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On Robustness Analysis of a Dynamic Average
Consensus Algorithm to Communication Delay

Hossein Moradian and Solmaz S. Kia

Abstract—This paper studies the robustness of a dy-
namic average consensus algorithm to communication de-
lay over strongly connected and weight-balanced (SCWB)
digraphs. Under delay-free communication, the algorithm
of interest achieves a practical asymptotic tracking of the
dynamic average of the time-varying agents’ reference sig-
nals. For this algorithm, in both its continuous-time and
discrete-time implementations, we characterize the admis-
sible communication delay range and study the effect of
the delay on the rate of convergence and the tracking error
bound. Our study also includes establishing a relationship
between the admissible delay bound and the maximum de-
gree of SCWB digraphs. We also show that for delays in the
admissible bound, for static signals, the algorithms achieve
perfect tracking. Moreover, when the interaction topology is
a connected undirected graph, we show that the discrete-
time implementation is guaranteed to tolerate at least one
step delay. Simulations demonstrate our results.

Index Terms—Communication delay, convergence rate,
directed graphs, dynamic average consensus, dynamic
input signals.

I. INTRODUCTION

IN A network of agents, each endowed with a dynamic refer-
ence input signal, the dynamic average consensus problem

consists of designing a distributed algorithm that allows each
agent to track the dynamic average of the reference inputs (a
global task) across the network. The solution to this problem is
of interest in numerous applications, such as multirobot coor-
dination [1]; sensor fusion [2]–[4]; distributed optimal resource
allocation [5], [6]; distributed estimation [7]; and distributed
tracking [8]. Motivated by the fact that delays are inevitable
in real systems, our aim here is to study the robustness of a
dynamic average consensus algorithm to fixed communication
delays. The methods we develop can be applied to other dynamic
consensus algorithms as well.

Distributed solutions to the dynamic and the static average
consensus problems have attracted increasing attention in the
last decade. Static average consensus, in which the reference
signal at each agent is a constant static value, has been studied
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extensively in the literature (see, e.g., [9]–[11]). Many aspects
of the static average consensus problem including analyzing the
convergence of the proposed algorithms in the presence of com-
munication delays are examined in the literature (see, e.g., [9],
[12]–[15]). Also, the static average consensus problem for mul-
tiagent systems with second-order dynamics in the presence of
communication delay has been studied in [16]–[18]. The dy-
namic average consensus problem has been studied in the liter-
ature as well. The solutions for this problem normally guarantee
convergence to some neighborhood of the network’s dynamic
average of the reference signals (see e.g., [2], [19]–[23] for the
continuous-time algorithms and [21], [24], [25] for the discrete-
time algorithms). Zero error tracking has been achieved under
restrictive assumptions on the type of reference signals [26] or
via nonsmooth algorithms, which assume an upper bound on
the derivative of the agents’ reference signals is known [27].
Some of these references address important practical consider-
ations, such as the dynamic average consensus over changing
topologies and over networks with event-triggered communica-
tion strategy, however, the dynamic average consensus in the
presence of communication time delay has not been addressed.
This paper intends to fill this gap as delays are inevitable in real
systems and are known to cause disruptive behavior, such as
network instability or network desynchronization [28]–[30].

In this paper, we study the effect of fixed communication
delay on the continuous-time dynamic average consensus al-
gorithm of [19] and its discrete-time implementation. In the
(Laplacian) static average consensus algorithm, reference inputs
of the agents enter the algorithm as initial conditions. Therefore,
the robustness to delay analysis is focused on identifying the ad-
missible ranges of the delay for which the algorithm is internally
exponentially stable. However, in our dynamic average consen-
sus algorithm of interest, instead of initial conditions, reference
inputs enter the algorithm as an external input. Therefore, in
addition to the internal stability analysis, we need to assess
the input to output stability and convergence performance. To
perform our studies, we use a set of time domain approaches.
Specifically, in continuous-time, we model our dynamic aver-
age consensus algorithm with communication delay as a delay
differential equation (DDE) and use the characterization of so-
lutions of DDEs and their convergence analysis (cf., e.g., [31],
[32]) to preform our studies. In discrete-time, we model our
algorithm as a delay difference equation whose solution char-
acterization can be found, for example, in [33] and [34]. For
both continuous- and discrete-time algorithms that we study, we
carefully characterize the admissible delay bound over strongly
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connected and weight-balanced (SCWB) interaction topologies.
We also characterize the convergence rate and show that in both
continuous- and the discrete-time cases, the rate is a function
of the time delay and network topology. Moreover, we show
that the admissible delay bound is an inverse function of the
maximum degree of the SCWB digraph, a result that previously
was only established for undirected graphs in the case of the
static average consensus algorithm. Our convergence analysis
also includes establishing a practical bound on the tracking error,
and showing that for static signals, the algorithms achieve per-
fect tracking for delays in the admissible bound. We also show
for connected undirected graphs, the discrete-time algorithm
is guaranteed to tolerate, at least, one step delay. Simulations
demonstrate our results and also show that for delays beyond
the admissible bound, the algorithms under study become un-
stable. Our robustness analysis approach can be applied to other
dynamic average consensus algorithms as well. For example,
in our preliminary work [35], we studied the robustness of the
continuous-time dynamic average consensus algorithm of [21]
to the communication delay.

