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Abstract
For a spectrally positive and strictly stable process with index in (1, 2), a series repre-
sentation is obtained for the joint distribution of the “first passage triple” that consists
of the time of first passage and the undershoot and the overshoot at first passage. The
result leads to several corollaries, including (1) the joint law of the first passage triple
and the pre-passage running supremum, and (2) at a fixed time point, the joint law of
the process’ value, running supremum, and the time of the running supremum. The
representation can be decomposed as a sum of strictly positive functions that allow
exact sampling of the first passage triple.

Keywords First passage · Lévy process · Stable · Spectrally positive ·
Mittag–Leffler · Running supremum · Exact sampling
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1 Introduction

Let X = (Xt )t≥0 be a Lévy process and �(dx) its Lévy measure. Denote by

�t = Xt − Xt−, Xt = sup
0≤s≤t

Xs,

the jump and running supremum of X at t , respectively. By convention, X0− = X0 =
0. For c ≥ 0, the first passage time of X at level c is defined as

Tc = inf{t > 0 : Xt > c},
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while for x ∈ R, the first hitting time of X at x is defined as

τx = inf{t > 0 : Xt = x},

where by convention inf ∅ = ∞.
By definition, a Lévy process is spectrally positive if it only has positive jumps, i.e.,

its Lévy measure is concentrated on (0,∞). It is well known that if X is spectrally
positive and is not a subordinator, then (τ−x )x≥0 is a subordinator, possibly killed
at an exponential time and for t , x > 0, tP{τ−x ∈ dt} dx = xP{Xt ∈ −dx} dt ,
which is known as Kendall’s identity ([2], Chapter VII). If for each t > 0, Xt has a
probability density function (p.d.f.) gt (x), then for each x > 0, τ−x has a p.d.f. f−x (t)
and Kendall’s identity can be written as

t f−x (t) = xgt (−x), x > 0, t > 0. (1)

In this paper, a p.d.f. is always defined with respect to (w.r.t.) the Lebesgue measure.
Let X be a spectrally positive and strictly stable process with index α ∈ (1, 2). The

first passage of X at a fixed level c > 0 is of particular interest and has already drawn
a lot of attention. The joint distribution of XTc− and �Tc is known [7] and so is the
distribution of Tc [1,19,20]. Related to these random variables, the distribution of τx

is classical when x < 0 [2] and is also known when x > 0 [16,19]. On the other hand,
the three random variables Tc, XTc−, and �Tc completely describe what happens to
X at the moment of first passage. Although some general results are available [7],
explicit representations of the joint distribution of the triple have been unknown.

While there may be many different representations, those that allow exact sampling
are practically more useful and perhaps conceptually more satisfactory. Ideally, a
representation should also allow efficient implementation of the sampling. Although
such representations are available for the marginal distributions of Xt , Xt , Tc, and τx

[19,20,22], they seem much harder to get for the joint distribution of Tc, XTc−, and
�Tc , so we will content ourselves with a representation that allows exact sampling of
the triple regardless of efficiency.

The following function will play an important role. For c > 0, x ∈ (−∞, c), and
t > 0, define

hc(x, t) = P{Xt ∈ dx, Xt ≤ c}
dx

. (2)

Since X has the scaling property, i.e., (Xλt )t≥0 ∼ (λ1/α Xt )t≥0 for all λ > 0, one can
assume without loss of generality that

E(e−q Xt ) = exp(tqα), t > 0, q ≥ 0. (3)

Because also by scaling

(Tc, XTc−,�Tc ) ∼ (cαT1, cXT1−, c�T1), (4)

123



Journal of Theoretical Probability

it suffices to consider c = 1.

Theorem 1 Suppose X is a stable process with index α ∈ (1, 2) satisfying (3). Then,
the triple (T1, XT1−,�T1) has a p.d.f. that at each (t, x, z) ∈ (0,∞) × R × [0,∞)

takes value

�1(t, x, z) = z−α−1

�(−α)
1{x < 1 < x + z} h1(x, t),

where for x ∈ (−∞, 1),

h1(x, t) = 1

π

∞∑

k,n=1

(−1)k+n �(k/α + n)

�(αn)k! sin(πk/α)(1 − x)k t−k/α−n . (5)

The series in (5) converges absolutely for given x and t > 0.

Given c > 0, by the scaling relation (4), (Tc, XTc−,�Tc ) has joint p.d.f.

�c(t, x, z) = c−α−2�1(c
−αt, c−1x, c−1z).

Furthermore,

hc(x, t) = c−1h1(c
−1x, c−αt). (6)

The core of Theorem 1 is (5), and a key step in its proof is to show

h1(x, t) =
∞∑

n=0

f (n)
x−1(t)

�(αn + α)
, (7)

which can be formally written as

h1(x, ·) = Eα,α(D) fx−1,

where D is the differential operator and Eα,α(s) is a Mittag–Leffler function ([8,15];
see Sect. 3.1). Many detailed asymptotics of f (n)

x−1(t) can be found in [10]. It will be
seen that conditionally on XT1− = x , �T1 and T1 are independent, with the latter
having p.d.f. h1(x, ·)/v1(x), where

v1(x) =
∫ ∞

0
h1(x, t) dt = 1 − (x ∨ 0)α−1

�(α)
. (8)

One may have noticed that when x ∈ (0, 1), v1(x) is strictly smaller than 1/�(α),
whereas the sum of the term-wise integrals of the series (7) is 1/�(α). The lack
of interchangeability of summation and integration reflects the high oscillations of
f (n)
x−1(t) as functions of t , which are tricky to tackle directly. In this paper, (7) will
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be first established for x < a, where a ≤ 0 is a certain constant, and then, it will be
established for all x < 1 by analytic extension.

Several results can be derived from Theorem 1. First, an integral representation of
h1(x, t).

Corollary 2 Under the same condition as above,

h1(x, t) = 1

π

∫ ∞

0
e−st−(1−x)s1/α cos(π/α) sin((1 − x)s1/α sin(π/α))Eα,α(−s) ds.

The next result on the support of h1(x, t) will be used later and is of interest in its
own right.

Corollary 3 h1(x, t) > 0 for all x < 1 and t > 0.

In the last two corollaries, hc(x, t) is regarded as a function of t and x with c = 1
being fixed. When t is fixed and c and x are treated as variables, hc(x, t) provides the
joint distribution of Xt and Xt . Specifically, from (5) and scaling, the following result
obtains. Since (Xt , Xt ) ∼ (t1/α X1, t1/α X1), it suffices to consider t = 1.

Corollary 4 X1 and X1 have joint p.d.f.

P{X1 ∈ dx, X1 ∈ dc}
dx dc

= 1{c > (x ∨ 0)} ∂hc(x, 1)

∂c

with

∂hc(x, 1)

∂c
= 1

π

∞∑

k,n=1

�(k/α + n)

�(αn)k! (−1)k+n sin(πk/α)[kc + (αn − 1)(c − x)](c − x)k−1cαn−2.

