
TIRAMISU: A Polyhedral Compiler for Expressing

Fast and Portable Code

Riyadh Baghdadi

MIT, USA

baghdadi@mit.edu

Jessica Ray

MIT, USA

jray@csail.mit.edu

Malek Ben Romdhane

MIT, USA

malek@mit.edu

Emanuele Del Sozzo

Politecnico di Milano, Italy

emanuele.delsozzo@polimi.it

Abdurrahman Akkas

MIT, USA

akkas@mit.edu

Yunming Zhang

MIT, USA

yunming@mit.edu

Patricia Suriana

Google, USA

psuriana@google.com

Shoaib Kamil

Adobe, USA

kamil@adobe.com

Saman Amarasinghe

MIT, USA

saman@mit.edu

Abstract—This paper introduces TIRAMISU, a polyhedral
framework designed to generate high performance code for
multiple platforms including multicores, GPUs, and distributed
machines. TIRAMISU introduces a scheduling language with
novel commands to explicitly manage the complexities that
arise when targeting these systems. The framework is designed
for the areas of image processing, stencils, linear algebra and
deep learning. TIRAMISU has two main features: it relies on
a flexible representation based on the polyhedral model and
it has a rich scheduling language allowing fine-grained control
of optimizations. TIRAMISU uses a four-level intermediate rep-
resentation that allows full separation between the algorithms,
loop transformations, data layouts, and communication. This
separation simplifies targeting multiple hardware architectures
with the same algorithm. We evaluate TIRAMISU by writing
a set of image processing, deep learning, and linear algebra
benchmarks and compare them with state-of-the-art compilers
and hand-tuned libraries. We show that TIRAMISU matches
or outperforms existing compilers and libraries on different
hardware architectures, including multicore CPUs, GPUs, and
distributed machines.

Index Terms—Code Optimization, Code Generation, Polyhe-
dral Model, Deep Learning, Tensors, GPUs, Distributed Systems

I. INTRODUCTION

Generating efficient code for high performance systems

is becoming more and more difficult as these architectures

are increasing in complexity and diversity. Obtaining the

best performance requires complex code and data layout

transformations, management of complex memory hierarchies,

and efficient data communication and synchronization.

For example, consider generalized matrix multiplication

(gemm), which computes C = αAB + βC and is a building

block of numerous algorithms, including simulations and

convolutional neural networks. Highly-tuned implementations

require fusing the multiplication and addition loops, as well

as applying two-level tiling, vectorization, loop unrolling,

array packing [21], register blocking, and data prefetching.

TIRAMISU’s website: http://tiramisu-compiler.org/

Artifact available at: http://doi.org/10.5281/zenodo.2375075

A preliminary version of this paper was published on ArXiv [5].

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

1

2

5

20

10

In
te

l M
K
L

LLV
M

-P
olly

A
lp

haZ

P
lu

to

Tir
am

is
u

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

1.0

1.5

2.0

4.0

10.0

c
u
B
L
A
S

P
E
N
C
IL T

C

T
ir
a
m

is
u

Fig. 1: Normalized execution times of code generated for sgemm on
CPU (left) and GPU (right).

Furthermore, tuned implementations separate partial tiles from

full tiles, since partial tiles cannot fully benefit from the

same optimizations. High performance GPU implementations

require even more optimizations, including coalescing memory

accesses, managing data movement between global, shared,

and register memory, and inserting synchronization primitives.

Automatically generating such complex code is still beyond

the capabilities of state-of-the-art compilers. The importance of

kernels such as gemm motivates vendors to release immensely

complex hand-optimized libraries for these kernels. However,

for most users, obtaining this level of performance for their

own code is challenging, since the effort required to explore

the space of possible implementations is intractable when hand-

coding complicated code transformations.

Previous work using the polyhedral model has shown success

in implementing complex iteration space transformations [50],

[9], [45], [23], [47], [38], data locality optimizations [28],

[22], and memory management optimizations [18], [44], [30],

[39], [14]. Although polyhedral compilers can represent these

program and data transformations, they still do not successfully

select transformations that result in the best performance.

Currently, these compilers do not match the performance

of hand-optimized kernels for algorithms such as gemm.

The blue bars in Figure 1 show the performance of state-

of-the-art polyhedral compilers for gemm compared to the

Intel MKL [27] and Nvidia cuBLAS [36] libraries. Fully-

automatic polyhedral compilers such as Polly [23] and Pluto [9]

improve productivity, but do not obtain the desired level of

performance since their search techniques consider only a

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Research Papers

193

subset of the necessary optimizations and rely on less accurate

machine models, leading the compiler to make suboptimal

decisions. Other polyhedral frameworks, such as AlphaZ [52]

and CHiLL [11], eschew full automation and instead expose a

scheduling language that enables users to productively explore

the space of possible transformations. While these frameworks

achieve better performance, their scheduling languages are not

designed to target distributed systems. For example, they do

not allow the user to partition computations, send data across

nodes, or insert required synchronization.

In this paper, we introduce TIRAMISU, a polyhedral compiler

with a scheduling language featuring novel commands for

targeting multiple high performance architectures. TIRAMISU

is well-suited for implementing data parallel algorithms (loop

nests manipulating arrays). It takes a high level representation

of the program (a pure algorithm and a set of scheduling

commands), applies the necessary code transformations, and

generates highly-optimized code for the target architecture.

In addition to scheduling commands for loop and data-

layout transformations, the TIRAMISU scheduling language

introduces novel commands for explicit communication and

synchronization, and for mapping buffers to different mem-

ory hierarchies. In order to simplify the implementation of

the scheduling language, TIRAMISU explicitly divides the

intermediate representation into four layers designed to hide

the complexity and large variety of execution platforms by

separating the architecture-independent algorithm from code

transformations, data layout, and communication. TIRAMISU

targets multicore CPUs, CUDA GPUs, distributed architectures,

and FPGA. This paper presents the first three backends while

Del Sozzo et al. [15] describe an FPGA backend.

The use of a scheduling language has been shown effective

for generating efficient code by multiple compilers including

CHiLL, AlphaZ, and Halide [40], [41]. In comparison with

Halide in particular, not only does TIRAMISU introduce novel

scheduling extensions, TIRAMISU fundamentally differs in that

it relies on the expressive polyhedral representation instead of

the interval-based representation used by Halide. This allows

TIRAMISU to naturally express non-rectangular iteration spaces,

to support programs with cyclic data-flow graphs, and to apply

any affine transformation (including iteration space skewing),

all of which are not naturally expressible in Halide.

This paper makes the following contributions:

• We introduce a polyhedral compiler with a scheduling

language that features novel commands for controlling

data communication, synchronization, and for mapping

to different memory hierarchies. These extensions enable

targeting multiple high-performance architectures including

multicore CPUs, GPUs, and distributed machines.

• We explicitly divide the intermediate representation into

four layers to simplify the implementation of the schedul-

ing language. The four-layer IR separates the algorithm

from code transformations and data-layout transformations,

allowing for portability and simplifying the composition

of architecture-specific lowering transformations.

• We evaluate TIRAMISU on a set of deep learning and linear

algebra kernels and show that TIRAMISU can generate

efficient code that outperforms Intel MKL by up to

2.3×. We also evaluate TIRAMISU on a set of image

processing benchmarks and show that TIRAMISU matches

or outperforms state-of-the-art compilers on different hard-

ware architectures, including multicore CPUs, GPUs, and

distributed machines.

II. RELATED WORK

Polyhedral compilers with automatic scheduling: Polyhe-

dral compilers such as PENCIL [4], [3], Pluto [9], Polly [23],

Tensor Comprehensions [47], and PolyMage [35] are fully

automatic. Some of them are designed for specific domains

(such as Tensor Comprehensions and PolyMage), while Pluto,

PENCIL, and Polly are more general. While fully automatic

compilers provide productivity, they may not always obtain

the best performance. This suboptimal performance is due

to several reasons: first, these compilers do not implement

some key optimizations such as array packing [21], register

blocking, data prefetching, and asynchronous communication

(which are all supported by TIRAMISU); second, they do not

have a precise cost-model to decide which optimizations are

profitable. For example, the Pluto [9] automatic scheduling

algorithm (used in Pluto, PENCIL and Polly) tries to minimize

the distance between producer and consumer statements while

maximizing outermost parallelism, but it does not consider

data layout, redundant computations, or the complexity of

the control of the generated code. Instead of fully automatic

scheduling, TIRAMISU relies on a set of scheduling commands,

giving the user full control over scheduling.

