] = O(P(0 < |Z1| < σε)) = O(σ1−α+ε).
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The second equality in the above display is due to (23). Furthermore, on the
set L1, we have |Z1| ≤ |ξ∗|0|ξ|0κ0 ≤ κ0σ

2α−2−ε, where κ0 is a sufficiently
large constant. Therefore, we only need to focus on the expectation

E
[
eZ1 ;σε < |Z1| < κ0σ

2α−2−ε, Z2 > Λ(ξ∗)−1|Z1/σ|
]

=

∫ κ0σ2α−2−ε

σε
ezP(Z2 > Λ(ξ∗)−1z/σ|Z1 = z)pZ1(z)dz

+

∫ κ0σ2α−2−ε

σε
ezP(Z2 > Λ(ξ∗)−1z/σ|Z1 = −z)pZ1(z)dz,(27)

where pZ1(z) is the density function of Z1.

Lemma 4. For z ∈ [σε, κ0σ
2α−2−ε], there exists a constant ε0 > 0 such

that
(28)

P(Z2 > Λ(ξ∗)−1z/σ|Z1 = z) + P(Z2 > Λ(ξ∗)−1z/σ|Z1 = −z) ≤ e−ε0σ−αz.

With the above lemma, the expectation (27) is bounded by

(27) ≤
∫ κ0σ2α−2−ε

σε
e−(ε0σ−α−1)zpZ1(z)dz

=
1√

2πVar(Z1)

∫ κ0σ2α−2−ε

σε
e
−(ε0σ−α−1)z− z2

2 Var(Z1)dz

≤ 1√
2πVar(Z1)

∫ κ0σ2α−2−ε

σε
e−

ε0
2
σ−αzdz,

for σ sufficiently small so that ε0σ
−α − 1 > ε0

2 σ
−α. The above inequality is

further bounded by

(27) ≤ 1√
2πVar(Z1)

∫ κ0σ2α−2−ε

σε
e−

ε0
2
σ−αzdz

≤ 1√
2πVar(Z1)

κ0σ
2α−2−εe−

ε0
2
σ−α+ε

= O(e−
ε0
2
σ−α+ε

).

Therefore,
(27) = o(σ1−α).

We combine our analysis for I1 and I2 and conclude our proof for Theorem
2.
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3.2. Proofs of Proposition 1, 2, and Theorem 3 .

Proof of Proposition 1 . Note that as σ tends to zero, we have σCw =
ok,β(1), G′[σCw] = G′[0] + ok,β(1) and σCλG′[σCw] = ok,β(1) for all |λ| ≤
σα−1−ε and w ∈ B. This allow us to expand G(σCλG′[σCw]) near the origin.
We elaborate this expansion as follows. First, according to Assumption A1,
we have that there exists a constant ε0 such that for all w ∈ B and σ ≤ ε0,

(29) G′[σCw] = G′[0] +Ok,β(σCw).

Second, with the aid of (29) we have that for all |λ1|, |λ2| ≤ σα−1−ε and
w ∈ B,

(30) σCλ1G′[σCw]− σCλ2G′[σCw] = σ(λ1 − λ2)C{G′[0] +Ok,β(σCw)}.

Thanks to Lemma 3 on page 14 and (30), we have that for all |λ1|, |λ2| ≤
σα−1−ε and w ∈ B,
(31)

G(σCλ1G′[σCw])−G(σCλ2G′[σCw]) =

∫
U
G′[σCλ2G′[σCw]](x)v(x)dx+O(|v|2k,β),

where we define

v(x) = σCλ1G′[σCw](x)− σCλ2G′[σCw](x).

Setting w as λ2G′[σCw] in (29), we have
(32)
G′[σCλ2G′[σCw]] = G′[0] +Ok,β(σCλ2G′[σCw]) = G′[0] +Ok,β(σλ2G′[0]).

The last equality in the above display is due to (29) and the factOk,β(σCw) =
ok,β(1). According to (30) and (32), we have∫

U
G′[σCλ2G′[σCw]](x)v(x)dx

= σ(λ1 − λ2)
{∫

U
CG′[0](x)G′[0](x)dx+O(

∫
U
σ2λ2G′[0](x)G′(x)dx)(33)

+O(

∫
U
σG′[0](x)Cw(x)dx) +O(σλ2σ

∫
U
G′[0](x)Cw(x)dx)

}
.

Note that for λ2 ∈ [−σα−1−ε, σα−1−ε] the above expression is simplified as∫
U
G′[σCλ2G′[σCw]](x)v(x)dx

= σ(λ1 − λ2)
{∫

U
CG′[0](x)G′[0](x)dx+O(σα−ε)

}
= σ(λ1 − λ2){K(G′[0]) +O(σα−ε)}.(34)



RANDOM ELLIPTIC PDE WITH SMALL NOISE 17

Combining the above expression with (31), we have that for |λ1|, |λ2| ≤
σα−1−ε and w ∈ B.

G(σCλ1G′[σCw])− G(σCλ2G′[σCw])

=σ(λ1 − λ2){K(G′[0]) +O(σα−ε)}+O(σ2(λ1 − λ2)2),

which can be simplified as
(35)
G(σCλ1G′[σCw])− G(σCλ2G′[σCw]) = σ(λ1 − λ2){K(G′[0]) +O(σα−ε)}.

Recall the definition of Tw(λ), we plug the above expression into the differ-
ence Tw(λ1)− Tw(λ2), and arrive at

Tw(λ1)−Tw(λ2) = λ1−λ2−K(G′[0])−1σ−1×σ(λ1−λ2){K(G′[0])+O(σα−ε)},

which is simplified as

Tw(λ1)− Tw(λ2) = −K(G′[0])−1(λ1 − λ2)×O(σα−ε).