(9)

Remark For a standard Brownian motion W , it is known that ([12], Corollary 3.2.1.2).

P{W1 ∈ dx, sups≤1 Ws ∈ dc}
dx dc

= 1{c > (x ∨ 0)} 2(2c − x)√
2π

{
− (2c − x)2

2

}
. (10)

It will be shown in the “Appendix” that (10) can be deduced from (9). Note that by
(3), for α = 2, (Xt )t≥0 ∼ (W2t )t≥0.

The next corollary combined with Theorem 1 gives the joint distribution of T1,
XT1−, �T1 , and the pre-passage running supremum X T1−.
Corollary 5 Conditionally on T1 = t and XT1− = x < 1, �T1 and X T1− are indepen-
dent, such that �T1 follows a Pareto distribution with

P{�T1 ∈ dz | T1 = t, XT1− = x} = α(1 − x)αz−α−11{z > 1 − x} dz,

and for each c ∈ [x ∨ 0, 1],

P{X T1− ≤ c | T1 = t, XT1− = x} = hc(x, t)/h1(x, t).
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Remark The foundation of conditional probability and conditional p.d.f. is measure
theory [3]. InCorollary 5, each can be expressed in terms of a joint p.d.f. For example, if
k(z, t, x) is the joint p.d.f. of X T1−, T1, and XT1−, then P{X T1− ≤ c | T1 = t, XT1− =
x} = ∫ c

0 k(z, t, x) dz/
∫ 1
0 k(z, t, x) dz.

By further analysis of hc(x, t), the joint p.d.f. of Xt , the running supremum Xt ,
and the time of the running supremum Gt = sup{s < t : Xs = Xs} can be obtained.
Since by scaling

(Gt , Xt , Xt ) ∼ (tG1, t1/α X1, t1/α X1),

it suffices to consider t = 1. As noted earlier, the distribution of X1 is known [1,19,20].
The distribution of G1 is also known. Indeed, Gt = �ϑt −, where ϑt = inf{s > 0 :
�s > t} and � is the ladder time process of X , which is strictly stable with index
1 − 1/α ([2], Lemma VIII.1). Then, by scaling, G1 ∼ Gt/t = �ϑt −/t and letting
t → 0 yields G1 ∼ Beta(1 − 1/α, 1/α) according to the generalized arcsine law
([2], Theorem III.6). That is, the p.d.f. of G1 at x ∈ (0, 1) is π−1 sin(π/α)x−1/α(1−
x)1/α−1. Also, from the excursion theory ([2], IV.4), conditionally on G1, (Xt )t≤G1
and (Xt+G1

− XG1
)t≤1−G1

are independent. With this background, we have the next

result. By (G1, X1, X1) ∼ (1 − G1, X1 − X1, X1), where Xt = inf0≤s≤t Xs and
Gt = sup{s < t : Xs = Xs}, it also provides the joint p.d.f. of G1, X1, and X1.

Corollary 6 G1, X1, and X1 have joint p.d.f.

P{G1 ∈ dr , X1 ∈ dc, X1 ∈ dx}
dr dc dx

= m(c, r) fx−c(1 − r) (11)

for r ∈ (0, 1) and c > x ∨ 0, where

m(c, r) = sin(π/α)

πc

∞∑

n=1

�(1/α + n)

�(αn)
(−1)1+ncαnr−1/α−n (12)

= sin(π/α)

πc2

∫ ∞

0
s1/α Eα,α(−s)e−sr/cα

ds > 0. (13)

Moreover, conditionally on G1 = r ∈ (0, t), X1 and X1 − X1 are independent, such
that

P{X1 ∈ dc | G1 = r}
dc

= �(1 − 1/α)r1/αm(c, r), c > 0, (14)

and

P{X1 − X1 ∈ dx | G1 = r}
dx

= �(1/α)xg1−r (−x)

(1 − r)1/α
, x > 0.
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Remark (1) For any r > 0,

P{X1 ∈ r1/αdc | G1 = r}
dc

= �(1 − 1/α)r2/αm(r1/αc, r) = �(1 − 1/α)m(c, 1),

and therefore, X1/G
1/α
1 is independent of G1. This is a special case of the result

in [14] that shows the independence for any strictly stable process.
(2) By duality, it is natural to interpret �(1/α)xg1(−x) = �(1/α) f−x (1), x > 0, as

the conditional p.d.f. of X1 at−x given X1 = 0. Likewise, by letting r = 1 in (14)
and reading P{X1 ∈ dc | G1 = 1} as P{X1 ∈ dc | X1 = X1} = P{X1 ∈ dc | X1 =
0}, �(1−1/α)m(c, 1)may be interpreted as the conditional p.d.f. of X1 at c given
X1 = 0; see more comments in Sect. 3.

(3) It is worth mentioning that, for a Lévy process X in general, if under its law 0 is
regular for (0,∞) and for (−∞, 0), then for any t > 0, X is continuous at Gt .
First, Gt ∈ (0, t) a.s. (see [2], p. 157). Second, given ε > 0, any t0 ∈ (0, t) where
X makes a positive jump of size at least ε is a stopping time, so by the regularity
of 0 for (0,∞), there are infinitely many 1 > tn ↓ t0 with Xtn > Xt0 > Xt0−. On
the other hand, any t0 ∈ (0, t) where X makes a negative jump of absolute size
at least ε is a stopping time, so by duality and the regularity of 0 for (−∞, 0),
there are infinitely many 0 < tn ↑ t0 with Xtn > Xt0− > Xt0 . Since ε > 0 is
arbitrary, this implies that Gt cannot be a time where X makes a jump, and so X
is continuous at Gt .

It can be seen that m(c, t) dt dc is the renewal measure of the bivariate ascending
ladder (time and height) process of X , by using the quintuple law for first passage
in [7] or more directly, by using E(e−β X τ ) = κ(q, 0)/κ(q, β), q > 0, β > 0,
where κ(λ, β) is the characteristic exponent of the ladder process, and τ is a random
variable with p.d.f. qe−qx1{x > 0} independent of X ([2], p. 163). First, by (14) and
G1 ∼ Beta(1− 1/α, 1/α), the joint p.d.f. of (G1, X1) can be written down. Then, by
scaling and (13), for each t > 0, (Gt , Xt ) has joint p.d.f.

t−1−1/αm(ct−1/α, r/t)(1 − r/t)1/α−11{0 < r < t}
�(1/α)

= m(c, r)(t − r)1/α−11{0 < r < t}
�(1/α)

.

Then,

E(e−β X τ ) = 1

�(1/α)

∫

c>0,t>r>0
m(c, t)(t − r)1/α−1e−βc dr dc × (qe−qt ) dt

= q1−1/α
∫

c>0,r>0
m(c, r)e−qr−βc dr dc.