Polyhedral frameworks proposed by Amarasinghe et al. [1]

and Bondhugula et al. [8] address the problem of automatic

code generation for distributed systems. Instead of being

fully automatic, TIRAMISU relies on the user to provide

scheduling commands to control choices in the generated code

(synchronous/asynchronous communication, the granularity of

communication, buffer sizes, when to send and receive, cost

of communication versus re-computation, etc.).

Polyhedral compilers with a scheduling language:

AlphaZ [52], CHiLL [11], [25] and URUK [20] are polyhedral

frameworks developed to allow users to express high-level

transformations using scheduling commands. Since these

frameworks are polyhedral, they can express any affine transfor-

mation. However, their scheduling languages do not target dis-

tributed architectures. In contrast, TIRAMISU features schedul-

ing commands for partitioning computations (for distributed

systems), synchronization and distribution of data across nodes.

The first four columns of Table I compare between TIRAMISU

and three representative polyhedral frameworks.

Non-polyhedral compilers with a scheduling language:

Halide [40] is an image processing DSL with a scheduling

language that uses intervals to represent iteration spaces instead

of the polyhedral model. This limits the expressiveness of

Halide. For example, unlike TIRAMISU, Halide cannot naturally

represent non-rectangular iteration spaces, and this is the reason

194

TABLE I: COMPARISON BETWEEN DIFFERENT FRAMEWORKS.

Feature Tiramisu AlphaZ PENCIL Pluto Halide

CPU code generation Yes Yes Yes Yes Yes

GPU code generation Yes No Yes Yes Yes

Distributed CPU code generation Yes No No Yes Yes

Distributed GPU code generation Yes No No No No

Support all affine loop transformations Yes Yes Yes Yes No

Commands for loop transformations Yes Yes No No Yes

Commands for optimizing data accesses Yes Yes No No Yes

Commands for communication Yes No No No No

Commands for memory hierarchies Yes No No No Limited

Expressing cyclic data-flow graphs Yes Yes Yes Yes No

Non-rectangular iteration spaces Yes Yes Yes Yes Limited

Exact dependence analysis Yes Yes Yes Yes No

Compile-time set emptiness check Yes Yes Yes Yes No

Implement parametric tiling No Yes No No Yes

why distributed Halide [16] over-approximates the amount

of data to communicate (send and receive) when generating

distributed code. This also makes some Halide passes over-

approximate non-rectangular iteration spaces, potentially lead-

ing to less efficient code (for example, it prevents Halide

from performing precise bounds inference for non-rectangular

iteration spaces). The use of intervals also prevents Halide

from performing many complex affine transformations, such

as iteration space skewing.

Halide does not have dependence analysis and thus relies

on conservative rules to determine whether a schedule is legal.

For example, Halide does not allow the fusion of two loops

(using the compute_with command) if the second loop

reads a value produced by the first loop. While this rule

avoids illegal fusion, it prevents fusing many legal cases, which

may lead to suboptimal performance. Halide also assumes the

program has an acyclic dataflow graph in order to simplify

checking the legality of a schedule. This prevents users from

expressing many programs with cyclic dataflow. It is possible

in some cases to work around the above restrictions, but such

work-around methods are not general. TIRAMISU avoids over-

conservative constraints by relying on dependence analysis to

check for the correctness of code transformations, enabling

more possible schedules. Table I summarizes the comparison

between TIRAMISU and Halide.

Vocke et al. [49] extend Halide to target DSPs, and add

scheduling commands such as store_in to specify in which

memory hierarchy data should be stored. TVM [12] is another

system that shares many similarities with Halide. It uses a

modified form of the Halide IR internally. Since TVM is also

a non-polyhedral compiler, the differences between Halide and

TIRAMISU that are due to the use of polyhedral model also

apply to TVM.

POET [51] is a system that uses an XML-based description

of code and transformation behavior to parametrize loop trans-

formations. It uses syntactic transformations, which are less

general than the polyhedral transformations used in TIRAMISU.

GraphIt [53] is another compiler that has a scheduling language

but that is mainly designed for the area of graph applications.

Other Compilers: Delite [10] is a generic framework for

building DSL compilers. It exposes several parallel computation

1 // Declare the iterators i, j and c.
2 Var i(0, N-2), j(0, M-2), c(0, 3);
3

4 Computation bx(i, j, c), by(i, j, c);
5

6 // Algorithm.
7 bx(i,j,c) = (in(i,j,c)+in(i,j+1,c)+in(i,j+2,c))/3;
8 by(i,j,c) = (bx(i,j,c)+bx(i+1,j,c)+bx(i+2,j,c))/3);

Fig. 2: Blur algorithm without scheduling commands.

patterns that DSLs can use to express parallelism. NOVA [13]

and Lift [43] are IRs for DSL compilers. They are functional

languages that rely on a suite of higher-order functions such

as map, reduce, and scan to express parallelism. TIRAMISU

is complementary to these frameworks as TIRAMISU allows

complex affine transformations that are easier to express in the

polyhedral model.

III. THE TIRAMISU EMBEDDED DSL

TIRAMISU is a domain-specific language (DSL) embedded

in C++. It provides a C++ API that allows users to write

a high level, architecture-independent algorithm and a set

of scheduling commands that guide code generation. Input

TIRAMISU code can either be written directly by a programmer,

or generated by a different DSL compiler. TIRAMISU then

constructs a high level intermediate representation (IR), applies

the user-specified loop and data-layout transformations, and

generates optimized backend code that takes advantage of target

hardware features (LLVM IR for multicores and distributed

machines and LLVM IR + CUDA for GPUs).

A. Scope of TIRAMISU

TIRAMISU is designed for expressing data parallel algo-

rithms, especially those that operate over dense arrays using

loop nests and sequences of statements. These algorithms are

often found in the areas of image processing, deep learning,

dense linear algebra, tensor operations and stencil computations.

B. Specifying the Algorithm

The first part of a TIRAMISU program specifies the algorithm

without specifying loop optimizations (when and where the

computations occur), data layout (how data should be stored in

memory), or communication. At this level there is no notion

of data location; rather, values are communicated via explicit

producer-consumer relationships.

The algorithm is a pure function that has inputs, outputs, and

is composed of a sequence of computations. A computation

is used to represent a statement in TIRAMISU. Flow-control

around computations is restricted to for loops and conditionals.

While loops, early exits, and GOTOs cannot be expressed. To

declare a computation, the user provides both the iteration

domain of the computation and the expression to compute.

Figure 2 shows a blur algorithm written in TIRAMISU. This

algorithm declares two computations, bx and by. The first

computation, bx, computes a horizontal blur of the input,

while the second computation, by, computes the final blur by

averaging the output of the first stage. The iterators i, j, and c

195

in line 2 define the iteration domain of bx and by (for brevity

we ignore boundary conditions). The algorithm is semantically

equivalent to the following code.

for (i in 0..N-2)
for (j in 0..M-2)
for (c in 0..3)
bx[i][j][c] =

(in[i][j][c]+in[i][j+1][c]+in[i][j+2][c])/3
for (i in 0..N-2)
for (j in 0..M-2)
for (c in 0..3)
by[i][j][c] =

(bx[i][j][c]+bx[i+1][j][c]+bx[i+2][j][c])/3

C. Scheduling Commands

TIRAMISU provides a set of high-level scheduling commands

for common optimizations; Table II shows some examples.

There are four types of scheduling commands:

• Commands for loop nest transformations: these commands

include common affine transformations such as loop tiling,

splitting, shifting, etc. For example, applying 32×32 loop

tiling to a computation C can be done by calling

C.tile(i,j,32,32,i0,j0,i1,j1) where i and j

are the original loop iterators and i0, j0, i1, and j1 are

the names of the loop iterators after tiling.

• Commands for mapping loop levels to hardware: examples

of these include loop parallelization, vectorization, and

mapping loop levels to GPU block or thread dimensions.

For example, calling C.vectorize(j, 4) splits the j

loop by a factor of 4 and maps the inner loop to vector

lanes.

• Commands for manipulating data: these include (1) al-

locating arrays; (2) setting array properties including

whether the array is stored in host, device, shared, or

local memory (GPU); (3) copying data (between levels

of memory hierarchies or between nodes); and (4) setting

array accesses. In most cases, users need only to use high

level commands for data manipulation. If the high level

commands are not expressive enough, the user can use the

more expressive low level commands.

• Commands for adding synchronization operations: the user

can either declare a barrier or use the send and receive

functions for point-to-point synchronization.

Novel commands introduced by TIRAMISU are high-

lighted in bold in Table II. They include array alloca-

tion, copying data between memory hierarchies, sending

and receiving data between nodes, and synchronization.