Notations: We let R, R>0 , R≥0 , Z, Z>0 Z≥0 , and C denote
the set of real, positive real, nonnegative real, integer, positive in-
teger, nonnegative integer, and complex numbers, respectively.
Zj

i is the set {i, i + 1, . . . , j}, where i, j ∈ Z and i < j. For a
s ∈ C, Re(s) and Im(s) represent its real and imaginary parts,
respectively. Moreover, |s| and arg (s) represent its magni-
tude and argument, respectively, i.e., |s| =

√
Re(s)2 + Im(s)2

and arg(s) = atan2(Im(s), Re(s)). When s ∈ R, |s| is its abso-
lute value. For s ∈ Rd , ‖s‖ =

√
s�s denotes the standard Eu-

clidean norm. We let 1n (resp. 0n ) denote the vector of n ones
(resp. n zeros), and denote by In the n × n identity matrix.
We let Πn = In − 1

n 1n1�
n . When it is clear from the context,

we do not specify the matrix dimensions. For a measurable
locally essentially bounded function u : R≥0 → Rm , we de-
fine ‖u‖∞ = ess sup{‖u(t)‖, t ≥ 0}. For a discrete-time func-
tion u : Z → Rm , we define ‖u‖∞ = sup{‖u(k)‖, k ∈ Z}.
For x ∈ R, ceiling of x demonstrated by 	x
 is the smallest
integer greater than or equal to x. For a given d ∈ Z≥0 and
A ∈ Rn×n , we define delayed exponential of the matrix A as

eAk
d =

mk∑

l=0

(
k − (l − 1)d

l

)
Al , mk =

⌈
k

d + 1

⌉
, k ∈ Z≥0 .

(1)

In a network of N agents, the aggregate vector of local variables
pi , i ∈ {1, . . . , N} is denoted by p = (p1 , . . . , pN )� ∈ RN . We
define R ∈ RN ×(N −1) , such that
[ 1√

N
1�

N

R�

] [
1√
N

1N R
]

=
[

1√
N

1N R
] [ 1√

N
1�

N

R�

]

= IN .

(2)

Since RR� = ΠN and ΠN ΠN = ΠN , we have
∥∥R� y

∥∥ = ‖Πy‖ ∀y ∈ RN . (3)

For a given z ∈ C, Lambert W function is defined as the solution
of the equation s es = z, i.e., s = W (z) (cf., [36], [37]). Except

for z = 0, which gives W (0) = 0, W is a multivalued function
with the infinite number of solutions denoted by Wk (z) with k ∈
Z, where Wk is called the kth branch of W function. MATLAB
and Mathematica have functions to evaluate Wk (z). For any
z ∈ {z ∈ C | |z| ≤ 1

e }, we have

W0(z) =
∞∑

n=1

(−n)n−1

n!
zn . (4)

Next, we review some basic concepts from graph the-
ory following [38]. A weighted digraph, is a triplet G =
(V, E , A), whereV = {1, . . . , N} is the node set andE ⊆ V × V
is the edge set, and A ∈ RN ×N is a weighted adjacency matrix,
such that aij > 0, if (i, j) ∈ E and aij = 0, otherwise. An edge
(i, j) from i to j means that agent j can send information to
agent i. Here, i is called an in-neighbor of j and j is called an
out-neighbor of i. A directed path is a sequence of nodes con-
nected by edges. A digraph is strongly connected if for every pair
of nodes there is a directed path connecting them. A weighted
digraph is undirected if aij = aj i for all i, j ∈ V . A connected
undirected graph is an undirected graph in which any two nodes
are connected to each other by paths. The weighted in- and out-
degrees of a node i are, respectively, di

in = ΣN
j=1aj i and di

out =
ΣN

j=1aij . Maximum in- and out-degree of digraph are, re-
spectively, dmax

out = max{di
out}N

i=1 , and dmax
in = max{di

in}N
i=1 .

The (out-) Laplacian matrix is L = Dout − A, where Dout =
Diag(d1

out, . . . , dN
out) ∈ RN ×N . Note that L1N = 0. A digraph

is weight-balanced iff at each node i ∈ V , the weighted out-
degree and weighted in-degree coincide, (iff 1T

N L = 0). In a
weight-balanced digraph, we have dmax

out = dmax
in = dmax . For

an SCWB digraph, L has one eigenvalue λ1 = 0, and the rest of
the eigenvalues have positive real parts. Moreover

0 < λ̂2I ≤ R�Sym(L)R ≤ λ̂N I (5)

where λ̂2 and λ̂N are, respectively, the smallest nonzero eigen-
value and maximum eigenvalue of Sym(L) = (L + L�)/2. For
connected undirected graphs, {λ̂i}N

i=1 are equal to eigenvalues
{λi}N

i=1 of L, therefore, 0 < λ2I ≤ R�LR ≤ λN I.

II. PROBLEM STATEMENT

We consider a network of N agents, where each agent i ∈ V
has access to a time-varying one-sided reference input signal

ri(t) =

{
ri(t), t ∈ R≥0

0, t ∈ R<0
(6)

where ri : R≥0 → R is a measurable locally essentially
bounded signal. The interaction topology is a SCWB digraph
G, with communication messages being subject to a fixed com-
mon transmission delay τ ∈ R>0 . The problem of interest is
to enable each agent’s local variable xi to asymptotically track
1
N

∑N
j=1 rj (t) in a distributed manner over this network. Our

starting point is the continuous-time dynamic average consensus
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algorithm

xi(t) = zi(t) + ri(t),

żi = −β

N∑

j=1

aij (xi(t − τ) − xj (t − τ)),

N∑

j=1

zj (0) = 0, zi(t) = 0 for t ∈ [−τ, 0), i ∈ V, (7)

which is proposed in [19] in the alternative but equivalent form
of ẋ = −βLx + ṙ. Algorithm (7) can also be obtained from
the proportional dynamic average consensus algorithm of [20]
when the parameter γ in that algorithm is set to zero.