The above expression implies that for |λ1|, |λ2| ≤ σα−1−ε,

(36) Tw(λ1)− Tw(λ2) = (λ1 − λ2)×O(σα−ε).

This shows that Tw(λ) is a contraction mapping for λ ∈ [−σα−1−ε, σα−1−ε].
To see Tw(λ) ∈ [−σα−1−ε, σα−1−ε] for λ ∈ [−σα−1−ε, σα−1−ε] and w ∈ B, we
let λ2 = 0 and λ1 = λ in (36) and obtain that

Tw(λ)− Tw(0) = λO(σα−ε) = O(σ2α−1−2ε).

Recall that Tw(0) = −K(G′[0])−1σ−1σα = −κK(G′[0])−1σα−1. This implies

(37) Tw(λ) = κK(G′[0])−1σα−1(1 + o(1)) ∈ [−σα−1−ε, σα−1−ε]

and concludes our proof.

Proof of Proposition 2. According to the definition of Ξ,

Ξ[w1]− Ξ[w2] = Λ(w1)(G′[σCw1]− G′[σCw2]) + (Λ(w1)− Λ(w2))G′[σCw2].

Therefore, we have

|Ξ[w1]− Ξ[w2]|k,β
≤|Λ(w1)| × |(G′[σCw1]− G′[σCw2])|k,β + |Λ(w1)− Λ(w2)| × |G′[σCw2]|k,β.

(38)



18

We establish upper bound for the first and second terms on the right-hand-
side of the above inequality separately. To start with, according to Assump-
tions A1 and A3 that supy∈Ū |C(·, y)|k,2β <∞, for w1, w2 ∈ B, we have

|Λ(w1)| × |(G′[σCw1]− G′[σCw2])|k,β
=O(σ|Λ(w1)||w1 − w2|k,β) = O(σα)|w1 − w2|k,β.

(39)

The second equality in the above expression is due to Lemma 2 on page 13.
We proceed to the second term on the right-hand-side of (38). Because Λ(w)
is the fixed point of Tw(·), we have

Tw1(Λ(w1)) = Λ(w1) and Tw2(Λ(w2)) = Λ(w2).

Taking differencing between the above two equalities, we have

Tw1(Λ(w1))− Tw2(Λ(w2)) = Λ(w1)− Λ(w2).

Adding and subtracting the term Tw1(Λ(w2)) in the above equality, we have

Λ(w1)− Λ(w2) = Tw1(Λ(w1))− Tw1(Λ(w2)) + Tw1(Λ(w2))− Tw2(Λ(w2)).

Consequently,
(40)
|Λ(w1)−Λ(w2)| ≤ |Tw1(Λ(w1))−Tw1(Λ(w2))|+ |Tw1(Λ(w2))−Tw2(Λ(w2))|.

According to Proposition 1, the first term on the right-hand-side of the above
expression is bounded above by O(σα−ε)|Λ(w1)− Λ(w2)|.

Lemma 5. For all |λ| = O(σα−1) and w1, w2 ∈ B, we have

|Tw1(λ)− Tw2(λ)| = O(σα)|w1 − w2|k,β.

According to Lemma 5, the second term on the right-hand-side of (40) is
bounded above by O(σα)|w1 − w2|k,β. Therefore, we have

|Λ(w1)− Λ(w2)| ≤ O(σα−ε)|Λ(w1)− Λ(w2)|+O(σα)|w1 − w2|k,β.

Consequently, we have that for w1, w2 ∈ B,

(41) |Λ(w1)− Λ(w2)| = O(σα)|w1 − w2|k,β.

According to (29),
|G′[σCw2]|k,β = O(1).

The above approximation and (41) give

|Λ(w1)− Λ(w2)| × |G′[σCw2]|k,β = O(σα)|w1 − w2|k,β.

Combining the above display with (38) and (39), we complete our proof.
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Proof of Theorem 3. (i) is a direct application of Proposition 2, con-
traction mapping theorem and the KKT condition (16). We proceed to the
proof of (ii). Because ξ∗ is the fixed point of Ξ in B, we have

Ξ[ξ∗] =Λ(ξ∗)G′[σCξ∗]
=κK(G′[0])−1σα−1(1 + o(1))(G′[0] +Ok,β(σξ∗))

=(1 + ok,β(1))
κG′[0]

K(G′[0])
σα−1.

To obtain the second equality in the above display, we use approximation in
Lemma 2 on page 13 and (29).

3.3. Proof of Theorem 1.

Proof of Theorem 1. Recall in (7) we define G(ξ) = H(J(ξ)) = H(uξ)
in the context of elliptic PDE. In what follows, we apply Theorem 2 to the
functional G. It is sufficient to verify Assumptions A1-A3 given Assumptions
H1-H4 with k = 1 and 0 < β < 1 and the Hölder coefficient being β.

We first present two useful lemmas. The following lemma guarantees the
existence and uniqueness of the Hölder continuous solution to the elliptic
PDE.

Lemma 6. Suppose that U is a bounded domain with a C2,β boundary
∂U for 0 < β < 1. Assume that there exist positive constants δ and M such
that minx∈Ū a(x) > δ > 0, and |a|1,β ≤M , and f ∈ Cβ(Ū). Then the elliptic
PDE

(42)

{
−∇ · (a(x)∇u(x)) = f(x) for x ∈ U ;

u(x) = 0 for x ∈ ∂U,

has a unique solution in C2,β(Ū). Denote this solution by ua,f , then

(43) |ua,f |2,β ≤ κ(δ,M, d, U)|f |β,

where κ(δ,M, d, U) is a positive constant, depending only on δ,M, d and the
domain U .