On the other hand, κ(q, 0) = q1−1/α ([2], p. 218). Therefore,

κ(q, β) =
(∫

c>0,r>0
m(c, r)e−qr−βc dr dc

)−1

, (15)
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and so m(c, r) is the density of the renewal measure of the ladder process. From (13),

∫ ∞

0
m(c, r)e−qr dr = sin(π/α)

πc2

∫ ∞

0

s1/α Eα,α(−s)

q + s/cα
ds.

The integral representation does not seem to provide an easy path to an explicit formula
for κ(q, β). On the other hand, it can be shown that for q ≥ 0, β ≥ 0,

κ(q, β) =
⎧
⎨

⎩

βα − q

β − q1/α ifβ 
= q1/α,

[2ex]αβα−1 else.
(16)

The formula can be derived from a series expansion of κ(q, β) in [11], which
holds for any non-monotone strictly stable process with index in a dense subset A
of (0, 2) \ Q. In the case of X , provided α ∈ (1, 2) ∩ A, the series can be reduced
to the closed form in (16). Then, by continuity, (16) holds for all α ∈ (1, 2). In the
“Appendix,” we will give an alternative proof of (16) without relying on the continuity
argument.

In the next section, as a preparation, some general results on first passage of a
Lévy process are derived. This section also collects some standard results on stable
processes. In Sect. 3, Theorem 1 and its corollaries are proved. In Sect. 4, we show
that (T1, XT1−,�T1) can be sampled exactly. It will be seen that the main issue is
the sampling of h1(x, ·)/v1(x) for any fixed x < 1, which is the conditional p.d.f.
of T1 given XT1− = x . The key is to show that h1(x, t) can be decomposed as the
sum of positive functions φ1(t), φ2(t), …. Even though these functions do not have a
closed form, given t > 0, each can be evaluated in a finite number of steps, and for
the exact sampling, only a finite number of them have to be evaluated. It is important
to keep in mind that these functions are constructed with the value of h1(x, t) being
intractable. The decomposition then allows the conditional p.d.f. of T1 to be sampled
by the rejection sampling method.

2 Some General Distributional Results

We first consider Lévy processes in general and then specialize to spectrally positive
ones.

2.1 Properties of First Passage by a General Lévy Process

Proposition 7 Let X be a Lévy process and �(dx) its Lévy measure.

(a) (Distribution when X jumps over a level). For every c ≥ 0, t > 0, x ∈ R, w ∈ R,
and y > c,

P{Tc ∈ dt, XTc− ∈ dx, XTc ∈ dy, X Tc− ∈ dw}
= 1{x ∨ 0 ≤ y ≤ c} dt �(dy − x) P{Xt ∈ dx, Xt ∈ dw}. (17)
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(b) For every c ≥ 0, P{XTc− < XTc = c} = 0.

Remark Part b) is known when X is strictly stable with index α > 1 ([2], Proposition
VIII.8).

Proof (a) The proof is standard so we only give a sketch of it (cf. [2], p. 76).
Given a Borel function f (t, x, y, w) ≥ 0, f (Tc, XTc−, XTc , X Tc−)1

{
XTc > c

} =∑
t :�t 
=0 Ht (�t ), where Ht (z) = f (t, Xt−, Xt− + z,

Xt−)1
{
z > c − Xt− ≥ 0, Xt− ≤ c

}
. Then, by the compensation formula ([2],

p. 7),

∫
f (t, x, y, w)1{y > c} P{Tc ∈ dt, XTc− ∈ dx, XTc ∈ dy, X Tc− ∈ dw}

=
∫

E[Ht (z)] dt �(dz).

However, E[Ht (z)] = ∫
f (t, x, x + z, w)1{z > c − x ≥ 0, x ∨ 0 ≤ w ≤ c}

P{Xt ∈ dx, Xt ∈ dw}. Plug the equation into the right-hand side (r.h.s.) of the
display. Since f is arbitrary, by comparing he integrals on both sides, (17) follows.

(b) If 0 is not regular for (0,∞), then by the strong Markov property of X , there
is a random ε > 0, such that Xt ≤ XTc for t ∈ (Tc, Tc + ε), implying XTc >

c. Now suppose 0 is regular for (0,∞). If XTc = c, then Tc ≥ τ := inf{t :
Xt = c, Xs < c ∀s < t}. However, by the regularity of 0 and strong Markov
property, Xtn > Xτ = c for an infinite sequence tn ↓ τ , implying Tc = τ . Then,
1
{

XTc = c > XTc−
} ≤ ∑

t :�t >0 1{Xt = c, Xs < c ∀s < t}. Then, by following
the argument for Proposition III.2(ii) in [2] and noting that X is not compound
Poisson, the claim follows.

��
In the next preliminary result, denote �(x) = �((x,∞)).

Proposition 8 Suppose �(0) > 0 and each Xt has a p.d.f. Fix c > 0 and define

vc(x) =
∫ ∞

0
hc(x, t) dt, (18)

where hc(x, t) is as in (2). Let Dc = {�Tc > 0}, i.e., the event that X has a jump at
the first passage at level c.

(a) vc(x) < ∞ for a.e. x ≤ c (in Lebesgue measure).
(b) Conditionally on Dc, XTc− is concentrated on �c = {x ≤ c : �(c−x)vc(x) > 0}.

Moreover, conditionally on Dc and XTc− = x ∈ �c, (Tc, X Tc−) and �Tc are
independent, such that

P{�Tc ∈ dz | Dc, XTc− = x} = 1{z > c − x} �(dz)

�(c − x)
,

P{Tc ∈ dt | Dc, XTc− = x} = hc(x, t)

vc(x)
,
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and for w ∈ [x ∨ 0, c]

P{X Tc− ≤ w | Tc = t, Dc, XTc− = x} = hw(x, t)

hc(x, t)
.