Calls to cache_shared_at(), cache_local_at(),

allocate_at(), copy_at(), barrier_at() return

an operation that can be scheduled like any other com-

putation (an operation in TIRAMISU is a special type of

computation that does not return any value). The operations

cache_shared_at() and cache_local_at() can be

used to create a cache for a buffer (GPU only). They automati-

cally compute the amount of data needing to be cached, perform

the data copy, and insert any necessary synchronization.

The use of allocate_at(), copy_at(), and

barrier_at() allows TIRAMISU to automatically

compute iteration domains for the data copy, allocation, and

TABLE II: EXAMPLES OF TIRAMISU SCHEDULING COMMANDS

We assume that C and P are computations, b is a buffer

i and j are loop iterators

Commands for loop nest transformations

Command Description

C.tile(i,j,t1,t2,

i0,j0,i1,j1)

Tile the loop levels (i, j) of the computation C

by t1 × t2. The names of the new loop levels

are (i0, j0, i1, j1) where i0 is the outermost

loop level and j1 is the innermost.

C.interchange(i, j) Interchange the i and j loop levels of C.

C.shift(i, s) Loop shifting (shift the loop level i by s

iterations).

C.split(i, s, i0, i1) Split the loop level i by s. (i0, i1) are the new

loop levels.

P.compute_at(C, j) Compute the computation P in the loop nest of C

at loop level j. This might introduce redundant

computations.

C.unroll(i, v) Unroll the loop level i by a factor v.

C.after(B, i) Indicate that C should be ordered after B at the

loop level i (they have the same order in all

the loop levels above i).

C.inline() Inline C in all of its consumers.

C.set_schedule() Transform the iteration domain of C using an

affine relation (a map to transform Layer I to

II expressed in the ISL syntax).

Commands for mapping loop levels to hardware

C.parallelize(i) Parallelize the i loop level for execution on a

shared memory system.

C.vectorize(i, v) Vectorize the loop level i by a vector size v.

C.gpu(i0, i1, i2, i3) Mark the loop levels i0, i1, i2 and i3 to be

executed on GPU. (i0, i1) are mapped to block

IDs and (i2, i3) to thread IDs.

C.tile_gpu(i0,i1,t1,t2) Tile the loops i0 and i1 by t1 × t2 and map

them to GPU.

C.distribute(i) Parallelize the loop level i for execution on a

distributed memory system.

High level commands for data manipulation

C.store_in(b,{i, j}) Store the result of the computation C(i,j) in b[i,j].

C.cache_shared_at(P,i) Cache (copy) the buffer of C in shared memory.

Copying from global to shared GPU memory

will be done at loop level i of the computation P.

The amount of data to copy, the access functions,

and synchronization are computed automatically.

C.cache_local_at(P, i) Similar to cache_shared_at but stores in

local GPU memory.

send(d, src, s, q, p) Create a send operation. d: vector of iterators

to represent the iteration domain of the send;

src: source buffer; s: size; q: destination node;

p: properties (synchronous, asynchronous,

blocking, ...).

receive(d,dst,s,q,p) Create a receive operation. Arguments similar

to send except q, which is the source node.

Low level commands for data manipulation

Buffer b(sizes, type) Declare a buffer (sizes: a vector of dimension

sizes).

b.allocate_at(p, i) Return an operation that allocates b at the loop

i of p. An operation can be scheduled like

any computation.

C.buffer() Return the buffer associated to the computation

C.

b.set_size(sizes) Set the size of a buffer. sizes: a vector of

dimension sizes.

b.tag_gpu_global() Tag buffer to be stored in global GPU memory.

b.tag_gpu_shared() Tag buffer to be stored in shared GPU memory.

b.tag_gpu_local() Tag buffer to be stored in local GPU memory.

b.tag_gpu_constant() Tag buffer to be stored in constant GPU memory.

C.host_to_device() Return an operation that copies C.buffer() from

host to device.

C.device_to_host() Return an operation that copies C.buffer() from

device to host.

copy_at(p, i, bs, bd) Return an operation that copies the buffer bs

to the buffer bd at the loop i of p. Used for

copies between global, shared and local.

Commands for synchronization

barrier_at(p, i) Create a barrier at the loop p of i.

196

TIRAMISU Scheduling Commands Pseudocode Representing Code Generated by TIRAMISU

(a)

1 // Scheduling commands for targeting
2 // a multicore architecture.
3

4 // Tiling and parallelization.
5 Var i0, j0, i1, j1;
6 by.tile(i, j, 32, 32, i0, j0, i1, j1);
7 by.parallelize(i0);
8 bx.compute_at(by, j0);

1

2 Parallel for(i0 in 0..floor((N-2)/32))
3 for(j0 in 0..floor((M-2)/32))
4 bx[32,34,3];
5 // Tiling with redundancy
6 for(i1 in 0..min((N-2)%32,32)+2)
7 for(j1 in 0..min((M-2)%32,32)+2)
8 int i = i0*32+i1
9 int j = j0*32+j1

10 for (c in 0..3)
11 bx[i1][j1][c]=
12 (in[i][j][c] + in[i][j+1][c]
13 + in[i][j+2][c])/3
14

15 for(i1 in 0..min(N-2,32))
16 for(j1 in 0..min(M-2,32))
17 int i = i0*32+i1
18 int j = j0*32+j1
19 for (c in 0..3)
20 by[i][j][c]=
21 (bx[i][j][c] + bx[i+1][j][c]
22 + bx[i+2][j][c])/3

(b)

1 // Scheduling commands for targeting GPU.
2

3 // Tile i and j and map the resulting dimensions
4 // to GPU
5 Var i0, j0, i1, j1;
6 by.tile_gpu(i, j, 32, 32, i0, j0, i1, j1);
7 bx.compute_at(by, j0);
8 bx.cache_shared_at(by, j0);
9

10 // Use struct-of-array data layout
11 // for bx and by.
12 bx.store_in({c,i,j});
13 by.store_in({c,i,j});
14

15 // Create data copy operations
16 operation cp1 = in.host_to_device();
17 operation cp2 = by.device_to_host();
18

19 // Specify the order of execution of copies
20 cp1.before(bx, root);
21 cp2.after(by, root);

1

2 host_to_device_copy(in_host, in);
3

4 GPUBlock for(i0 in 0..floor((N-2)/32))
5 GPUBlock for(j0 in 0..floor((M-2)/32))
6 shared bx[3,32,34];
7 // Tiling with redundancy
8 GPUThread for(i1 in 0..min((N-2)%32,32)+2)
9 GPUThread for(j1 in 0..min((M-2)%32,32)+2)

10 int i = i0*32+i1
11 int j = j0*32+j1
12 for (c in 0..3)
13 bx[c][i1][j1]=
14 (in[i][j][c] + in[i][j+1][c]
15 + in[i][j+2][c])/3
16

17 GPUThread for(i1 in 0..min(N-2,32))
18 GPUThread for(j1 in 0..min(M-2,32))
19 int i = i0*32+i1
20 int j = j0*32+j1
21 for (c in 0..3)
22 by[c][i][j]=
23 (bx[c][i][j] + bx[c][i+1][j]
24 + bx[c][i+2][j])/3
25

26 device_to_host_copy(by, by_host);

(c)

1 // Scheduling commands for targeting
2 // a distributed system
3

4 // Declare additional iterators
5 Var is(1, Nodes), ir(0,Nodes-1), i0, i1;
6

7 // Split loop i into loops i0 and i1 and
8 // parallelize i1
9 bx.split(i,N/Ranks,i0,i1); bx.parallelize(i1);

10 by.split(i,N/Ranks,i0,i1); by.parallelize(i1);
11

12 // Communicate the border rows where necessary
13 send s =
14 send({is}, lin(0,0,0), M*2*3, is-1, {ASYNC});
15 recv r =
16 receive({ir}, lin(N,0,0), M*2*3, ir+1,{SYNC},s);
17

18 // Order execution
19 s.before(r,root);
20 r.before(bx,root)
21

22 // Distribute the outermost loops
23 bx.distribute(i0); by.distribute(i0);
24 s.distribute(is); r.distribute(ir);

1 // We assume that in[][][] is initially
2 // distributed across nodes. Each node
3 // has a chunk of the original
4 // in[][][] that we call lin[][][].
5

6 // Start by exchanging border rows of
7 // lin[][][]
8 distributed for (is in 1..Nodes)
9 send(lin(0,0,0), M*2*3, is-1,{ASYNC})