We will also need the following lemma on the stability of the solution.

Lemma 7. Suppose that U is a bounded domain with a C2,β boundary
∂U for 0 < β < 1. Let a1, a2, f1 and f2 be functions over the domain U
such that

min
x∈Ū

a1(x) ≥ δ, min
x∈Ū

a2(x) ≥ δ, |a1|1,β, |a2|1,β ≤M, and f1, f2 ∈ Cβ(Ū).
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Then,

|ua1,f1 − ua2,f2 |2,β ≤ κ̃(δ,M, d, U){|f1 − f2|β + |a1 − a2|1,β|f1|β},

where the constant κ̃(δ,M, d, U) depends only on δ,M, d and the domain U .

The Fréchet derivative G′[w] has the following expression.

G′[w](x) = aw(x)∇gw(x) · ∇uw(x),

where aw(x) = a0e
−w(x), uw ∈ C2,β(Ū) is the unique solution to{
−∇ · (aw(x)∇uw(x)) = f(x) for x ∈ U ;

uw(x) = 0 for x ∈ ∂U,

and gw(x) ∈ C2,β(Ū) is the unique solution to{
−∇ · (aw(x)∇gw(x)) = H′[uw](x) for x ∈ U ;

gw(x) = 0 for x ∈ ∂U.

For w1, w2 ∈ C1,β(Ū), we are going to establish an upper bound for |G′[w1]−
G′[w2]|1,β. Note that

G′[w1](x)− G′[w2](x)

= (aw1(x)− aw2(x))∇gw1(x) · ∇uw1(x)

+aw2∇gw2(x)∇(uw1 − uw2(x)) + aw2(x)∇(gw1(x)− gw2(x)) · ∇uw1(x).

Thus,

|G′[w1]− G′[w2]|1,β
≤ |(aw1 − aw2)∇gw1 · ∇uw1 |1,β

+|aw2∇gw2∇(uw1 − uw2)|1,β + |aw2∇(gw1 − gw2) · ∇uw1 |1,β.(44)

We will establish upper bounds for the three terms on the right-hand side
in the above expression separately. First, note that awk = a0e

−wk , k = 1, 2.
Thus, there exists a constant ε0 > 0 such that for all |w1|1,β, |w2|1,β ≤ ε0,

(45) |aw1 − aw2 |1,β ≤ κ0|w1 − w2|1,β.

Therefore,

|(aw1 − aw2)∇gw1 · ∇uw1 |1,β ≤ |aw1 − aw2 |1,β|∇gw1 |1,β|∇uw1 |1,β
≤ κ0|w1 − w2|1,β|gw1 |2,β|uw1 |2,β.

(46)
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Now we present upper bounds for |gw1 |2,β and |uw1 |2,β. Let ε0 be sufficiently
small such that for all |w|1,β ≤ ε0, minx∈Ū aw(x) ≥ 1

2 minx∈Ū a0(x) and
|aw|1,β ≤ 2|a0|1,β. According to Lemma 6, we have that for all |w|1,β ≤ δ0

(47) |uw|2,β ≤ κ(δ,M, d, U)|f |β,

where δ =
minx∈Ū a0(x)

2 and M = 2|a0|1,β. Furthermore, according to As-
sumption H1, we have that for |uw − u0|2,β ≤ δH

(48) |H′[uw]|β ≤ |H′[u0]|β + κH |uw − u0|2,β ≤ |H′[u0]|β + κHδH .

Set f = H′[uw] in Lemma 6 we have

(49) |gw|2,β ≤ κ(δ,M, d, U)|H′[uw]|β ≤ κ(δ,M, d, U)(|H′[u0]|β + κHδH).

Combine this with (46) and (47), we have that for |w1|1,β, |w2|1,β ≤ ε0

(50) |(aw1 − aw2)∇gw1 · ∇uw1 |1,β ≤ κ0|w1 − w2|1,β,

with a possibly different κ0. We proceed to the second term on the right-hand
side of (44).

|aw2∇gw2 · ∇(uw1 − uw2)|1,β ≤ |aw2 |1,β|∇gw2 |1,β|∇(uw1 − uw2)|1,β
≤ |aw2 |1,β|gw2 |2,β|uw1 − uw2 |2,β.

(51)

For |w2|1,β ≤ ε0, we have |aw2 |1,β ≤ 2|a0|1,β. Moreover, |gw2 |2,β is bounded
above by a constant according to (49). Therefore,

(52) |aw2∇gw2 · ∇(uw1 − uw2)|1,β ≤ κ0|uw1 − uw2 |2,β,

for a possibly different κ0. Taking a1 = aw1 , a2 = aw2 , and f1 = f2 = f in
Lemma 7, we have

(53) |uw1 − uw2 |2,β ≤ κ̃(δ,M, d, U)|a1 − a2|1,β|f |β ≤ κ0|w1 − w2|1,β.

(52) and (53) give

(54) |aw2∇gw2 · ∇(uw1 − uw2)|1,β ≤ κ2
0|w1 − w2|1,β.

We proceed to the third term on the right-hand side of (44).

|aw2∇(gw1 − gw2) · ∇uw1 |1,β ≤ |aw2 |1,β|∇(gw1 − gw2)|1,β|∇uw1 |1,β
≤ |aw2 |1,β|gw1 − gw2 |2,β|uw1 |2,β.

