Cyber Layer

Physical Layer

Tutorial on Dynamic
Average GConsensus

THE PROBLEM, ITS APPLICATIONS, AND THE ALGORITHMS

SOLMAZ S. KIA, BRYAN VAN SCOY, JORGE CORTES, RANDY A. FREEMAN,
KEVIN M. LYNCH, and SONIA MARTINEZ

echnological advances in ad hoc networking and the
availability of low-cost reliable computing, data stor-
age, and sensing devices have made scenarios pos-
sible where the coordination of many subsystems
extends the range of human capabilities. Smart grid
operations, smart transportation, smart health care, and sens-
ing networks for environmental monitoring and exploration
in hazardous situations are just a few examples of such net-
work operations. In these applications, the ability of a network

Digital Object Identifier 10.1109/MCS.2019.2900783
Date of publication: 17 May 2019

40 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2019

system to (in a decentralized fashion) fuse information, com-
pute common estimates of unknown quantities, and agree on
a common view of the world is critical. These problems can be
formulated as agreement problems on linear combinations of
dynamically changing reference signals or local parameters.
This dynamic agreement problem corresponds to dynamic
average consensus, which, as discussed in “Summary,” is the
problem of interest of this article. The dynamic average con-
sensus problem is for a group of agents to cooperate to track
the average of locally available time-varying reference signals,
where each agent is capable only of local computations and
communicating with local neighbors (see Figure 1).

1066-033X/19©2019IEEE

TRALIZED SOLUTIONS HAVE DRAWBACKS

The difficulty of the dynamic average consensus problem
is that the information is distributed across the network. A
straightforward solution, termed centralized, to the dynamic
average consensus problem is to gather all of the informa-
tion in a single place, perform the computation (in other
words, calculate the average), and then send the solution
back through the network to each agent. Although simple,
the centralized approach has numerous drawbacks: 1) the
algorithm is not robust to failures of the centralized agent
(if the centralized agent fails, then the entire computation
fails), 2) the method is not scalable because the amount of
communication and memory required on each agent scales
with the size of the network, 3) each agent must have a
unique identifier (so that the centralized agent counts each
value only once), 4) the calculated average is delayed by an
amount that grows with the size of the network, and 5) the
reference signals from each agent are exposed over the
entire network (which is unacceptable in applications
involving sensitive data). The centralized solution is fragile
due to the existence of a single failure point in the network.
This can be overcome by having every agent act as the cen-
tralized agent. In this approach, referred to as flooding,
agents transmit the values of the reference signals across
the entire network until each agent knows each reference
signal. This may be summarized as first do all communica-
tions and then do all computations. While flooding fixes
the issue of robustness to agent failures, it is still subject
to many of the drawbacks of the centralized solution.
Although this approach works reasonably well for small-
size networks, its communication and storage costs scale
poorly in terms of the network size and may incur, depend-
ing on how it is implemented, costs of order O(N?) per
agent (for instance, this is the case if each agent maintains
which neighbors it has or has not sent each piece of infor-
mation to). This motivates the interest in developing dis-
tributed solutions for the dynamic average consensus
problem that involve only local interactions and decisions
among the agents.

CHALLENGES WITH DYNAMIC PROBLEMS

The static version of the dynamic average consensus prob-
lem (commonly referred to as static average consensus) is
the familiar problem in which agents seek to agree on a spe-
cific combination of fixed quantities. The static problem has
been extensively studied in the literature [1]-[4], and several
simple and efficient distributed algorithms exist with exact
convergence guarantees. Given its mature literature, a natu-
ral approach to address the distributed solution of the
dynamic average consensus problem in some literature has
been to zero-order sample the reference signals and use a
static average consensus algorithm between sampling times
(for example, see [5] and [6]). If this was a practical approach,
it would mean that there is no need to worry about design-
ing specific algorithms to solve the dynamic average consensus

problem because we could rely on the algorithmic solutions
available for static average consensus.

However, this approach does not work because it would
essentially need a static average consensus algorithm that
is able to converge infinitely fast. In practice, some time is
required for information to flow across the network, and
hence the result of the repeated application of any static
average consensus algorithm operates with some error
whose size depends on its speed of convergence and how
fast inputs change. To illustrate this point better, we have

Summary

his article addresses the dynamic average consen-

sus problem and the distributed coordination algo-
rithms available to solve it. Such a problem arises in sce-
narios with multiple agents, where each one has access to a
time-varying signal of interest (for example, a robot sensor
sampling the position of a mobile target of interest or a dis-
tributed energy resource taking a sequence of frequency
measurements in a microgrid). The dynamic average con-
sensus problem consists of having the multiagent network
collectively compute the average of the set of time-varying
signals. Reasons for pursuing this objective are numerous
and include data fusion, refinement of uncertainty guar-
antees, and computation of higher-accuracy estimates,
all enabling local decision making with network-wide ag-
gregated information. Solving this problem is challenging
because the local interactions among agents involve only
partial information, and the quantity that the network seeks
to compute is changing as the agents run their routines.
The article provides a tutorial introduction to distributed
methods that solve the dynamic average consensus prob-
lems, paying special attention to the role of network con-
nectivity and incorporating information about the nature
of the time-varying signals, the performance tradeoffs re-
garding convergence rate, steady-state error and memory
and communication requirements, and algorithm robust-
ness against initialization errors.

ul(t)

ul(t)

FIGURE 1 A group of communication agents, each endowed with a
time-varying reference signal.

JUNE 2019 < IEEE CONTROL SYSTEMS MAGAZINE 41

the following numerical example. Consider a process described
by a fixed value plus a sine wave whose frequency and
phase are changing randomly over time. A group of six
agents with the communication topology of a directed ring
monitors this process by taking synchronous samples, each
according to

u'(m) = a' (2 + sin(w (m) t(m) + ¢ (m))) +b', m & Z=q,

where a' and b’ are fixed unknown error sources in the
measurement of agent i € {1,...,6}. To reduce the effect
of measurement errors, after each sampling, every agent
wants the average of the measurements across the net-
work before the next sampling time. For the numerical
simulations, the values @ ~N(0,0.25), ¢ ~N(0,(n/2)?,
with N(u,p) indicating a Gaussian distribution with mean
4 and variance p, are used. The sampling rate is set to 0.5 Hz
(At =2 s). For the simulation under study, a' = 1.1,a* =1,
a*=09, a*=1.05, a°=096, a®=1, b' =—-0.55, b*=1,
b*=0.6,b*=—-0.9,b°>=—-0.6, and b°=0.4. To obtain the
average, the folllowing two approaches are used: 1) at every

14 16 18 20

= A a'**E\._.[

0 2 4 6 8 10 12 14 16
Time

(©

18 20

sampling time m, each agent initializes the standard static
discrete-time Laplacian average consensus algorithm

x(k+1) = x'(k)— 6% ag(x'(k)—x/'(k), ie{1,..,N},
j=1

by the current sampled reference values x'(0) = u’(m) and
implements it with an admissible time step & until just before
the next sampling time m + 1; 2) at time m = 0, agents start
executing a dynamic average consensus algorithm [more
specifically, strategy (515), which is described in detail later].
Between sampling times m and m + 1, the reference input
u’(k) implemented in the algorithm is fixed at u’(m), where k
is the communication time index. Figure 2 compares the
tracking performance of these two approaches. It is observed
that the dynamic average consensus algorithm, by keeping a
memory of past actions, produces a better tracking response
than the static algorithm initialized at each sampling time
with the current values. This comparison serves as motiva-
tion for the need to specifically design distributed algorithms
that take into account the particular features of the dynamic
average consensus problem.

4
b
2 y(L1 ‘
4
0
0O 2 4 6 8 10 12 14 16 18 20
Time
(b)
4
1
1
x 2) k i
3
0
—2
0 2 4 6 8 10 12 14 16 18 20

Time

(d)

FIGURE 2 A comparison of performance between a static average consensus algorithm reinitialized at each sampling time versus a
dynamic average consensus algorithm. The solid lines: red curves (respectively, blue curves) represent the time history of the agree-
ment state of each agent generated by the Laplacian static average consensus approach [respectively, the dynamic average consensus
of (S15)]; x: sampling points at mAt; O: the average at mAt; +: the average of reference signals at k6. The dynamic consensus algo-
rithm very closely tracks the average over time as the static consensus does not have enough time between sampling times to converge.
This trend is preserved even if the frequency of the communication between the agents increases. In these simulations, o = =1in
(S15). (a) Static algorithm; three communications in t € [m, m + 1]. (b) Static algorithm; 20 communicationsin t € [m, m + 1]. (c) Dynamic
algorithm; three communications in t € [m, m + 1]. (d) Dynamic algorithm; 20 communications in t € [m, m + 1].

42 |EEE CONTROL SYSTEMS MAGAZINE » JUNE 2019

OBJECTIVES AND ARTICLE ROAD MAP
The objective of this article is to provide an overview of
the dynamic average consensus problem that serves as a
comprehensive introduction to the problem definition, its
applications, and the distributed methods available to
solve them. This article was motivated by the fact that, in
the literature, many works exist that have dealt with the
problem. However, there is not a tutorial reference that
presents, in a unified way, the developments that have
occurred over the years. “Summary” encapsulates the
contents of the article, emphasizing the value and utility
of its algorithms and results. The primary intention, rather
than providing a full account of all of the available lit-
erature, is to introduce, in a tutorial fashion, the main
ideas behind dynamic average consensus algorithms,
the performance tradeoffs considered in their design,
and the requirements needed for their analysis and con-
vergence guarantees.

The article first introduces the problem definition and
a set of desired properties expected from a dynamic aver-
age consensus algorithm. Next, various applications of
dynamic average consensus in network systems are
presented, including distributed formation, distributed
state estimation, and distributed optimization problems.
It is not surprising that the initial synthesis of dynamic
average consensus algorithms emerged from a careful
look at static average consensus algorithms. The section
“A Look at Static Average Consensus Leading up to the
Design of a Dynamic Average Consensus Algorithm” pro-
vides a brief review of standard algorithms for the static
average consensus and then builds on this discussion to
describe the first dynamic average consensus algorithm.
Various features of these initial algorithms are elaborated
on, and their shortcomings are identified. This sets the
stage in the section “Continuous-Time Dynamic Average
Consensus Algorithms” to introduce various algorithms
that address these shortcomings. The design of continu-
ous-time algorithms for network systems is often moti-
vated by the conceptual ease for design and analysis,
rooted in the relatively mature theoretical basis for the
control of continuous-time systems. However, the imple-
mentation of these continuous-time algorithms on cyber-
physical systems may not be feasible due to practical
constraints, such as limited interagent communication
bandwidth. This motivates the section “Discrete-Time
Dynamic Average Consensus Algorithms,” which spe-
cifically discusses methods to accelerate the conver-
gence rate and enhance the robustness of the proposed
algorithms. Because the information of each agent takes
some time to propagate through the network, itis expected
that tracking an arbitrarily fast average signal with zero
error is not feasible unless agents have some a priori infor-
mation about the dynamics generating the signals. This
topic is addressed in the “Perfect Tracking Using A Priori
Knowledge of the Input Signals” section, which takes

advantage of knowledge of the nature of the reference sig-
nals. Many other topics exist that are related to the dynamic
average consensus problem not explored in this article.
Several intriguing pointers for such topics are in “Further
Reading.” Throughout the article, unless otherwise noted,
network systems are considered whose communication
topology is described by strongly connected and weight-
balanced directed graphs. In only a few specific cases, the
discussion focuses on the setup of undirected graphs, and
these are explicitly mentioned.

REQUIRED MATHEMATICAL BACKGROUND AND
AVAILABLE RESOURCES FOR IMPLEMENTATION
Graph theory plays an essential role in the design and
performance analysis of dynamic consensus algorithms.
“Basic Notions from Graph Theory” provides a brief over-
view of the relevant graph theoretic concepts, definitions,
and notations in this article. Dynamic average consensus
algorithms are linear time-invariant (LTI) systems in which
the reference signals of the agents enter the system as an
external input, in contrast to the (Laplacian) static average
consensus algorithm, where the reference signals enter as
initial conditions. Thus, in addition to the internal stability
analysis (which is sufficient for the static average consen-
sus algorithm), the input-to-state stability (ISS) of the al-
gorithms must be assessed. A brief overview of the ISS
analysis of LTI systems is provided in “Input-to-State Sta-
bility of Linear Time-Invariant Systems.” All of the algo-
rithms described can be implemented using such modern
computing languages as C and Matlab. Matlab provides
functions for the simple construction, modification, and
visualization of graphs.

DYNAMIC AVERAGE CONSENSUS:

PROBLEM FORMULATION

Consider a group of N agents where each agent is capable of
1) sending and receiving information with other agents, 2)
storing information, and 3) performing local computations.
For example, the agents may be cooperating robots or sen-
sors in a wireless sensor network. The communication
topology among the agents is described by a fixed digraph
(see “Basic Notions from Graph Theory”). Suppose that
each agent has a local scalar reference signal, denoted
u'(t) : [0,00) — R in continuous time and u’(k) : N - R in
discrete time. This signal may be the output of a sensor
located on the agent, or it could be the output of another
algorithm that the agent is running. The dynamic average
consensus problem then consists of designing an algorithm
that allows individual agents to track the time-varying
average of the reference signals, given by

u'(t),

M=

continuous time: u™8(t) :=

i=1

‘(k).

zl- z-

M=

discrete time:

u™E (k) =

i=1

JUNE 2019 <« IEEE CONTROL SYSTEMS MAGAZINE 43

For discrete-time signals and algorithms, for any variable p
sampled at time ¢, the shorthand notation p(k) or px is used
to refer to p(tx). For reasons specified later, the design of dis-
tributed algorithms is of specific interest, meaning that to
obtain the average, the policy that each agent implements
depends only on its variables (represented by J, which
includes its own reference signal) and those of its out-neigh-
bors (represented by {I'} je a)-

Further Reading
Numerous works have studied the robustness of dynamic
average consensus algorithms against a variety of distur-
bances and sources of error present in practical scenarios.
These include fixed communication delays [S1], additive input
disturbances [S2], time-varying communication graphs [S3],
and driving command saturation [19]. Variations of the dy-
namic average consensus problems explore scenarios where
the algorithm design depends on the specific agent dynamics
[S4], [S5], [71] or incorporates different agent roles, such as in
leader—follower networks of mobile agents [15], [S6], [S7].

When dealing with directed agent interactions, a common
assumption in solving the average consensus problem is that
the communication graph is weight balanced, which is equiv-
alent to the graph consensus matrix W:=1—L being doubly
stochastic. In [S8], it is shown that calculating an average over
a network requires either explicit or implicit use of either 1) the
out-degree of each agent, 2) global node identifiers, 3) random-
ization, or 4) asynchronous updates with specific properties. In
particular, the balanced assumption is necessary for scalable,
deterministic, synchronous algorithms. In general, agents may
not have access to their out-degree (for example, agents that
use local broadcast communication). If each agent knows its
out-degree, however, then distributed algorithms may be used
to generate weight-balanced and doubly stochastic digraphs
[S9], [S10].

Another approach is to explicitly use the out-degree in the
algorithm by having agents share their out-weights and use
them to adjust for the imbalances in the graph. This approach
is referred to as the push-sum protocol and has been applied to
the static average consensus problem (see [S11]-[S14]). Both
of these approaches of dealing with unbalanced graphs require
each agent to know its out-degree. Furthermore, when com-
munication links are time varying, these approaches work only
if the time varying graph remains weight balanced (see [19] and
[S15]). If communication failures caused by limited communi-
cation ranges or external events, such as obstacle blocking,
destroy the weight-balanced character of the graph, then it is
still possible to solve the dynamic average consensus problem
if the expected graph is balanced [S3]. Another set of works has
explored the question of how to optimize the graph topology
to endow consensus algorithms with better properties. These
include designing the network topology in the presence of ran-

44 |EEE CONTROL SYSTEMS MAGAZINE » JUNE 2019

In continuous time, a driving command c'(J'(t), {I'(t)}jenin)

€ R is sought for each agent i € {1,...,N} such that (with an

appropriate initialization) a local state x'(t) (which is referred
to as the agreement state of agent i) converges to the average

u®&(t) asymptotically. Formally, for

continuous time: %' = ¢'(J'(t), {I' (1)} jeni), i€{1,...,N},

dom link failures [S16] and optimizing the edge weights for fast
consensus [S17], [7].

REFERENCES

[S1] H. Moradian and S. S. Kia, “On robustness analysis of a dynamic
average consensus algorithm to communication delay,” IEEE Trans.
Control Netw. Syst. Aug. 6, 2018. doi: 10.1109/TCNS.2018.2863568.

[S2] G. Shiand K. H. Johansson, “Robust consensus for continuous-time multi-
agent dynamics,” SIAM J. Control Optim., vol. 51, no. 5, pp. 3673—-3691, 2013.
[S3] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “Asymptotic mean
ergodicity of average consensus estimators,” in Proc. American Con-
trol Conf., 2014, pp. 4696—4701.

[S4] F. Chen, G. Feng, L. Liu, and W. Ren, “Distributed average tracking
of networked Euler—Lagrange systems,” IEEE Trans. Autom. Control,
vol. 60, no. 2, pp. 547-552, 2015.

[S5] S. Ghapania, W. Ren, F. Chen, and Y. Song, “Distributed aver-
age tracking for double-integrator multi-agent systems with reduced
requirement on velocity measurements,” Automatica, vol. 81, no. 7,
pp. 1-7, 2017.

[S6] G. Shi, Y. Hong, and K. H. Johansson, “Connectivity and set track-
ing of multi-agent systems guided by multiple moving leaders,” IEEE
Trans. Autom. Control, vol. 57, no. 3, pp. 663—-676, 2012.

[S7]Z. Meng, D. V. Dimarogonas, and K. H. Johansson, “Leader-follow-
er coordinated tracking of multiple heterogeneous Lagrange systems
using continuous control,” IEEE Trans. Robot., vol. 30, no. 3, pp. 739—
745, 2014.