10 distributed for (ir in 0..Nodes-1)
11 recv(lin(N,0,0), M*2*3, ir+1, {SYNC})
12

13 distributed for (i0 in 0..Nodes)
14 parallel for (i1 in 0..(N-2)/Nodes)
15 int i = i0*((N-2)/Nodes) + i1
16 for (j in 0..M-2)
17 for (c in 0..3)
18 bx[i][j][c] =
19 (lin[i][j][c] + lin[i][j+1][c]
20 + lin[i][j+2][c])/3
21

22 distributed for (i0 in 0..Nodes)
23 parallel for (i1 in 0..(N-2)/Nodes)
24 int i = q*((N-2)/Nodes) + i1
25 for (j in 0..M-2)
26 for (c in 0..3)
27 by[i][j][c] =
28 (bx[i][j][c] + bx[i+1][j][c]
29 + bx[i+2][j][c])/3
30

31 // We assume that no gather operation on
32 // by[][][] is needed

Fig. 3: Three examples illustrating TIRAMISU scheduling commands (left) and the corresponding generated code (right). (a) shows scheduling
commands for mapping to a multicore architecture; (b) shows scheduling commands for mapping to GPU; (c) uses commands to map to a
distributed CPU machine.

synchronization operations. This is important because it

relieves the user from guessing or computing the iteration

domain manually, especially when exploring different possible

schedules. For example, consider copying a buffer from global

197

memory to shared memory in a loop nest executing on a

GPU. The size of the area to copy and the iteration domain

of the copy operation itself (which is a simple assignment

in this case) depends on whether the loop is tiled, the tile

size, and whether any other loop transformation has already

been applied. TIRAMISU simplifies this step by automatically

computing the iteration domain and the area of data to copy

from the schedule.

To illustrate more TIRAMISU scheduling commands, let us

take the blur example again from Figure 2 and map it for

execution on a multicore architecture. The necessary scheduling

commands are shown in Figure 3-(a) (left). The tile()

command tiles the computation by. The compute_at()

command computes the tile of bx that needs to be consumed

by by at the loop level j0. This transformation introduces re-

dundant computations (in this case) and is known as overlapped

tiling [29]. The parallelize() command parallelizes the

i0 loop.

Now let us take the same example but map the two

outermost loops of bx and by to GPU. The necessary

scheduling commands are shown in Figure 3-(b) (left). The

tile_gpu() command tiles the computation by then maps

the new loops to GPU block and thread dimensions. The

compute_at() command computes the tile of bx needed

by by at the loop level j0 (this introduces redundant compu-

tations). cache_shared_at() instructs TIRAMISU to store

the results of the bx computation in shared memory. Copying

from global to shared memory will be done at the loop level j0

of by. The subsequent store_in() command specifies the

access functions for bx and by. In this case, it indicates that

these computations are stored in a SOA (struct-of-array) data

layout (to allow for coalesced accesses). The final commands

create data copy operations (host-to-device and device-to-host)

and schedule them.

Suppose we want to run the blur example on a

distributed system with a number of multicore CPU

nodes equal to Nodes. Figure 3-(c) (left) shows the

scheduling commands to use in this case. We assume

that the array in[][][] is initially distributed across

nodes such that node n has the chunk of data represented by

in[n*((N-2)/Nodes)..(n+1)*((N-2)/Nodes),*,*].

In other words, this corresponds to row n*(N-2)/Nodes

through row (n+1)*((N-2)/Nodes). This chunk is stored

in the local array lin[][][].

send() and recv() define communication for the border

regions. Assuming that each node has a chunk of in. The

blur computation for a chunk stored in node n requires the

first two rows of data from the chunk stored in node n+1. These

two rows are referred to as the border region. The send()

will send 2 rows (M × 2× 3 contiguous data elements) from

node is to node is-1 starting from lin(0,0,0), which

corresponds to the first two rows of the chunk on node is. In

response, the recv for node ir will receive 2 rows (M×2×3
contiguous data elements) from node ir+1, which corresponds

to ir receiving the first two rows from node ir+1. The

receive for node ir places these elements starting at the end

of its local chunk by starting at lin(N,0,0). Additionally,

{ASYNC} defines an asynchronous send and {SYNC} defines

a synchronous receive. Finally, we tag the appropriate loops

(the outer loops of bx, by, s, and r), to be distributed (i.e.,

we tag each iteration to run on a different node).

All other scheduling commands in TIRAMISU can be

composed with sends, recvs, and distributed loops, as long

as the composition is semantically correct.

IV. THE TIRAMISU IR

The main goal of TIRAMISU’s multi-layer intermediate

representation is to simplify the implementation of scheduling

commands by applying them in a specific order. This section

illustrates why, and describes the layers of the TIRAMISU IR.

A. Rationale for a Multi-layer IR

In this section we provide examples showing why current

intermediate representations are not adequate for TIRAMISU

and why we need a multi-layer IR.

Most current intermediate representations use memory

to communicate between program statements. This creates

memory-based dependencies in the program, and forces com-

pilers to choose data layout before deciding on optimizations

and mapping to hardware. Optimizing a program for different

hardware architectures usually requires modifying the data

layout and eliminating memory-based dependencies since they

restrict optimizations [32]. Thus, any data layout specified

before scheduling must be undone to allow more freedom for

scheduling, and the code must be adapted to use the data-

layout best-suited for the target hardware. Applying these data-

layout transformations and the elimination of memory-based

dependencies is challenging [24], [46], [31], [18], [34], [33],

[30], [39], [14].

Another example that demonstrates the complexity of code

generation is mapping buffers to shared and local memory on

GPU. The amount of data that needs to be copied to shared

memory and when to perform synchronization both depend

on how the code is optimized (for example, whether the code

has two-level tiling or not). The same applies to deciding the

amount of data to send or receive when generating distributed

code. Therefore, buffer mapping to memory hierarchies, com-

munication management, and synchronization should not occur

before scheduling.

TIRAMISU addresses these complexities in code generation

by using a multi-layer IR that fully separates the architecture-

independent algorithm from loop transformations, data layout

and communication. The first layer representation describes

the pure algorithm using producer-consumer relationships

without memory locations. The second layer specifies the order

of computation, along with which processor computes each

value; this layer is suitable for performing a vast number of

optimizations without dealing with concrete memory layouts.

The third layer specifies where to store intermediate data before

they are consumed. The fourth layer adds all the necessary

communication and synchronization operations.

198

The separation of layers defines a specific order for applying

optimizations and ensures that compiler passes in a given layer

need not to worry about modifying or undoing a decision

made in an earlier layer. For example, the phase that specifies

the order of computations and where they occur can safely

assume that no data-layout transformations are required. This

simple assumption allows TIRAMISU to avoid the need to

rely on a large body of research that focuses on data-layout

transformations to allow scheduling [24], [46], [31], [18], [34],

[33], [30], [39], [14].

B. Background

In this section, we provide an overview of two main concepts

used in the polyhedral model: integer sets and maps. These two

concepts will be used in later sections to define the different

IR layers.

Integer sets represent iteration domains while maps are

used to represent memory accesses and to transform iteration

domains and memory accesses (apply loop nest and memory

access transformations). More details and formal definitions

for these concepts are provided in [48], [2], [37].

An integer set is a set of integer tuples described using affine

constraints. An example of a set of integer tuples is

{(1, 1); (2, 1); (3, 1); (1, 2); (2, 2); (3, 2)}

Instead of listing all the tuples as we do in the previous set, we

can describe the set using affine constraints over loop iterators

and symbolic constants as follows:

{S(i, j) : 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 2}

where i and j are the dimensions of the tuples in the set.

A map is a relation between two integer sets. For example

{S1(i, j) → S2(i+ 2, j + 2) : 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 2}

is a map between tuples in the set S1 and tuples in the set S2

(e.g. the tuple S1(i, j) maps to the tuple S2(i+ 2, j + 2)).

All sets and maps in TIRAMISU are implemented using the

Integer Set Library (ISL) [48]. We also use the ISL library

notation for sets and maps throughout the paper.

C. The Multi-Layer IR

A typical workflow for using TIRAMISU is illustrated in

Figure 4. The user writes the pure algorithm and provides

a set of scheduling commands. The first layer of the IR is

then transformed into lower layers, and finally TIRAMISU

generates LLVM or other appropriate low-level IR. TIRAMISU

uses integer sets to represent each of the four IR layers and

uses maps to represent transformations on the iteration domain

and data layout. The remainder of this section describes the

four layers of the TIRAMISU IR.