(55)
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According to the definition of aw2 and (53), we have that for |w1|1,β, |w2|1,β ≤
ε0,

(56) |aw2∇(gw1 − gw2) · ∇uw1 |1,β ≤ κ0|gw1 − gw2 |2,β.

Motivated by the definition of gw1 and gw2 , we take f1 = H′[w1], f2 = H′[w2],
a1 = aw1 and a2 = aw2 in Lemma 7, then
(57)
|gw1 − gw2 |2,β ≤ κ̃(δ,M, d, U){|H′[w1]−H′[w2]|β + |aw1 − aw2 |1,β|H′[w1]|β}.

According to Assumption H1, for |w1|1,β, |w2|1,β ≤ δH , we have

(58) |H′[w1]−H′[w2]|β ≤ κH |w1 − w2|1,β

(58), (45), (48) and (57) give

|gw1 − gw2 |2,β ≤ κ0|w1 − w2|1,β.

The above inequality and (56) give

(59) |aw2∇(gw1 − gw2) · ∇uw1 |1,β ≤ κ2
0|w1 − w2|1,β

We combine (44), (50), (54), and (59), and arrive at

(60) |G′[w1]− G′[w2]|1,β ≤ κ0|w1 − w2|1,β,

for ε0 sufficiently small, |w1|1,β, |w2|1,β ≤ ε0 and a possibly different κ0.
Thus, Assumption A1 is satisfied with k = 1. According to the definition of
G′, Assumption A2 is a dirrect application of Assumption H2. Assumption
A3 is the same Assumption H4 for k = 1. Now we have already checked all
the Assumptions A1-A3.
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APPENDIX A: PROOF OF SUPPORTING LEMMAS

Proof of Lemma 1. Note that the event {ξ−Cξ∗ /∈ B} = {|ξ−Cξ∗|k,β >
σα−1−ε} implies the event {|ξ| > σα−1−ε−|ξ∗|k,β}. According to Theorem 3,
|ξ∗|k,β = O(σα−1). Thus,

(61) {ξ −Cξ∗ /∈ B} ⊂ {|ξ|k,β > ε0σ
α−1−ε},

for a positive constant ε0 and σ sufficiently small. Recall the definition

|ξ|k,β =

k∑
l=1

sup
|γ|=l

sup
x∈Ū
|Dγξ(x)|+ sup

|γ|=k
[Dγξ]β.

Consequently,

{ξ −Cξ∗ /∈ B} ⊂
k⋃
l=1

{sup
|γ|=l

sup
x∈Ū
|Dγξ(x)| > σα−1−ε

k + 1
}
⋃
{sup
|γ|=l

[Dγξ]β >
σα−1−ε

k + 1
}

=
k⋃
l=1

⋃
|γ|=l

{sup
x∈Ū
|Dγξ(x)| > σα−1−ε

k + 1
}
⋃
|γ|=l

{[Dγξ]β >
σα−1−ε

k + 1
}.

The equality in the above display is due to the fact that {supml=1Xl ≥ η} =
∪ml=1{Xl ≥ η} for any random variable Xl, l = 1, ...,m and constant η.
According to the above display, we arrive at a upper bound of probability.
(62)

P(ξ−Cξ∗ /∈ B) ≤
k∑
l=1

∑
|γ|=l

P(sup
x∈Ū
|Dγξ(x)| > σα−1−ε

k + 1
)+
∑
|γ|=l

P([Dγξ]β >
σα−1−ε

k + 1
).

We establish upper bounds for P(supx∈Ū |Dγξ(x)| > σα−1−ε

k+1 ) and P([Dγξ]β >
σα−1−ε

k+1 ) separately. We first analyze the term P(supx∈Ū |Dγξ(x)| > σα−1−ε

k+1 ).
We will need the following lemma, known as the Borell-TIS inequality, which
was proved independently by [Borell, 1975] and [Cirel’son et al., 1976].

Lemma 8 (Borell-TIS inequality). Let g(x) be a centered and almost
surely bounded Gaussian random field. Then, E supx∈U |g(x)| < ∞. Fur-
thermore, for any t > E supx∈U |g(x)|, we have

P
(

sup
x∈U
|g(x)| −E sup

x∈U
|g(x)| > t

)
≤ 2 exp

{
− t2

2 supx∈U Var(g(x))

}
.
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According to Lemma 8, we have that for all |γ| ≤ k, E supx∈Ū |Dγξ(x)| <
∞ and
(63)

P(sup
x∈Ū
|Dγξ(x)| > σα−1−ε

k + 1
) ≤ 2 exp

{
− σ2α−2−2ε

8(k + 1)2 supx∈Ū CDγξ(x, x)

}
,

for σ sufficiently small such that σ2α−2−2ε > 2E supx∈Ū |Dγξ(x)|, and CDγξ
is defined (14). According to Assumption A3, there exists a constant κ0 such
that for all |γ| ≤ k,

sup
x∈Ū

CDγξ(x, x) ≤ sup
y∈Ū
|CDγξ(·, y)|β < κ0.

The above display together with (63) give

P(sup
x∈Ū
|Dγξ(x)| > σα−1−ε

k + 1
) ≤ 2 exp{− σ2α−2−2ε

8(k + 1)2κ0
}

Combine this with (62), we have

(64) P(ξ −Cξ∗ /∈ B) ≤ κ0 exp{− σ2α−2−2ε

8(k + 1)2κ0
}+

∑
|γ|=l

P([Dγξ]β >
σα−1−ε

k + 1
),

for a possibly different κ0 such that κ0 ≥ 2Card{γ : |γ| ≤ k}. We proceed

to establishing upper bounds for P([Dγξ]β >
σα−1−ε

k+1 ), |γ| = k. Recall that

[Dγξ]β = sup
x,y∈Ū ,x6=y

|Dγξ(x)−Dγξ(y)|
|x− y|β

.