[S8] J. M. Hendrickx and J. N. Tsitsiklis, “Fundamental limitations for
anonymous distributed systems with broadcast communications,” in Proc.
Allerton Conf. Communication, Control, and Computing, 2015, pp. 9—16.
[S9] B. Gharesifard and J. Cortés, “Distributed strategies for generating
weight-balanced and doubly stochastic digraphs,” Eur. J. Control, vol.
18, no. 6, pp. 539-557, 2012.

[S10] A. Rikos, T. Charalambous, and C. N. Hadjicostis, “Distributed
weight balancing over digraphs,” IEEE Trans. Control Netw. Syst., vol.
1, no. 2, pp. 190-201, 2014.

[S11] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weight-
ed gossip: Distributed averaging using non-doubly stochastic matrices,”
in Proc. IEEE Int. Symp. Information Theory, 2010, pp. 1753-1757.

[S12] A. D. Dominguez-Garcia and C. N. Hadjicostis, “Distributed ma-
trix scaling and application to average consensus in directed graphs,”
IEEE Trans. Autom. Control, vol. 58, no. 3, pp. 667—-681, 2013.

[S13] A. Nedic and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp.
601-615, 2015.

[S14] P. Rezaienia, B. Gharesifard, T. Linder, and B. Touri. Push-sum on
random graphs. 2017. [Online]. Available: arXiv:1708.00915

[S15] S. S. Kia, J. Cortés, and S. Martinez, “Distributed event-triggered
communication for dynamic average consensus in networked sys-
tems,” Automatica, vol. 59, pp. 112—-119, Sept. 2015.

[S16] S. Kar and J. M. F. Moura, “Sensor networks with random links:
Topology design for distributed consensus,” in IEEE Trans. Signal Pro-
cess., vol. 56, no. 7, pp. 3315-3326, 2008.

[S17] L. Xiao and S. Boyd, “Fast linear iterations for distributed averag-
ing,” in Proc. IEEE Conf. Decision and Control, 2003, pp. 4997-5002.

@

with proper initialization if necessary, x'(f) — u*8(t) as
t — co. The driving command ¢’ can be a memoryless
function or an output of a local internal dynamics. Note
that, by using the out-neighbors, the convention is made
that information flows in the opposite direction speci-
fied by a directed edge (there is no loss of generality in
doing it so, and the alternative convention of using in-
neighbors instead would also be equally valid).

Dynamic average consensus can also be accomplished
using discrete-time dynamics, especially when the time-
varying inputs are sampled at discrete times. In such a
case, a driving command is sought for each agent i € {1,...,N}
so that

discrete time: x'(ti+1) = c'(J'(t), (I (t)} jenin), 1€ {1,...,N},
()

Basic Notions From Graph Theory

he communication network of a multiagent cooperative sys-

tem can be modeled by a directed graph, or digraph. Here,
we briefly review some basic concepts from graph theory follow-
ing [S18]. A digraph is a pair G = (V, &), where V ={1,...,N}
is the node set and & €V x V is the edge set. An edge from
i to j, denoted by (i, j), means that agent j can send informa-
tion to agent i. For an edge (i, j) € &,i is called an in-neighbor
of j, and j is called an out-neighbor of i. We denote the set of
out-neighbors of each agent i by N'b.. A graph is undirected if
(i, j) € & any time (j, i) € & (see Figure S1).

A weighted digraph is a triplet G = (V,&,A), where (V,8)
is a digraph and A € R"*" is a weighted adjacency matrix
with the property that a; > 0 if (i, j) € & and a; = 0, otherwise.
A weighted digraph is undirected if a;=a; for all i,jeV.
The weighted out-degree and weighted in-degree of a node
i are, respectively, d°®())=2XN a; and d"() =X} a;. Let

Ry = ;ET,?,),(Mdom(i) denote the maximum weighted out-de-
gree. A digraph is weight balanced if, at each node ie YV,
the weighted out-degree and weighted in-degree coincide
(although they might be different across different nodes).
The out-degree matrix D is the diagonal matrix with en-
tries D" = d°(j), for all i€ V. The (out-) Laplacian matrix
is L=D"—A. Note that L1y =0. A weighted digraph G is
weight balanced if and only if 1{L = 0. Based on the structure
of L, at least one of the eigenvalues of L is zero and the rest
of them have nonnegative real parts. Denote the eigenvalues
of Lby A,ie{1,...,N}, where ;=0 and R(1) <R(4)), for
i <j. For strongly connected digraphs, rank(L) =N-—1. For
strongly connected and weight-balanced digraphs, denote
the eigenvalues of Sym(L) = (L+L")/2 by Ai,...,Ax, where
Ai=0and 4;<4; for i<j. For strongly connected and
weight-balanced digraphs,

0 < A2l <RTSYm(L)R < Al (S1)

under proper initialization if necessary, accompli-
shes x'(ty) - u™8(k) as tx — oo. Algorithm 1 illustrates
how a discrete-time dynamic average consensus algo-
rithm can be executed over a network of N communicat-
ing agents.

Also, consider a third class of dynamic average consen-
sus algorithms in which the dynamics at the agent level
are in continuous time, but the communication among the
agents, because of the restrictions of the wireless commu-
nication devices, takes place in discrete time:

continuous time-discrete time:

2 () = (J (), (U (E)) jenin), .\ &)

such that x'(f) — U™5(f) as t — oo. Here, t, € R is the kith
transmission time of agent j, which is not necessarily

0010 (0110
100 1 1011
A=lp 20 0} A=l1 101
0010 0110
1. 0-1 0 [2 -1 1 0
-4 2 0 -1 -1 3 -1 -
L=lo 2 2 o L= o4 3
0 0 -1 1 0 -1 -1 2

FIGURE S1 Examples of directed and undirected graphs. (a)
Strongly connected, weight-balanced digraph. (b) Connected
graph with unit edge weights.

where R € RV~ satisfies [(1/vN)1y R][(1/¥N)1y R] =
[(1/¥N)1nx R]'[(1/¥N)1y R]=Iy. Note that for connected
graphs, Sym(L) = L, and consequently A; = A;, for all i € V.

Intuitively, the Laplacian matrix can be viewed as a diffu-
sion operator over the graph. To illustrate this, suppose each
agent i €V has a scalar variable x’ € R. Stacking the vari-
ables into a vector x, multiplication by the Laplacian matrix
gives the weighted sum

[Lx]i = 2 aj(x’ = x)),

jev

(S2)

where aj is the weight of the link between agents i and j.

REFERENCE
[S18] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Ro-
botic Networks (Applied Mathematics Series). Princeton, NJ: Princeton
Univ. Press, 2009.

JUNE 2019 « IEEE CONTROL SYSTEMS MAGAZINE 45

Input-to-State Stability of Linear Time-Invariant Systems

For a linear time-invariant (LTI) system

Xx=Ax+Bu, xeR", ueR”, (S3)
the solution for t € R>o can be written as
x(t) = e”'x(0) + fo eAt-IBy (7)dr. (S4)
For a Hurwitz matrix A, by using the bound
[e2]|< ke 2, te R, (S5)

for some k,A € R>o, an upper bound on the norm of the trajec-
tories of (S4) is established as

Ix]< ke 2]+ [e 27| B u(z) |dv

< ke 2||x(0) ||+

|, Vvt e Rxo.

Gl
1 (56)

sup [l u(z)
0=7t=<t

The bound shows that the zero-input response decays to zero
exponentially fast, whereas the zero-state response is bound-
ed for every bounded input, indicating an input-to-state stabil-
ity behavior. Note that the ultimate bound on the system state
is proportional to the bound on the input.

Next, how to compute the parameters k,A € R-o is shown
in (S5). Recall that [S19, Fact 11.15.5] for any matrix A € R"*".
Therefore,

| eAt]| < ermem®t vt e Res, (87)
where Sym(A)=(1/2)(A+ A"). Therefore, for a Hurwitz matrix
A whose Sym(A) is also Hurwitz, the exponential bound pa-
rameters can be set to

ALGORITHM 1 The execution of a discrete-time
dynamic average consensus algorithm at each agent
iefl,...,N}.

Input: J'(k) and {I/ (k)} je niw
Output: x'(k+1),J'(k+1), and /'(k+ 1)
Step 1. x'(k+1) < c'(J'(tx), {I (tx)} jenin)
Step 2. Generate J'(k+ 1)and /'(k + 1)
Step 3. Broadcast /'(k + 1)

synchronous with the transmission time of other agents in
the network.

The consideration of simple dynamics of the form in (1)-
(3) is motivated by the fact that the state of the agents does
not necessarily correspond to some physical quantity but,
instead, to some logical variable on which agents perform
computation and processing. Agreement on the average is

46 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2019

A =—Amax(Sym(A)), k=1. (S8)
A tighter exponential bound of
A= l', K=+ O'max(P')/O'min(P'), (Sg)

can also be obtained for any Hurwitz system matrix A, ac-
cording to [S20, Prop. 5.5.33], from the convex linear matrix
inequality optimization problem

(A,P) = argminA subject to (S10a)

PA+AP<-2AP, P>0, 1> 0. (S10b)

Similarly, the state of the discrete-time, LTI system

Xk+1 = AXk +Buk, Xk €R", uxe R" (811)

with initial condition xo € R” satisfies the bound

O max(P) 1

K
Kk P _
Il < 2= oo+ =2 1B swpuil), (12

where P € R™" and p € R satisfy

ATPA—p?’P <0, P>0, p>0. (S13)

REFERENCES

[S19] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and For-
mulas with Application to Linear System Theory. New York: Springer-
Verlag, 2005.

[S20] D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory
I: Modeling, State Space Analysis, Stability and Robustness. Princ-
eton, NJ: Princeton Univ. Press, 2005.

also of relevance in scenarios where the agreement state is a
physical state with more complex dynamics, for example,
the position of a mobile agent in a robotic team. In such
cases, this discussion can be leveraged by, for instance,
having agents compute reference signals that are to be
tracked by the states with more complex dynamics. See
“Further Reading” for a list of relevant literature on dynamic
average consensus problems for higher-order dynamics.
Given the drawbacks of centralized solutions, several desir-
able properties when designing algorithmic solutions to the
dynamic average consensus problem are identified:

» scalability, so that the amount of computations and
resources required on each agent does not grow with
the network size

» robustness to the disturbances present in practical sce-
narios, such as communication delays and packet
drops, agents entering/leaving the network, and
noisy measurements

» correctness, meaning the algorithm converges to the
exact average or, alternatively, a formal guarantee
can be given about the distance between the esti-
mate and the exact average.

Regarding the last property, to achieve agreement, network
connectivity must be such that information about the local ref-
erence input of each agent reaches other agents frequently
enough. As the information of each agent takes some time to
propagate through the network, tracking an arbitrarily fast
average signal with zero error is not feasible unless agents
have some a priori information about the dynamics generating
the signals. A recurring theme throughout the article is how
the convergence guarantees of dynamic average consensus
algorithms depend on the network connectivity and rate of
change of the reference signal of each agent.

APPLICATIONS OF DYNAMIC AVERAGE

CONSENSUS IN NETWORK SYSTEMS

The ability to compute the average of a set of time-varying
reference signals is useful in numerous applications, which
explains why distributed algorithmic solutions have found
their way into many seemingly different problems involv-
ing the interconnection of dynamical systems. This section
provides a selected overview of problems to motivate fur-
ther research on dynamic average consensus algorithms
and illustrate their range of applicability. Other applications
of dynamic average consensus can be found in [7]-[13].

Distributed Formation Control
Autonomous networked mobile agents are playing an increas-
ingly important role in coverage, surveillance, and patrolling

Cyber Layer

B

Phga

|

‘!x.

\ 4 B v
|

Physical Layer

applications in both commercial and military domains. The
tasks accomplished by mobile agents often require dynamic
motion coordination and formation among team members.
Consensus algorithms have been commonly used in the
design of formation control strategies [14]-[16]. These algo-
rithms have been used, for instance, to arrive at agreement
on the geometric center of formation so that the formation
can be achieved by spreading the agents in the desired
geometry about this center (see [1]). However, most of the
existing results are for static formations. Dynamic aver-
age consensus algorithms can effectively be used in
dynamic formation control, where quantities of interest
such as the geometric center of the formation change with
time. Figure 3 depicts an example scenario in which a group
of mobile agents tracks a team of mobile targets. Each agent
monitors a mobile target with location xr. The objective
is for the agents to follow the team of mobile targets by
spreading out in a prespecified formation, which consists
of each agent being positioned at a relative vector b’ with
respect to the time-varying geometric center of the target
team. A two-layer approach can be used to accomplish
the formation and tracking objectives in this scenario: a
dynamic consensus algorithm in the cyber layer that com-
putes the geometric center in a distributed manner and a
physical layer that tracks this average plus b’. Note that
dynamic average consensus algorithms can also be
employed to compute the time-varying variance of the
positions of the mobile targets with respect to the geomet-
ric center, and this can help the mobile agents adjust the
scale of the formation to avoid collisions with the target
team. Examples of the use of dynamic consensus algorithms

N
Y Xk

Cyber Layer Computes 1
Ni=

Mobile Agent i Monitors Target / to Take Measurement x’T(t)
N .
Objective: x' — lN > xr(t) +b!
i=1
x': Location of Agent i

P4

1 i
—) xy(t
N 1T()

I

b': Relative Location of Agent i w.r.t to

FIGURE 3 A two-layer consensus-based formation for tracking a team of mobile targets. The larger triangle robots are the mobile agents,
and the smaller round robots are the mobile moving targets. The physical layer shows the situational distribution of the mobile agents
and the moving targets. The cyber layer shows which mobile agent has a computational capability and the interagent communi-

cation topology.

JUNE 2019 « IEEE CONTROL SYSTEMS MAGAZINE 47

in this two-layer approach with multiagent systems with
first-order, second-order, or higher-order dynamics can be
found in [17]-[19].

Distributed State Estimation

Wireless sensors with embedded computing and commu-
nication capabilities play a vital role in provisioning real-
time monitoring and control in many applications, such as
environmental monitoring, fire detection, object tracking,
and body area networks. Consider a model of the process of
interest given by

x(k+1) = AK)x (k) + B oo (k),

where x € R" is the state, A(k) € R"*" and B(k) € R"™"
are known system matrices, and w € R” is the white
Gaussian process noise with E[o(k)e' (k)] =Q > 0.
Let the measurement model at each sensor station
iefl,...,N} be

Zi(k+1)=H (k+1)x(k+1)+v',

where z' € R? is the measurement vector, H' € R"" is the
measurement matrix, and »' € R? is the white Gaussian
measurement noise with E[»'(k)»'(k)'] = R* > 0. If all of
the measurements are transmitted to a fusion center, a
Kalman filter can be used to obtain the minimum vari-
ance estimate of the state of the process of interest as
(see Figure 4):
» propagation stage

X (k+1) = ARx k), (4a)
P (k+1) = ARP (k+1)A®K) +BR)QK)B(K), (4b)
Y (k+1)=P (k+1)7, (40)
vy (k+1) =Y (k+1)% (k+1); @d)

o2
o™~ 7o Tl
G o ?\a(\g i "
P S
/
4
/
1
1
,
i 5.7
\
\
b Neighbors

A

Smart Camera Node

» update stage

Y (k+1)=H'(k+1)R'(k+1)"H(+1), icll,..

yk+1)=Hk+1)"Rk+1D)'2'(k+1), iell,..
N -1

P+(k+1):<Y-(k+1)+ZY"(k+1)> ,

i=1

‘/N}/
-/N}/

xt(k+1) =P (k+ 1)<y‘(k+ 1) +§:yi(k+ 1)).

Despite its optimality, this implementation is not desir-
able in many sensor network applications due to the exis-
tence of a single point of failure at the fusion center and the
high cost of communication between the sensor stations
and the fusion center. An alternative that has previously
gained interest [5], [20]-[23] is to employ distributed algo-
rithmic solutions that have each sensor station maintain a
local filter to process its local measurements and fuse them
with the estimates of its neighbors. Some work [20], [24],
[25] employs dynamic average consensus to synthesize dis-
tributed implementations of the Kalman filter. For instance,
one of the early solutions for distributed minimum vari-
ance estimation has each agent maintain a local copy of the
propagation filter (4) and employ a dynamic average con-
sensus algorithm to generate the coupling time-varying
terms (1/N)ZiL1y'(k+ 1) and (1/N)ZXLY (k+ 1). If agents
know the size of the network, then they can duplicate the
update equation locally.

Distributed Unconstrained Convex Optimization

The control literature has introduced numerous distrib-
uted algorithmic solutions [26]-[33] to solve unconstrained
convex optimization problems over networked systems. In
a distributed unconstrained convex optimization problem,
a group of N communicating agents, each with access to a
local convex cost function f :R"-R,ie{l,...,N}, seeks

Start Camera (V' Y")
Node 1

Smart Camera (v> Y?)
Node 2

Fusion Center

Smart Camera | Optimal Estimate = f(3y’, ZY/)

Node N (yN, YN)

FIGURE 4 A networked smart camera system that monitors and estimates the position of moving targets.

48 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2019

to determine the minimizer of the joint global optimiza-
tion problem

X' = au"grnin%jz1 Fx) ®)

by local interactions with their neighboring agents. This
problem appears in network system applications, such as
multiagent coordination, distributed state estimation over
sensor networks, or large-scale machine-learning prob-
lems. Some of the algorithmic solutions for this problem
are developed using agreement algorithms to compute
global quantities that appear in existing centralized algo-
rithms. For example, a centralized solution for (5) is the
Nesterov gradient descent algorithm [34] described by

X+ =y ®) —1(A2 F v} (62
N .

v) =y®) - 2L S 9r k) (6

yk+1) =1 —-ars1)xk+1) +orrv(k+1), (60)

where x(0), y(0), v(0) € R", and {aix}i=o are defined by
an arbitrarily chosen ao € (0,1) and the update equation
of+1 = (1 — ax+1)af, where ox+1 always takes the unique solu-
tion in (0, 1). If all f, i€ {l,...,N}, are convex, differentiable,
and have L-Lipschitz gradients, then every trajectory k—x (k) of
(6) converges to the optimal solution x* forany 0 < 7 < (1/L).