1) Layer I (Abstract Algorithm): Layer I of TIRAMISU

specifies the algorithm without specifying when and where

computations occur, how data should be stored in memory, or

communication. Values are communicated via explicit producer-

consumer relationships.

For example, the Layer I representation of the code in

Figure 2 for the computation by is as follows:

{by(i, j, c) : 0 ≤ i < N − 2 ∧ 0 ≤ j < M − 2 ∧ 0 ≤ c < 3} :

(bx(i, j, c) + bx(i+ 1, j, c) + bx(i+ 2, j, c))/3

Layer I: Abstract Algorithm

Portable performance across a range of platforms

Layer II: Computation Management

Layer III: Data Management

Automatic or
user specified

schedules

Tiramisu

Backends

High 
Level
Code

FPGA
(Xilinx)

Communication (distribution across nodes)

Vectorized
parallel

X86

GPU 
(Nvidia)

Code generation: Abstract Syntax Tree

...

Layer IV: Communication Management

Developer DSL Compiler

Fig. 4: TIRAMISU overview

The first part, {by(i, j, c) : 0 ≤ i < N − 2∧ 0 ≤ j < M − 2∧ 0 ≤

c < 3} , specifies the iteration domain of the computation

by, while the second part is the computed expression. The

iteration domain is the set of tuples by(i, j, c) such that

0 ≤ i < N − 2 ∧ 0 ≤ j < M − 2 ∧ 0 ≤ c < 3 . Computations in

Layer I are not ordered; declaration order does not affect the

order of execution, which is specified in Layer II.

2) Layer II (Computation Management): Layer II of

TIRAMISU specifies the order of execution of computations

and the processor on which they execute. This layer does not

specify how intermediate values are stored in memory; this sim-

plifies optimization passes since these transformations do not

need to perform complicated data-layout transformations. The

transformation of Layer I into Layer II is done automatically

using scheduling commands.

Figure 3-(b) (right) shows the GPU-optimized version of the

code, produced by the scheduling and data-layout commands

on the left side. The corresponding Layer II representation for

the by computation is shown below:

{by(1, i0(gpuB), j0(gpuB), i1(gpuT), j1(gpuT), c) : i0 =

floor(i/32) ∧ j0 = floor(j/32) ∧ i1 = i%32 ∧ j1 = j%32 ∧ 0 ≤ i <

N −2∧0 ≤ j < M −2∧0 ≤ c < 3} : (bx(i0∗32+ i1, j0∗32+ j1, c)+

bx(i0∗32+ i1+1, j0∗32+j1, c)+bx(i0∗32+ i1+2, j0∗32+j1, c))/3

Computations in Layer II are ordered based on their lexico-

graphical order1. The set before the colon in the representation

is an ordered set of computations. The tag gpuB for the

dimension i0 and j0 indicates that each iteration (i0, j0) is

1For example the computation S0(0, 0, 0) is lexicographically before the
computation S0(0, 0, 1) and the computations S0(0, i, 0) are lexicographically
before the computations S0(1, i, 0)

199

mapped to the GPU block (i0, j0). In Layer II, the total

ordering of these tuples determines execution order.

Computations in this layer are ordered and assigned to a

particular processor; the order is dictated by time dimensions

and space dimensions. Time dimensions specify the order of

execution relative to other computations while space dimensions

specify on which processor each computation executes. Space

dimensions are distinguished from time dimensions using

tags, which consist of a processor type. Currently, TIRAMISU

supports the following space tags:

cpu the dimension runs on a CPU in a shared memory system
node the dimension maps to nodes in a distributed system
gpuT the dimension maps to a gpu thread dimension.
gpuB the dimension maps to a gpu block dimension.

Tagging a dimension with a processor type indicates that

the dimension will be distributed over processors of that type;

for example, tagging a dimension with cpu will execute each

iteration of that loop dimension on a separate CPU.

Other tags that transform a dimension include:

vec(s) vectorize the dimension (s is the vector length)
unroll unroll the dimension

Computations mapped to the same processor are ordered by

projecting the computation set onto the time dimensions and

comparing their lexicographical order.

3) Layer III (Data Management): Layer III makes the

data layout concrete by specifying where intermediate values

are stored. Any necessary buffer allocations/deallocations

are also constructed in this level. TIRAMISU generates this

layer automatically from Layer II by applying the scheduling

commands for data mapping.

The data management layer specifies memory locations

for storing computed values. It consists of the Layer II

representation along with allocation/deallocation statements,

and a set of access relations, which map a computation from

Layer II to array elements read or written by that computation.

Scalars are treated as single-element arrays. For each buffer,

an allocation statement is created, specifying the type of the

buffer and its size. Similarly, a deallocation statement is also

added.

Possible data mappings in TIRAMISU include mapping

computations to structures-of-arrays, arrays-of-structures, and

contraction of multidimensional arrays into arrays with fewer

dimensions or into scalars. It is also possible to specify more

complicated accesses such as the storage of computations c(i, j)
into the array elements c(i%2, j%2) or into c(j, i).

In the example of Figure 3-(b) (left), setting the data access

using by.store_in(c,i,j) indicates that the result of the

computation by(i, j, c) is stored in the array element by[c, i, j]

. This command generates the following map in Layer III:

{by(1, i0(gpuB), j0(gpuB), i1(gpuT), j1(gpuT), c) → by[c, i0 ∗ 32 +

i1, j0∗32+j1] : i0 = floor(i/32)∧j0 = floor(j/32)∧i1 = i%32∧j1 =

j%32 ∧ 0 ≤ i < N − 2 ∧ 0 ≤ j < M − 2 ∧ 0 ≤ c < 3}

Data mapping in TIRAMISU is an affine relation that maps

each computation to a buffer element. TIRAMISU allows any

data-layout mapping expressible as an affine relation.

4) Layer IV (Communication Management): Layer IV adds

synchronization and communication operations to the represen-

tation, mapping them to the time-space domain, and concretizes

when statements for buffer allocation/deallocation occur. This

layer is generated automatically from Layer III by applying user-

specified commands. Any allocation or deallocation operation

added in Layer III is also mapped to the time-space domain

in this layer.

V. COMPILER IMPLEMENTATION

Since the main contribution of this paper is not in introducing

new techniques for code generation, we only provide a high

level overview of how TIRAMISU generates the IR layers and

target code. Throughout the section, we refer the reader to the

appropriate literature for more details.

In the rest of this section we describe how scheduling

commands transform Layers I, II, III and IV. We also describe

how target code is generated from Layer IV.

Transforming Layer I into Layer II: Transforming Layer

I into Layer II is done using two types of scheduling

commands: (1) commands for loop nest transformations (such

as tile(), split(), shift(), interchange()); and

(2) commands for mapping loop levels to hardware (including

parallelize(), vectorize(), gpu()).

The first type of scheduling command applies a map that

transforms the iteration domain. For example, when a tiling

command is applied on the by computation in Figure 2, it gets

translated into the following map:

{by(i, j, c) → by(i0, j0, i1, j1, c) : i0 = floor(i/32) ∧ i1 = i%32∧

j0 = floor(j/32) ∧ j1 = j%32 ∧ 0 ≤ i < N ∧ 0 ≤ j < N}

This map is then applied on the Layer I representation, pro-

ducing the Layer II representation. Composing transformations

is done by composing different maps, since the composition

of two affine maps is an affine map.

The second type of command adds space tags to dimensions

to indicate which loop levels to parallelize, vectorize, map to

GPU blocks, and so on.

Transforming Layer II into Layer III: This is done

by augmenting Layer II with access relations. By default,

TIRAMISU uses identity access relations (i.e., access relations

that store a computation C(i,j) into a buffer C[i,j]).

If the store_in() command is used, the access relation

is deduced from that command instead. Buffer allocations

are also added while transforming Layer II into Layer III.

The scheduling command b.allocate_at(C, i) creates

a new statement that allocates the buffer b in the same loop

nest of the computation C but at loop level i.

Transforming Layer III into Layer IV: Scheduling com-

mands for data communication (send and receive), synchro-

nization, and for copying data between global, shared and

local memory are all translated into statements. For example,

the send() and receive() commands are translated into

200

function calls that will be translated into MPI calls during code

generation.

A. Code Generation

Generating code from the set of computations in Layer IV

amounts to generating nested loops that visit each computation

in the set, once and only once, while following the lexico-

graphical ordering between the computations [6], [28], [39].

TIRAMISU relies on an implementation of the Cloog [6] code

generation algorithm provided by the ISL library [48]. The

TIRAMISU code generator takes Layer IV IR and generates

an abstract syntax tree (AST). The AST is then traversed to

generate lower level code for specific hardware architectures

(depending on the target backend).