Motivated by this definition, we define another centered Gaussian random
field double indexed by x, y ∈ Ū

(65) g(x, y) =

{
Dγξ(x)−Dγξ(y)

|x−y|β for x 6= y

0 for x = y
.

According to Assumption A3 ξ ∈ Ck,β(Ū) almost surely. Thus, g(·, ·) is
bounded almost surely. According to Lemma 8, we have that Esupx,y∈Ū ,x6=y |g(x, y)| <
∞, and

P( sup
x,y∈Ū

|g(x, y)| > σα−1−ε

k + 1
) ≤ 2 exp

{
− σ2α−2−2ε

8(k + 1)2 supx,y∈Ū Var g(x, y)

}
,
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for σ sufficiently small such that σ2α−2−2ε > 2E supx,y∈Ū |g(x, y)|. The vari-
ance of g(x, y) in the above expression is bounded above as follows.

Var g(x, y) = |x− y|−2β{CDγξ(x, x)− CDγξ(x, y) + CDγξ(y, y)− CDγξ(x, y)}
≤ [CDγξ(x, ·)]2β + [CDγξ(y, ·)]2β,

which is bounded above by a constant κ0 according to Assumption A3. Thus,
we have

P( sup
x,y∈Ū

|g(x, y)| > σα−1−ε

k + 1
) ≤ 2 exp

{
− σ2α−2−2ε

8(k + 1)2κ0

}
.

Note that [Dγξ]β = supx,y∈Ū |g(x, y)|. Therefore, the above display is equiv-
alent to

(66) P([Dγξ]β >
σα−1−ε

k + 1
) ≤ 2 exp

{
− σ2α−2−2ε

8(k + 1)2κ0

}
.

We conclude our proof by combining the above inequality with (64).

Proof of Lemma 2. Because Λ(w) is a fixed point of Tw(·), this lemma
is a direct application of (37).

Proof of Lemma 3. We define a function h : [0, 1]→ R,

h(s) = G(w2 + s(w1 − w2))− G(w2)− s
∫
U
G′[w2](x){w1(x)− w2(x)}dx.

Notice that h(0) = 0 and h(1) = G(w1) − G(w2) −
∫
U G
′[w2](x)(w1(x) −

w2(x))dx. Apply mean value theorem to h, we have

(67) G(w1)−G(w2)−
∫
U
G′[w2](x)(w1(x)−w2(x))dx = h(1)−h(0) = h′(s̃),

for some s̃ ∈ [0, 1]. According to the definition of Fréchet derivative, it is
easy to check that

h′(s) = s

∫
U
{G′[w1 + s(w1 − w2)](x)− G′[w2](x)}(w1(x)− w2(x))dx.

Furthermore, we have∣∣∣s∫
U
{G′[w1 + s(w1 − w2)](x)− G′[w2](x)}(w1(x)− w2(x))dx

∣∣∣
≤ meas(U)|w1 − w2|0 × |G′[w1 + s(w1 − w2)](x)− G′[w2](x)|0
≤ meas(U)|w1 − w2|0 × κG|w1 − w2|k,β
≤ meas(U)|w1 − w2|2k,β.
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Here, meas(U) is the Lebesgue measure of the set U , the second inequality
is due to Assumption A1, and the third inequality is due to the fact that w,
|w|0 ≤ |w|k,β. Combine the above inequality and (67) we obtain the desired
result.

Proof of Lemma 4. We prove the lemma by induction. We first prove
this lemma for the case where k = 0 and β > 0. We consider the conditional
random field {ξ(x), x ∈ Ū | Z1 = z}. It can be shown that there exists a
continuous Gaussian random field, denoted by {χ(x), x ∈ Ū}, who has the
same distribution as {ξ(x), x ∈ Ū | Z1 = z} and belongs to Cβ(Ū) almost
surely. The mean and covariance function of χ(x) satisfy

µχ(x) = Var(Z1)−1 Cov(Z1, ξ(x))z = Var(Z1)−1

∫
U
ξ∗(y)C(x, y)dy,

Cχ(x, y) = C(x, y)−Var(Z1)−1 Cov(ξ(x), Z1) Cov(ξ(y), Z1)

= C(x, y)−Var(Z1)−1

∫
U
ξ∗(z)C(x, z)dz

∫
U
ξ∗(z)C(y, z)dz.

According to the expression (23) and supy∈Ū |C(·, y)|2β ∈<∞, we have that,

(68) |µχ|β = O(σ1−αz) and sup
y∈Ū
|Cχ(, y)|2β <∞.

Let ζ(x) = χ(x) − µχ(x) be a centered Gaussian random field. Then event

{|χ|2β >
Λ(ξ∗)−1z

σ } implies that {|ζ|β > (Λ(ξ∗)−1z
σ )

1
2 − |µχ|β}. Furthermore,

according to (68) and Lemma 2 on page 13, we have

{|χ|2β >
Λ(ξ∗)−1z

σ
} ⊂ {|ζ|β > ε0σ

−α
2
√
z −O(σ1−αz)}.

Because z ≤ κ0σ
2α−2−ε, we have σ−

α
2
√
z − O(σ1−αz) ≥ ε0σ

−α
2
√
z for a

possibly different ε0. Therefore,

{|χ|2β >
Λ(ξ∗)−1z

σ
} ⊂ {|ζ|β > ε0σ

−α
2
√
z}.