Proof (a) Fix −∞ < a < b ≤ c. By Fubini theorem,

∫ b

a
vc(x) dx ≤

∫ b

a
dx
∫ ∞

0

P{Xt ∈ dx}
dx

dt =
∫ ∞

0
P{a ≤ Xt ≤ b} dt .

By definition, if X is transient, then the last integral is finite ([2]. p. 32) and so∫ b
a vc < ∞. Since a and b are arbitrary, vc(x) < ∞ for a.e. x < c. If X is not
transient, then it is recurrent, so Xt → ∞ and Xt → −∞ a.s. ([2], p. 167–168).
Given r > 0, let τ be an exponentially distributed random variable with mean 1/r
and independent of X . Then,

∫ b

a
dx
∫ ∞

0
e−r t hc(x, t) dt =

∫ ∞

0
e−r t dt

∫ b

a
P{Xt ∈ dx, Xt ≤ c} = r−1

P{X τ ≤ c, Xτ ∈ [a, b]}
(∗)= r−1

∫
1{0 ≤ s ≤ c, y ≥ 0, a ≤ s − y ≤ b} P{X τ ∈ ds}P{−X τ ∈ dy}

≤ r−1
P{X τ ∈ [0, c]}P{−X τ ∈ [(−b) ∨ 0, c − a]},

where (∗) is due to X τ and Xτ − X τ ∼ X τ being independent ([2], Theorem VI.5
and Proposition VI.3). As in the proof of Theorem VI.20 in [2] or Theorem 3 in
[7], let r ↓ 0. By monotone convergence,

∫ b
a vc ≤ U([0, c]) Û([(−b)∨ 0, c − a]),

where U (resp. Û) is the renewal measure of the ascending (resp. descending)
ladder height process of X . Since both ladder processes are transient, the r.h.s. is
finite, again yielding vc(x) < ∞ for a.e. x .

(b) By Proposition 7(b), for t > 0, x ≤ c, x ∨ 0 ≤ w ≤ c, and z > 0,

P{Tc ∈ dt, XTc− ∈dx, X Tc− ≤ w,�Tc ∈dz}=1{z > c−x} dt hw(x, t) dx �(dz).

Integrating over t and z yields P{XTc− ∈ dx, X Tc− ≤ w, Dc} = �(c −
x)vw(x) dx . In particular, letting w = c gives P{XTc− ∈ dx,�Tc > 0} =
�(c − x)vc(x) dx . This shows that conditionally on Dc, XTc− is concentrated
on �c and, together last display, also shows that for x ∈ �c,

P{Tc ∈ dt, X Tc− ≤ w,�Tc ∈ dz | XTc− ∈ dx,�Tc > 0}
= hw(x, t) dt

hc(x, t)
× hc(x, t)

vc(x)
× 1{z > c − x} �(dz)

�(c − x)
.

Then, the rest of the claim easily follows.
��
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2.2 The Spectrally Positive Case

Let X be a spectrally positive Lévy process that is not a subordinator. Then, single
points are not essentially polar for X , whether the process has bounded variation ([18],
Theorem 43.13) or not ([2], Corollary VII.5). From potential theory ([2], Section II.5),
it follows that X has a bounded q-coexcessive version of resolvent density uq(x) that
satisfies

uq(x) = E[e−qτx ]uq(0) (19)

for q > 0 and x ∈ R, and if for every t > 0, Xt has a p.d.f. gt , then

uq(x) =
∫ ∞

0
e−qt gt (x) dt, (20)

which can be extended to q = 0 when X is transient. It will always be assumed that
gt is the unique version of p.d.f. that satisfies

∫
gs(y)gt (x − y) dy = gs+t (x)

for all x , y ∈ R and s, t > 0. Equation (20) is stated in Remark 41.20 of [18] under
the assumption that gt is bounded and continuous. It is probably known that (20)
holds in general. However, we could not find an explicit proof in the literature, so for
convenience, one is given in the “Appendix.”

To evaluate hc(x, t) defined in (2) for stable processes, the following result will be
used.

Proposition 9 Suppose that each Xt has a p.d.f. gt . Then, given x < c,

hc(x, t) = gt (x) −
∫ t

0
fc(s)gt−s(x − c) ds (21)

= gt (x) −
∫ t

0
fx−c(s)gt−s(c) ds. (22)

Furthermore, if x > 0, then hc(−x, ·) is the convolution of hc(0, ·) and f−x , i.e.,

hc(−x, ·) = hc(0, ·) ∗ f−x . (23)

Proof Since X has no negative jumps and τc > Tc a.s. ([2], Proposition VIII.8(ii)),
for each A ⊂ (−∞, c), 1

{
Xt ∈ A, Xt > c

} = 1{Xt ∈ A, τc < t} a.s. Then, by the
strong Markov property of X , for any bounded continuous function k(x) ≥ 0 with
support in (−∞, c),

E[k(Xt )1
{

Xt > c
}] = E[k(Xt )1{τc < t}] =

∫ t

0
E[k(Xt−s + c)]P{τc ∈ ds}
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=
∫ t

0

[∫
k(x + c)gt−s(x) dx

]
fc(s) ds

=
∫

k(x)

[∫ t

0
fc(s)gt−s(x − c) ds

]
dx .

On the other hand,

∫
k(x)hc(x, t) dx = E[k(Xt )1

{
Xt ≤ c

}] = E[k(Xt )] − E[k(Xt )1
{

Xt > c
}].

The two displays together with E[k(Xt )] = ∫
k(x)gt (x) dx give (21). Equation (22)

is essentially shown on p. 4/10 of [13] (also see [16]). Given x > 0, write
m−x (t) = gt (−x) as a function of t and L[m−x ] its Laplace transform. By (19) and
(20), L[m−x ] = uq(−x) = L[ f−x ]uq(0) = L[ f−x ]L[m0]. Then, m−x = m0 ∗ f−x .
Also, f−x−c = f−c ∗ f−x . Plugging the two equations into (22) yields (23). ��

2.3 Preliminaries on Stable Processes

From now on, let X be a spectrally positive and strictly stable process with index
α ∈ (1, 2) satisfying (3). Then, the Lévy measure of X is

�(dx) = 1{x > 0} x−α−1

�(−α)
dx (24)

([9], p. 570). By scaling and [18], p. 88, gt has power series expansion on R,

gt (x) = t−1/αg1(t
−1/αx) = 1

απ

∞∑

k=1

�(k/α)

(k − 1)! sin(kπ/α)t−k/αxk−1. (25)

By [2], Theorem VII.1, (τ−x )x≥0 is strictly stable with index 1/α, such that

E(e−qτ−x ) = exp(−xq1/α), q ≥ 0. (26)

By scaling and [18], p. 88, or by Kendall’s identity, for x > 0 and t > 0,

f−x (t) = x−α f−1(x−αt) = 1

π

∞∑

k=1

(−1)k−1�(k/α + 1)

k! sin(πk/α)xkt−k/α−1. (27)

From (25), gt (x) as a function of (x, t) can be extended from R × (0,∞) to
C × (C \ (−∞, 0]), such that for each fixed x ∈ C, the extension is an analytic
function of t ∈ C \ (−∞, 0], and for each fixed t ∈ C \ (−∞, 0], it is an analytic
function of x ∈ C. By (27), f−x (t) can be similarly extended from (0,∞) × (0,∞)

to C × (C \ (−∞, 0]). However, the extension is not the same as f−x (t) for (x, t) ∈
(−∞, 0) × (0,∞). Indeed, for x < 0 and t > 0, the extension necessarily has the
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power series expansion (27). On the other hand, for x < 0, the power series of f−x (t)
is quite different ([20], Proposition 3).