The multicore CPU code generator generates LLVM IR from

the AST. In order to generate LLVM IR, we use Halide as

a library: we first generate the Halide IR then we lower the

Halide IR to LLVM IR using Halide. We do not use Halide

to perform any high level code optimization. All the code

optimizations are performed by TIRAMISU before generating

the Halide IR. The Halide compiler then lowers the Halide IR

loops into LLVM IR.

The GPU code generator generates LLVM IR for the host

code and CUDA for the kernel code. Data copy commands

and information about where to store buffers (shared, constant,

or global memory) are all provided in Layer IV. TIRAMISU

translates these into the equivalent CUDA data copy calls

and buffer allocations in the generated code. Computation

dimensions tagged with GPU thread or GPU block tags are

translated into the appropriate GPU thread and block IDs in

the lowered code. The TIRAMISU code generator can generate

coalesced array accesses and can use shared and constant

memories. It can also avoid thread divergence by separating

full tiles (loop nests with a size that is multiple of the tile size)

from partial tiles (the remaining part of a loop).

The code generator for distributed memory systems utilizes

MPI. During code generation, all the function calls for data

copying are translated to the equivalent MPI function calls.

The generated code is postprocessed and each distributed loop

is converted into a conditional based on the MPI rank of the

executing process. For example:

for(q in 1..N-1) {...} // distribute on q

becomes:

q = get_rank(); if (q≥1 and q<N-1) {...}

B. Support for Non-Affine Iteration Spaces

TIRAMISU represents non-affine array accesses, non-affine

loop bounds, and non-affine conditionals in a way similar to

Benabderrahmane et al. [7]. For example, a conditional is

transformed into a predicate and attached to the computation.

The list of accesses of the computation is the union of

the accesses of the computation in the two branches of

the conditional; this is an over-approximation. During code

generation, a preprocessing step inserts the conditional back

into the generated code. The efficiency of these techniques

Tiramisu Reference

N
o

rm
a
li
z
e
d

 T
im

e

1

2

3

4

5

6

C
o
n
v

V
G

G

S
g
e
m

m

H
P

C
G

B
a
ry

o
n

Fig. 5: Normalized execution times for deep learning, linear and tensor
algebra benchmarks.

was demonstrated by Benabderrahmane et al. [7] and was

confirmed in the PENCIL compiler [4]. Our experiences in

general, as well as the experiments in this paper, show that

these approximations do not hamper performance.

VI. EVALUATION

We evaluate TIRAMISU on two sets of benchmarks. The first

is a set of deep learning and linear algebra benchmarks. The

second is a set of image processing benchmarks.

We performed the evaluation on a cluster of 16 nodes. Each

node is a dual-socket machine with two 24-core Intel Xeon E5-

2680v3 CPUs, 128 GB RAM, Ubuntu 14.04, and an Infiniband

interconnect. We use the MVAPICH2 2.0 [26] implementation

of MPI for the distributed tests. The multicore experiments

(CPU) are performed on one of these nodes. GPU experiments

are performed on an NVIDIA Tesla K40 with 12 GB of RAM.

Each experiment is repeated 30× and the median time is

reported.

A. Deep Learning and Linear Algebra Benchmarks

We evaluated TIRAMISU by implementing a set of deep

learning and linear algebra benchmarks, including Conv (a

direct implementation of a neural network convolution layer),

VGG (a block of a VGG neural network), and sgemm (matrix

multiplication used to implement convolutions), HPCG (a

benchmark for multigrid preconditioned conjugate gradient,

CG)2, and Baryon (a dense tensor contraction code for

constructing Baryon Building Blocks [17]). For all of these

benchmarks, we compare the TIRAMISU implementation with

Intel MKL, except for HPCG and Baryon, where we compare

TIRAMISU with reference implementations. Figure 5 shows a

comparison between the performance of CPU code generated

by Tiramisu and reference code. For sgemm and HPCG we

use matrices of size 1060 × 1060 and vectors of size 1060

while for Conv and VGG we use 512× 512 as the data input

size, 16 as the number of input/output features and a batch

size of 32. For Baryon, we use the same tensor sizes as in

the reference code.

2http://www.hpcg-benchmark.org/

201

For sgemm, TIRAMISU matches the performance of Intel

MKL. sgemm is interesting in particular because the Intel

MKL implementation of this kernel is well-known for its hand-

optimized performance. We used a large set of optimizations

to match Intel MKL. These optimizations include two-level

blocking of the three-dimensional sgemm loop, vectorization,

unrolling, array packing, register blocking, and separation of

full and partial tiles (which is crucial to enable vectorization,

unrolling, and reducing control overhead). We also used auto-

tuning to find the best tile size and unrolling factor for the

machine on which we run our experiments.

For the Conv kernel, TIRAMISU outperforms the Intel MKL

implementation because the TIRAMISU-generated code uses a

fixed size for the convolution filter. We generate specialized

versions for common convolution filter sizes (3 × 3, 5 × 5,

7× 7, 9× 9 and 11× 11). This allows the TIRAMISU compiler

to apply optimizations that Intel MKL does not perform;

for example this allows TIRAMISU to unroll the innermost

(convolution filter) loops since their size is known at compile

time. In VGG, TIRAMISU fuses the two convolution loops of

the VGG block, which improves data locality. In addition, we

generate code with fixed sizes for convolution filters (as we

did in Conv). This provides 2.3× speedup over Intel MKL.

The TIRAMISU speedup over the Baryon reference code is

achieved through vectorization, but this vectorization is not

trivial since it requires the application of array expansion and

then the use of scatter/gather operations, which are both not

implemented in the reference Baryon code.

B. Image Processing Benchmarks

We used the following image processing benchmarks in

our evaluation: edgeDetector, a ring blur followed by

Roberts edge detection [42]; cvtColor, which converts an

RGB image to grayscale; conv2D, a simple 2D convolution;

warpAffine, which does affine warping on an image;

gaussian, which performs a gaussian blur; nb, a synthetic

pipeline composed of 4 stages that computes a negative and

a brightened image from the same input image; and ticket

#2373, a code snippet from a bug filed against Halide. This

code simply has a loop that assigns a value to an array

but the iteration space is not rectangular (it tests if x >=

r where x and r are loop iterators). The inferred bounds

in this code are over-approximated, causing the generated

code to fail due to an assertion during execution. Four of

these benchmarks have non-affine array accesses and non-

affine conditionals for clamping (to handle boundary cases):

edgeDetector, conv2D, warpAffine and gaussian.

We used a 2112× 3520 RGB input image for the experiments.

We compare TIRAMISU with two other compilers:

Halide [40], an industrial-quality DSL for image processing that

has a scheduling language, and PENCIL [3], a state-of-the-art

fully automatic polyhedral compiler.

Figure 6 compares the normalized execution time of code

generated by TIRAMISU to other state-of-the-art frameworks on

three architectures: single-node multicore, GPU and distributed

(16 nodes). For the single-node multicore and GPU we

compare TIRAMISU to Halide and PENCIL. For the distributed

architecture, we compare to distributed Halide [16].

Single-node multicore: In four of the benchmarks, the

performance of the code generated by TIRAMISU matches

the performance of Halide. We use the same schedule for

both implementations; these schedules were hand-written by

Halide experts. The results for edgeDetector, conv2D,

warpAffine and gaussian, which have non-affine array

accesses and conditionals, show that TIRAMISU handles such

access patterns efficiently.

Two of the other benchmarks, edgeDetector and

ticket #2373, cannot be implemented in Halide. The

following code snippet shows edgeDetector:

/* Ring Blur Filter */
R(i,j) =(Img(i-1,j-1) + Img(i-1,j) + Img(i-1,j+1)+

Img(i,j-1) + Img(i,j+1) +
Img(i+1,j-1) + Img(i+1,j) + Img(i+1,j+1))/8

/* Roberts Edge Detection Filter */
Img(i,j) = abs(R(i,j) - R(i+1,j-1)) +

abs(R(i+1,j)- R(i,j-1))

edgeDetector creates a cyclic dependence graph with a

cycle length ≥ 1 (R is written in the first statement and read

in the second while Img is written in the second and read

in the first), but Halide can only express programs with an

acyclic dependence graph, with some exceptions; this restriction

is imposed by the Halide language and compiler to avoid

the need to prove the legality of some optimizations (since

proving the legality of certain optimizations is difficult in the

Halide interval-based representation). TIRAMISU does not have

this restriction since it checks transformation legality using

dependence analysis [19].