Consequently, we have

(69) P(|χ|2β >
Λ(ξ∗)−1z

σ
) ≤ P(|ζ|β > ε0σ

−α
2
√
z).

According to the definition of the norm |ζ|β = supx∈Ū |ζ(x)|+[ζ]β. Therefore,
an upper bound for (69) is
(70)

P(|χ|2β >
Λ(ξ∗)−1z

σ
) ≤ P(sup

x∈Ū
|ζ(x)| ≥ ε0

2
σ−

α
2
√
z) + P([ζ]β ≥

ε2

2
σ−

α
2
√
z).
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We will present upper bounds for the first and second terms in the above
display separately. We start with the first term. Because ζ is a centered and
continuous Gaussian random field, with the aid of Lemma 8, we have that
E supx∈Ū |ζ(x)| <∞ and

P(sup
x∈Ū
|ζ(x)| > ε0

2
σ−

α
2
√
z) ≤ 2 exp

{
− ε2

0σ
−αz

32 supx∈Ū Covχ(x, x)

}
,

for σ and z such that ε0σ
−α

2
√
z > 2E supx∈Ū |ζ(x)|. Because z ≥ σε,

ε0σ
−α

2
√
z > 2E supx∈Ū |ζ(x)| is satisfied for σ sufficiently small. Conse-

quently, for σ sufficiently small, we have

(71) P(sup
x∈Ū
|ζ(x)| > ε0

2
σ−

α
2
√
z) < e−ε0σ

−αz

for a sufficiently small and possibly different ε0. We proceed to the second
term on the right-hand-side of (70). Because ζ ∈ Cβ(Ū) almost surely, we
obtain an upper bound for P([ζ]β >

ε0
2 σ
−α

2
√
z) using similar arguments as

those for (66) on page 27

(72) P([ζ]β >
ε0

2
σ−

α
2
√
z) < 2e−ε0σ

−αz,

for σ sufficiently small and a positive constant ε0. Combine (70), (71) and
(72), we have

(73) P(|χ|2β >
Λ(ξ∗)−1z

σ
) < 2e−ε0σ

−αz.

Recall that χ has the same distribution as {ζ(x) : x ∈ Ū |Z1 = z}, thus (73)
implies

(74) P(|ξ|2β >
Λ(ξ∗)−1z

σ
|Z1 = z) < 2e−ε0σ

−αz.

Using similar arguments, we have that for σ sufficiently small

(75) P(|ξ|2β >
Λ(ξ∗)−1z

σ
|Z1 = −z) < 2e−ε0σ

−αz.

Combing the above inequality with (74), we have

P(|ξ|2β >
Λ(ξ∗)−1z

σ
|Z1 = z)+P(|ξ|2β >

Λ(ξ∗)−1z

σ
|Z1 = −z) < 4e−ε0σ

−αz < e−ε
′
0σ
−αz



30

for ε′0 < ε0 and σ sufficiently small. This completes our proof for the case
where k = 0 and β > 0. For the case k = 0 and β = 0, |ξ|β = |ξ|0. With
similar proof as those for (71), we have

(76) P(|ξ|20 >
Λ(ξ∗)−1z

σ
|Z1 = z) ≤ P(sup

x∈Ū
|ζ(x)| ≥ ε0

2
σ−

α
2
√
z) < 2e−ε0σ

−αz.

We also have similar results conditional on Z1 = −z. Therefore, for β = 0
we also have

P(|ξ|2β >
Λ(ξ∗)−1z

σ
|Z1 = z) + P(|ξ|2β >

Λ(ξ∗)−1z

σ
|Z1 = −z) < 4e−ε0σ

−αz.

This completes our proof for the case that k = 0. We now proceed to prove
the lemma for k ≥ 1. Assuming that for k = m,
(77)

P(|ξ|2k,β >
Λ(ξ∗)−1z

σ
|Z1 = z) + P(|ξ|2k,β >

Λ(ξ∗)−1z

σ
|Z1 = −z) < e−ε0σ

−αz

for some positive constant ε0 that is independent with σ and z but possi-
bly depend on k. We will prove that the following inequality holds for σ
sufficiently small and a positive constant ε0,
(78)

P(|ξ|2m+1,β >
Λ(ξ∗)−1z

σ
|Z1 = z)+P(|ξ|2m+1,β >

Λ(ξ∗)−1z

σ
|Z1 = −z) < e−ε

′
0σ
−αz.

According to the definition of the norm | · |m+1,β, we know that for β > 0

|ξ|m+1,β = |ξ|m + sup
|γ|=m+1

sup
x∈Ū
|Dγξ(x)|+ sup

|γ|=m+1
[Dγξ]β.

Therefore,{
|ξ|2m+1,β ≥

Λ(ξ∗)−1z

σ

}
⊂ {|ξ|2m ≥

Λ(ξ∗)−1z

2σ
}
⋃( ⋃

|γ|=m+1

⋃
|γ′|=m+1

{(sup
x∈Ū
|Dγξ(x)|+ [Dγ′ξ]β)2 ≥ Λ(ξ∗)−1z

2σ
}
)
.

Consequently, we arrive at an upper bound

P
(
|ξ|2m+1,β ≥

Λ(ξ∗)−1z

σ
|Z1 = z

)
≤ P(|ξ|2m ≥

Λ(ξ∗)−1z

2σ
|Z1 = z)

+
∑

|γ|=m+1

∑
|γ′|=m+1

P
(

(sup
x∈Ū
|Dγξ(x)|+ [Dγ′ξ]β)2 ≥ Λ(ξ∗)−1z

2σ
|Z1 = z

)
,(79)
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We present upper bounds for the first and second terms on the right-hand-
side of the above display separately. For the first term, according to (77),
we have

(80) P(|ξ|2m ≥
Λ(ξ∗)−1z

2σ
|Z1 = z) ≤ e−ε0σ−αz.