Theorem II.1 (Convergence of (7) over an SCWB di-
graph when τ = 0): Let G be a SCWB digraph and as-
sume that there is no communication delay, i.e., τ = 0. Let
‖(IN − 1

N 1N 1�
N )ṙ‖∞ = γ < ∞. Then, for any β ∈ R>0 , the

trajectories of algorithm (7) are bounded and satisfy

lim
t→∞

∣∣∣∣
∣∣
xi(t) − 1

N

N∑

j=1

rj (t)

∣∣∣∣
∣∣
≤ γ

βλ̂2
, i ∈ V. (8)

The convergence rate to this error bound is no worse
than βRe(λ2).

The proof of this theorem can be found in [39]. An itera-
tive form of algorithm (7) with step-size δ ∈ R>0 and integer
communication time-step delay d ∈ Z≥0 is

xi(k) = zi(k) + ri(k)

zi(k + 1) = zi(k) − δβ
N∑

j=1

aij (xi(k − d ) − xj (k − d ))

N∑

j=1

zj (0) = 0, zi(k) = 0 for k ∈ Z−1
−d , i ∈ V. (9)

Theorem II.2 (Convergence of (9) over a SCWB di-
graph when d = 0): Let G be an SCWB digraph and as-
sume that there is no communication delay, i.e., d = 0. Let
‖(IN − 1

N 1N 1�
N )Δr‖∞ = γ < ∞. Then, for any β ∈ R>0 , the

trajectories of algorithm (9) are bounded and satisfy

lim
k→∞

∣∣∣∣x
i(k) − 1

N

∑N

j=1
rj (k)

∣∣∣∣ ≤
γδ

βλ̂2
(10)

for i ∈ V , provided δ ∈ (0, β−1(dmax)−1).
The proof of this theorem can be deduced from the results

in [39], and is omitted for brevity. Note that the initialization
condition

∑N
j=1 zj (0) = 0 in algorithm (7) and its discrete-time

implementation can be easily satisfied by assigning zi(0) = 0,
i ∈ V . Initialization conditions appear in other dynamic average
consensus algorithms as well [2], [21], [24], [26], [27].

Our objective is to characterize the admissible communica-
tion delay ranges for τ ∈ R≥0 and d ∈ Z≥0 for the dynamic
average consensus algorithms above. We also want to study
the effect of a fixed communication delay on the tracking er-
ror bound and the rate of convergence of these algorithms. By
admissible delay value, we mean values of delay for which the

algorithms stay internally exponentially stable. A short review
of the definition of the exponential stability of linear delayed
systems is provided in the Appendix.

III. CONVERGENCE AND STABILITY ANALYSIS IN THE

PRESENCE OF A CONSTANT COMMUNICATION DELAY

In this section, we study the stability and convergence prop-
erties of algorithm (7) and its discrete-time implementation (9)
in the presence of a constant communication delay.

A. Continuous-Time Case

For convenience in analysis, we start our study by applying
the change of variable [recall R from (2)]

[
p1

p2:N

]

=

[
1√
N

1�
N

R�

]⎛

⎝x − 1
N

N∑

j=1

rj1N

⎞

⎠ (11)

to represent algorithm (7) in the equivalent compact form

ṗ1(t) = 0 (12a)

ṗ2:N (t) = H p2:N (t − τ) + R�ṙ(t) (12b)

where

H = −β R�LR. (13)

Because of (2), ‖x(t) − 1
N

∑N
j=1 rj (t)1N ‖2 = ‖p(t)‖2 =

‖p2:N (t)‖2 + |p1(t)|2 . Therefore, we can write

lim
t→∞

∣∣∣∣∣
∣
xi(t) − 1

N

N∑

j=1

rj (t)

∣∣∣∣∣
∣

2

≤ lim
t→∞

∥∥∥∥∥
∥
x(t) − 1

N

N∑

j=1

rj (t)1N

∥∥∥∥∥
∥

2

= lim
t→∞

(
‖p2:N (t)‖2 + |p1(t)|2

)
, i ∈ V. (14)

For algorithm (7), using
∑N

i=1 zi(0) = 0, we obtain

p1(0) =
1√
N

1�
N (x(0) − r(0)) =

1√
N

N∑

i=1

zi(0) = 0. (15)

Therefore, (12a) gives p1(t) = 0, t ∈ R≥0 . To establish an upper
bound on the tracking error of each agent, we need to obtain
an upper bound on ‖p2:N (t)‖ as well. Since (12b) is a DDE
system with the system matrix H and a delay free input R�ṙ,
the admissible delay bound for (12b) and subsequently, for the
dynamic average consensus algorithm (7), is determined by the
delay bound for the zero input dynamics of (12b), i.e.,

ṗ2:N (t) = H p2:N (t − τ). (16)

Note that (16) is the Laplacian average consensus algorithm
with the zero eigenvalue separated. For connected undirected
graphs, Olfati-Saber and Murray [9] used the Nyquist criterion
to characterize the admissible delay bound. Here, to obtain the
admissible delay range of (16) over SCWB digraphs, we use
a result based on the characteristic equation analysis for linear
delay systems.

Lemma III.1 (Admissible range of τ for (16) over SCWB
digraphs ): Let G be an SCWB digraph. Then, for any τ ∈
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[0, τ̄) the zero-input dynamics (16) is exponentially stable if
and only if

τ̄ = min

⎧
⎨

⎩
τ ∈ R>0

∣∣∣
∣∣∣
τ =

∣∣∣atan(Re(λi )
Im(λi )

)
∣∣∣

β|λi | , i ∈ {2, . . . , N}
⎫
⎬

⎭

(17)

where {λi}N
i=2 are the nonzero eigenvalues of L. Also, for con-

nected undirected graphs, we have τ̄ = π
2 βλN

.