In ticket #2373, which exhibits a triangular iteration

domain, Halide’s bounds inference over-approximates the

computed bounds, which leads the generated code to fail in

execution. This over-approximation in Halide is due to the

use of intervals to represent iteration domains, which prevents

Halide from performing precise bounds inference for non-

rectangular iteration spaces. TIRAMISU can handle this case

naturally since it relies on the polyhedral model where sets can

include any affine constraint in addition to loop bounds. These

examples show that the model exposed by TIRAMISU naturally

supports more complicated code patterns than an advanced,

mature DSL compiler.

For nb, the code generated from TIRAMISU achieves 3.77×
speedup over the Halide-generated code. This is primarily due

to loop fusion. In this code, TIRAMISU enhances data locality

by fusing loops into one loop; this is not possible in Halide,

which cannot fuse loops if they update the same buffer. Halide

makes this conservative assumption because otherwise it cannot

prove the fusion is legal. This is not the case for TIRAMISU,

which uses dependence analysis to prove correctness.

The slowdown of the PENCIL compiler in gaussian is due

to a suboptimal decision made by PENCIL. The gaussian

kernel is composed of two successive loop nests (each of them

contains three loop levels). PENCIL decides to interchange

the two innermost loop levels in order to enable the fusion

of the two successive loop nests. This decision minimizes

202

Architectures Frameworks Benchmarks

edge

Detector
cvtColor Conv2D

warp

Affine
gaussian nb

ticket

#2373

Single-node

multicore

Tiramisu 1 1 1 1 1 1 1

Halide - 1 1 1 1 3.77 -

PENCIL 2.43 2.39 11.82 10.2 5.82 1 1

GPU

Tiramisu 1.05 1 1 1 1 1 1

Halide - 1 1.3 1 1.3 1.7 -

PENCIL 1 1 1.33 1 1.2 1.02 1

Distributed

(16 Nodes)

Tiramisu 1 1 1 1 1 1 1

Dist-Halide - 1.31 3.25 2.54 1.57 1.45 -

Fig. 6: A heatmap comparing the normalized execution times of code generated by TIRAMISU with other frameworks (lower is better).
Comparison is performed on three architectures: single-node multicore, GPU, distributed (16 nodes). ”-” indicates unsupported benchmarks.

the distance between producer and consumer statements (first

and second loop nests), but it also reduces spatial locality

because it leads to non-contiguous memory accesses. The right

decision in this case is a trade-off. Such a trade-off is not

captured by the Pluto automatic scheduling algorithm used

within PENCIL. For the other kernels, both TIRAMISU and

Halide apply vectorization and unrolling on the innermost loops,

while PENCIL does not since the multicore code generator

of PENCIL does not implement these two optimizations.

For warpAffine, both TIRAMISU and Halide have a high

speedup over PENCIL because the unique loop nest in this

benchmark has 25 statements, and vectorizing the innermost

loop transforms all of these statements to their vector equivalent

while unrolling increases register reuse and instruction level

parallelism on the 24 cores of the test machine.

GPU: For the GPU backend, the reported times are the

total execution times (data copy and kernel execution). Code

generated by TIRAMISU for conv2D and gaussian is faster

than that of Halide because code generated by TIRAMISU

uses constant memory to store the weights array, while the

current version of Halide does not use constant memory for

its PTX backend. The only difference between the schedule

of TIRAMISU and Halide in these benchmarks is the use of

tag_gpu_constant() in TIRAMISU. Data copy times, for

all the filters, are the same for TIRAMISU and Halide. For nb,

the code generated by TIRAMISU achieves 1.7× speedup over

that generated by Halide because TIRAMISU is able to apply

loop fusion, which Halide cannot apply.

Compared to PENCIL, the speedup in conv2D and

gaussian is due to the fact that PENCIL generates unnec-

essarily complicated control flow within the CUDA kernel,

which leads to thread divergence.

Distributed: We assume the data are already dis-

tributed across the nodes by rows. Of these benchmarks,

nb, cvtColor and ticket #2373 do not require any

communication; the other four require communication due

to overlapping boundary regions in the distributed data.

Figure 6 compares the execution time of distributed

edgeDetect

Conv2D

cvtColor

gaussian

nb

warpAffine

#2373

S
p

e
e

d
u

p
 (

O
v

e
r

2
 N

o
d

e
s

)

1

2

3

4

5

6

7

8

9

10

number of nodes

2 4 8 16

Fig. 7: Speedup of code generated by distributed TIRAMISU for 2, 4,
8, and 16 nodes. The baseline is the execution time on 2 nodes.

TIRAMISU and distributed Halide. TIRAMISU is faster than

distributed Halide in each case. It achieves up to 3.25× speedup

for conv2D. For the kernels involving communication, code

generated by distributed Halide has two problems compared to

TIRAMISU: distributed Halide overestimates the amount of data

it needs to send, and unnecessarily packs together contiguous

data into a separate buffer before sending.

Distributed Halide overestimates the amount of data it needs

to send because the benchmarks have array accesses that cannot

be analyzed statically (the array accesses are clamped3 to handle

boundary cases), therefore distributed Halide cannot compute

the exact amount of data to send. To avoid this problem,

TIRAMISU uses explicit communication using the send()

and receive() scheduling commands. The use of these two

commands is the only difference between the TIRAMISU and

distributed Halide. These commands allow the user to specify

exactly the amount of data to send and also allow the compiler

to avoid unnecessary packing.

Figure 7 shows the speedup of the kernels with distributed

TIRAMISU when running on 2, 4, 8, and 16 nodes. This graph

3clamp(i, 0, N) returns 0 if i < 0, N if i > N , i otherwise.

203

shows that distributed code generated from TIRAMISU scales

well as the number of nodes increases (strong scaling).

VII. CONCLUSION

This paper introduces TIRAMISU, a polyhedral compiler

framework that features a scheduling language with commands

for targeting multicore CPUs, GPUs, and distributed systems.

A four-layer intermediate representation that separates the

algorithm, when and where computations occur, the data layout

and the communication is used to implement the compiler. We

evaluate TIRAMISU by targeting a variety of backends and

demonstrate that it generates code matching or outperforming

state-of-the-art frameworks and hand-tuned code.

ACKNOWLEDGEMENTS

This work was supported by the ADA Research Center, a

JUMP Center co-sponsored by SRC and DARPA.

REFERENCES

[1] Saman P. Amarasinghe and Monica S. Lam. Communication optimization
and code generation for distributed memory machines. SIGPLAN Not.,
28(6):126–138, June 1993.

[2] Riyadh Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse,
C. Reddy, S. Verdoolaege, J. Absar, S. v. Haastregt, A. Kravets,
A. Lokhmotov, A. Betts, J. Ketema, A. F. Donaldson, R. David, and
E. Hajiyev. Pencil: a platform-neutral compute intermediate language
for accelerator programming. In under review, 2015.

[3] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser,
Michael Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alas-
tair F. Donaldson, Jeroen Ketema, Javed Absar, Sven van Haastregt,
Alexey Kravets, Anton Lokhmotov, Robert David, and Elnar Hajiyev.
Pencil: A platform-neutral compute intermediate language for accelerator
programming. In Proceedings of the 2015 International Conference

on Parallel Architecture and Compilation (PACT), PACT ’15, pages
138–149, Washington, DC, USA, 2015. IEEE Computer Society.

[4] Riyadh Baghdadi, Albert Cohen, Tobias Grosser, Sven Verdoolaege,
Anton Lokhmotov, Javed Absar, Sven van Haastregt, Alexey Kravets,
and Alastair F. Donaldson. PENCIL language specification. Research
Rep. RR-8706, INRIA, 2015.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. Tiramisu: A polyhedral compiler
for expressing fast and portable code. ArXiv e-prints, 2019.

[6] Cédric Bastoul. Code generation in the polyhedral model is easier than
you think. In PACT–13 IEEE International Conference on Parallel

Architecture and Compilation Techniques, pages 7–16, Juan-les-Pins,
France, September 2004. Classement CORE : A, nombre de papiers
acceptés : 23, soumis : 122, student award.

[7] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen,
and Cédric Bastoul. The polyhedral model is more widely applicable
than you think. In Proceedings of the 19th Joint European Conference on

Theory and Practice of Software, International Conference on Compiler

Construction, CC’10/ETAPS’10. Springer-Verlag, 2010.

[8] U. Bondhugula. Compiling affine loop nests for distributed-memory
parallel architectures. In 2013 SC - International Conference for High

Performance Computing, Networking, Storage and Analysis (SC), pages
1–12, Nov 2013.

[9] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.
A practical automatic polyhedral parallelizer and locality optimizer. In
PLDI, pages 101–113, 2008.