Note that in (6), the cumulative gradient term (1/ NN,
Vf (y (k)) is a source of coupling among the computations
performed by each agent. It does not seem reasonable to
halt the execution of this algorithm at each step until the
agents have determined the value of this term. Instead,
dynamic average consensus can be employed in conjunc-
tion with (6): the dynamic average consensus algorithm
estimates the coupling term, and this estimate is employed
in executing (6), which in turn changes the value of the
coupling term being estimated. This approach is taken in
[33] to solve the optimization problem (5) over connected
graphs and is also pursued in other implementations of
distributed convex or nonconvex optimization algorithms
(see, for instance, [35]-[39]).

Distributed Resource Allocation

In optimal resource allocation, a group of agents works
cooperatively to meet a demand in an efficient way (see
Figure 5). Each agent incurs a cost for the resources
it provides. Let the cost of each agent i€ {1,...,N} be
modeled by a convex and differentiable function f:R — R.
The objective is to meet the demand d€R so that
the total cost f(x) = ZiL1f (x) is minimized. Each agent
ie{l,...,N}, therefore, seeks to find the ith element of x”
given by

N . .
x" = argminger’) f/(x'), subject tox'+ - +xV —d =0.
i=1

X'+ x2+ x3+x*+ x°=d

FIGURE 5 A network of five generators with connected undirected topology works together to meet a demand of x' +x*+x*+x*+x*=d
in a manner in which the overall cost Z2_f (x) for the group is minimized.

JUNE 2019 « IEEE CONTROL SYSTEMS MAGAZINE 49

This problem appears in many optimal decision-making
tasks, such as optimal dispatch in power networks [40],
[41], optimal routing [42], and economic systems [43]. For
instance, the group of agents could correspond to a set of
flexible loads in a microgrid that receive a request from a
grid operator to collectively adjust their power consump-
tion to provide a desired amount of regulation to the bulk
grid. In this demand-response scenario, X corresponds to
the amount of deviation from the nominal consumption of
load i, the function fi models the amount of discomfort
caused by deviating from it, and d is the amount of regula-
tion requested by the grid operator.

A centralized algorithmic solution is given by the popu-
lar saddle point or primal-dual dynamics [44], [45] associ-
ated to the optimization problem,

L =x'(O)+ - +2V) —d, u0eR, (7a)

() ==VFE') —ut), ie{l,..,N}, x¥'(0)eR (7b)
If the local cost functions are strictly convex, then every tra-
jectory t—x(t) converges to the optimal solution x". The
source of coupling in (7) is the demand mismatch that
appears in the right-hand side of (7a). However, the dynamic
average consensus can be employed to estimate this
quantity online and feed it back into the algorithm. This
approach is taken in [46] and [47]. This can be accomplished,
for instance, by having agent i use the reference signal
x'(t)—d/N (this assumes that every agent knows the
demand and number of agents in the network, but other

1
sy —> X(t)
x(0)

L [«

(a)
LI —> X
z—1N i

Xo
MLl
[

(b)

FIGURE 6 A block diagram of the static average consensus algorithms
(9). The input signals are assigned to the initial conditions, that is,
x(0) = u (in continuous time) or xo = u (in discrete time). The feed-
back loop consists of the Laplacian matrix of the communication
graph and an integrator [1/s in continuous time and 1/(z — 1) in dis-
crete time]. (a) Continuous time. (b) Discrete time.

50 IEEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

reference signals are also possible) in a dynamic consensus
algorithm coupled with the execution of (7).

A LOOK AT STATIC AVERAGE CONSENSUS LEADING
UP TO THE DESIGN OF A DYNAMIC AVERAGE
CONSENSUS ALGORITHM

Consensus algorithms to solve the static average con-
sensus problem have been studied since [48]. The com-
monality in their design is the idea of having agents
start their agreement state with their own reference
value and adjust it based on some weighted linear feed-
back, which takes into account the difference between
their agreement state and their neighbors”. This leads to
algorithms of the form

continuous time: ¥'(t) =— Y a;(x'(t) — x/(t)),
j=1

(8a)

N

discrete time: x'(k+1) = x'(k) — X a;(x'(k) — x/(k)), (8b)
j=1

for ie{l,...,,N}, with x’(0) =u’ constant for both algo-
rithms. Here, [a;]nxn is the adjacency matrix of the com-
munication graph (see “Basic Notions from Graph Theory”).
By stacking the agent variables into vectors, the static aver-
age consensus algorithms can be written compactly using a
graph Laplacian as

continuous time: x(f) =—Lx(t), (9a)

discrete time: x(k+1) = (I—-L)x(k), (9b)

with x(0) = u. When the communication graph is fixed, this
system is LTI and can be analyzed using standard time-
domain and frequency-domain techniques in control. Spe-
cifically, the frequency-domain representation of the static
average consensus algorithm output signal is given by

continuous time: X(s) = [sI+ L] 'x(0) = [sI+ L] 'U(s),
(10a)
discrete time: X(z) = [zI— (I —-L)] 'U(z), (10b)
where X(s) and U(s), respectively, denote the Laplace
transform of x(t) and u, while X(z) and U(z), respectively,
denote the z-transform of Xix and u. For static signals,
U(s)=uand U(z) =u.

The block diagram of these static average consensus algo-
rithms is shown in Figure 6. The dynamics of these algorithms
consists of a negative feedback loop, where the feedback term
is composed of the Laplacian matrix and an integrator [1/s
in continuous time and 1/(z —1) in discrete time]. For the
static average consensus algorithms, the reference signal
enters the system as the initial condition of the integrator
state. Under certain conditions on the communication graph,
the error of these algorithms can be shown to converge to
zero, as stated next.

Theorem 1: Convergence Guarantees of the
Continuous-Time and Discrete-Time Static Average
Consensus Algorithms (8) [1]

Suppose that the communication graph is a constant,
strongly connected, and weight-balanced digraph and
that the reference signal u’ at each agent i (1,...,N}isa
constant scalar. Then the following convergence results
hold for the continuous-time and discrete-time static aver-
age consensus algorithms (8):

» continuous time: As t — oo, every agreement state
x'(t),i € {1,...,N} of the continuous-time static aver-
age consensus algorithm (8a) converges to u*® with
an exponential rate no worse than A2, the smallest
nonzero eigenvalue of Sym(L).
discrete time: As k — oo, every agreement state xhie
{1,...,N} of the discrete-time static average consensus
algorithm (8b) converges to u™® with an exponential
rate no worse than p € (0, 1), provided that the Lapla-
cian matrix satisfies p =| Iy —L — 11} /N H2 <1. 0O

Note that, given a weighted graph with Laplacian matrix
L, the graph weights can be scaled by a nonzero constant
6 € R to produce a scaled Laplacian matrix SL (see “Basic
Notions from Graph Theory”). This extra scaling parame-
ter can then be used to produce a Laplacian matrix that sat-
isfies the conditions in Theorem 1.

)

v

A First Design for Dynamic Average Consensus
Because the reference signals enter the static average con-
sensus algorithms (8) as initial conditions, they cannot
track time-varying signals. Looking at the frequency-
domain representation in Figure 6 of the static average
consensus algorithms (8), it is clear that what is needed
instead is to continuously inject the signals as inputs
into the dynamical system. This allows the system to nat-
urally respond to changes in the signals without any need
for reinitialization. This basic observation is made in [49],
resulting in the systems shown in Figure 7.

More precisely, [49] argues that considering the static
inputs as a dynamic step function, the algorithm

x(t) =—Lx(f) + u(t), x'(0) =u'(0),
u'(h) =u'h(t), iefl,...,N},

in which the reference value of the agents enters the dynam-
ics as an external input, results in the same frequency repre-
sentation (10a) [here, h(t) is the Heaviside step function].
Therefore, convergence to the average of reference values is
guaranteed. Based on this observation, [49] proposes one of
the earliest algorithms for dynamic average consensus:

x(t) =—i ai(x'(t) —x' () +u'(H), ie(l,..,N}, (lla)
j=1
x'(0) = u’(0). (11b)

Using a Laplace-domain analysis, [49] shows that, if each
input signal u,iell,..,N}, hasa Laplace transform with

all poles in the left-half plane and at most one zero pole
(such signals are asymptotically constant), then all of the
agents implementing (11) over a connected graph track
u®(t) with zero error asymptotically. As shown later, the
convergence properties of (11) can be described more com-
prehensively using time-domain ISS analysis.
Define the tracking error of agent i by
ety =x'(t) —u™s(t), ie(l,...,N.
To analyze the system, the error is decomposed into the
consensus direction (the direction 1n) and the disagree-
ment directions (the directions orthogonal to 1n). To this
end, define the transformation matrix T =[(1/¥N)1yR]
where Re RV*®Y is such that T'T =TT' = I, and con-
sider the change of variables

= [_“] =T'e. (12)
€N
In the new coordinates, (11) takes the form
. 1 &)
e1=0, ei(to) =—F7— I(to) —U/(t0)), 13
e ei(to) m; (x/(to) —u'(t)) (13a)
exnv =—R"LRexy +R"U, e2n(fo) = R"x(to), (13b)

where to is the initial time. Using the ISS bound on the
trajectories of LTI systems (see “Input-to-State Stability of
Linear Time-Invariant Systems”), the tracking error of

u(t) —> x(t)

u(t) > X(t)

1
sl

P(0)
(b)

FIGURE 7 A block diagram of the continuous-time dynamic average
consensus algorithms (11) and (16). Whereas the reference signals
are applied as initial conditions for the static consensus algorithms,
the reference signals are applied here as inputs to the system.
Although both systems are equivalent, system (a) is in the form (3)
and explicitly requires the derivative of the reference signals, and
system (b) does not require differentiating the reference signals. (a)
Dynamic average consensus algorithm (11). (b) Dynamic average
consensus algorithm (16).

JUNE 2019 « IEEE CONTROL SYSTEMS MAGAZINE 51

each agent i €{1,..., N} while implementing (11) over a
strongly connected and weight-balanced digraph is seen
in (14), shown at the bottom of the page, for all t €[to,),
where 1, is the smallest nonzero eigenvalue of Sym(L).
[Here, IT1=(Iy — (1/N)1y1%) is used.]

The tracking error bound (14) reveals several inter-
esting facts. First, it highlights the necessity for the spe-
cial initialization ZNqx/(t))=ZNqu/(to) [(11b) satisfies
this initialization condition]. Without it, a fixed offset
from perfect tracking is present regardless of the type
of reference input signals. Instead, it is expected that a
proper dynamic consensus algorithm should be capable
of perfectly tracking static reference signals. Next, (14)
shows that (11) renders perfect asymptotic tracking not
only for reference input signals with decaying rate but
also for unbounded reference signals whose uncom-
mon parts asymptotically converge to a constant value.
This is due to the ISS tracking bound depending on
I(In — (1/N)1n1%) u(t)| rather than on |u(r)|. Note that
if the reference signal of each agent i €{1,..., N} can be
written as U'(t)=u(t)+0'(f), where u(t) is the (possibly
unbounded) common part and 0'(t) is the uncommon
part of the reference signal, then

= (1= Lt 1+ by

= H(IN — 2k H

H(m—%mﬂ)u(r)

This demonstrates that (11) properly uses the local knowl-
edge of the unbounded but common part of the reference
dynamic signals to compensate for the tracking error that
would be induced due to the natural lag in diffusion of
information across the network for dynamic signals. Finally,
the tracking error bound (14) shows that as long as the
uncommon part of the reference signals has a bounded
rate, then (11) tracks the average with some bounded error.
For convenience, the convergence guarantees of (11) are
summarized in the following result.

Theorem 2: Convergence of (11) Over a Strongly
Connected and Weight-Balanced Digraph

Let G be a strongly connected and weight-balanced
digraph. Let

(Iv - S8 1k))

sup N

T E[t,00)

=y(t) <oco.

The trajectories of (11) are then bounded and satisfy

lim| /() — u™é(t)| < @ ie{l,..., N}, (15)
I 2

provided Z-qx/(to)=Z}-1u/(to). The convergence rate to
this error bound is no worse than Re(A.). Moreover,
Tax(t) = T U/(t) for t € [to, 00). O

The explicit expression (15) for the tracking error per-
formance is of value for designers. The smallest nonzero
eigenvalue A2 of the symmetric part of the graph Laplacian
is a measure of connectivity of a graph [50], [51]. For highly
connected graphs (those with large 1), it is expected that
the diffusion of information across the graph is faster.
Therefore, the tracking performance of a dynamic average
consensus algorithm over such graphs should be better.
Alternatively, when the graph connectivity is low, the
opposite effect is expected. The ultimate tracking bound
(15) highlights this inverse relationship between graph
connectivity and steady-state tracking error. Given this
inverse relationship, a designer can decide on the commu-
nication range of the agents and the expected tracking per-
formance. Various upper bounds of A2 that are a function
of other graph invariants (such as graph degree or the net-
work size for special families of the graphs [51], [52]) can be
exploited to design the agents’ interaction topology and
yield an acceptable tracking performance.

Implementation Challenges and Solutions

Next, some of the features of (11) are discussed from an imple-
mentation perspective. First, note that although (11) tracks
u®(t) with a steady-state error (15), the error can be made
infinitesimally small by introducing a high gain € R0 to
write L as BL. By doing this, the tracking error becomes
lm; oo | X' () — u™8()| < (y(o0)/BA2), i€11,..., N}. However,
for scenarios where the agents are first-order physical systems
&' =c'(t), the introduction of this high gain results in an
increase of the control effort c'(f). To address this, a balance
between the control effort and tracking error margin can be
achieved by introducing a two-stage algorithm in which an
internal dynamics creates the average using a high-gain
dynamic consensus algorithm and feeds the agreement state
of the dynamic consensus algorithm as a reference signal to
the physical dynamics. This approach is discussed further in
the section “Controlling the Rate of Convergence.”

A concern that may exists with (11) is that it requires
explicit knowledge of the derivative of the reference sig-
nals. In applications where the input signals are measured
online, computing the derivative can be costly and prone to

. 3 0<t=< II
le'()] < ||ez:N(t)|2+|e1(t)|25\/ (e"““’ﬂ>llnx(to)||+Supt /{" e
2

2

2 ENl (x/(to) = U/(to))
)+ = JN
N ’

(14)

52 |EEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

error. The other concern is the particular initialization con-
dition requiring N x(te) = ZXUi(to). To comply with this
condition in a distributed setting, agents must initialize
with x/(to) = U'(to). If the agents are acquiring their signal u’
from measurements or the signal is the output of a local
process, any perturbation in U'(to) results in a steady-state
error in the tracking process. Moreover, if an agent (agent
N) leaves the operation permanently at any time f, then
N3'% is no longer equal to N3t after £ Therefore, the
remaining agents (without reinitialization) carry over a
steady-state error in their tracking signal.

Interestingly, all of these concerns except for the one
regarding an agent’s permanent departure can be resolved
by a change of variables, corresponding to an alternative
implementation of (11). Let p'=u'—x' for i€{l,...,N}.
Equation (11) may then be written in the equivalent form

N) . N
Pl =2 ai(x'(t)=x/(t), L p(t)=0, i€{l,..., N}, (16a)
j=1 j=1

X()=u'(t) = p'(t). (16b)
Doing so eliminates the need to know the derivative of
the reference signals and generates the same trajectories
t— x'(t) as (11). We note that the initialization condi-
tion ZiLi1p'(te)=0 can be easily satisfied if each agent
ie{l,..., N} starts at pi (0)=0. Note that this requirement is
mild because pi is an internal state for agent i and, there-
fore, is not affected by communication errors. This ini-
tialization condition, however, limits the use of (16) in
applications where agents join or permanently leave the net-
work at different points in time. To demonstrate the robust-
ness of (16) to measurement disturbances, note that any
bounded perturbation in the reference input does not
affect the initialization condition but, rather, appears as
an additive disturbance in the communication channel. In
particular, observe the following:

(11a) = >> &'(t)= . u'(h)

i=1

= ;x"(t):Zui(t)—i— ;xi(fo)—Zui(to)), (172)

i

N N N
(16a) = ; pi=0= ; p'(t) = ; p'(to). (17b)

As seen in (17a), if ZNix'(to) # ZNu'(to), then ZN x'(t)#
ZNui(t) persists in time. Therefore, if the perturbation on
the reference input measurement is removed, then (11) still
inherits the adverse effect of the initialization error. Instead,
as (17b) shows for the case of the alternative algorithm (16),
INpi(t)=0is preserved in time as long as the algorithm
is initialized such that ZX1p'(to) =0, which can be easily
done by setting pi(to) =0 for ie(l,..., N}. Consequently,
when the perturbations are removed, then (16) recovers the

convergence guarantee of the perturbation-free case. Fol-
lowing steps similar to the ones leading to the bound (14),
the effect of the additive bounded reference signal measure-
ment perturbation on the convergence of (16) is summarized
in the next result.

Lemma 1: Convergence of (16) Over a Strongly

Connected and Weight-Balanced Digraph in the

Presence of Additive Reference Input Perturbations

Let G be a strongly connected and weight-balanced
digraph. Suppose W'(t) is an additive perturbation on the
measured reference input signal u'(t). Let suprefte | (In —
(1/N)Inv1)u@)|=7()<oco and suprefs|(In—(1/N)1n1R)
W(7)|= w(t) < oo. Then, the trajectories of (16) are bounded
and satisfy

fim| () — (] < T -2l

provided Z}L1p/(t)) =0. The convergence rate to this error
bound is no worse than Re(42). Moreover, Zi.1p/(t)=0 for
t € [to, 00). O

The perturbation w’ in Lemma 1 can also be regarded as
abounded communication perturbation. Therefore, (16) [and
similarly (11)] is considered naturally robust to bounded
communication error.