Proof: Recall that for SCWB digraphs, H ∈ R(N −1)×(N −1)

is a Hurwitz matrix whose eigenvalues are {−β λi}N
i=2 . Then,

our proof is the straightforward application of [40, Th. 1], which
states that a linear delayed system χ̇ = Aχ(t − τ) is exponen-
tially stable if and only if A ∈ Rn×n is Hurwitz and 0 ≤ τ <
|atan( Re(μ i )

Im(μ i ) )|
|μi | , i ∈ {1, . . . , n}, where μi is the ith eigenvalue of A.

For connected undirected graphs, we have {β λi}N
i=2 ⊂ R>0 ,

hence |atan(Re(λi )
Im(λi )

)| = π
2 , and max{β |λi |}N

i=2 = βλN . There-
fore, τ̄ in (17) is equal to π

2 βλN
. �

For delays in the admissible bound characterized in
Lemma III.1, the zero-input dynamics (16) is exponentially sta-
ble. Therefore, there are k τ ∈ R>0 and ρτ ∈ R>0 , such that
(see Definition 1)

‖P2:N (t)‖ ≤ k τ e−ρτ t sup
η∈[−τ ,0]

‖p2:N (η)‖, t ∈ R≥0 . (18)

Next, we use the results in [41] to obtain k τ and ρτ .
Lemma III.2 (Exponentially decaying upper bound for

‖p2:N (t)‖ in (16)): Let τ ∈ [0, τ̄), where τ̄ is given in (17).
Then, the trajectories of zero-input dynamics (16) over SCWB
digraphs satisfy the exponential bound in (35) with

ρτ =
1
τ

max{Re(W0(−βλiτ)}N
i=2 (19a)

k τ = max(K1 ,K2) + max(K3 ,K4) (19b)

where {λi}N
i=2 are the nonzero eigenvalues of L and

K1 ,K2 ,K3 ,K4 are gains that can be computed based on system
matrices (the closed form expressions are omitted for brevity,
please see [41, Th. 1]).

Proof: The proof is the direct application of [41, Th. 1],
which is omitted to avoid repetition. In applying [41,
Theorem 1], one should recall that system matrix H in (16) is
Hurwitz, its nullity is zero and, its eigenvalues are {−βλi}N

i=2 .�
Using our preceding results, our main theorem below estab-

lishes admissible delay bound, an ultimate tracking bound, and
the rate of convergence to this error bound for the distributed
average consensus algorithm (7) over SCWB digraphs.

Theorem III.1 (Convergence of (7) over SCWB digraphs
in the presence of communication delay): Let G be an SCWB
digraph with communication delay in τ ∈ [0, τ̄) where τ̄ is given
in (17). Let ‖(IN − 1

N 1N 1�
N )ṙ‖∞ = γ < ∞. Then, for any β ∈

R>0 , the trajectories of algorithm (7) are bounded and satisfy

lim
t→∞

∣∣∣∣
∣∣
xi(t) − 1

N

N∑

j=1

rj (t)

∣∣∣∣
∣∣
≤ γk τ

ρτ
(20)

for i ∈ V . Here, ρτ , k τ ∈ R>0 are given by (19). The rate of
convergence to this error neighborhood is no worse than ρτ .

Proof: Recall the equivalent representation (12) of (7)
and also (15). We have already shown that p1(t) = 0 for
t ∈ R≥0 . Since under the given initial condition, we have
p2:N (t) = 0N −1 for t ∈ [−τ, 0), the trajectories t �→ p2:N
of (12b) are

p2:N (t) = Φ(t)p2:N (0) −
∫ t

0
Φ(t − ζ)R� ṙ(ζ)dζ

where Φ(t − ζ) =
∑k=∞

k=−∞ eSk (t−ζ )Ck with Sk = 1
τ Wk (Hτ),

and each coefficient Ck depending on τ and H (cf., [32] for
details). Then, we can write

‖p2:N (t)‖ ≤ ‖Φ(t)p2:N (0)‖ + γ

∫ t

0
‖Φ(t − ζ)‖dζ. (21)

Here, we used (3) to write ‖R� ṙ‖∞ = ‖Π ṙ‖∞ = γ. Because
for τ ∈ [0, τ̄), the zero-input dynamics of (12b) is exponentially
stable, by invoking the results of Lemma III.2, we can deduce
that the trajectories of the zero-input dynamics of (12b)
for t ∈ R≥0 satisfy ‖Φ(t)p2:N (0)‖ ≤ k τ e−ρτ t‖p2:N (0)‖,
where ρτ and k τ are described in the statement. Here, we
used supt ∈ [−τ, 0]‖p2:N (t)‖ = ‖p2:N (0)‖, which holds
because of the given initial conditions. Because this bound
has to hold for any initial condition including those satisfying
‖p2:N (0)‖ = 1, we can conclude that ‖Φ(t)‖ ≤ k τ e−ρτ t ,
for t ∈ R≥0 (recall the definition of the matrix norm
‖Φ(t)‖ = sup

{‖Φ(t)p2:N (0)‖ ∣∣ ‖p2:N (0)‖ = 1
}

). There-
fore, from (21), we obtain ‖p2:N (t)‖ ≤ k τ e−ρτ t ‖p2:N (0)‖ +
γ
∫ t

0 k τ e−ρτ (t−ζ ) dζ. Then, using
∫ t

0 e−ρτ (t−ζ )d ζ = 1
ρτ

(1 − e−ρτ t), we can write

‖p2:N (t)‖ ≤ k τ e−ρτ t ‖p2:N (0)‖ +
k τ

ρτ
(1 − e−ρτ t)γ. (22)

The boundedness of the trajectories of (22) and the correctness
of (21) follow from (14), (16), and (22). Moreover, the rate of
convergence is also ρτ . �

Observe that

lim
τ→0

ρτ = lim
τ→0

−1
τ

max{Re(W0(−βλi τ))}N
i=2

= −max{Re(−βλi)}N
i=2 = βRe(λ2).