Finally, for s ∈ R ([21], Section 5.6),

∫ ∞

0
xs g1(x) dx =

⎧
⎨

⎩

�(s)�(1 − s/α)

�(s(1 − 1/α))�(1 − s(1 − 1/α))
if s ∈ (−1, α)

∞ else
(28)

and

∫ ∞

0
t s f−1(t) dt =

⎧
⎨

⎩

�(1 − sα)

�(1 − s)
if s < 1/α

∞ else.
(29)

3 Proof of Main Results

3.1 Initial Deduction by Laplace Transform

We need the following formulas from [20]. Given x > 0,

E(e−qτx ) = E(e−qxατ1) = F1(q
1/αx) − αF ′

α(q1/αx), (30)

where Fa(x) = Ea(xa) := Ea,1(xa) and for fixed a > 0 and d ∈ C, the following
function of z ∈ C

Ea,d(z) =
∞∑

n=0

zn

�(an + d)

is known as the Mittag–Leffler function. Then, F1(q1/αx) = E1(q1/αx) = eq1/αx and
from

F ′
α(z) =

( ∞∑

n=0

zαn

�(1 + αn)

)′
=

∞∑

n=1

zαn−1

�(αn)
,

it follows that

αF ′
α(q1/αx) = α

∞∑

n=1

qn−1/αxαn−1

�(αn)
.

Fix x < 1. We seek the Laplace transform of h1(x, ·). For brevity, put

�(t) = h1(x, t).
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Proposition 10 For q > 0,

L[�](q) = e−q1/α(1−x)
∞∑

n=1

qn−1

�(αn)
−

∞∑

n=1

qn−1(x ∨ 0)αn−1

�(αn)
. (31)

Remark By (18), v1(x) = L[�](0+), which together with (31) yields (8).

Proof of Proposition 10 By (21) in Proposition 9, the Laplace transform of � is

L[�](q) =
∫ ∞

0
e−qt

[
gt (x) −

∫ t

0
f1(s)gt−s(x − 1) ds

]
dt

= uq(x) − E(e−qτ1)uq(x − 1).

By (20), scaling, and (25),

uq(0) =
∫ ∞

0
e−qt gt (0) dt = g1(0)

∫ ∞

0
e−qt t−1/α dt = α−1q1/α−1.

Then, by (19),

L[�](q) = α−1q1/α−1[E(e−qτx ) − E(e−qτx−1)E(e−qτ1)]. (32)

Since x − 1 < 0, by (26), E(e−qτx−1) = e(x−1)q1/α
. If x ≤ 0, then E(e−qτx ) = exq1/α

as well, and so applying (30) to E(e−qτ1),

E(e−qτx ) − E(e−qτx−1)E(e−qτ1) = eq1/αx − eq1/α(x−1)

(
eq1/α − α

∞∑

n=1

qn−1/α

�(αn)

)

= αeq1/α(x−1)
∞∑

n=1

qn−1/α

�(αn)
.

On the other hand, if x > 0, then applying (30) to both E(e−qτx ) and E(e−qτ1),

E(e−qτx ) − E(e−qτx−1)E(e−qτ1)

= eq1/αx − α

∞∑

n=1

qn−1/αxαn−1

�(αn)
− eq1/α(x−1)

(
eq1/α − α

∞∑

n=1

qn−1/α

�(αn)

)

= αeq1/α(x−1)
∞∑

n=1

qn−1/α

�(αn)
− α

∞∑

n=1

qn−1/αxαn−1

�(αn)
.

The above two identities forE(e−qτx )−E(e−qτx−1)E(e−qτ1) combined with (32) then
lead to (31). ��
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Given x < 1, fx−1 belongs to C∞
0 ([0,∞)), the family of infinitely differentiable

functions on [0,∞) with derivative of any order equal to zero at 0 and ∞. Since
e−q1/α(1−x) is the Laplace transform of fx−1, in view of (31) and the relationship
between Laplace transform and differentiation, if x < 0, then it is possible to show (7)
by interchanging Laplace transform and the infinite summation on the r.h.s. of (31).
However, as noted in the introduction, for x > 0, the approach fails to work. In our
proof, (7) is first established for x < a and t > 0, where a < 0 is some constant. The
argument based on interchanging Laplace transform and infinite summation is carried
out. Then, the general case is resolved by analytic extension.

3.2 Proof of Theorem

Fixing t > 0, regard h1(1 − x, t) as a function of x . We need a preliminary estimate
of the domain it can be analytically extended to. Recall that a domain is a connected
open set in C.

Lemma 11 Given t > 0, the mapping x → h1(1− x, t) can be analytically extended
from (0,∞) to � := {z ∈ C : | arg z| < π/2 − π/(2α)}.
Proof The following fact will be used. Let D ⊂ C be a domain and J ⊂ R. Suppose
m(z, λ) is a measurable function on D × J and ν is a measure on J . If m(·, λ) is
analytic in D for each λ ∈ J , and the mapping z → ∫ |m(z, λ)|ν(dλ) is bounded
on any compact subset of D, then by Fubini’s theorem and Morera’s theorem ([17],
p. 208), M(z) = ∫ m(z, λ)ν(dλ) is analytic on D.

Given t > 0, by Proposition 9, h1(1 − x, t) = gt (1 − x) − ∫ t
0 f1(t −

s)gs(−x) ds. Since gt can be analytically extended to C, it suffices to show that
x → ∫ t

0 gs(−x) f1(t − s) ds can be analytically extended to �. By Kendall’s identity

∫ t

0
gs(−x) f1(t − s) ds = 1

x

∫ t

0
s f−x (s) f1(t − s) ds.

The Fourier transform of f−x is f̂−x (λ) = L[ f−x ](−iλ) = e−(−iλ)1/αx , λ ∈ R,
where −π < arg(−iλ) ≤ π . Then, | f̂−x (λ)| = e−Re(−iλ)1/αx = e−|λ|1/αx cos a with
a = π/(2α). As cos a > 0, Fourier inversion can be applied to get

f−x (s) = 1

2π

∫ ∞

−∞
e−iλs−(−iλ)1/αx dλ

and Fubini theorem can be applied to get

∫ t

0
gs(−x) f1(t − s) ds = 1

2πx

∫ ∞

−∞
ψ(λ)e−(−iλ)1/αx dλ,

where ψ(λ) = ∫ t
0 se−iλs f1(t − s) ds is bounded. Given a compact C ⊂ �,

θ0 := supz∈C | arg(z)| < π/2 − a and r0 := inf z∈C |z| > 0. For z = reiθ ∈ C ,

123



Journal of Theoretical Probability

Re((−iλ)1/αz) = λ1/αr cos(θ ± a), where the sign of a is opposite to that of λ. By
|θ ± a| ≤ θ0 + a < π/2, Re((−iλ)1/αz) ≥ cλ1/α with c = r0 cos(θ0 + a) > 0. Then,∫∞
−∞ ψ(λ)e−(−iλ)1/αz dλ is bounded on C . As remarked at the beginning, this yields
the proof. ��
Lemma 12 For every x < 1and t > 0, the series in (5)and (7) converge absolutely and
are equal to each other, and as functions of (x, t) can be extended to C×(C\(−∞, 0]),
such that for each fixed x ∈ C, the extended function is analytic in t ∈ C \ (−∞, 0],
and for each fixed t ∈ C \ (−∞, 0], the extended function is analytic in x ∈ C.