For the second term, notice that

{(sup
x∈Ū
|Dγξ(x)|+ [Dγ′ξ]β)2 ≥ Λ(ξ∗)−1z

2σ
}

= {sup
x∈Ū
|Dγξ(x)|+ [Dγ′ξ]β ≥

√
Λ(ξ∗)−1z

2σ
}

⊂ {sup
x∈Ū
|Dγξ(x)| ≥ 1

2

√
Λ(ξ∗)−1z

2σ
} ∪ {[Dγ′ξ]β ≥

1

2

√
Λ(ξ∗)−1z

2σ
}.

Therefore,

P
(

(sup
x∈Ū
|Dγξ(x)|+ [Dγ′ξ]β)2 ≥ Λ(ξ∗)−1z

2σ
|Z1 = z

)
≤ P

(
sup
x∈Ū
|Dγξ(x)| ≥ 1

2

√
Λ(ξ∗)−1z

2σ
|Z1 = z

)
+P
(

[Dγ′ξ]β ≥
1

2

√
Λ(ξ∗)−1z

2σ
|Z1 = z

)
.(81)

Now we present upper bounds for the two terms on the right-hand-side of the
above inequality for γ and γ′ such that |γ| = m+1 and |γ′| = m+1. To do so,
we consider a continuous Gaussian random field χ1 that belongs to Cβ(Ū)
almost surely, and it has the same distribution as {Dγξ(x), x ∈ Ū |Z1 = z}.

Lemma 9. Let Cχ1(s, t) = Eχ1(s)χ1(t) and µχ1(t) = Eχ1(t), then we
have

|µχ1 |β = O(σ1−αz) and sup
y∈Ū
|Cχ1(·, y)| <∞.

The above expressions are uniform in γ for |γ| = m+ 1.

Notice that the above lemma has the same form as (68), so with similar
arguments as those for (71), we have

(82) P
(

sup
x∈Ū
|Dγχ1(x)| ≥ 1

2

√
Λ(ξ∗)−1z

2σ

)
≤ e−ε0σ−αz.



32

Also, similar as arguments before (72), we have

(83) P
(

[Dγ′χ1]β ≥
1

2

√
Λ(ξ∗)−1z

2σ

)
≤ e−ε0σ−αz.

Combining (82) and (83) and (81), we have

P
(

(sup
x∈Ū
|Dγξ(x)|+ [Dγ′ξ])2 ≥ Λ(ξ∗)−1z

2σ
|Z1 = z

)
≤ 2e−ε0σ

−αz.

Combining the above display with (79) and (80), we have

P
(
|ξ|2m+1,β ≥

Λ(ξ∗)−1z

σ
|Z1 = z

)
≤ e−ε0σ−αz,

for σ sufficiently small and a possibly different constant ε0. Similarly, con-
ditional on Z1 = −z, we have

P
(
|ξ|2m+1,β ≥

Λ(ξ∗)−1z

σ
|Z1 = −z

)
≤ e−ε0σ−αz.

Thus,

P
(
|ξ|2m+1,β ≥

Λ(ξ∗)−1z

σ
|Z1 = z

)
+P
(
|ξ|2m+1,β ≥

Λ(ξ∗)−1z

σ
|Z1 = −z

)
≤ 2e−ε0σ

−αz,

and we complete the proof for (78) for the case where β > 0. For β = 0,
|ξ|m+1 = |ξ|m + sup|γ|=m+1 supx∈Ū |Dγξ(x)|. We obtain the proof for the

case where β = 0 by ignoring all the [Dγ′ξ]β terms in the proof for the case
where β > 0. This completes the induction.

Proof of Lemma 6. According to Theorem 6.14 in [Gilbarg and Trudinger,
2015], we have that the PDE (42) has a unique solution in C2,β(Ū). De-
note this solution by ua,f , then according to Theorem 6.6 in [Gilbarg and
Trudinger, 2015], we have the upper bound

|ua,f |2,β ≤ κ(δ,M, d, U)(|ua,f |0 + |f |0).

We conclude the proof with the following upper bound provided by Theorem
3.7 in
[Gilbarg and Trudinger, 2015],

|ua,f |0 ≤ κ0|f |0

for a constant κ0 depending only on the domain U and |a|1.
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Proof of Lemma 7. According to the definition of ua1,f1 and ua2,f2 , we
have that

−∇ · (a1(x)∇ua1,f1(x)) = f1 and −∇ · (a2(x)∇ua2,f2(x)) = f2.

Taking difference between the above two equalities, we have

−∇ · (a1∇ua1,f1) +∇ · (a2(x)∇ua2,f2) = f1(x)− f2(x) for x ∈ U.

Rearranging terms in the above expression, we have

−∇ ·
(
a2(x)∇(ua2,f2(x)− ua1,f1(x))

)
=f2(x)− f1(x)−∇ · {(a1(x)− a2(x))∇ua1,f1(x)}.

Therefore, ū = ua2,f2 − ua1,f1 ∈ C2,β(Ū) is a solution to the elliptic PDE{
−∇ · (a2(x)∇ū(x)) = f̄(x) for x ∈ U ;

ū(x) = 0 for x ∈ ∂U,

where f̄(x) = f2(x)− f1(x)−∇ · {(a1(x)− a2(x))∇ua1,f1(x)}. According to
Lemma 6, we have

(84) |ua2,f2 − ua1,f1 |2,β ≤ κ(δ,M, d, U)|f̄ |β.