In other words, as τ → 0, the rate of convergence of
algorithm (7) converges to its respective value of the delay
free implementation given in Theorem II.2. Moreover, note that
(20) indicates that if the reference inputs are static, which means
‖R� ṙ‖∞ = γ = 0, for any admissible delay, algorithm (7) con-
verges to the exact average of the reference inputs.

Next, we establish a relationship between the upper bound
of the admissible delay bound and the maximum degree of
the communication graph. For connected undirected graphs as
λN ≤ 2 dmax (see [9]), the admissible delay range that is iden-
tified in Lemma III.1 satisfies [0, π

4 βdm a x ) ⊆ [0, τ̄). We extend
the results to SCWB digraphs.

Lemma III.3 (Admissible range of τ for (16) in terms of
maximum degree of the digraph): Let G be an SCWB digraph.



MORADIAN AND KIA: ON ROBUSTNESS ANALYSIS OF A DYNAMIC AVERAGE CONSENSUS ALGORITHM TO COMMUNICATION DELAY 637

Then, τ̄ in (17) satisfies

τ̄ ≥ 1/(2β dmax). (23)

Proof: Recall that {λi}N
i=2 are the nonzero eigenvalues

of L. By invoking the Gershgorin circle theorem [42], we
can write (Re(λi) − di

out)
2 + Im(λi)2 ≤ di

out, i ∈ {2, . . . , N}.
Given that 0 < di

out ≤ dmax , then for any λi , we have (Re(λi) −
dmax)2 + Im(λi)2 ≤ (dmax)2 , i ∈{2, . . . , N}, which is equiv-
alent to Re(λi)2 + Im(λi)2 ≤ 2Re(λi) dmax . Hence, we can
write

1
2dmax ≤ Re(λi)

Re(λi)2 + Im(λi)2 =
Re(λi)√

Re(λi)2 + Im(λi)2

1
|λi | .

Let φ = asin( Re(λi )√
Re(λi )2 +Im(λi )2

). Since tan(asin(x)) = x√
1−x2

holds for any x ∈ R, one can yield that φ = ±atan(Re(λi )
Im(λi )

).
Also, for any φ ∈ R, we have sin(φ) ≤ |φ|. Thus, we have

1
2βdmax ≤ Re(λi)

β(Re(λi)2 + Im(λi)2)
≤

|atan(Re(λi )
Im(λi )

|
β|λi |

proving that (23) is a sufficient condition for (17). �
The inverse relation between the maximum admissible delay

and the maximum degree of communication topology is aligned
with the intuition. One can expect that the more the links to
arrive at some agents of the network, the more susceptible the
convergence of the algorithm will be to the larger delays.

B. Discrete-Time Case

For convenience in stability analysis, we use the change of
variable (11), to represent (9) in the equivalent form

p1(k + 1) = p1(k) (24a)

p2:N (k + 1) = p2:N (k) + δ H p2:N (k − d ) − δR�Δr(k).
(24b)

where H is defined in (13) and Δri(k) = ri(k + 1) − ri(k).
In what follows, we conduct our analysis for δ ∈ (0, β−1

(dmax)−1), a stepsize for which the delay free algorithm is
stable, see Theorem II.2.

Similar to the continuous-time case, the tracking error of
algorithm (9) for each agent i ∈ V satisfies

lim
k→∞

∣∣∣
∣∣∣
xi(k)− 1

N

N∑

j=1

rj (k)

∣∣∣
∣∣∣

2

≤ lim
k→∞

(‖p2:N (k)‖2 + |p1(k)|2) .

(25)

Under the assumption that
∑N

i=1 zi(0) = 0, which gives (15),
(24a) results in p1(k) = p1(0) = 0 for all k ∈ Z≥0 . To establish
an upper bound on the tracking error of each agent, we need to
obtain an upper bound on ‖p2:N (k)‖. Following [33, Th. 3.1

and 3.5], the trajectories of (24b) are described by [recall (1)]

p2:N (k) =
0∑

j=−d +1

eδ H (k−d−j )
d Δp2:N (j − 1) (1)

− δ

k−1∑

j=0

eδ H(k−j−1−d )
d R�Δr(j), k ∈ Z≥0 . (26)

We start our analysis by characterizing the admissible ranges
of time-step delay d for the zero-input dynamics of (24b), i.e.,

p2:N (k + 1) = p2:N (k) + δH p2:N (k − d ). (27)

Lemma III.4 (Admissible range of d for (27) over SCWB
digraphs): Let G be an SCWB digraph. Assume that δ ∈
(0, (β dmax)−1). Then, for any d ∈ [0, d̄ ), the zero-input dy-
namics (27) is exponentially stable if and only if

d̄ = min

{

d ∈ Z≥0

∣
∣∣∣ d > d̂, d̂ =

1
2

(
π − 2| arg(λi)|
2 arcsin( β |λi |δ

2 )
− 1

)

i ∈ {2, . . . , N}} (28)

where {λi}N
i=2 are the nonzero eigenvalues of L. For connected

undirected graphs, d̂ in (28) is d̂ = 1
2

(
π

2 arcsin( β λi δ

2 )
− 1

)
.

Proof: When d = 0, by knowing that eigenvalues of I + δ H
are {1 − βδλi}N

i=2 [21] shows that for (27) to be expo-
nentially stable over SCWB digraphs, δ has to satisfy δ ∈
(0, (β dmax)−1). To characterize an upper bound for admis-
sible d ∈ Z>0 , we invoke [43, Th. 1], which states that the
discrete-time delayed system (27) with a fixed delay d ∈ Z>0
is exponentially stable iff eigenvalues of δ H lie inside the region
of complex plane enclosed by the curve

Γ=
{

z ∈ C

∣∣
∣∣z = 2 isin

(
φ

2d + 1

)
eiφ , − π

2
≤ φ ≤ π

2

}
.