Proof By (27), the series in (7) is

∞∑

n=1

1

�(αn)

dn−1

dtn−1

(
1

π

∞∑

k=1

(−1)k−1�(k/α + 1)

k! sin(πk/α)(1 − x)k t−k/α−1

)

= 1

π

∞∑

n=1

(−1)n−1

�(αn)

∞∑

k=1

(−1)k−1�(k/α + n)

k! sin(πk/α)(1 − x)k t−k/α−n .

Then, to show the entire lemma, it suffices to show that series on (5) converges abso-
lutely. Letting M = [1 − (x ∧ 0)]t−1, the sum of the absolute values of the terms in
the series is less than

∞∑

k,n=1

�(k/α + n)

�(αn)k! Mk/α+n =
∫ ∞

0

∞∑

k,n=1

sk/α+n−1

�(αn)k! e−s/M ds

=
∫ ∞

0

( ∞∑

n=1

sn−1

�(αn)

)( ∞∑

k=1

sk/α

k!

)
e−s/M ds ≤

∫ ∞

0
Eα,α(s)es1/α−s/M ds. (33)

From (22) on p. 210 of [8], as s → ∞, Eα,α(s)es1/α−s/M = O(e2s1/α−s/M ). Therefore,
the last integral is finite, yielding the desired absolute convergence. ��

Given x > 0, denote

hx (t) = h1(1 − x, t)

and regard it as a function of t > 0. A key ingredient of the proof of Theorem 1 is to
show that hx (t) is identical to

ωx (t) =
∞∑

n=0

f (n)
−x (t)

�(αn + α)
. (34)

For this purpose, the following lemmas are needed.

Lemma 13 Given x > 0, hx (t) is a bounded and continuous function of t > 0
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Proof By Proposition 9, hx (t) ≤ mx (t) := gt (x). From (25), mx (t) is continuous in
t > 0 and is bounded on [a,∞) for any a > 0. On the other hand, by scaling and
g1(z) = O(z−1−α) as z → ∞, mx (t) = gt (x) = t−1/αg1(t−1/αx) = O(t) as t → 0.
Therefore, mx (t) is bounded on (0,∞) and so is hx (t). Next, observe that both f−x (t)
and m1(t) can be extended into uniformly continuous and integrable functions on the
entire R with values on (−∞, 0] equal to 0. As a result, f−x ∗m1 is continuous. Then,
by Proposition 9, hx (t) = mx (t) − ( f−x ∗ m1)(t) is continuous. ��
Lemma 14 Let x0 = 1/ cos(π/(2α)) and fix x > x0.

(a) The following function is bounded in t > 0,

ςx (t) =
∞∑

n=0

| f (n)
−x (t)|

�(αn + α)
.

(b) ωx (t) is a bounded and continuous function of t > 0.
(c) L[ωx ](q) = L[hx ](q).

Proof (a) From the bound on | f̂−1(λ)| in the proof of Lemma 11, it follows that for
any n ≥ 0,

∫∞
−∞ |λ|n| f̂−1(λ)| dλ < ∞, so by Fourier inversion

f (n)
−1 (t) = (−i)n

2π

∫ ∞

−∞
λne−iλt f̂−1(λ) dλ

and hence

sup
t

| f (n)
−1 (t)| ≤ 1

2π

∫ ∞

−∞
|λ|n| f̂−1(λ)| dλ = 1

π

∫ ∞

0
λne−λ1/α/x0 dλ

= α

π

∫ ∞

0
λαn+α−1e−λ/x0 dλ = α�(αn + α)xαn+α

0

π
.

Since f−x (t) = x−α f−1(x−αt), then f (n)
−x (t) = x−αn−α f (n)

−1 (x−αt). As a result,

ςx (t) =
∞∑

n=0

x−αn−α| f (n)
−1 (x−αt)|

�(αn + α)
≤ α

π

∞∑

n=0

(x0/x)αn+α,

and hence for x > x0, ςx (t) is bounded in t > 0.
(b) From (a), it follows that ωx (t) is bounded. The continuity of ωx (t) is implied in

Lemma 12.
(c) By (a), for x > x0, the summation and integration can interchange in the calculation

of L[ωx ](q) to yield

L[ωx ](q) =
∞∑

n=0

L[ f (n)
−x ](q)

�(αn + α)
=

∞∑

n=0

qnL[ f−x ](q)

�(αn + α)
= e−xq1/α

∞∑

n=0

qn

�(αn + α)
.
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Since x > 1, from Proposition 10, the r.h.s. is the Laplace transform of hx (·) =
h1(1 − x, ·).

��

Proof of Theorem 1 Again write hx (t) = h1(1− x, t). By Lemma 14, for x > x0 > 1,
ωx (t) is bounded and L[ωx ](q) = L[hx ](q) for all q > 0. Then, by the one-to-one
correspondence between bounded continuous functions and their Laplace transforms,
hx (t) = ωx (t). Thus,

h1(1 − x, t) =
∞∑

n=0

f (n)
−x (t)

�(αn + α)

= 1

π

∞∑

k,n=1

�(k/α + n)

�(αn)k! (−1)k+n xk sin(πk/α)t−k/α−n .

Fix t > 0 and treat x as the only variable. ByLemma11, h1(1−x, t) can be analytically
extended from (0,∞) to a domain � ⊂ C containing (0,∞), while by Lemma 12,
the two series in the display converge absolutely and can be analytically extended to
the entire C. Since h1(1 − x, t) and the two series agree on (x0,∞), they must be
equal on �, in particular, on the entire (0,∞). It follows that for every fixed t > 0,
(5) and (7) hold for all x < 1. This completes the proof of (5) and (7). The rest of the
theorem follows by combining (5) and (7) with Proposition 7 and (24). ��

3.3 Proofs of Corollaries

Proof of Corollary 2 From �(z) = ∫∞
0 sz−1e−s ds and the absolute convergence of

(7),

h1(x, t) = 1

π

∫ ∞

0
e−s

∞∑

k,n=1

sk/α+n−1

�(αn)k! (−1)k+n(1 − x)k sin(πk/α)t−k/α−n ds

= 1

π

∫ ∞

0
e−s

[ ∞∑

k=1

((x − 1)(s/t)1/α)k sin(πk/α)

k!