[10] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee,
Anand R. Atreya, and Kunle Olukotun. A domain-specific approach to
heterogeneous parallelism. In PPoPP, pages 35–46, 2011.

[11] Chun Chen, Jacqueline Chame, and Mary Hall. Chill: A framework for
composing high-level loop transformations. Technical Report 08-897, U.
of Southern California, 2008.

[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. TVM: end-to-end optimization stack for deep learning.
CoRR, abs/1802.04799, 2018.

[13] Alexander Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana
Susnea. Nova: A functional language for data parallelism. In Proceedings

of ACM SIGPLAN International Workshop on Libraries, Languages, and

Compilers for Array Programming, ARRAY’14, pages 8:8–8:13, New
York, NY, USA, 2014. ACM.

[14] Alain Darte and Guillaume Huard. New complexity results on array
contraction and related problems. J. VLSI Signal Process. Syst., 40(1):35–
55, May 2005.

[15] Emanuele Del Sozzo, Riyadh Baghdadi, Saman Amarasinghe, and
Marco Domenico Santambrogio. A unified backend for targeting fpgas
from dsls. In 2018 IEEE 29th International Conference on Application-

specific Systems, Architectures and Processors (ASAP), pages 1–8, July
2018.

[16] Tyler Denniston, Shoaib Kamil, and Saman Amarasinghe. Distributed
halide. In Proceedings of the 21st ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, page 5. ACM, 2016.

[17] William Detmold and Kostas Orginos. Nuclear correlation functions in
lattice qcd. Physical Review D, 87(11):114512, 2013.

[18] P. Feautrier. Array expansion. In Proceedings of the 2nd international

conference on Supercomputing, pages 429–441, St. Malo, France, 1988.
ACM.

[19] Paul Feautrier. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming, 20(1):23–53, February
1991.

[20] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David
Parello, Marc Sigler, and Olivier Temam. Semi-automatic composition
of loop transformations for deep parallelism and memory hierarchies.
International Journal of Parallel Programming, 34(3):261–317, 2006.

[21] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-
performance matrix multiplication. ACM Trans. Math. Softw., 34(3):12:1–
12:25, May 2008.

[22] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and
Sven Verdoolaege. Hybrid hexagonal/classical tiling for gpus. In
Proceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’14, pages 66:66–66:75, New York,
NY, USA, 2014. ACM.

[23] Tobias Grosser, Armin Groslinger, and Christian Lengauer. Polly
- performing polyhedral optimizations on a low-level intermediate
representation. Parallel Processing Letters, 22(4), 2012.

[24] M. Gupta. On privatization of variables for data-parallel execution. In
Parallel Processing Symposium, 1997. Proceedings., 11th International,
pages 533–541. IEEE, 1997.

[25] Mary Hall, Jacqueline Chame, Chun Chen, Jaewook Shin, Gabe Rudy, and
Malik Murtaza Khan. Loop Transformation Recipes for Code Generation

and Auto-Tuning, pages 50–64. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[26] Wei Huang, Gopalakrishnan Santhanaraman, H-W Jin, Qi Gao, and
Dhabaleswar K Panda. Design of high performance mvapich2: Mpi2
over infiniband. In Cluster Computing and the Grid, 2006. CCGRID 06.

Sixth IEEE International Symposium on, volume 1, pages 43–48. IEEE,
2006.

[27] Intel, Inc. Intel math kernel library. https://software.intel.com/en-us/mkl,
April 2018.

[28] F. Irigoin and R. Triolet. Supernode partitioning. In Symp. on Principles

of Programming Languages (POPL’88), pages 319–328, San Diego, CA,
January 1988.

[29] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ra-
manujam, Atanas Rountev, and P Sadayappan. Effective automatic
parallelization of stencil computations. SIGPLAN Not., 42(6):235–244,
June 2007.

[30] Vincent Lefebvre and Paul Feautrier. Automatic storage management
for parallel programs. Parallel Computing, 24:649–671, 1998.

[31] Zhiyuan Li. Array privatization for parallel execution of loops. In
Proceedings of the 6th international conference on Supercomputing,
pages 313–322, Washington, D. C., United States, 1992. ACM.

[32] D Maydan, S Amarsinghe, and M Lam. Data dependence and data-
flow analysis of arrays. In International Workshop on Languages and

Compilers for Parallel Computing, pages 434–448. Springer, 1992.

[33] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array-data
flow analysis and its use in array privatization. In Proceedings of the

204

20th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages - POPL ’93, pages 2–15, Charleston, South Carolina, United
States, 1993.

[34] Samuel Midkiff. Automatic Parallelization: An Overview of Fundamental

Compiler Techniques. Morgan & Claypool Publishers, February 2012.
[35] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage:

Automatic optimization for image processing pipelines. SIGARCH

Comput. Archit. News, 43(1):429–443, March 2015.
[36] Nvidia. cuBLAS Library User Guide, 2012.
[37] Feautrier Paul and Lengauer Christian. The polyhedron model. In David

Padua, editor, Encyclopedia of Parallel Computing, pages 1581, 1592.
Springer, 2011.

[38] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Co-
hen, J. Ramanujam, P. Sadayappan, and Nicolas Vasilache. Loop
transformations: Convexity, pruning and optimization. In 38th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages

(POPL’11), pages 549–562, Austin, TX, January 2011. ACM Press.
[39] F. Quilleré and S. Rajopadhye. Optimizing memory usage in the

polyhedral model. ACM Trans. on Programming Languages and Systems,
22(5):773–815, September 2000.

[40] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,
Saman Amarasinghe, and Frédo Durand. Decoupling algorithms from
schedules for easy optimization of image processing pipelines. ACM

Trans. Graph., 31(4):32:1–32:12, July 2012.
[41] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,

Frédo Durand, and Saman P. Amarasinghe. Halide: a language and
compiler for optimizing parallelism, locality, and recomputation in image
processing pipelines. In PLDI, pages 519–530, 2013.

[42] Lawrence G. Roberts. Machine perception of three-dimensional solids.
PhD thesis, Massachusetts Institute of Technology. Dept. of Electrical
Engineering, 1963.

[43] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: A
functional data-parallel ir for high-performance gpu code generation. In
Proceedings of the 2017 International Symposium on Code Generation

and Optimization, CGO ’17, pages 74–85, Piscataway, NJ, USA, 2017.
IEEE Press.

[44] William Thies, Frédéric Vivien, Jeffrey Sheldon, and Saman Amarasinghe.

A unified framework for schedule and storage optimization. In Proc. of

the 2001 PLDI Conf., 2001.

[45] Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, Tobias
Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian Pop, Jan Sjodin,
and Ramakrishna Upadrasta. GRAPHITE two years after: First lessons
learned from Real-World polyhedral compilation, January 2010.

[46] Peng Tu and David Padua. Automatic array privatization. In Utpal
Banerjee, David Gelernter, Alex Nicolau, and David Padua, editors,
Languages and Compilers for Parallel Computing, volume 768 of Lecture

Notes in Computer Science, pages 500–521. Springer Berlin / Heidelberg,
1994.

[47] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zach DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR, abs/1802.04730,
2018.

[48] Sven Verdoolaege. isl: An integer set library for the polyhedral model.
In ICMS, volume 6327, pages 299–302, 2010.

[49] Sander Vocke, Henk Corporaal, Roel Jordans, Rosilde Corvino, and Rick
Nas. Extending halide to improve software development for imaging
dsps. ACM Trans. Archit. Code Optim., 14(3):21:1–21:25, August 2017.

[50] Michael E Wolf and Monica S Lam. A loop transformation theory and
an algorithm to maximize parallelism. IEEE transactions on parallel

and distributed systems, 2(4):452–471, 1991.

[51] Qing Yi, Keith Seymour, Haihang You, Richard Vuduc, and Dan
Quinlan. POET: Parameterized Optimizations for Empirical Tuning.
In Proc. Wkshp. Performance Optimization of High-level Languages

and Libraries (POHLL), at IEEE Int’l. Par. Distrib. Processing Symp.

(IPDPS), pages 1–8, Long Beach, CA, USA, March 2007.

[52] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and
Sanjay Rajopadhye. Alphaz: A system for design space exploration in
the polyhedral model. In International Workshop on Languages and

Compilers for Parallel Computing, pages 17–31. Springer, 2012.

[53] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian
Shun, and Saman Amarasinghe. Graphit: A high-performance graph dsl.

Proc. ACM Program. Lang., 2(OOPSLA):121:1–121:30, October 2018.

205