(29)

First, we consider 0 < φ < π
2 . If we write z in (29)

as z = 2i sin( φ
2d +1 )eiφ = 2 sin( φ

2d +1 )ei( π
2 +φ) , then eigenvalue

−δβλi = δ β |λi |e(π+arg(λi ))i, i ∈ {2, . . . , N} of δ H lies in-
side Γ if and only if π + arg(λi) = φ + π

2 and βδ| λi | <

2 sin( φ
2d +1 ), in which − π

2 < arg(λi) < 0, thus, βδ|λi | <

2 sin(
π
2 +arg(λi )

2d +1 ). Similarly, for − π
2 < φ < 0, (i.e., 0 <

arg(λi) < π
2 ,) we obtain βδ|λi | < 2 sin(

π
2 −arg(λi )

2d +1 ). Therefore,
for (27) to be asymptotically stable, we have

d <
1
2

⎛

⎝ π − 2| arg(λi)|
2 arcsin

(
δ β |λi |

2

) − 1

⎞

⎠ ∀i ∈ {2, . . . , N}.

For connected undirected graphs, the eigenvalues of δ H, i.e.,
{−βδλi}N

i=2 are real, hence arg(λi) = 0. As a result for (27) to
be exponentially stable over connected undirected graphs, we
obtain d < 1

2

(
π

2 arcsin( δ β λi
2 )

− 1
)
. �

Using our preceding results and the auxiliary Lemma A.1
that we presented in the Appendix, our main theorem below
establishes admissible delay bound, an ultimate tracking bound,
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and the rate of convergence to the error bound for the discrete-
time algorithm (9) over SCWB digraphs.

Theorem III.2 (Convergence of (9) over SCWB digraphs
in the presence of communication delay): Let G be an SCWB
digraph with communication delay in d ∈ [0, d̄ ), where d̄ is
given in (28). Let ‖(IN − 1

N 1N 1�
N )Δr‖∞ = γ < ∞. Then,

for any β ∈ R>0 and δ ∈ (0, β−1(dmax)−1), the trajectories of
algorithm (9) are bounded and satisfy

lim
k→∞

∣∣∣∣∣∣
xi(k) − 1

N

N∑

j=1

rj (k)

∣∣∣∣∣∣
≤ γδ k̄ d

1 − ω̄d
(30)

for i ∈ V , where

(ω̄d , k̄ d , Q̄) = argmin
ω d ,κd ,Q

ω2
d , subject to (39) (31)

with

Aaug =
[
0d (N −1)×(N −1) Id (N −1)

δ H
[
0(N −1)×(d−1)(N −1) IN −1

]
]

.

Proof: Consider (24), the equivalent representation of
algorithm (9). We have already established that p1(k) = 0. Next,
we establish an upper bound on trajectories k �→ ‖p2:N ‖ for k ∈
Z≥0 . For a d in the admissible range defined in the statement,
Lemma III.4 guarantees that the zero dynamic of (24b), i.e., (27),
is exponentially stable. Therefore, invoking Lemma A.1, there
always exist a positive definite Q ∈ R(d +1)(N −1)×(d +1)(N −1)

and scalars 0 < ωd < 1 and k d ≥ 1 that satisfy (39) for Aaug

as defined in the statement. The smallest ωd can be obtained
from the matrix inequality optimization problem (31). Then,
using the results of Lemma A.1, we have the guarantees that
the solutions of the zero-state dynamics (27), for k ∈ Z≥0

satisfy ‖p2:N (k)‖ = ‖eδ H(k−d )
d p2:N (0)‖ ≤ k̄ d ω̄k

d ‖p2:N (0)‖.
Because this bound holds for any p2:N (0) including those sat-
isfying ‖p2:N (0)‖ = 1, we can conclude that (recall the def-
inition of a norm of a matrix) ‖eδ H(k−d )

d ‖ ≤ k̄ d ω̄k
d , for all

k ∈ Z≥0 . Consequently, from (26), along with ‖R� Δr‖∞ =
‖ΠΔr‖∞ = γ [recall (3)], we can write

‖p2:N (k)‖ ≤ k̄ d ω̄k
d ‖p2:N (0)‖ + δγ

k−1∑

j=0

k̄ d ω̄
(k−j−1)
d .

(32)

Note that
∑k−1

j=0 ω̄
(k−j−1)
d = 1−ω̄ k

d
1−ω̄ d

. As a result, when
k → ∞, we obtain (recall that 0 < ωd < 1). Moreover,
limk→∞

∑k−1
j=0 ω̄

(k−j−1)
d = (1 − ω̄d )−1 . Therefore, as k → ∞,

from (32), we can conclude that limk→∞ ‖p2:N (k)‖ ≤
k̄ d δ γ

(1−ω̄ d ) . �
Note that the optimization problem (31) is a convex linear

matrix inequality (LMI) in variables (ω2
d , 1

k d
,Q) and can be

solved using efficient LMI solvers. Also notice that the track-
ing error bound (30) implies that if the local reference signals
are static, i.e., ‖R� Δr‖∞ = γ = 0, for any admissible delay,
algorithm (9) converges to the exact average of the reference
inputs.

Fig. 1. SCWB digraphs with edge weights 0 and 1.