From an implementation perspective, it is also desirable
that a distributed algorithm is robust to changes in the com-
munication topology that may arise as a result of unreliable
transmissions, limited communication/sensing range, net-
work rerouting, or the presence of obstacles. To analyze this
aspect, consider a time-varying digraph G(V, &E(t), As(t)),
where the nonzero entries of the adjacency matrix A(t)
are uniformly lower and upper bounded [in other words,
aj(t)€la, a], where 0<a <aif (j,i)€ &(t), and a;=0 oth-
erwise]. Here, 0:[0,) -~ ={1,..., m} is a piecewise con-
stant signal, meaning that it has only a finite number of
discontinuities in any finite time interval and is constant
between consecutive discontinuities. Intuitively, consensus
in switching networks occurs if there is occasionally enough
flow of information from every node in the network to every
other node.

Formally, an admissible switching set Sadmis is a set of
piecewise constant switching signals o :[0,) — % with
some dwell time t; (in other words, tx+1 —tx >t >0, for all
k=0,1,...), such that

» G(V, &E(t), As(t)) is weight balanced for t = to.

» The number of contiguous, nonempty, uniformly
bounded time intervals [ti, ti..), j=1,2,..., starting
at t;, > to, with the property that Uy G(V, E(t), As(t))
is a jointly strongly connected digraph, goes to infin-
ity as t — ooc.

When the switching signal belongs to the admissible
set Sadamis, [19] shows that there always exists A € R>o and
k € R>1 such that | e'“T""RH <ke ¥t €Rxo. Implementing

JUNE 2019 <« IEEE CONTROL SYSTEMS MAGAZINE 53

the change of variables (12), it is shown that the trajectories of
(16) satisfy (14), with 1> replaced by A and |IIx(to)| and
[ITu(z)| being multiplied by «. This statement is formalized
as follows.

Lemma 2: Convergence of (11) Over Switching Graphs

Let the communication topology be G(V, &E(t), As(t)) where
0 € Sadmis. Let suprepe [(In — (1/N) In10) U(0) | = 7(t) < cc.
The trajectories of (11) are bounded and satisfy

lim () —u™s(p] < <1,
provided I x/(t) = ZN W/ (to). The convergence rate to
this error bound is no worse than A. Moreover, we have

It = T, u/(t) for t € [to,). O

Example: Distributed Formation Control Revisited

We revisit one of the scenarios discussed in the “Applica-
tions of Dynamic Average Consensus in Network Systems”
section to illustrate the properties of (11) and its alternative
implementation (16). Consider a group of four mobile
agents (depicted as the triangle robots in Figure 8)

whose communication topology is described by a fixed,
connected, undirected ring. The objective of these agents is
to follow a set of moving targets (depicted as the round
robots in Figure 8) in a containment fashion (that is, ensuring
that they are surrounded as they move around the environ-
ment). Let

X (8) = (/20)” + 0.55in((0.35 + 0.051) t + (5 — l)%)

+4-2(-1), 1€{1,2,3,4) (18)

be the horizontal position of the set of moving targets (each
mobile agent tracks one moving target). The term (/20)” in
the reference signals (18) represents the component with an
unbounded derivative that is common to all agents.

To achieve their objective, the group of agents seeks to com-
pute on the fly the geometric center Xr(t)=(1/N)ZL1x7(t)
and the associated variance (1/N)ZiL; (x'(t) — %r (t))* de-
termined by the time-varying position of the moving targets.
The agents implement two distributed dynamic average con-
sensus algorithms: one for computing the center and the other
for computing the variance (as shown in Figure 9). To illustrate
the properties discussed in this section, consider that agent 4
(the green triangle in Figure 8) leaves the network 10 s after the

FIGURE 8 A simple dynamic average consensus-based containment and tracking of a team of mobile targets. (a) The triangle robots
cooperatively want to contain the moving round robots by making a formation around the geometric center of the round robots that they
are observing. At (b) (after, for example, 10 s from the start of the operation), one of the triangle robots leaves the team. At (c) (after, for
example, 20 s from the start of the operation), a new triangle robot joins the group to take over tracking the abandoned round robot.

(xp(t) =xi(1))?

i
x7(t) Dynamic

Consensus

Dynamic
Consensus

- LI . 1N 2
x'(t) - N2i=1XT(t) yit) - N2i=1(XT(t) -x/(t))
1 by i 1 W i 2
4 =4 t
TP URE DR L)
FIGURE 9 A group of N mobile agents uses a set of dynamic consensus algorithms to asymptotically track the geometric center
X79t) = (IN)X, x7(t) and its variance (1/N)." | (x'(t) = x7°(t)). In this setup, each mobile agent i {1,...,N} is monitoring its

respective target’s position x7(t).

54 |EEE CONTROL SYSTEMS MAGAZINE » JUNE 2019

beginning of the simulation. After 10 s, a new agent, labeled 5
(the red triangle in Figure 8), joins the network and starts mon-
itoring the target that agent 4 was in charge of. For simplicity,
the simulation is focused on the calculation of the geometric
center. For this computation, agents implement (16) with refer-
ence input u'(h=x4(t), iell, 2,3, 4}. Figure 10 shows the
algorithm performance for various operational scenarios. As
forecast by the discussion of this section, the tracking error
vanishes in the presence of perturbations in the input signals
available to the individual agents and switching topologies,
and it exhibits only partial robustness to agent arrivals, depar-
tures, and initialization errors, with a constant bias with
respect to the correct average. Additionally, it is worth noticing

in Figure 10 that all of the agents exhibit convergence with the
same rate.

The introduction of (16) serves as preparation for a
more in-depth treatment of the design of dynamic average
consensus algorithms. This includes a discussion of the
issues of correct initialization [the steady-state error depends
on the initial condition x(0) or xo], adjusting the conver-
gence rate of the agents, and the limitation of tracking
(with zero steady-state error) only constant reference
signals (and therefore with small steady-state error for
slowly time-varying reference signals). To improve clar-
ity, continuous-time and discrete-time strategies are dis-
cussed separately.

. 6
2 L
~ 0
2|5 udv9(f) — x' — x2—x3 — x* — x5
0 5 10 15 20 25 30
t t
(a) (b)
3 6 - - -
>—2 I oo 0 o
“I AN 9 ® 000
[0,1) [23) [34) [45) [5,10)
> 2t
o
0 L
/ ‘ Uan(t) — x! X2 — x3 x4 ‘
_2 L L L L
0 2 4 6 8 10
t t

(©) (d)

FIGURE 10 A performance evaluation of dynamic average consensus algorithms (11) and (16) for a group of four agents with reference
inputs (18) for a tracking scenario described in Figure 8. In the simulation in plot (a), the agents are using (16). As guaranteed in Lemma 1
[under proper initialization p’(0) = 0,/ € {1, 2, 3, 4}] during the time interval [0,10] s, the agents are able to track x7°(f) with a small error.
The challenge presents itself when agent 4 leaves the operation at t = 10 s. Because after agent 4 leaves Z1p’(10") # 0, the remain-
ing agents fail to follow the average of their reference values, which now is (1/3)Z7_;u’. Similarly, even with initialization of p®(20) = 0
for the new agent 5, because p'(20) +p?(20) + p°(20) + p°®(20) # 0, the agents track the average (1/4)X}-1x7(t) with a steady-state
error. In the simulation in plot (b), the agents are using (16), and at time interval [0,10] s, agent 1’s reference input is subject to a mea-
surement perturbation according to u’(t) = x7(t) + w’ (), where w'(t) =—4cos(t) at t €[0,2], and t € [3,5] and w'(t) = 0 at other times.
As guaranteed by Lemma 1, despite the perturbation, including the initial measurement error of u'(0) = x7(0) — 4, (16) has robustness
to the measurement perturbation and recovers its performance after the perturbation is removed. A large perturbation error was used,
so that its effect is observed more visibly in the simulation plots. In the simulation in plot (c), the agents are using (11). Agent 1’s reference
input has an initial measurement error of u'(0) = x7(0) — 4. Because the measurement error directly affects the initialization condition of
the algorithm, it fails to preserve Zi_1x'(f) = Zi-1u'(f). As a result, the effect of initialization error persists, and the algorithm maintains a
significant tracking error. In the simulation in plot (d), the agents are using (16) [similar results are also obtained for (11)]. The network
communication topology is a switching graph, where the graph topology at different time intervals is shown on the plot. Because the
switching signal o belongs to Saamis, as predicted by Lemma 2, the trajectories of the algorithm stay bounded, and once the topology
becomes fully connected, the agents follow their respective dynamic average closely. (a) Agent departure and arrival. (b) Perturbation
of input signals. (c) Initialization error. (d) Switching topology.

JUNE 2019 <« IEEE CONTROL SYSTEMS MAGAZINE 55

CONTINUOUS-TIME DYNAMIC AVERAGE

CONSENSUS ALGORITHMS

This section discusses various continuous-time dynamic
average consensus algorithms and their performance and
robustness guarantees. Table 1 summarizes the arguments of
the driving command of these algorithms in (1) and their spe-
cial initialization requirements. Some of these algorithms,
when cast in the form of (1), require access to the derivative of
the reference signals. Similar to (11), however, this require-
ment can be eliminated using alternative implementations.

Robustness to Initialization

and Permanent Agent Dropout

To eliminate the special initialization requirement and
induce robustness with respect to algorithm initialization,
[53] proposes the following alternative dynamic average
consensus algorithm:

7)== 2 by’ =), (19)
j=1

xl

N N) .
—a(x'—u')= D ai(x'—x))+ D bi(g' —¢’)+ U, (19b)
i=1 j=1

iz
g'(to), x'(t) €R, i€{l,..., N}, (19¢)
where a € R>o. Here, u' is added to (19Db) to allow agents
to track reference inputs whose derivatives have unbounded
common components. The necessity of having explicit
knowledge of the derivative of reference signals can be
removed by using the change of variables p'=x'—u/,
ief{l,...,N}. In (19), the agents are allowed to use two dif-
ferent adjacency matrices, [aj]nxy and [bj]nxn, so that
they have an extra degree of freedom to adjust the track-
ing performance of the algorithm. The Laplacian matrices
associated with adjacency matrices [a;] and [b;] are repre-
sented by, respectively, L, (labeled as proportional Lapla-
cian) and L; (labeled as integral Laplacian). The compact
representation of (19) is

(20a)
(20b)

q = _LIXI
5(=—ot(x—u)—pr+L1Tq+l],

which also reads as

x=—a(x—u)—Lyx—L{ tLIX(T)d‘L'-i-LIT (to) + 0.
P to q

Using a time-domain analysis similar to that employed
for (11), the ultimate tracking behavior of (19) is character-
ized. Consider the change of variables (12) and

w1

— _7T
w= [WZ:N] T'q, (21a)
y=wayv—a(R'L{R)"'R"u, (21b)
to write (20) in the equivalent form

w1=0, (22a)

y 0 0 -R'LR y

e |= 0 —a 0 el

exnl [R'LIR 0 —oaIl—R'L,R|lean
A
—a(R'L{R)™

+ R'u (22b)

Let the communication ranges of the agents be such that
they can establish adjacency relations [a;] and [b;] so that
the corresponding L; and Lp are Laplacian matrices of
strongly connected and weight-balanced digraphs. Invok-
ing [53, Lemma 9], matrix A in (22b) is shown to be Hur-
witz. Therefore, using the ISS bound on the trajectories of
LTI systems (see “Input-to-State Stability of Linear Time-
Invariant Systems”), the tracking error of each agent
i€ {1,...,N} while implementing (19) over a strongly con-
nected and weight-balanced digraph is

(Al < o=t Wz;N(to)]
le'(t)| < ke e(to)
k|B| 1 -
L s, (- WIu@ | (29

where (k, A) are given by (S5) for matrix A of (22b) and can
be computed from (S9). It is shown that both ¥ and A
depend on the smallest nonzero eigenvalues of Sym(Li)

and Sym(L,) as well as a. Therefore, the

e . . N tracking performance of (19) depends on
TABLE 1 The arguments of the driving command in (1) for the reviewed both the magnitude of the derivative of
continuous-time dynamic average consensus algorithms together with their R ionals and the connectivity of
initialization requirements. relerence signails € connectivity o

A | the communication graph. From this error
Algorithm (11) (19) (24) (25) bound, it is observed that, for bounded

: o o o i i dynamic signals with bounded rate, (19) is

JO)0} KOV Ou@y - x0.2 (.t),v RS),v_ (t)‘ guaranteed to track the dynamic aver-

u®) @} u(®,u(} age with an ultimately bounded error.

{1} Ao I Oenon OV Oienos ZON Obienon V' Oliena Moreover, this algorithm does not need

_ _ N any special initialization. The robustness

Initialization x'(0) = u’(0) None None Z v/(0)=0 to initialization can be observed on the
requirement b= . .

& ~ block diagram representation of (19),

56 IEEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

shown in Figure 11(a). For reference, the convergence guar-
antees of algorithm (19) are summarized next.

Theorem 3: Convergence of (19)

Let LpandL; be Laplacian matrices corresponding to
strongly connected and weight-balanced digraphs. Let
suprele | (In — (1/N)In1) U (7) | = () < co. Starting from
any x'(to), q(to)) € R, for any o € Rx the trajectories of algo-
rithm (25) satisfy

}£m|x1(t) _ uavg(t)| < M, e {1’ .

--/N}/

where k, A € R satisfy [e* | < ke ? [A and B are given in
(22b)]. Moreover,

N . N . N . N .
D xt)y=D Uty +e D xi(t) — D u](to)),
=1 =1 =1 =1
for t €[to, o). O

Figure 12 shows the performance of (19) in the distributed
formation control scenario represented in Figure 8. This plot
illustrates how the property of robustness to the initializa-
tion error of (19) allows it to accommodate the addition and
deletion of agents with satisfactory tracking performance.

Although the convergence guarantees of (19) are valid for
strongly connected and weight-balanced digraphs, from
an implementation perspective, the use of this strategy over
directed graphs may not be feasible. In fact, the presence of
the transposed integral Laplacian L{ in (20b) requires each
agent i € {1,..., N} to know not only the entries in row i but
also the column i of L; and receive information from the cor-
responding agents. However, for undirected graph topolo-
gies, this requirement is satisfied trivially as L =L;.

Controlling the Rate of Convergence

A common feature of the dynamic average consensus
algorithms presented in the “A First Design for Dynamic
Average Consensus” and “Robustness to Initialization and
Permanent Agent Dropout” sections is that the rate of conver-
gence is the same for all agents and dictated by network topol-
ogy as well as some algorithm parameters [see (14) and (23)].
However, in some applications, the task is not just to obtain the
average of the dynamic inputs but rather to physically track
this value, possibly with limited control authority. To allow the
network to prespecify its desired worst rate of convergence j,
[54] proposes dynamic average consensus algorithms whose
design incorporates two time scales. The first-order-input
dynamic consensus (FOI-DC) algorithm is described as

N
€qi =— Z bij(Zi -z,
L T L
ez'=—(Z'+pu+0) =D a;(z' =)+ D2 bi(g' — q)),
i=1 i=1
¥=-px'—Z, ie{l,..

LN (24b)

x(t)

u(t) ﬁ
u(t) 1 X(t)
Q- [>0~0~0 —
[sLf—]
q(t)
B,

(b)

FIGURE 11 A block diagram of continuous-time dynamic average con-
sensus algorithms. These dynamic algorithms naturally adapt to
changes in the reference signals, which are applied as inputs to the
system. Continuous-time algorithm (19) is robust to initialization. To see
why the algorithm is robust, consider multiplying the input signal on the
leftin plot (@) by 14. The output of the integrator block (1/s) is multiplied
by zero (because L1y = 0) and therefore does not affect the output.
Although the output is affected by the initial state of the 1/(s +) block,
this term decays to zero and therefore does not affect the steady state.
Also, the requirement of needing the derivative of the input u () can be
removed by a change of variable. The continuous-time algorithm in
(25) is not robust to initialization. In this algorithm, the parameter 3
may be used to control the tracking error size, and o may be used to
control the rate of convergence. Furthermore, this algorithm is robust
to reference signal measurement perturbations and naturally pre-
serves the privacy of the input signals against adversaries [19]. (a)
Continuous-time algorithm (19). (b) Continuous-time algorithm (25).

4
2
* .
ot W9(f) — x' — x2— X3 — x4 — x5
0 5 10 15 20 25 30

t

FIGURE 12 The performance of dynamic average consensus algo-
rithm (19) in the distributed formation control scenario of Figure 8. A
group of four mobile agents acquires reference inputs (18) corre-
sponding to the time-varying position of a set of moving targets. The
algorithm convergence properties are not affected by initialization
errors, as stated in Theorem 3. This property also makes it robust to
agent arrivals and departures. In this simulation, agent 4 leaves the
network attime t = 10 s, and anew agent 5 joins the network at t = 20 s.
In contrast to what was observed for (16) and (19) in Figure 10, the
execution recovers its tracking performance after a transient.

JUNE 2019 <« IEEE CONTROL SYSTEMS MAGAZINE 57

The fast dynamics is (24a) and employs a small value
for € € R~ . The fast dynamics, which builds on the propor-
tional-integral (PI) algorithm (19), is intended to generate
the average of the sum of the dynamic input and its first
derivative. The slow dynamics (24b) then uses the signal
generated by the fast dynamics to track the average of the
reference signal across the network at a prespecified smaller
rate B8 € R>o. The novelty is that these slow and fast dynam-
ics are running simultaneously, and thus, there is no need to
wait for convergence of the fast dynamics and then take
slow steps toward the input average.