][ ∞∑

n=1

sn−1(−1/t)n

�(αn)

]
ds

= 1

π

∫ ∞

0

(
�e−s−(1−x)(−s/t)1/α

)
(−1/t)Eα,α(−s/t) ds.

By change of variable, the integral representation follows. ��

To prove the other corollaries, hc(x, t) is treated as a function of c as well as x and
t . From (5) and the scaling relationship (6),
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hc(x, t) = 1

c

∞∑

n=0

cαn+α f (n)
x−c(t)

�(αn + α)
(35)

= 1

π

∞∑

k,n=1

�(k/α + n)

�(αn)k! (−1)k+n(c − x)kcαn−1 sin(πk/α)t−k/α−n . (36)

Both series converge absolutely for given t > 0.

Proof of Corollary 3 Fix x < 1 and t > 0. Put ϕ(c) = hc(x, t) > 0 and c0 = x ∨0.We
shall show that ϕ(c) > 0 for all c > c0. From its definition in (2), ϕ(c) is increasing on
(c0,∞). By Proposition 9,ϕ(c) = gt (x)−∫ t

0 kc(s) ds, where kc(s) = fx−c(s)gt−s(c).
For c > c0 + 1, fx−c(s) = (c − x)−α f−1((c − x)−αs) ≤ sup f−1 and as s ↑ t ,
gt−s(c) = (t − s)−1/αg1(c(t − s)−1/α) = (t − s)−1/α O((t − s)1+1/α) = O(t). As
c → ∞, kc(s) → 0 for s ∈ (0, t). Then, by dominated convergence, ϕ(c) → gt (x) >

0. On the other hand, from (36), ϕ(c) can be analytically extended to C \ (−∞, 0].
If ϕ(c) = 0 for some c > c0, then by monotonicity, ϕ(z) = 0 for all z ∈ (c0, c).
Then, by analyticity, ϕ(z) = 0 for all z > c0, yielding ϕ(z) → 0 as z → ∞, a
contradiction. ��
Proof of Corollary 4 Fix t = 1 and x . Then, each term in the series (36) is a function
of c, denoted dk,n(c). It is seen that d ′

k,n(c) is the (k, n)th term in the series (9). For
each bounded interval I = [a, b] ⊂ (x ∨ 0,∞), letting M = b + |x |, for all c ∈ I
and k, n ≥ 1,

|d ′
k,n(c)| ≤ Dk,n := �(k/α + n)

�(αn)k! (k + αn − 1)Mk+αn−1/a.

By argument similar to that for Lemma 12,
∑∞

k,n=1 Dk,n < ∞. As a result,
∂hc(x, 1)/∂c = π−1∑∞

k,n=1 d ′
k,n(c) for c ∈ I . Since I is arbitrary, then (9) holds

for all c > x ∨ 0, as claimed. ��
Proof of Corollary 5 This is immediate from Proposition 8 and the fact that being spec-
trally positive with infinite variation X does not creep, i.e., �Tc > 0 a.s. ([6], p. 64).

��
Proof of Corollary 6 Let

a(x, c, r) = P{X1 ∈ dx, X1 ∈ dc, G1 ≤ r}
dx dc

, b(x, c, t) = ∂hc(x, t)

∂c
.

Although Corollary 4 provides a series expression of b(x, c, t), it is not very useful
here. Instead, by (22), for x < c,

b(x, c, t) = − ∂

∂c

[∫ t

0
fx−c(s)gt−s(c) ds

]

= −
∫ t

0

[
∂ fx−c(s)

∂c
gt−s(c) + fx−c(s)g

′
t−s(c)

]
ds, (37)
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where the interchange of integration and differentiation on the second line is justified
by the uniform boundedness of ∂( fx−c(s)gt−s(c))/∂c as a function of (c, s) on any
compact set in (x ∨ 0,∞) × [0,∞).

Given r ∈ (0, 1), for each ε ∈ (0, 1− r), by conditioning on Xr and Xr+ε and the
Markov property of X ,

P{X1 ∈ dx, X1 ∈ dc, r < G1 ≤ r + ε}
=
∫

u<c,v<c−u
P{Xr ∈ du, Xr < c} P{Xε ∈ dv, X ε ∈ dc − u}
× P{X1−r−ε ∈ dx − u − v, X1−r−ε < c − u − v}

=
∫

u<c,v<c−u
P{Xr ∈ du, Xr ≤ c} P{Xε ∈ dv, X ε ∈ dc − u}
× P{X1−r−ε ∈ dx − u − v, X1−r−ε ≤ c − u − v},

where the second equation is due to Xr and X1−r−ε having continuous distributions
according to Corollary 4. Make change of variables y = c − u and z = c − u − v.
Then, divide both sides of the above display by ε dx dc and use (2) and Corollary 4 to
get

a(x, c, r + ε) − a(x, c, r)

ε

=
∫

y>0,z>0
hc(c − y, r)

b(y − z, y, ε)

ε
hz(x − c + z, t − r − ε) dy dz. (38)

From (37), it follows that for y > 0 and z > 0,

b(y − z, y, ε) = −
∫ ε

0

[
gε−s(y)

∂ f−z(s)

∂z
+ g′

ε−s(y) f−z(s)

]
ds.

By f−z(s) = z−α f−1(z−αs),

∂ f−z(s)

∂z
= −αz−α−1[ f−1(z

−αs) + sz−α f ′−1(z
−αs)].

Make change of variable s = εw. Then,

b(y − z, y, ε)

ε
= αz−α−1

∫ 1

0
gε(1−w)(y)[ f−1(εz−αw) + εz−αw f ′−1(εz−αw)] dw

− z−α

∫ 1

0
g′
ε(1−w)(y) f−1(εz−αw) dw.
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Put u = ε−1/α y and v = ε−1zα . Then, gε(1−w)(y) = ε−1/αg1−w(ε−1/α y) =
ε−1/αg1−w(u) and g′

ε(1−w)(y) = ε−2/αg′
1−w(ε−1/α y) = ε−2/αg′

1−w(u), and so

b(y − z, y, ε)

ε
= αε−1/αz−α−1

∫ 1

0
g1−w(u)[ f−1(w/v) + (w/v) f ′−1(w/v)] dw

− ε−2/εz−α

∫ 1

0
g′
1−w(u) f−1(w/v) dw

= ε−2/α−1v−1 I (u, v),

where the second equality is obtained by replace z with (εv)1/α and

I (u, v) = αv−1/α
∫ 1

0
g1−w(u)[ f−1(w/v) + (w/v) f ′−1(w/v)] dw

−
∫ 1

0
g′
1−w(u) f−1(w/v) dw.