Because in connected undirected graphs all the non-zero
eigenvalues of Laplacian matrix are real and satisfy 0 < δβλi <
1, i ∈ {2, . . . , N}, algorithm (9) is guaranteed to tolerate, at
least, one step delay as π

2 arcsin( δ β λi
2 )

> 3. We close this section

with establishing a relationship between admissible delay bound
of (9) and the maximum degree of the communication graph.
Here also, similar to the continuous-time case, this relationship
is inverse.

Lemma III.5 (Admissible range of d for (27) in terms of
maximum degree of the digraph): Let G be an SCWB digraph.
Then, d̄ in (28) satisfies

d̄ ≥ 1
2

(
1

βδdmax − 1
)

. (33)

Proof: Let Γ be the stability region introduced in (29) for a
specific time delay, d . Invoking Gershgorin theorem, we know
that all the eigenvalues of δH are located inside a circle that
can be written in the polar form as G = {z = −rei θ ∈ C|r =
2βδdmax cos(θ)| − π

2 ≤ θ ≤ π
2 }. Due to symmetricity of G

and Γ , we just consider 0 ≤ θ ≤ π
2 for simplification. G lies

inside Γ if and only if φ = π
2 − θ, and |r| ≤ |z|. Since z =

2 sin( φ
2d +1 )ei( π

2 +φ) , it yields to β δ dmax sin(φ) ≤ sin( φ
2d +1 ),

or β δ dmax ≤ f(φ) =
sin( φ

2 d + 1 )
sin(φ) . Moreover, f(φ) is a strictly

increasing function over φ ∈ [0, π
2 ], since

∂f(φ)
∂φ

=
cos (φ) cos

(
φ

2d +1

)(
1

2d +1 tan(φ)−tan( φ
2d +1 )

)

sin2(φ)
≥0.

Thus, the least value of f(φ) is obtained as φ → 0, which is equal
to 1

2d +1 . Thus, it implies that βδdmax ≤ 1
2d +1 is a sufficient con-

dition to guarantee the stability of the zero-input dynamics (27),
which is equivalent to d̄ ≥ 1

2 ( 1
βδdm a x − 1). �

IV. NUMERICAL SIMULATIONS

We analyze the robustness of algorithm (7) and its discrete-
time implementation (9) to communication delay for two aca-
demic examples taken from [21]. The network topology in these
examples is given in Fig. 1(a). We also use the network given in
Fig. 1(b) to study the effect of the maximum degree of a network
on the admissible delay range.

Continuous-time case: the reference signals at each agent are

r1(t)=0.55 sin (0.8 t), r2(t)=0.5 sin(0.7 t)+0.5 sin(0.6 t)
r3(t)=0.1 t, r4(t)=2 atan(0.5 t)
r5(t)=0.1 cos(2 t), r6(t)=0.5 sin(0.5 t).

We set the parameter of the algorithm (7) at β = 1. The max-
imum admissible delay bounds obtained using the result of
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Fig. 2. Time history of the tracking error ei
x = xi − 1

N

∑N

j=1r
j of al-

gorithm (7) over the network of Fig. 1(a) in the absence and presence of
communication delay.

Lemma III.1 for the topologies depicted in Fig. 1 are (a)
τ̄ = 0.52 s and (b) τ̄ = 0.41 s. Note that as expected from (23),
for case (b) with dmax = 3, the maximum admissible delay is
less than case (a) with dmax = 1. Fig. 2 shows the time history
of the tracking error of algorithm (7) over the network topology
of Fig. 1(a) for four different values of time delay (a) τ = 0,
(b) τ = 0.2 s, (c) τ = 0.4 s and (d) τ = 0.6 s. As this figure
shows, by increasing time delay, the rate of convergence of the
algorithm decreases. Also, as can be predicted from (20),
the tracking error increases. For case (d), the delay is beyond
the admissible range, and as expected, results in instability. The
convergence rate for each of the other aforementioned time de-
lay is given by, respectively (a) ρτ = 0.5 , (b) ρτ = 0.28, and
(c) ρτ = 0.11.

Discrete-time case: For discrete-time implementation, we use
the same network depicted in Fig. 1(a) but with the reference
input signal

ri(t(m)) = 2 + sin
(
ω(m)t(m) + φ(m)

)
+ bi m ∈ Z≥0 .

Fig. 3. Time history of the tracking error ei
x = xi − 1

N

∑N

j=1r
j of al-

gorithm (9) over the network of Fig. 1(a) in the absence and presence of
communication delay. The vertical dashed lines show the data sampling
times (every 5 s).

Here, b� = [−0.55, 1, 0.6,−0.9,−0.6, 0.4], and ω and φ are
random signals with Gaussian distributions, N(0, 0.25) and
N(0, (π

2 )2), respectively. Kia et al. [21] state that these refer-
ence signals correspond to a group of sensors with bias bi , which
sample a process at sampling times t(m), m ∈ Z≥0 . Here, we as-
sume that the data is sampled at Δ t(m) = 5 s, for all m ∈ Z≥0 .
Each sensor needs to obtain the average of the measurements
across the network before the next sampling time. To obtain the
average, we implement (9) with sampling stepsize δ and input
ri(k) = ri(kδ), i ∈ V , which between sampling times t(m) and
t(m + 1) is fixed at ri(t(m)). Fig. 3 demonstrates the result
of simulation for β = 1 and δ = 0.19 s. The admissible delay
for this case is d̄ = 2. Fig. 3 shows the time history of track-
ing error for different amounts of delay (a) d = 0, (b) d = 1,
(c) d = 2, and (d) d = 3. As shown, the steady error goes up
as the delay increases. Moreover, the rate of convergence for
each case is obtained by solving optimization problem (31).
The optimal upper bound specifications for each case corre-
spond to (a) k̄ d = 7.2, ω̄d = 0.16, (b) k̄ d = 68, ω̄d = 0.96, and
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(c) k̄ d = 70, ω̄d = 0.99, respectively. In case (d), the delay is
outside admissible range and as expected the algorithm is un-
stable and diverges.