Similar to the dynamic average consensus algorithm (19),
(24) does not require any specific initialization. The technical
approach used in [54] to study the convergence of (24) is based
on the singular perturbation theory [55, Ch. 11], which results
in a guaranteed convergence to an e-neighborhood of u*8(t)
for small values of € € R>o. Using time-domain analysis,
information about the ultimate tracking behavior of (19) can
be made more precise. For convenience, the changes of vari-
ables (12) and (21a) with y = way— (R'L{R) 'RT(Bu+ u)
and e:=T'(z+(8/N)EL1u/1n+(1/N)EL 10/ 1) are ap-
plied to write the FOI-DC algorithm as

e

[0 -R LIR]

H

[RTLIR] [0 -1 RTLP

—(R'LIR)™ [0(N—1)><1 Ina]
+ [T 01xni1] f(t),
[Ov-1)xN
B
e = —fe—e;,

where f(t) = TT(Bu + U). Using the ISS bound on the trajec-
tories of LTI systems (see “Input-to-State Stability of Linear
Time-Invariant Systems”), the tracking error of each agent
ie{l,...,N} while implementing the FOI-DC algorithm
with e € R~y is,

[e'() < e e (ko)

|
),

where || e*!| < ke . From this error bound, it is observed
that, for dynamic signals with bounded first and second
derivatives, the FOI-DC algorithm is guaranteed to track
the dynamic average with an ultimately bounded error.
This tracking error can be made small using a small
€ € R>o. Use of small € € R>y also results in dynamics
(25a) to have a higher decay rate. Therefore, the domi-
nant rate of convergence of the FOI-DC algorithm is
determined by B, which can be prespecified regardless

+£ sup (e"‘qi“"‘“)

tost=t

elBll
T2

58 IEEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

of the interaction topology. Moreover, can be used to
regulate the control effort of the integrator dynamics
¥ =c'(t),ie(1,...,N} while maintaining a good tracking
error via the use of small € € R-o.

An Alternative Algorithm for Directed Graphs

As observed, (19) is not implementable over directed graphs
because it requires information exchange with both in- and
out-neighbors, and these sets are generally different. In
[19], the authors proposed a modified proportional and
integral agreement feedback dynamic average consensus
algorithm whose implementation does not require the
agents to know their respective columns of the Laplacian.
This algorithm is

q" =af i a;(x' —x), (25a)
j=1
i =—oa(x'—u) Za,](x —xly—g'+u, (25b)
j=1
x'(to), 4'(to)) ER s.t. i q'(to)) =0, (250)

j=1

ie{l,...,,N}, where a, f € R>o. Equation (25) in compact
form can be equivalently written as

X =—a(x—u) —ﬁLx—aﬁ[’ Lx(r)dt — q(to) + 0,

which demonstrates the proportional and integral agree-
ment feedback structure of this algorithm. As was done
for (11), a change of variables p'=u’—x' can be used to
write this algorithm in a form whose implementation
does not require the knowledge of the derivative of the
reference signals.

Note an interesting connection between (25) and (16).
Writing the transfer function from the reference input to the
tracking error state (25), there is a pole-zero cancellation that
reduces (25) to (11) and (16). Despite this close relationship,
there are some subtle differences. For example, unlike (11),
(25) enjoys robustness to reference signal measurement per-
turbations and naturally preserves the privacy of the input
of each agent against adversaries. Specifically, an adversary
with access to the time history of all network communica-
tion messages cannot uniquely reconstruct the reference
signal of any agent [19], which is not the case for (16).

Figure 11(b) shows the block diagram representation of
this algorithm. The next result states the convergence prop-
erties of (25). See [19] for the proof of this statement, which
is established using the time-domain analysis implemented
to analyze the algorithms reviewed so far.

Theorem 4: Convergence of (25) Over Strongly Connected and
Weight-Balanced Digraphs for Dynamic Input Signals [19]

Let G be a strongly connected and weight-balanced digraph.
Let suprep,|(Iv —(1/N)In10)u(z)| =y (t) <co. For any
a,B € R>q, the trajectories of (25) satisfy

¥ (o)
,B/iz ’

lim | ' () = u™8 (1) | < ie(l,..,N}, (26)

provided Z}-1¢/(to) = 0. The convergence rate to the error
bound is minf{e, BRe(12)}. O

The inverse relation between 8 and the tracking error in
(26) indicates that the parameter B can be used to control
the tracking error size, and a can be used to control the rate
of convergence.

DISCRETE-TIME DYNAMIC

AVERAGE CONSENSUS ALGORITHMS
Although the continuous-time dynamic average consensus
algorithms described in the previous section are amenable
to elegant and relatively simple analysis, implementing
these algorithms on practical cyberphysical systems requires
continuous communication between agents. This require-
ment is not feasible in practice due to constraints on the com-
munication bandwidth. To address this issue, the discrete-time
dynamic average consensus algorithms where the commu-
nication among agents occurs only at discrete-time steps
are studied.

The main difference between continuous-time and
discrete-time dynamic average consensus algorithms is
the rate at which their estimates converge to the average
of the reference signals. In continuous time, the parame-
ters may be scaled to achieve any desired convergence
rate, whereas in discrete time, the parameters must be
carefully chosen to ensure convergence. The problem of
optimizing the convergence rate has received significant
attention in the literature [56]-[65]. Here, a simple method
using root locus techniques for choosing the parameters
to optimize the convergence rate is provided. It is also
shown how to further accelerate the convergence by
introducing extra dynamics into the dynamic average
consensus algorithm.

The convergence rate of four discrete-time dynamic
average consensus algorithms is analyzed in this section,
beginning with the discretized version of the continuous-
time algorithm (16). It is then shown how to use extra
dynamics to accelerate the convergence rate and/or obtain
robustness to initial conditions. Table 2 summarizes the
arguments of the driving command of
these algorithms in (2) and their special

are unknown, it also suffices to have lower and upper bounds,
respectively, on 12 and An).

Nonrobust Dynamic Average Consensus Algorithms
First consider the discretized version of the continuous-time
dynamic average consensus algorithm in (16) (“Euler Dis-
cretizations of Continuous-Time Dynamic Average Consen-
sus Algorithms” elaborates on the method for discretization
and the associated range of admissible step sizes). This algo-
rithm has the iterations

. . N . : .
p;ﬁ—l = P;(+ kI Z aij(x;c_ x{c)r P6 € IR/ Z € {1/--'/N}/ (27&)
j=1

Xk = Uk —ph, (27b)
where k; € R is the step size. The block diagram is pro-
vided in Figure 13(a).

For discrete-time LTI systems, the convergence rate is
given by the maximum magnitude of the system poles. The
poles are the roots of the characteristic equation, which for
the dynamic average consensus algorithm in Figure 13(a) is

0=zI—-(I—kL).

If the Laplacian matrix can be diagonalized, then the system

can be separated according to the eigenvalues of L and

each subsystem analyzed separately. The characteristic equa-

tion corresponding to the eigenvalue A of L is then
ki

0=1+A-R

z—1 28)

To observe how the pole moves as a function of the Lapla-
cian eigenvalue, root locus techniques from LTI systems
theory can be used. Figure 14(a) shows the root locus of (28)
as a function of A. The dynamic average consensus algo-
rithm poles are then the points on the root locus at gains
Aiforie{1,...,N}, where A; are the eigenvalues of the
graph Laplacian. To optimize the convergence rate, the
system is designed to minimize p, where all poles corre-
sponding to disagreement directions (that is, those orthog-
onal to the consensus direction 1n) are inside the circle
centered at the origin of radius p. Because the pole starts at
z =1 and moves left as A increases, the convergence rate is

initialization requirements.
For simplicity of exposition, assume the
communication graph is constant, con-

@ D
TABLE 2 The arguments of the driving command in (2) for the reviewed
discrete-time dynamic average consensus algorithms together with their
initialization requirements.

A

nected, and undirected. The Laplacian

Algorithm
matrix is then symmetric and therefore has .g
real eigenvalues. Because the graph is con- J'(t)
nected, the smallest eigenvalue is 11 =0, (1O} jen,
and all other eigenvalues are strictly posi-
tive, that is, A» > 0. Furthermore, assume Initialization

that the smallest and largest nonzero eigen- requirement

values are known (if the exact eigenvalues -

y
(27) (29) (30) (31)
{uk, pk} {woplopk-1} {UioPloGid {whPkoPk-1, Gk Gk-1}
Xk} e M XAt AT VN TA VIV
ﬁ: ph=0 ﬁ‘, pb=0 None None
. =

1

)

J

JUNE 2019 <« IEEE CONTROL SYSTEMS MAGAZINE 59

Euler Discretizations of Continuous-Time Dynamic Average Consensus Algorithms

he continuous-time algorithms described in the article can
also give rise to discrete-time strategies. Here, we describe
how to discretize them so that they are implementable over
wireless communication channels. This can be done by using
the (forward) Euler discretization of the derivatives
x(t) ~ x(k+ 15)—x(k)’
where & € R-¢ is the step size. To illustrate the discussion, we
develop this approach for (25) over a connected graph topol-
ogy. The following discussion can also be extended to include
iterative forms of the other continuous-time algorithms studied
in the article. Using the Euler discretization in (25) leads to

Vitk+1) = V/(k)+ SaﬁzN: aj(x' (k) — x(k)), (S14a)
j=1

X (k+1) =X (k) + Au’ (k) — Sa (x' (K) — u' (K))

—6[3% a;i(x' (k) — x! (k)) — 8V' (k), (S14b)
j=1
where Au’(k) = u'(k + 1) — u’ (k). To implement this iterative form
at each time step k, access to the future value of the reference
input at time step k+ 1 is needed. Such a requirement is not
practical when the reference input is sampled from a physical
process or is a result of another online algorithm. This require-
ment can be circumvented using a backward Euler discretiza-
tion, but the resulting algorithm tracks the reference dynamic
average with one-step delay. A practical solution that avoids
requiring the future values of the reference input is obtained
by introducing an intermediate variable z'(k) = x' (k) — u’(k) and
representing the iterative algorithm (S14) in the form
Vik+1)=Vv(k) + Saﬁﬁ: aii(x' (k) — x'(k)),
j=1

Z'k+1)= z’(k)—6az’(k)—8ﬁZN: a;ji(x'(k)— x'(k))—8v'(k), (S15b)

i=1

(S15a)

X' (k) = 2/ (k) + u'(K), (S15¢)

for i €{1,...,N}. Equation (S15) is then implementable without
the use of future inputs.

The question then is to characterize the adequate step siz-
es that guarantee that the convergence properties of the con-
tinuous-time algorithm are retained by its discrete implemen-
tation. Intuitively, the smaller the step size, the better for this
purpose. However, this also requires more communication. To
ascertain this issue, the following result is particularly useful.

Lemma S1 : Admissible Step Size for the Euler Discretized
Form of Linear Time-Invariant Systems and a Bound on
Their Trajectories

Consider

X = Ax+Bu, te Rs,
and its Euler discretized iterative form

x(k+1) = (1+ 5A)x (k) + 5Bu(k), k € Z=o, (S16)

60 IEEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

where x € R"andu € R™ are, respectively, state and input
vectors, and § € R is the discretization step size. Let the
system matrix A = [a;] € R™" be a Hurwitz matrix with eigen-
values {u}]_,, and the difference of the input signal be bound-
ed, |[Au| < p < . For any & € (0,d) where

d:min{72 Re("éi)} ,
|ﬂi| i=1
the eigenvalues of (I + dA) are all located inside the until circle

in the complex plane. Moreover, starting from any x(0) € R”,
the trajectories of (S16) satisfy

(817)

kol B
1-w’

fim[x(k+1) < (s18)

where @ € (0,1), and k € R > 0 such that |1+ 8A [< ko*. O

The bounds @ € (0,1) and k € R-o in |1+ 5A [< k" when
all the eigenvalues of 1+ 8A are located in the unit circle of
the complex plane can be obtained from the following linear
matrix inequality optimization problem (see [S21, Theorem
23.3] for details):

(w,k,Q) = argminw?, subject to
Lizasi 0<e?<1, k>1,
(1+8A)"Q(+8A)—Q<—(1-aw?)l

(S19)

Building on Lemma S1, the next result characterizes the
admissible discretization step size for (S15) and its ultimate
tracking behavior.

Theorem S2: Convergence of (S15) Over

Connected Graphs [19]

Let G be a connected, undirected graph. Assume that the
differences of the inputs of the network satisfy maxxez., [(1—
(1/NY1n14) Au (k)| =y < . Then, for any o, > 0, (S15) over
G initialized at z'(0) € R and v/(0) € R such that Z/“1v/(0) = 0
has bounded trajectories that satisfy

oKy
1-w’

‘!mlx’(k)—uaVQ(k)ls ie{1,..,N} (S20)
provided & € (0,min{a™",287"(Ax)'}). Here, A is the largest
eigenvalue of the Laplacian, and @ € (0,1) and k € R, satisfy
[1-8 BRTLR| < ko', k € Z-=0. O

Note that the characterization of the step size requires knowl-
edge of the largest eigenvalue Ay of the Laplacian. Because such
knowledge is not readily available to the network unless dedicated
distributed algorithms are introduced to compute it, [19] provides
the sufficient characterization & € (0,min{a™",87" (d§&)~'})
along with the ultimate tracking bound

i . Sy .
i avg
‘!Lmoc\x(k) u (k)\sﬁ/lz, ie{1,..,N}.

REFERENCE
[S21] W. J. Rugh, Linear Systems Theory. Englewood Cliffs, NJ: Pren-
tice Hall, 1993.

Sl Xi, %0 M
_ _*L p
<«<— zljl1|<— Z—pPI(_(_Cﬁ
Po—T zl—(l1I (_(_
(a) (b)
%0 . "
o e
J (z-p)z-1) t Nz
o (z-PAz-1)

(©)

(d)

FIGURE 13 A block diagram of discrete-time dynamic average consensus algorithms. The algorithms in (b) and (d) use proportional-integral
(PI) dynamics to obtain robustness to initial conditions, whereas those in (c) and (d) use extra dynamics to accelerate the convergence rate.
When the graph is connected and balanced and upper and lower bounds on the nonzero eigenvalues of the graph Laplacian are known,
closed-form solutions for the parameters that optimize the convergence rate are known (see Theorem 5). (a) The nonrobust, nonaccelerated
dynamic average consensus algorithm (27). (b) The robust, nonaccelerated, Pl dynamic average consensus algorithm (30). (c) The nonro-
bust, accelerated, dynamic average consensus algorithm (29). (d) The robust, accelerated, Pl dynamic average consensus algorithm (31).

optimized when there is a pole at z=p when A = 1, and at
z =—p when 1 = Ay, that s,

0=1+1—K_ and 0=1+Av—K_.
p—1 -p—1
Solving these conditions for k;and p gives
_ 2 _An—A2
=2 ad PE T

While the previous choice of parameters optimizes the
convergence rate, even faster convergence can be achieved
by introducing extra dynamics into the dynamic average
consensus algorithm. Consider the accelerated dynamic
average consensus algorithm in Figure 13(c), given by

. . . N . .
phi1= 1+ p)pk—p pi1+ ki D ai(xk— xi),

j=1

péeR, iell,..., N}, (29a)

Xk = uk — ph. (29b)
Instead of a simple integrator, the transfer function in the
feedback loop now has two poles (one of which is still at
z =1). To implement the dynamic average consensus algo-
rithm, each agent must track two internal state variables
(pi and pi-1). This small increase in memory, however, can
result in a significant improvement in the rate of conver-
gence, as discussed next.

Once again, root locus techniques can be used to design
the parameters to optimize the convergence rate. Figure 14(b)
shows the root locus of the accelerated dynamic average

(a) (b)

FIGURE 14 The root locus design of dynamic average consensus
algorithms. The dynamic average consensus algorithm poles are
the points on the root locus at gains A; for i e {1,...,N}, where A;
are the eigenvalues of the graph Laplacian. To optimize the con-
vergence rate, the parameters are chosen to minimize p such that
all poles corresponding to eigenvalues A; for ie{2,...,N} are
inside the circle centered at the origin of radius p. The dynamic
average consensus algorithm then converges linearly with rate p.
(@) The accelerated, dynamic average consensus algorithm in
Figure 13(a). (b) The nonaccelerated, dynamic average consen-
sus algorithm in Figure 13(c).

consensus algorithm (29). By adding an open-loop pole at
z = p” and zero at z = 0, the root locus now goes around the
p circle. Similar to the previous case, the convergence rate is
optimized when there is a repeated pole at z=p when
A =22 and a repeated pole at z=—p when A= An. This
gives the optimal parameter k; and convergence rate p
given by

VA=V

k= .
' VAN +V 22

4 _ —
P S

JUNE 2019 <« IEEE CONTROL SYSTEMS MAGAZINE 61

1 T T T T T T T T T

Q
o) W
5 0.8 R .
< N
2 0.6 NS~ b
5 ~O-

~ ~
o 04+ S T~< 1
o S~ TS
> S~a S
= L ~—_ ——— J
§ 02 — S
O _______ \\

0 1 1 1 1 1 1 1 1 I
0 01 02 03 04 05 06 07 08 09 1
Aol

—— Figure 13(a) (Nonaccelerated, Nonrobust)
—— Figure 13(b) (Nonaccelerated, Robust)

- ——Figure 13(c) (Accelerated, Nonrobust)

- — - Figure 13(d) (Accelerated, Robust)

FIGURE 15 The convergence rate p as a function of A2/An for the
dynamic average consensus algorithms in Figure 13. The acceler-
ated dynamic average consensus algorithms (dashed lines) use
extra dynamics to enhance the convergence rate, as opposed to
the nonaccelerated algorithms (solid lines). Also, the robust algo-
rithms (green) use the proportional-integral structure to obtain
robustness to initial conditions as opposed to the nonrobust algo-
rithms (blue). The graph is assumed to be constant, connected,
and undirected with Laplacian eigenvalues A; for ie{1,...,N}.
Closed-form expressions for the rates and algorithm parameters
are provided in Theorem 5.

The convergence rates of both the standard (27) and
accelerated (29) versions of the dynamic average consen-
sus algorithm are plotted in Figure 15 as a function of the
ratio A2/ An.