We further establish an upper bound for |f̄ |β,

|f̄ |β ≤ |f2 − f1|β + |a2 − a1|1,β|ua1,f1 |2,β.(85)

According to Lemma 6,

|ua1,f1 |2,β ≤ κ(δ,M, d, U)|f1|β.

Combining this with (84) and (85), we have

|ua2,f2 −ua1,f1 |2,β ≤ κ(δ,M, d, U){|f2− f1|β +κ(δ,M, d, U)|a2− a1|1,β|f1|β}.

We complete the proof by setting κ̃(δ,M, d, U) = max(κ(δ,M, d, U), κ(δ,M, d, U)2).

Proof of Lemma 5. We take difference between Tw1(λ) and Tw2(λ),

Tw1(λ)− Tw2(λ) = −K(G′[0])−1σ−1{G(σCλG′[σCw1])− G(σCλG′[σCw2])}
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Therefore,

(86) |Tw1(λ)− Tw2(λ)| = O(σ−1{|G(σCλG′[σCw1])−G(σCλG′[σCw2])|}).

According to Lemma 3, we have

G(σλCG′[σCw1])− G(σλCG′[σCw2])

= σλ

∫
U
G′[σλCG′[σCw2]](x)C{G′[σCw1](x)− G′[σCw2](x)}dx

+O(σ2λ2|G′[σCw1]− G′[σCw2]|2k,β).

According to (29) and Assumption A1, the above display can be further
simplified as

G(σλCG′[σw1])− G(σλCG′[σw2]) = O(σλ|G′[σw1]− G′[σw2]|k,β),

which is further simplified as

G(σλCG′[σw1])− G(σλCG′[σw2]) = O(σλσ|w1 − w2|k,β).

The above expression and (86) give

|Tw1(λ)− Tw2(λ)| = O(σλ|w1 − w2|k,β) = O(σα)|w1 − w2|k,β.

The last inequality in the above expression is due to λ = O(σα−1).

Proof of Lemma 9. We need the next lemma for the current proof.

Lemma 10. We define the covariance function

CDγξ,ξ(x, y) = Cov(Dγξ(x), ξ(y)).

Then supy∈Ū |CDγξ,ξ(·, y)|2β <∞ for all |γ| ≤ k under Assumption A3.

Now we compute the mean and covariance of χ1.

µχ1(x) = E[Dγξ(x)|Z1 = z]

= Var(Z1)−1 Cov(Dγξ(x), Z1)z

= Var(Z1)−1

∫
U
CDγξ,ξ(x, y)ξ∗(y)dyz,

and

Cχ1(x, y) = CDγξ(x, y)−Var(Z1)−1 Cov(Dγξ(x), Z1) Cov(Dγξ(y), Z1)

= CDγξ(x, y)−
∫
U CDγξ,ξ(x, r)ξ

∗(y)dr
∫
U CDγξ,ξ(y, r)ξ

∗(y)dr

Var(Z1)
.
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Recall that Var(Z1) ≥ ε0σ
2α−2 for some positive constant ε0, and |ξ∗|k,β =

O(σα−1). With the aid of Lemma 10, we simplify the mean and covariance
of χ1.

|µχ1 |β = O(σ2−2α|ξ∗|0 sup
y
|CDγξ,ξ(·, y)|2βz) = O(σ1−αz),

and

sup
y∈Ū
|Cχ1(·, y)|2β = O(sup

y∈Ū
|CDγξ(·, y)|2β+σ2−2α|ξ∗|20 sup

y∈Ū
|CDγξ,ξ(·, y)|22β) = O(1).

Proof of Lemma 10. We will use induction to prove that for all l =
0, 1, ..., k, |γ| = l,

(87) sup
y∈Ū
|CDγξ,ξ(·, y)|2β <∞.

To start with, for l = 0 and |γ| = l, (87) holds because of Assumption A3
and

CDγξ,ξ(s, t) = C(s, t).

Suppose that for all |γ′| = l,

(88) sup
y∈Ū
|CDγ′ξ,ξ(·, y)|k−l,2β <∞.

For |γ| = l + 1, we want to show that

(89) sup
y∈Ū
|CDγξ,ξ(·, y)|k−l−1,2β <∞.

Without loss of generality, we assume that γ = (γ1, ..., γd) and γ1 ≥ 1. Let
e1 = (1, ..., 0) be a d-dimensional basis vector, and γ′ = γ− e1, then |γ′| = l.
We compute CDγξ,ξ.

CDγξ,ξ(x, y) = lim
ε1→0

Cov(
Dγ′ξ(x+ ε1e1)−Dγ′ξ(x)

ε1
, ξ(y))

= lim
ε1→0

ε−1
1 {CDγ′ξ,ξ(x+ ε1e1, y)− CDγ′ξ,ξ(x, y)}

=
∂

∂x1
CDγ′ξ(x, y).

Consequently,

|CDγξ,ξ(·, y)|k−l−1,2β = | ∂
∂x1

CDγ′ξ(·, y)|k−l−1,2β ≤ |CDγ′ξ(·, y)|k−l,2β.
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Thus,
sup
y∈Ū
|CDγξ,ξ(·, y)|k−l−1,2β ≤ sup

y∈Ū
|CDγ′ξ(·, y)|k−l,2β <∞.

The second inequality of the above display is due to (88). The lemma is
proved by induction.
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