V. CONCLUSION

We studied the robustness of a dynamic average consensus al-
gorithm to fixed communication delays. Our study included both
the continuous-time and the discrete-time implementations of
this algorithm. For both implementations over SCWB digraphs,
we stated the following conditions.

1) Characterized the admissible delay range.
2) Studied the effect of communication delay on the rate of

convergence and the tracking error.
3) Obtained upper bounds for them based on the value of

the communication delay and the network’s and the al-
gorithm’s parameters.

4) Showed that the size of the admissible delay range has an
inverse relation with the maximum degree of the interac-
tion topology.

Future work will be devoted to investigating the effect of
uncommon and time-varying communication delay on the algo-
rithms’ stability and convergence and expanding also our results
to switching graphs.

APPENDIX

STABILITY OF TIME-DELAY SYSTEMS OF RETARDED TYPE

The exponential stability of a continuous-time linear DDE

ẋ(t) = Ax(t − τ), t ∈ R≥0

x(0) = x0 ∈ Rn , x(t) = g(t) for t ∈ [−τ, 0) (34)

where g(t) is a continuously differential preshape function and
τ ∈ R>0 is the time-delay, defined as follows.

Definition 1 (Internal stability of (34) [31]): For a given τ ∈
R>0 the trivial solution x ≡ 0 of the zero input system of (34)
is said to be exponentially stable iff there exists a k τ ∈ R>0
and an ρτ ∈ R>0 , such that for the given initial conditions, the
solution satisfies the inequality as follows:

‖x(t)‖ ≤ k τ e−ρτ t sup
η∈[−τ ,0]

‖x(η)‖, t ∈ R≥0 . (35)

The exponentially stability for discrete-time time-delay
system

ẋ(k + 1) = x(k) + Ax(k − d ), k ∈ Zk≥0

x(0) = x0Rn , x(k) = g(k), k ∈ Z−1
−d (36)

where d ∈ Zk≥0 is the fixed time-step delay and g(k) is a pre-
shape function, defined as follows

Definition 2 (Internal stability of (36)): For a given d ∈
Zk≥0 , the trivial solution x ≡ 0 of the zero input system of (36)
is said to be exponentially stable iff there exists a k d ∈ R>0
and an 0 < ωd < 1, such that for the given initial conditions,
the solution satisfies the inequality as follows:

‖x(k)‖ ≤ k d ωk
d sup

k∈Z0
−d

‖x(k)‖, k ∈ Z≥0 . (37)

Next, we develop an auxiliary result that we use in proof of
our main result given in Theorem III.2.

Lemma A.1 (Exponential upper bound on a discrete-time
delay dynamics): Consider the discrete-time time-delay system

x(k + 1) = x(k) + Ax(k − d ), k ∈ Z≥0 (38)

where d ∈ Z≥0 , A ∈ Rn×n and the initial conditions are
x(k) ∈ Rn for k ∈ {−d , . . . , 0}. Assume that the admissible
delay range of (38) is nonempty, i.e., there exists a d̄ ∈ Z>0 ,
such that for d ∈ [0, d̄ ], the system (38) is exponentially stable.
Then, for every d ∈ [0, d̄ ], there always exists a positive definite
Q ∈ R(d +1)n×(d +1)n and k d , ωd ∈ R>0 that satisfy

1
k d

I ≤ Q ≤ I, 0 < ω2
d < 1, k d > 1 (39a)

A�
augQAaug − Q ≤ −(1 − ω2

d ) I. (39b)

Here, Aaug =
[
0d n×n Id n

A
[
0n×(d−1)n In

]
]

. Moreover

a) ‖x(k)‖ ≤ √
d + 1 k d ωk

d supk∈Z0
−d
‖x(k)‖, k ∈ Z≥0 .

b) When x(k) = 0 for k ∈ Z−1
−d , we have

‖x(k)‖ ≤ k d ωk
d ‖x(0)‖, k ∈ Z≥0 . (40)

Proof: For a d in the admissible delay range of (38), let
xaug(k) =

[
x(k − d )� · · · x(k − 1)� x(k)�

]�
. Then

xaug(k + 1) = Aaugxaug(k), k ∈ Z≥0 , xaug ∈ R(d +1)n , (41)

with Aaug as defined in the statement. Because (38) is exponen-
tially stable, the augmented state equation (41) is also exponen-
tially stable. Then, by virtue of results on exponential stability
of LTI discrete-time systems [44, Th. 23.3], we have the guar-
antees that there exists a symmetric positive definite P ∈ Rn×n

and scalars η, ρ, ε ∈ R>0 that satisfy

η I ≤ P ≤ ρ I, A�
augPAaug − P ≤ −ε I. (42)

Moreover, for k d = ρ/η and 0 < ω2
d = 1 − ε/ρ < 1, we have

‖xaug(k)‖ ≤ k d ωk
d ‖xaug(0)‖, k ∈ Z≥0 . (43)

By applying the change of variables Q = 1
ρ P, k d = ρ/η > 0,

and 0 < ω2
d = 1 − ε/ρ < 1, we can represent (42) in its equiv-

alent form in (39). Moreover, because ‖x(k)‖ ≤ ‖xaug(k)‖ and

‖xaug(0)‖ =
√

‖∑−d
j=0 x(j)‖2 ≤ √

d + 1supk∈Z0
−d
‖x(k)‖ and

‖x(k)‖ ≤ ‖xaug(k)‖, we can use (43) to confirm claim (a)
in the statement. On the other hand, because x(k) = 0 for
k ∈ Z−1

−d , (43) also guarantees claim (b) in the statement. �
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