Robust Dynamic Average Consensus Algorithms
Although the previous dynamic average consensus algo-
rithms are not robust to initial conditions, root locus
techniques can also be used to optimize the convergence
rate of dynamic average consensus algorithms that are
robust to initial conditions. Consider the discrete-time
version of the PI estimator from (19), whose iterations are
given by

. . N . : . .
q;(+1 = pq;(+ kp Z ﬂi/((x;(- x{() + (P;c - p{())/

(30a)
j=1
. , N o
Pk = pit ki Y ai(xi— x}), (30b)
i=1
xfc= M;(_q;c/ Pé» CIGER/ ie {1//N}/ (30C)

with parameters p, ky, ki € R. The block diagram of this
algorithm is shown in Figure 13(b).

Because the dynamic average consensus algorithms
(27) and (29) have only one Laplacian block in the block
diagram, the resulting root loci are linear in the Lapla-
cian eigenvalues. For the PI dynamic average consensus
algorithm, however, the block diagram contains two

62 IEEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

Laplacian blocks, resulting in a quadratic dependence
on the eigenvalues. Instead of a linear root locus, the
design involves a quadratic root locus. Although this
complicates the design process, closed-form solutions
for the algorithm parameters can still be found [57],
even for the accelerated version using extra dynamics,
given by

Gie1 = 200k — p* G + Ky D ai((xk — x1) + (pk—pp), (3la)
j=1
. . . N . .
Pier = (L+pY)pk— p*pio1 + ki D aii(xk — x7),
j=1
iell,..

(31b)

Xi=ui—q, phghER, N}, (3lo)
whose block diagram is in Figure 13(d). The resulting con-
vergence rate is plotted in Figure 15. Although the conver-
gence rates of the standard and accelerated PI dynamic
average consensus algorithms are slower than those of (27)
and (29), respectively, they have the additional advantage of
being robust to initial conditions.

The following result summarizes the parameter choices
that optimize the convergence rate for each of the discrete-
time dynamic average consensus algorithms in Figure 13.
The results for the first two algorithms follow from the pre-
vious discussion, whereas details of the results for the last

two algorithms can be found in [57].

Theorem 5: Optimal Convergence Rates of

Discrete-Time Dynamic Average Consensus Algorithms
Let G be a connected, undirected graph. Suppose the refer-
ence signal u’ ateach agent i € {1,...,N} is a constant scalar.
Consider the dynamic average consensus algorithms in
Figure 13, with the parameters chosen according to Table 3
[the algorithms in Figure 13(a) and (c) are initialized such
that the average of the initial integrator states is zero, that
is, Zf‘ilpb =0]. The agreement states xiie {1,...,N} con-
verge to u*® exponentially with rate p. O

PERFECT TRACKING USING A PRIORI KNOWLEDGE
OF THE INPUT SIGNALS

The design of the dynamic average consensus algorithms
described in the discussion so far does not require prior
knowledge of the reference signals and is therefore
broadly applicable. This also comes at a cost. The conver-
gence guarantees of these algorithms are strong only
when the reference signals are constant or slowly varying.
The error of such algorithms can be large, however, when
the reference signals change quickly in time. This section
describes dynamic average consensus algorithms, which
are capable of tracking fast time-varying signals with
either zero or small steady-state error. In each case, their
design assumes some specific information about the
nature of the reference signals. In particular, consider refer-
ence signals that 1) have a known model, 2) are band lim-
ited, or 3) have bounded derivatives.

()

TABLE 3 The parameter selection for the dynamic average consensus algorithms of Figure 13 as a function of the minimum
and maximum nonzero Laplacian eigenvalues A, and A, respectively, with A.:= 2./Ax. N/A: not applicable.)
A
P ki ko
Figure 13(a) An—As 2 N/A
An+ A2 A2+ An
Figure 13(b 884 + A/ 1-p 1 p(1=p)Ar
gure 13(b) T 8-2 0<2<3-/5 72 AN p+A—1
Y= @+ A2 (5—A)) —A(1—A) _
20+ 17 , 3—+/5 <A <1
Figure 13(c) VN — 22 4 N/A
VAw+2s Az +VAn)?
Figure 13(d) 6—2/1—A +A—4y2—-2/1—1 +A,) < 1 <9(/3 1 (1-p)* 2+2v1 =2 = A)ki
2+2/1— 24 —Ar » O<A=2tvz—1) Az
—3—2v1—lr+/‘Lr+2V2+2v1—/‘Lr_A«r 2(‘/5—1)<lr<1
L —1—2y1- A + A ' B)

Signals With a Known Model (Discrete Time)

The discrete-time dynamic average consensus algorithms
discussed previously are designed with the idea of tracking
constant reference signals with zero steady-state error. To do
this, the algorithms contain an integrator in the feedback
loop. This concept generalizes to time-varying signals
with a known model using the internal model principle.
Consider reference signals whose z-transform has the form
u’(z) = n'(z) /d(z), where n'(z) and d(z) are polynomials in
zforie {1,...,N}. Dynamic average consensus algorithms
can be designed to have zero steady-state error for such sig-
nals by placing the model of the input signals [that is, d(z)] in
the feedback loop. Some common examples of models are

z-1)",
z* —2zcos(w) + 1, sinusoid with frequency o.

polynomial of degree m —1

d(z) ={

This section focuses on dynamic average consensus algo-
rithms that track degree m —1 polynomial reference sig-
nals with zero steady-state error.

Consider the dynamic average consensus algorithms in
Figure 16. The transfer function of each algorithm has m
zeros at z = 1, so the algorithms track degree m — 1 polyno-
mial references signals with zero steady-state error. The
time-domain equations for the dynamic average consensus
algorithm in Figure 16(a) are

N .
o . .
Xiper = Xk — 2 ai(Xe— X100+ A" ug,

(32a)
=1
. . N . . .
Xhja1 = Xox— D @ij(xhi— x5 0) + X1k, (32b)
iz
. . N . : .
Ximk+1 = Xk — Z @i (X — Xy) + Xin-1 (320

j=1

xh=xhy xoeR (e{l,..,m), ie{l,..,N}, (32d)

where the mth divided difference is defined recursively
as Aup= A" Vui— A"y, for m>2 with AQui=
Ui — uf_;. The estimate of the average, however, is delayed
by m iterations due to the transfer function having a factor
of z™" between the input and output. This problem is fixed
by the dynamic average consensus algorithm in Figure 16(b),
given by

. . N X . X .
Piee =Pt 2 ai((Uk—ui) = (pre—pLo), (33a)
i=1
Pok+1 = Pox+ Z i (U= up) — (Prx = pi) — P2k — P2i)),
j=t (33b)
. ' X N . . m X .
Pinke1 = Pk + 2 @i (U= Ul) — D (pLk— pin)), (330
i=1 =1

m

Xk=ui— 2 pi, p€R, LE{l,..,m), i€{l,..,N},
ot (33d)

which tracks degree m —1 polynomial reference signals
with zero steady-state error without delay. Note, however,
that the communication graph is assumed to be constant to
use frequency-domain arguments; although the output of
the dynamic average consensus algorithm in Figure 16(a) is
delayed, it also has nice tracking properties when the com-
munication graph is time varying, whereas the dynamic
average consensus algorithm in Figure 16(b) does not.

To track degree m —1 polynomial reference signals,
each dynamic average consensus algorithm in Figure 16
cascades m dynamic average consensus algorithms, each
with a pole at z=1 in the feedback loop. The dynamic
average consensus algorithm (27) is cascaded in Figure 16(b),
but any of the dynamic average consensus algorithms
from the previous section could also be used. For example,
the PI dynamic average consensus algorithm could be cas-
caded m times to track degree m — 1 polynomial reference

JUNE 2019 <« IEEE CONTROL SYSTEMS MAGAZINE 63

signals with zero steady-state error independent of the ini-
tial conditions.

In general, reference signals with model d(z) can be
tracked with zero steady-state error by cascading simple
dynamic average consensus algorithms, each of which tracks
a factor of d(z). In particular, suppose d(z) = di1(z)d2(z)...
dn(z). Then, m dynamic average consensus algorithms can
be cascaded, where the ith component contains the model
di(z)fori=1,..., m. Alternatively, a single dynamic average
consensus algorithm can be designed that contains the entire
model d(z). This approach using an internal model version
of the PI dynamic average consensus algorithm is designed
in [66] in both continuous time and discrete time.

In many practical applications, the exact model of the
reference signals is unknown. However, it is shown in [67]
that a frequency estimator can be used in conjunction with
an internal model dynamic average consensus algorithm to
still achieve zero steady-state error. In particular, the fre-
quency of the reference signals is estimated such that the
estimate converges to the actual frequency. This time-vary-
ing estimate of the frequency is then used in place of the
true frequency to design the feedback dynamic average
consensus algorithm [67].

Band-Limited Signals (Discrete Time)

To use algorithms designed using the model of the reference
signals, the signals must be composed of a finite number of
known frequencies. When either the frequencies are unknown
or there are infinitely many frequencies, dynamic average
consensus algorithms can still be designed if the reference

Ty SO Y

L]
— o
m Times
U —QO
L 1 .
z-1 In
— ~ J/
m Times

signals are band limited. In this case, feedforward dynamic
average consensus algorithm designs can be used to achieve
arbitrarily small steady-state error.

For this discussion, assume that the reference signals
are band limited with known cutoff frequency. In particu-
lar, let U'(z) be the z-transform of the ith reference signal
{ul). Then U'(z) is band limited with cutoff frequency 6. if
|Ui(exp(j6)) | = 0 for all 6 € (6., 7].

Consider the dynamic average consensus algorithm in
Figure 17. The reference signals are passed through a prefil-
ter h(z) and then multiplied m times by the consensus
matrix I —L with a delay between each (to allow time for
communication). The transfer function from the input U(z)
to the output X(z) is

H(z L) = h(z)zl—m(l— L)".

For the tracking error to be small, & (z) must approximate
z" for all 6 € [0, 6.], where z = exp(j6) and 6. is the cutoff
frequency. In this case, the transfer function in the pass-
band is approximately

H(z,L)=(I-L)",

so the error can be made small by making m large enough
(solong as L is scaled such that [I-L—-11T/N |, <1).
Specifically, the prefilter is designed such that h(z) is
proper and h(z) = z" for z = exp (j6) for all 6 € [0, 6] [note
that h(z) = z" cannot be used because it is not causal]. An
m-step filter can be obtained by cascading a one-step filter m

1
O Y X
[]
L]
(a)
Xk

O
L 211|N

(b)

FIGURE 16 A block diagram of dynamic average consensus algorithms that track polynomial signals of degree m — 1 with zero steady-state
error when initialized correctly (neither algorithm is robust to initial conditions). The indicated section is repeated in series m times. (a) The
performance of (32) does not degrade when the graph is time varying, but the estimate is delayed by m iterations. Furthermore, the algo-
rithm is numerically unstable when m is large and eventually diverges from tracking the average when implemented using finite precision
arithmetic. (b) The estimate of the average by (33) is not delayed, and the algorithm is numerically stable, but the tracking performance
degrades when the communication graph is time varying. (a) Dynamic average consensus algorithm (32) in [76] where A™ = (1 —z)™ is
the mth divided difference (see also [77] for a step-size analysis). (b) Dynamic average consensus algorithm (33), which is the algorithm

in [53] cascaded in series m times.

64 IEEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

times in series. In other words, let h(z) = [zf(z)]", where
f(z) is strictly proper and approximates unity in the
passband. Because f(z) must approximate unity in both
magnitude and phase, a standard lowpass filter cannot be
used. Instead, set

g(2)
limg(z)’

fle) =1~

where g(z) is a proper high-pass filter with cutoff fre-
quency 6.. Then f(z) is strictly proper (due to the normal-
izing constant in the denominator) and approximates
unity in the band [0, 6.] [because g(z) is high pass].
Therefore, a prefilter h(z) that approximates z" in the
passband can be designed using a standard high-pass
filter g(z).

Using such a prefilter, [68] makes the error of the
dynamic average consensus algorithm in Figure 17 arbi-
trarily small if 1) the graph is connected and balanced
at each time step (in particular, it need not be constant),
2) L is scaled such that [I-L—-11"/N|2<1, 3) the
number of stages m is made large enough, 4) the pre-
filter can approximate z" arbitrarily closely in the pass-
band, and 5) exact arithmetic is used. Note that exact
arithmetic is required for arbitrarily small errors because
rounding errors cause high-frequency components in the
reference signals.

Signals With Bounded Derivatives (Continuous Time)
Stronger tracking results can be obtained using algorithms
implemented in continuous time. Here, a number of contin-
uous-time dynamic average consensus algorithms are pre-
sented that are capable of tracking time-varying reference
signals whose derivatives are bounded with zero error in
finite time. For simplicity, assume that the communication
graph is constant, connected, and undirected. Also, the
reference signals are assumed to be differentiable with
bounded derivatives.

In discrete time, zero steady-state error is obtained by
placing the internal model of the reference signals in the
feedback loop. This provides infinite loop gain at the fre-
quencies contained in the reference signals. In continuous
time, however, the discontinuous signum function sgn can

o

m Times

.
i

be used in the feedback loop to provide infinite loop gain
over all frequencies, so no model of the reference signals is
required. Furthermore, such continuous-time dynamic
average consensus algorithms are capable of achieving zero
error tracking in finite time as opposed to the exponential
convergence achieved by discrete-time dynamic average
consensus algorithms. One such algorithm is described
in [69] as

i=u—k X sgn(x'(h—x/(t), iell,..,N},
N Lo (34a)
2. x(0) = X, u/(0). (34b)
j=1 j=1

The block diagram representation in Figure 18(a) indicates
that this algorithm applies sgn in the feedback loop. Under
the given assumptions, using a sliding mode argument, the
feedback gain k, can be selected to guarantee zero error
tracking in finite time, provided that an upper bound y
of the form supccjo) | U(7) |= 7 < oo is known [69]. The
dynamic consensus algorithm (34) can also be implemented
without derivative information of the reference signals in
an equivalent way as

p=k Ysgnx—x), D pi0)=0, (35a)
JENou i=1
¥=ui—p, iefl,...,N}. (35b)

The corresponding block diagram is shown in
Figure 18(b).

It is simple to see from the block diagram of Figure 18(a)
why (34) is not robust to initial conditions; the integrator
state is directly connected to the output and therefore
affects the steady-state output in the consensus direction.
This issue is addressed by the dynamic average consensus
algorithm in Figure 18(c), given by

p= kpsgn(> (x'=xf)), p'(0) ER, (36a)
jEN’L)ul
Y=uo Y (- ph, iefl,.,N}, (36b)
jEN:)ul

-
!

FIGURE 17 The feedforward dynamic average consensus algorithm for tracking the average of band-limited reference signals. The prefilter
h(z) is applied to the reference signals before passing through the graph Laplacian. For an appropriately designed prefilter, the dynamic
average consensus algorithm can track band-limited reference signals with arbitrarily small steady-state error when using exact arithmetic

(and small error for finite precision) [68].

JUNE 2019 « IEEE CONTROL SYSTEMS MAGAZINE 65

which moves the integrator before the Laplacian in the
feedback loop. However, this dynamic average consensus
algorithm has two Laplacian blocks directly connected,
which means that it requires two-hop communication to
implement. In other words, two sequential rounds of com-
munication are required at each time instant. In the time
domain, each agent must perform the following (in order)
at each time #: 1) communicate p'(f), 2) calculate x'(t),
3) communicate x'(t), and 4) update p'() using the deriva-
tive p'(t). To require only one-hop communication, the
dynamic average consensus algorithm in Figure 18(d),
given by

§'=—oaq'+x, (37a)

pi:kpsgn< > (qi—ﬂij)>, (37b)
JEN out

¥=u— Y (' -p), p0),qdO)ER, icll, N, (%)

N
JENout

places a strictly proper transfer function in the path between
the Laplacian blocks. The extra dynamics, however, cause
the output to converge exponentially instead of in finite
time [70].

Alternatively, under the given assumptions, a sliding-
mode-based dynamic average consensus algorithm with

it) ® L0 X(t)
- T—X(O)
kol < E‘ sgn(-) | B |
(a)
u(t) O x(t)
T—ID(O)
(b)
u(t) O x(t)
L o) glw < sgn(:) J
(c)
u(?) O x(1)
- K 1 J
‘W B san() f—]1] sva
(d)
u(t) o X(t)
_L - J
p(1) siilw E sgn() B

(e)

FIGURE 18 A block diagram of discontinuous dynamic average consensus algorithms in continuous time. In each case, the communica-
tion graph is assumed to be constant, connected, and balanced with Laplacian matrix L = BB'. Furthermore, the reference signals are
assumed to have bounded derivatives. The dynamic average consensus algorithm (34), shown in (a), achieves perfect tracking in finite
time and uses one-hop communication, butitis not robust toinitial conditions [that s, the steady-state erroris zero only if 14x(0) = 14u(0)].
Furthermore, the derivative of the reference signals is required (see [69]). The dynamic average consensus algorithm (35) shown in (b)
is equivalent to the algorithm in (a), although this form does not require the derivative of the reference signals. In this case, the require-
ment on the initial conditions is 14p(0) = 0. The dynamic average consensus algorithm (36) shown in (c) converges to zero error in finite
time and is robust to initial conditions but requires two-hop communication (in other words, two rounds of communication are performed
at each time instant) (see [70]). The dynamic average consensus algorithm (37) shown in (d) is robust to initial conditions and uses one-
hop communication but converges to zero error exponentially instead of in finite time (see [70]). The dynamic average consensus algo-
rithm (38) shown in (e) is robust to initial conditions and uses one-hop communication, although the error converges to zero exponentially
instead of in finite time (see [71]). (a) The dynamic average consensus algorithm (34). (b) The dynamic average consensus algorithm
(35). (c) The dynamic average consensus algorithm (36). (d) The dynamic average consensus algorithm (37). (e) The dynamic average
consensus algorithm (38).

66 IEEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

zero error tracking, which can be arbitrarily initialized, is
provided in [71] as

F=u'-@-u)-k X sgn@'-x), x'(0)€R,

]IENLut

or equivalently,

pr=—p'+k, 2 sgn(x'—x), p(0)€eR, (38a)
JEN out
x'=u'-p, iell,.. N} (38b)

However, this algorithm requires both the reference sig-
nals and their derivatives to be bounded with known values
y1and y2: suprefoe|U(T)|=y1<oo and suprep|U(T)|=
y2 < oo. These values are required to design the proper slid-
ing mode gain k.

The continuous-time finite-time algorithms described in
this section exhibit a sliding mode behavior. In fact, they con-
verge in finite time to the agreement manifold and then slide on
it by switching continuously at an infinite frequency between
two system structures. This phenomenon is called chattering.
Recall that commutations at infinite frequency between two
subsystems is called the Zeno phenomenon in the literature on
hybrid systems. See [72] for a detailed discussion on the relation
between first-order sliding mode chattering and the Zeno phe-
nomenon. From a practical perspective, chattering is undesir-
able and leads to excessive control energy expenditure [73]. A
common approach to eliminate chattering is to smooth out the
control discontinuity in a thin boundary layer around the
switching surface. However, this approach leads to a tracking
error that is proportional to the thickness of the boundary layer.
Another approach to address is the use of higher-order sliding
mode control; see [74] for details. To the best of our knowledge,
higher-order sliding mode control has not been used in the con-
text of dynamic average consensus, although there exist results
for other networked agreement problems [75].

CONCLUSIONS AND FUTURE DIRECTIONS

This article has provided an overview of the state of the art
on the available distributed algorithmic solutions to tackle
the dynamic average consensus problem. It begins by
exploring several applications of dynamic average con-
sensus in cyberphysical systems, including distributed for-
mation control, state estimation, convex optimization, and
optimal resource allocation. Using dynamic average con-
sensus as a backbone, these advanced distributed algo-
rithms enable groups of agents to coordinate to solve
complex problems. Starting from the static consensus prob-
lem, we then derived dynamic average consensus algo-
rithms for various scenarios. Continuous-time algorithms
are first introduced (along with simple techniques for analyz-
ing them) using block diagrams to provide intuition for
the algorithmic structure. To reduce the communication
bandwidth, how to choose the step sizes to optimize the

convergence rate when implemented in discrete time is
shown, along with how to accelerate the convergence rate
by introducing extra dynamics. Finally, how to use a priori
information about the reference signals to design algo-
rithms with improved tracking performance is shown.

The goal is that the article helps the reader obtain an
overview of the progress and intricacies of this topic and
appreciate the design tradeoffs faced when balancing desir-
able properties for large-scale interconnected systems, such
as convergence rate, steady-state error, robustness to initial
conditions, internal stability, amount of memory required
on each agent, and amount of communication between
neighboring agents. Given the importance of the ability to
track the average of time-varying reference signals in net-
work systems, it is expected that the number and breadth of
applications for dynamic average consensus algorithms
will continue to increase in such areas as the smart grid,
autonomous vehicles, and distributed robotics.

Many interesting questions and avenues for further
research remain open. For instance, the emergence of oppor-
tunistic state-triggered ideas in the control and coordination
of networked cyberphysical systems presents exciting
opportunities for the development of novel solutions to the
dynamic average consensus problem. The underlying theme
of this effort is to abandon the paradigm of periodic or con-
tinuous sampling/control in exchange for deliberate, oppor-
tunistic aperiodic sampling/control to improve efficiency.
Beyond the brief incursion on this topic in “Dynamic Aver-
age Consensus Algorithms with Continuous-Time Evolution
and Discrete-Time Communication,” further research is
needed on synthesizing triggering criteria for individual
agents that prescribe when information is to be shared
with or acquired from neighbors, which lead to con-
vergence guarantees and are amenable to the charac-
terization of performance improvements over periodic
discrete-time implementations.

The use of event triggering also opens up the way to employ
other interesting forms of communication and computa-
tion among the agents when solving the dynamic average con-
sensus problem, such as, for instance, the cloud. In cloud-based
coordination, instead of direct peer-to-peer communication,
agents interact indirectly by opportunistically communicating
with the cloud to leave messages for other agents. These mes-
sages can contain information about their current esti-
mates, future plans, or fallback strategies. The use of the
cloud also opens the possibility of network agents with limited
capabilities taking advantage of high-performance computa-
tion capabilities to deal with complex processes. The time-
varying nature of the signals available at the individual agents
in the dynamic average consensus problem raises many inter-
esting challenges that must be addressed to take advantage of
this approach. Related to the focus of this effort on the com-
munication aspects, the development of initialization-free
dynamic average consensus algorithms over directed graphs
is also another important line of research.

JUNE 2019 « IEEE CONTROL SYSTEMS MAGAZINE 67

Dynamic Average Consensus Algorithms With Continuous-Time

Evolution and Discrete-Time Communication
e discuss here an alternative to the discretization route

Wexplained in “Euler Discretizations of Continuous-Time
Dynamic Average Consensus Algorithms” to produce imple-
mentable strategies from the continuous-time algorithms
described in the article. This approach is based on the ob-
servation that, when implementing the algorithms over digital
platforms, computation can still be reasonably approximated
by continuous-time evolution (given the ever-growing capabili-
ties of modern embedded processors and computers), whereas
communication is a process that still requires proper acknowl-
edgment of its discrete-time nature. The basic idea is to op-
portunistically trigger, based on the network state, the times for
information sharing among agents to take place and allow indi-
vidual agents to determine these autonomously. This has the
potential to result in more efficient algorithm implementations
because performing communication usually requires more en-
ergy than computation [S22]. In addition, the use of fixed com-
munication step sizes can lead to a wasteful use of the network
resources because of the need to select it, taking into account
worst-case scenarios. These observations are aligned with the
ongoing research activity [S23], [S24] on event-triggered con-
trol and aperiodic sampling for controlled dynamical systems
that seeks to trade computation and decision making for less
communication, sensing, or actuator effort while still guaran-
teeing a desired level of performance. The surveys [S25], [S26]
describe how these ideas can be employed to design event-
triggered communication laws for static average consensus.

Motivated by these observations, [S15] investigates a dis-
crete-time communication implementation of the continuous-
time algorithm (25) for dynamic average consensus. Under this
strategy, the algorithm becomes

v = otﬁZN: a; (X' —x7), (S21a)

X = '~ (x —u') — ﬁﬁ aj (X =) — v/, (S21b)
j=1
for each i€ {1,...,N}, where X'(t) = x/(tk) for t € [tk, tk+1), with
{ti} ¢ R=o denoting the sequence of times at which agent i
communicates with its in-neighbors. The basic idea is that
agents share their information with neighbors when the uncer-
tainty in the outdated information is such that the monotonic
convergent behavior of the overall network can no longer be
guaranteed. The design of such triggers is challenging because
of the following requirements: 1) triggers need to be distributed
so that agents can check them with the information available
to them from their out-neighbors, 2) they must guarantee the
absence of Zeno behavior (the undesirable situation where an

68 IEEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

infinite number of communication rounds are triggered in a fi-
nite amount of time), and 3) they have to ensure the network
achieves dynamic average consensus, although agents operate
with outdated information while inputs are changing with time.
Consider the following event-triggered communication law
[S15]: each agent is to communicate with its in-neighbors at
times {ti}xew C R0, starting at t; = 0, determined by
thsr = argmax{te [th,)| X (th) —x (0] < €i}. (S22)
Here, €;€ R-o is a constant value that each agent chooses
locally to control its inter-event times and avoid Zeno behavior.
Specifically, the interexecution times of each agent i € {1,...,N}
employing (S22) are lower bounded by
i1 aEi
T= In(1 ===),

o (S23)

where ¢’ and 7 are positive real numbers that depend on the
initial conditions and network parameters (we omit for simplici-
ty their specific form, but see [S15] for the explicit expressions).
The lower bound (S23) shows that, for a positive nonzero ¢/,
the interexecution times are bounded away from zero, and it is
guaranteed that, for networks with a finite number of agents,
the implementation of (S21) with the communication trigger law
(S22) is Zeno free. The following result formally describes the
convergence behavior of (S21) under (S22) when the interac-
tion topology is modeled by a strongly connected and weight-
balanced digraph.

Theorem S3: Convergence of (S21) Over Strongly

Connected and Weight-Balanced Digraph with Asynchronous
Distributed Event-Triggered Communication [S15]

Let G be a strongly connected and weight-balanced digraph.
Assume the reference signals satisfy SUpte[D,oo)| ui(t) | =K' < x,
for ie{l,...,N}, and Supte[o,oo)“HNu(t) H =y <oo. For any
a, B € R-o, (S21) over G starting from x'(0) € R and v/(0) € R
with X-,v/(0) =0, where each agent ic{1,...,N} commu-
nicates with its neighbors at times {tihken C R0, starting at
t =0, determined by (S22) with € € RY,, satisfies

l’) _uavg(t) | < Y +.B”AL||” GH’

oo (S24)

Iir(nsup|x’(
for ie{1,...,N} with an exponential rate of convergence of
min{c, ﬁiz}. Furthermore, the interexecution times of agent
i€{1,...,N} are lower bounded by (S23). O

The expected tradeoff between the desire for longer
interevent time and the adverse effect on systems convergence

and performance is captured in (S23) and (S24). The lower bound
7' in (S23) on the inter-event times allows a designer to compute
bounds on the maximum number of communication rounds
(and associated energy spent) by each agent ie{1,...,N}
(and hence the network) during any given time interval. It is
interesting to analyze how this lower bound depends on the
various problem ingredients: ¢’ is an increasing function of
€ and a decreasing function of a and c'. Through the lat-
ter variable, the bound also depends on the graph topology
and the design parameter B. Given the definition of ¢/, we
can deduce that the faster an input of an agent is changing
(larger k') or the farther the agent initially starts from the av-
erage of the inputs, the more often that agent would need to
trigger communication. The connection between the network
performance and the communication overhead can also be ob-
served here. Increasing B or decreasing €; to improve the ul-
timate tracking error bound (S24) results in smaller inter-event
times. Given that the rate of convergence of (S21) under (S22)
is min{a, B4z}, decreasing « to increase the inter-event times
slows down the convergence.

When the interaction topology is a connected graph, the
properties of the Laplacian enable the identification of an al-
ternative event-triggered communication law that, compared to
(S22), has a longer inter-event time but similar dynamic aver-
age tracking performance. Consider the sequence of commu-
nication times {ti}xe~ determined by

thet = argmax{t & [th,o00) || X/ (t)—x'(t)F

< i Z

-2+ 4d’ €?).

(S25)

Compared to (S22), the extra term 1/(4dbw) Z)-1a;(t)| X (t) —
X/ ()] in the communication law (S25) allows agents to have
longer inter-event times. Formally, the interexecution times
of agent i € {1,...,N} implementing (S25) are lower bound-
ed by

() (20
for positive constants ¢'; see [S15] for explicit expressions.
Numerical examples in [S15] show that the implementation
of (S25) for connected graphs results in inter-event times lon-
ger than the ones of the event-triggered law (S22). Figure S2
shows one of those examples. Similar results can also be de-
rived for time-varying, jointly connected graphs (see [S15] for a
complete exposition).

REFERENCES
[S22] H. Karl and A. Willig, Protocols and Architectures for Wireless
Sensor Networks. Hoboken, NJ: Wiley, 2005.

0) 10 15 20

t
(@)
B ficoxox - 3% e 300k -
4 Jmoxx - 3000 - x- 206X K
2 | ; |
GC.) 3 00 3000 3 -3 X - 30008 - X3 X --H0IOK- KX XK X -1~ UK X 30K
> : : '
T2 oo omome s 000 X3 X 300X
T Poer0c 305620306203 236 3¢ M -3 HOTHE - 200¢- -3¢ K
0 5 10 15 20

t
(b)

FIGURE S2 A comparison between the event-triggered algo-
rithm (S21) employing the event-triggered communication law
(S25) and the Euler discretized implementation of (25), as
described in (S15) with fixed step size [S15]. Both of these
algorithms use @ =1 and S = 4. The network is a weight-bal-
anced digraph of five agents with unit weights. The inputs are
r'() = 0.5sin(0.8t), r?(t) = 0.5sin(0.7t) + 0.5cos (0.61), r*(t) =
sin(0.2t) + 1, r*(t) = atan(0.5t), and r®(t) = 0.1 cos(2t). In plot
(a), the black (respectively, gray) lines correspond to the track-
ing error of the event-triggered algorithm (S21) employing
event-triggered law (S25) with €;/(2v/dhy) = 0.1 [respectively,
the Euler discretized algorithm (S15) with fixed step size
6 =0.12]. Recall from “Euler Discretizations of Continuous-
Time Dynamic Average Consensus Algorithms” that conver-
gence for (S15) is guaranteed if § € (0, min{a ", 87" (d%%) ™)),
which, for this example, results in § € (0, 0.125). The horizontal
blue lines show the £0.05 error bound for reference. Part (a)
shows that both algorithms exhibit comparable tracking per-
formance. Part (b) shows the communication times of each
agent using the event-triggered strategy. The number of times
that agents {1,...,5} communicate in the time interval [0, 20]
s (39,40,42,40, 39), respectively, when implementing event-
triggered communication (S25). These numbers are sig-
nificantly smaller than the communication rounds required
by each agent in the Euler discretized algorithm (S15)
(20/0.12 ~ 166 rounds).

[S23] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An in-
troduction to event-triggered and self-triggered control,” in Proc. IEEE
Conf. Decision and Control, 2012, pp. 3270-3285.

[S24] L. Hetel et al., “Recent developments on the stability of systems
with aperiodic sampling: An overview,” Automatica, vol. 76, pp. 309—
335, Feb. 2017.

[S25] C. Nowzari, E. Garcia, and J. Cortés. Event-triggered control and
communication of network systems for multi-agent consensus. 2017.
[Online]. Available: arXiv: 1712.00429

[S26] L. Ding, Q. L. Han, X. Ge, and X. M. Zhang, “An overview of recent
advances in event-triggered consensus of multiagent systems,” IEEE
Trans. Cybern., vol. 48, no. 4, pp. 1110-1123, 2018.

JUNE 2019 <« IEEE CONTROL SYSTEMS MAGAZINE 69

We believe that the interconnection of dynamic average
consensus algorithms with other coordination layers in net-
work systems is a fertile area for both research and applica-
tions. Dynamic average consensus algorithms are a versatile
tool in interconnected scenarios where it is necessary to com-
pute changing estimates of quantities that are employed by
other coordination algorithms and whose execution in turn
affects the time-varying signals available to the individual
agents. This was illustrated in the “Applications of Dynamic
Average Consensus in Network Systems” section, which
described how (in resource allocation problems) a group of
distributed energy resources can collectively estimate the mis-
match between the aggregated power injection and the desired
load using dynamic average consensus. The computed mis-
match, in turn, informs the distributed energy resources in
their decision-making process seeking to determine the power
injections that optimize their generation cost, which, in turn,
changes the mismatch computed by the dynamic average con-
sensus algorithm. The fact that the time-varying nature of the
signals is driven by a dynamic process that itself uses the
output of the dynamic average consensus algorithms opens
the way for the use of many concepts germane to systems and
control, including stable interconnections, ISS, and passivity.
Along these lines, we could also think of self-tuning mecha-
nisms embedded within dynamic average consensus algorith-
mic solutions that tune the algorithm execution based on the
evolution of the time-varying signals.

Another interesting topic for future research is the privacy
preservation of the signals available to the agents in the
dynamic average consensus problem. Protecting the privacy
and confidentiality of data is a critical issue in emerging dis-
tributed automated systems deployed in a variety of scenarios,
including power networks, smart transportation, the Internet
of Things, and manufacturing systems. In such scenarios, the
ability of a network system to optimize its operation, fuse
information, compute common estimates of unknown quanti-
ties, and agree on a common worldview while protecting sen-
sitive information is crucial. In this respect, the design of
privacy-preserving dynamic average consensus algorithms is
in its infancy. Interestingly, the dynamic nature of the problem
might offer advantages in this regard with respect to the static
average consensus problem. For instance, in differential pri-
vacy, where the designer makes it provably difficult for an
adversary to make inferences about individual records from
published outputs or even detect the presence of an individual
in the data set, it is known that privacy guarantees weaken as
more queries are made to the same database. However, if the
database is changing, this limitation no longer applies, and
this opens the way to studying how privacy guarantees change
with the rate of variation of the time-varying signals in the
dynamic average consensus problem.

ACKNOWLEDGMENTS
The work of S.S. Kia was supported by National Science
Foundation awards ECCS-1653838 and IIS-SAS-1724331.

70 |EEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

The work of J. Cortés was supported by NSF award CNS-
1446891 and Air Force Office of Scientific Research award
FA9550-15-1-0108. The work of S. Martinez was supported
by the Air Force Office of Scientific Research award FA9550-
18-1-0158 and Defense Advanced Research Projects Agency
(Lagrange) award N66001-18-2-4027.

AUTHOR INFORMATION

Solmaz S. Kia (solmaz@uci.edu) is an assistant professor
of mechanical and aerospace engineering at the University
of California, Irvine (UCI). She received the Ph.D. degree in
mechanical and aerospace engineering from UCI in 2009
and the M.Sc. and B.Sc. degrees in aerospace engineering
from the Sharif University of Technology, Tehran, Iran, in
2004 and 2001, respectively. She was a senior research engi-
neer at SySense Inc., El Segundo, California, from June 2009
to September 2010. She held postdoctoral positions in the
Department of Mechanical and Aerospace Engineering at
the University of California, San Diego, and UCI. She was
a recipient of the University of California President’s Post-
doctoral Fellowship from 2012 to 2014 and National Science
Foundation CAREER Award in 2017. Her main research in-
terests, in a broad sense, include distributed optimization/
coordination/estimation, nonlinear control theory, and
probabilistic robotics.

Bryan Van Scoy is a postdoctoral researcher at the Uni-
versity of Wisconsin-Madison. He received the Ph.D. de-
gree in electrical engineering and computer science from
Northwestern University, Evanston, Illinois, in 2017 and
the B.S. and M.S. degrees in applied mathematics along
with the B.S.E. in electrical engineering from the University
of Akron, Ohio, in 2012. His research interests include dis-
tributed algorithms for multiagent systems and the analy-
sis and design of optimization algorithms.

Jorge Cortés is a professor of mechanical and aerospace
engineering at the University of California, San Diego. He
received the Licenciatura degree in mathematics from the
Universidad de Zaragoza, Spain, in 1997 and the Ph.D. de-
gree in engineering mathematics from the Universidad
Carlos III de Madrid, Spain, in 2001. He held postdoctoral
positions with the University of Twente, The Netherlands,
and the University of Illinois at Urbana-Champaign. He
was an assistant professor with the Department of Applied
Mathematics and Statistics, University of California, Santa
Cruz, from 2004 to 2007. He is the author of Geometric, Con-
trol and Numerical Aspects of Nonholonomic Systems (Springer-
Verlag, 2002) and coauthor (together with F. Bullo and
S. Martinez) of Distributed Control of Robotic Networks (Princ-
eton University Press, 2009). He was an IEEE Control Sys-
tems Society Distinguished Lecturer (2010-2014) and is an
IEEE Fellow. His current research interests include coop-
erative control; network science; game theory; multiagent
coordination in robotics, power systems, and neuroscience;
geometric and distributed optimization; nonsmooth analy-
sis; and geometric mechanics and control.

Randy A. Freeman is a professor of electrical engineer-
ing and computer science at Northwestern University,
Evanston, Illinois. He received the Ph.D. degree in electri-
cal engineering from the University of California, Santa
Barbara, in 1995. He has been associate editor of IEEE Trans-
actions on Automatic Control. His research interests include
nonlinear systems, distributed control, multiagent systems,
robust control, optimal control, and oscillator synchroni-
zation. He received the National Science Foundation CA-
REER Award in 1997. He has been a member of the IEEE
Control System Society Conference Editorial Board since
1997 and has served on program and operating committees
for the American Control Conference and the IEEE Confer-
ence on Decision and Control.

Kevin M. Lynch is a professor and chair of the Mechan-
ical Engineering Department, Northwestern University,
Evanston, Illinois. He received the B.S.E.E. degree in elec-
trical engineering from Princeton University, New Jersey,
in 1989 and the Ph.D. degree in robotics from Carnegie
Mellon University, Pittsburgh, Pennsylvania, in 1996. He
is a member of the Neuroscience and Robotics Laboratory
and the Northwestern Institute on Complex Systems. His
research interests include dynamics, motion planning,
and control for robot manipulation and locomotion; self-
organizing multiagent systems; and functional electrical
stimulation for restoration of human function. He is a
coauthor of the textbooks Principles of Robot Motion (MIT
Press, 2005), Embedded Computing and Mechatronics (Else-
vier, 2015), and Modern Robotics: Mechanics, Planning, and
Control (Cambridge University Press, 2017).

Sonia Martinez is a professor of mechanical and aero-
space engineering at the University of California, San Diego.
She received the Ph.D. degree in engineering mathematics
from the Universidad Carlos III de Madrid, Spain, in May
2002. Following a year as a visiting assistant professor of ap-
plied mathematics at the Technical University of Catalonia,
Spain, she obtained a Postdoctoral Fulbright Fellowship and
held appointments at the Coordinated Science Laboratory
of the University of Illinois at Urbana-Champaign during
2004 and the Center for Control, Dynamical Systems and
Computation of the University of California, Santa Barbara,
during 2005. In a broad sense, her main research interests
include the control of network systems, multiagent systems,
nonlinear control theory, and robotics. For her work on the
control of underactuated mechanical systems, she received
the Best Student Paper Award at the 2002 IEEE Conference
on Decision and Control. She was the recipient of a National
Science Foundation CAREER Award in 2007. For the paper
“Motion Coordination with Distributed Information,”
coauthored with Jorge Cortés and Francesco Bullo, she
received the 2008 Control Systems Magazine Outstand-
ing Paper Award. She has served on the editorial boards of
European Journal of Control (2011-2013) and currently serves
on the editorial board of Journal of Geometric Mechanics and
IEEE Transactions on Control of Network Systems.

REFERENCES
[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation

in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215-233, 2007.
[2] W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle Cooperative
Control (Communications and Control Engineering). New York: Springer-
Verlag, 2008.

[3] W. Ren and Y. Cao, Distributed Coordination of Multi-Agent Networks (Com-
munications and Control Engineering). New York: Springer-Verlag, 2011.

[4] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multi-
vehicle cooperative control: Collective group behavior through local inter-
action,” IEEE Control Syst. Mag., vol. 27, no. 2, pp. 71-82, 2007.

[5] A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury, “Information
weighted consensus filters and their application in distributed camera net-
works,” IEEE Trans. Autom. Control, vol. 58, no. 12, pp. 3112-3125, 2013.

[6] D. Tian, J. Zhou, and Z. Sheng, “An adaptive fusion strategy for distrib-
uted information estimation over cooperative multi-agent networks,” IEEE
Trans. Inf. Theory, vol. 63, no. 5, pp. 3076-3091, 2017.

[7] P. Yang, R. Freeman, and K. Lynch, “Optimal information propagation
in sensor networks,” in Proc. 2006 IEEE Int. Conf. Robotics and Automation,
pp. 3122-3127.

[8] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman, “Decentralized
environmental modeling by mobile sensor networks,” IEEE Trans. Robot.,
vol. 24, no. 3, pp. 710-724, 2008.

[9] P. Yang, R. A. Freeman, and K. M. Lynch, “Multi-agent coordination by
decentralized estimation and control,” IEEE Trans. Autom. Control, vol. 53,
no. 11, pp. 2480-2496, 2008.

[10] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa, and R.
Sukthankar, “Decentralized estimation and control of graph connectivity
for mobile sensor networks,” Automatica, vol. 46, no. 2, pp. 390-396, 2010.
[11] R. Aragtiés, J. Cortés, and C. Sagiiés, “Distributed consensus on robot
networks for dynamically merging feature-based maps,” IEEE Trans. Ro-
bot., vol. 28, no. 4, pp. 840-854, 2012.

[12] S. Das and J. M. F. Moura, “Distributed Kalman filtering with dynam-
ic observations consensus,” IEEE Trans. Signal Process., vol. 63, no. 17, pp.
4458-4473, 2015.

[13] F. Chen and W. Ren, “A connection between dynamic region-following
formation control and distributed average tracking,” IEEE Trans. Cybern.,
vol. 48, no. 6, pp. 1760-1772, 2018.

[14] J. A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465-1476,
2004.

[15] W. Ren, “Multi-vehicle consensus with a time-varying reference state,”
Syst. Control Lett., vol. 56, no. 2, pp. 474-483, 2007.

[16] K. D. Listmann, M. V. Masalawala, and J. Adamy, “Consensus for for-
mation control of nonholonomic mobile robots,” in Proc. IEEE Int. Conf. Ro-
botics and Automation, 2009, pp. 3886-3891.

[17] M. Porfiri, G. D. Roberson, and D. J. Stilwell, “Tracking and formation
control of multiple autonomous agents: A two-level consensus approach,”
Automatica, vol. 43, no. 8, pp. 1318-1328, 2007.

[18] S. Ghapani, S. Rahili, and W. Ren, “Distributed average tracking for
second-order agents with nonlinear dynamics,” in Proc. American Control
Conf., 2016, pp. 4636—-4641.

[19]S.S.Kia, J. Cortés, and S. Martinez, “Dynamic average consensus under
limited control authority and privacy requirements,” Int. J. Robust Nonlinear
Control, vol. 25, no. 13, pp. 1941-1966, 2015.

[20] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus
filters,” in Proc. IEEE Conf. Decision and Control, 2005, pp. 8179-8184.

[21] R. Olfati-Saber, “Kalman-consensus filter: Optimality, stability,
and performance,” in Proc. IEEE Conf. Decision and Control, 2009, pp.
7036-7042.

[22] W. Qi, P. Zhang, and Z. Deng, “Robust sequential covariance intersec-
tion fusion Kalman filtering over multi-agent sensor networks with mea-
surement delays and uncertain noise variances,” Acta Autom. Sin., vol. 40,
no. 11, pp. 26322642, 2014.

[23] G. Wang, N. Li, and Y. Zhang, “Diffusion distributed Kalman filter
over sensor networks without exchanging raw measurements,” Signal Pro-
cess., vol. 132, pp. 1-7, Mar. 2017.

[24] R. Aragues, C. Sagues, and Y. Mezouar, “Feature-based map merging
with dynamic consensus on information increments,” Aufonomous Robots,
vol. 38, no. 3, pp. 243-259, 2015.

[25] W. Ren and U. M. Al-Saggaf, “Distributed Kalman-Bucy filter with
embedded dynamic averaging algorithm,” IEEE Syst. ., vol. 12, no. 2, pp.
1722-1730, 2018.

JUNE 2019 <« IEEE CONTROL SYSTEMS MAGAZINE 71

[26] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for
multi-agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.
48-61, 2009.

[27] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental
subgradient method for distributed optimization in networked systems,”
SIAM J. Control Optim., vol. 20, no. 3, pp. 1157-1170, 2009.

[28] J. Wang and N. Elia, “A control perspective for centralized and distrib-
uted convex optimization,” in Proc. IEEE Conf. Decision and Control, 2011,
pp- 3800-3805.

[29] M. Zhu and S. Martinez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Trans. Autom. Control, vol. 57, no.
1, pp. 151-164, 2012.

[30] J. Lu and C. Y. Tang, “Zero-gradient-sum algorithms for distributed
convex optimization: The continuous-time case,” IEEE Trans. Autom. Con-
trol, vol. 57, no. 9, pp. 2348-2354, 2012.

[31] B. Gharesifard and J. Cortés, “Distributed continuous-time convex op-
timization on weight-balanced digraphs,” IEEE Trans. Autom. Control, vol.
59, no. 3, pp. 781-786, 2014.

[32] S. S. Kia, J. Cortés, and S. Martinez, “Distributed convex optimization
via continuous-time coordination algorithms with discrete-time communi-
cation,” Automatica, vol. 55, pp. 254-264, May 2015.

[33] G. Qu and N. Li, “Accelerated distributed Nesterov gradient descent
for convex and smooth functions,” in Proc. IEEE Conf. Decision and Control,
2017, pp. 2260-2267.

[34] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course,
vol. 87. New York: Springer-Verlag, 2014.

[35] R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo, “Analysis of
Newton—-Raphson consensus for multi-agent convex optimization under
asynchronous and lossy communication,” in Proc. IEEE Conf. Decision and
Control, 2015, pp. 418-424.

[36] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant step-
sizes,” in Proc. IEEE Conf. Decision and Control, 2015, pp. 2055-2060.

[37] D. Varagnolo, F. Zanella, P. G. A. Cenedese, and L. Schenato, “New-
ton-Raphson consensus for distributed convex optimization,” IEEE Trans.
Autom. Control, vol. 61, no. 4, pp. 994-1009, 2016.

[38] P. D. Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimiza-
tion,” IEEE Trans. Signal Inf. Process. Netw., vol. 2, no. 2, pp. 120-136, 2016.
[39] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM]. Optim.,
vol. 27, no. 4, pp. 2597-2633, 2017.

[40] A.]J. Wood, E. Wollenberg, and G. B. Sheble, Power Generation, Operation
and Control, 3rd ed. Hoboken, NJ: Wiley, 2013.

[41] A. Cherukuri and J. Cortés, “Distributed generator coordination for
initialization and anytime optimization in economic dispatch,” IEEE Trans.
Control Netw. Syst., vol. 2, no. 3, pp. 226-237, 2015.

[42] R. Madan and S. Lall, “Distributed algorithms for maximum lifetime
routing in wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 5,
no. 8, pp. 2185-2193, 2006.

[43] G. M. Heal, “Planning without prices,” Rev. Economic Stud., vol. 36, no.
3, pp. 347-362, 1969.

[44] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and Nonlinear
Programming. Stanford, CA: Stanford Univ. Press, 1958.

[45] A. Cherukuri, B. Gharesifard, and J. Cortés, “Saddle-point dynamics:
Conditions for asymptotic stability of saddle points,” SIAM]. Control Op-
tim., vol. 55, no. 1, pp. 486511, 2017.

[46] A. Cherukuri and J. Cortés, “Initialization-free distributed coordina-
tion for economic dispatch under varying loads and generator commit-
ment,” Automatica, vol. 74, pp. 183-193, Dec. 2016.

[47] S. S. Kia, “Distributed optimal in-network resource allocation algo-
rithm design via a control theoretic approach,” Syst. Control Lett., vol. 107,
pp. 49-57, Sept. 2017.

[48] J. Tsitsiklis, “Problems in decentralized decision making and computa-
tion,” Ph.D. dissertation, MIT, Cambridge, MA, 1984.

[49] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Dynamic consensus for
mobile networks,” in Proc. IFAC World Congr., 2005, Art. no. Mo-A09-TO/5.
[50] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak. Math.].,
vol. 23, no. 2, pp. 298-305, 1973.

[51] N. M. M. de Abreu, “Old and new results on algebraic connectivity of
graphs,” Linear Algebra Its Applicat., vol. 423, no. 1, pp. 53-73, 2007.

[52] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri, “Communication
constraints in the average consensus problem,” Automatica, vol. 44, no. 3,
pp. 671-684, 2008.

72 |EEE CONTROL SYSTEMS MAGAZINE > JUNE 2019

[53] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence
properties of dynamic average consensus estimators,” in Proc. IEEE Conf.
Decision and Control, 2006, pp. 398-403.

[54] S. S. Kia, J. Cortés, and S. Martinez, “Singularly perturbed filters for
dynamic average consensus,” in Proc. European Control Conf., 2013, pp.
1758-1763.

[55] H. K. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ: Prentice
Hall, 2002.

[56] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “Optimal worst-case
dynamic average consensus,” in Proc. American Control Conf., 2015, pp.
5324-5329.

[57] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “Design of robust dy-
namic average consensus estimators,” in Proc. IEEE Conf. Decision and Con-
trol, 2015, pp. 6269—6275.

[58] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “Exploiting memory in
dynamic average consensus,” in Proc. 53rd Annu. Allerton Conf. Communica-
tion, Control, and Computing, 2015, pp. 258-265.

[59] B. N. Oreshkin, M. J. Coates, and M. G. Rabbat, “Optimization and anal-
ysis of distributed averaging with short node memory,” IEEE Trans. Signal
Process., vol. 58, no. 5, pp. 28502865, 2010.

[60] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast con-
sensus by the alternating direction multipliers method,” IEEE Trans. Signal
Process., vol. 59, no. 11, pp. 5523-5537, 2011.

[61] E. Kokiopoulou and P. Frossard, “Polynomial filtering for fast conver-
gence in distributed consensus,” IEEE Trans. Signal Process., vol. 57, no. 1,
pp. 342-354, 2009.

[62] Y. Yuan, J. Liu, R. M. Murray, and J. Gongalves, “Decentralised min-
imal-time dynamic consensus,” in Proc. American Control Conf., 2012, pp.
800-805.

[63] E. Montijano, J. I. Montijano, and C. Sagiiés, “Chebyshev polynomials
in distributed consensus applications,” IEEE Trans. Signal Process., vol. 61,
no. 3, pp. 693-706, 2013.

[64] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “A systematic design pro-
cess for internal model average consensus estimators,” in Proc. IEEE Conf.
Decision and Control, 2013, pp. 5878-5883.

[65] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “Worst-case optimal av-
erage consensus estimators for robot swarms,” in Proc. 2014 IEEE/RS] Int.
Conf. Intelligent Robots and Systems, 2014, pp. 3814-3819.

[66] H. Bai, R. A. Freeman, and K. M. Lynch, “Robust dynamic average
consensus of time-varying inputs,” in Proc. IEEE Conf. Decision and Control,
2010, pp. 3104-3109.

[67] H. Bai, “Adaptive motion coordination with an unknown reference ve-
locity,” in Proc. American Control Conf., 2015, pp. 5581-5586.

[68] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “Feedforward estimators
for the distributed average tracking of bandlimited signals in discrete time
with switching graph topology,” in Proc. IEEE Conf. Decision and Control,
2016, pp. 4284-4289.

[69] F. Chen, Y. Cao, and W. Ren, “Distributed average tracking of multiple
time-varying reference signals with bounded derivatives,” IEEE Trans. Au-
tom. Control, vol. 57, no. 12, pp. 3169-3174, 2012.

[70] J. George, R. A. Freeman, and K. M. Lynch, “Robust dynamic average
consensus algorithm for signals with bounded derivatives,” in Proc. Ameri-
can Control Conf., 2017, pp. 352-357.

[71] S. Rahili and W. Ren, “Heterogeneous distributed average tracking us-
ing nonsmooth algorithms,” in Proc. American Control Conf., 2017, pp. 691-696.
[72] L. Yu, J. P. Barbot, D. Benmerzouk, D. Boutat, T. Floquet, and G. Zheng,
Discussion About Sliding Mode Algorithms, Zeno Phenomena and Observability.
New York: Springer-Verlag, 2012, pp. 199-219.

[73] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs,
NJ: Prentice Hall, 1991.

[74] L. Fridman and A. Levant, Higher Order Sliding Modes. Boca Raton, FL:
CRC, 2002, pp. 53-101.

[75] E. G. Rojo-Rodriguez, E. J. Ollervides, J. G. Rodriguez, E. S. Espinoza,
P. Zambrano-Robledo, and O. Garcia, “Implementation of a super twisting
controller for distributed formation flight of multi-agent systems based on
consensus algorithms,” in Proc. Int. Conf. Unmanned Aircraft Systems, Mi-
ami, FL, 2017, pp. 1101-1107.

[76] M. Zhu and S. Martinez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322-329, 2010.

[77] E. Montijano, J. I. Montijano, C. Sagiiés, and S. Martinez, “Step size
analysis in discrete-time dynamic average consensus,” in Proc. American
Control Conf., 2014, pp. 5127-5132. \EEE
css

M