Combined with (38) and dy dz = ε2/αα−1v1/α−1 du dv, the above display yields

a(x, c, r + ε) − a(x, c, r)

ε

= ε−2/α−1
∫

y>0,z>0
hc(c − y, r) × v−1 I (u, v)hz(x − c + z, 1 − r − ε) dy dz

= 1

α

∫

u>0,v>0

hc(c − ε1/αu, r)

ε1/αu
× (u/v)I (u, v)

× h(εv)1/α ((εv)1/α − (c − x), 1 − r − ε)

(εv)1−1/α du dv. (39)

We need the following two lemmas.

Lemma 15 The function (u/v)I (u, v) is integrable over u > 0 and v > 0 with

∫

u>0,v>0
(u/v)I (u, v) du dv = �(α + 1).

Lemma 16 The following statements hold.

(a) Given c > 0 and t > 0, hc(c − x, t)/x as a function of x is bounded on (0,∞)

and

lim
x→0+

hc(c − x, t)

x
= m(c, t).

Furthermore, given c > 0, m(c, t) is bounded in t > 0.
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(b) Given x > 0 and t > 0, hc(c − x, t)/cα−1 as a function of c is bounded on (0,∞)

and

lim
c→0

hc(c − x, t)

cα−1 = f−x (t)

�(α)
.

Assuming the lemmas are true, let ε → 0 in (39). By the lemmas and dominated
convergence, the limit is m(c, r) fx−c(1 − r). With similar argument, [a(x, c, r) −
a(x, c, r − ε)]/ε converges to the same limit as ε → 0. Then, (11) is proved.

To prove the rest of the corollary, integrate (11) over x < c. From the identity∫∞
0 f−x (s) dx = s1/α−1/�(1/α) ([18], p. 270), it follows that G1 and X1 have joint
p.d.f.

P{G1 ∈ dr , X1 ∈ dc}
dr dc

= m(c, r)(1 − r)1/α−1

�(1/α)
. (40)

The conditional independence of X1 and X1 − X1 given G1 follows from (11).
As noted earlier, G1 follows the Beta(1− 1/α, 1/α) distribution. This can be directly
proved by integrating the above joint p.d.f. over c > 0. Since by (13),

∫ ∞

0
m(c, r) dc = sin(π/α)

π

∫ ∞

0
s1/α Eα,α(−s)

[∫ ∞

0
c−2e−sr/cα

dc

]
ds ∝ r−1/α,

the p.d.f. of G1 is in proportion to r−1/α(1−r)1/α−1, so it must be Beta(1−1/α, 1/α).
Then, conditionally onG1, the p.d.f. of X1 follows by dividing the joint p.d.f. of X1 and
G1 by the p.d.f. of G1, and the p.d.f. of X1 − X1 follows from integrating fx−c(1− r)

over x < c and Kendall’s identity (1). ��
Proof of Lemma 15 From the definition of I (u, v), to show the integrability of
(u/v)I (u, v), it suffices to show

I1 :=
∫

u,v>0
uv−1−1/α

[∫ 1

0
g1−w(u) f−1(w/v) dw

]
du dv < ∞,

I2 :=
∫

u,v>0
uv−2−1/α

[∫ 1

0
wg1−w(u)| f ′−1(w/v)| dw

]
du dv < ∞,

I3 =
∫

u,v>0
uv−1

[∫ 1

0
|g′

1−w(u)| f−1(w/v) dw

]
du dv < ∞.

By (28), for w ∈ (0, 1),
∫

u>0 ug1−w(u) du = E[X1−w ∨ 0] = (1 − w)1/α/�(1/α).
Then, by Fubini’s theorem and (29),

I1 = 1

�(1/α)

∫ 1

0
(1 − w)1/α

[∫ ∞

0
v−1−1/α f−1(w/v) dv

]
dw

= 1

�(1/α)

∫ 1

0
w−1/α(1 − w)1/α

[∫ ∞

0
t1/α−1 f−1(t) dt

]
dw = �(α)

α − 1
.
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Similarly,

I2 = 1

�(1/α)

∫ 1

0
w(1 − w)1/α

[∫ ∞

0
v−2−1/α| f ′−1(w/v)| dv

]
dw

= 1

�(1/α)

∫ 1

0
w−1/α(1 − w)1/α

[∫ ∞

0
t1/α| f ′−1(t)| dt

]
dw < ∞.

It follows that

Ĩ2 :=
∫

u,v>0
uv−2−1/α

[∫ 1

0
wg1−w(u) f ′−1(w/v) dw

]
du dv

= 1

�(1/α)

∫ 1

0
w−1/α(1 − w)1/α

[∫ ∞

0
t1/α f ′−1(t) dt

]
dw

= − 1

α�(1/α)

∫ 1

0
w−1/α(1 − w)1/α

[∫ ∞

0
t1/α−1 f−1(t) dt

]
dw = − �(α)

α(α − 1)
.

Next, sinceC := ∫∞
0 u|g′

1(u)| du < ∞ and g′
1−w(u) = (1−w)−2/αg′

1((1−w)−1/αu),

I3 =
∫ 1

0

{∫ ∞

0
v−1 f−1(w/v)

[∫ ∞

0
u|g′

1−w(u)| du

]
dv

}
dw

= C
∫ 1

0

{∫ ∞

0
v−1 f−1(w/v)dv

}
dw = C�(1 + α) < ∞

and

Ĩ3 :=
∫ 1

0

{∫ ∞

0
v−1 f−1(w/v)

[∫ ∞

0
ug′

1−w(u) du

]
dv

}
dw

= �(α + 1)
∫ ∞

0
ug′

1(u) du = −�(α)(α − 1).

Since
∫
(u/v)I (u, v) du dv = α(I1 + Ĩ2) − Ĩ3, the proof then follows. ��

Proof of Lemma 16 (a) From the absolute convergence of the series (36), as x → 0+,
hc(c − x, t)/x converges to the limit with the expression (12), which is m(c, t).
To show that m(c, t) has the integral expression (13), first prove it for n(t) :=
m(1, t) = limx→0+[h1(1 − x, t)/x] using the integral representation in Corol-
lary 2 and then prove it in general using scaling. Finally, by (21) on p. 210 of [8],
Eα,α(−s) = O(s−2) as s → ∞. Then, given t > 0,

|n(t)| ≤ π−1
∫ ∞

0
s1/α|Eα,α(−s)| ds < ∞,

so h1(1 − x, t)/x is bounded for x ∈ (0, x0) for small enough x0 > 0. On the
other hand, by (22) h1(1 − x, t) < gt (1 − x), so h1(1 − x, t)/x is bounded on
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[x0,∞). Thus, h1(1− x, t)/x is bounded on (0,∞). Furthermore, from (12), n(·)
has an analytic extension to {z ∈ C : Rez > 0}. As a result, n(t) > 0 for almost
every t > 0 under the Lebesgue measure. Fix r ∈ (0, t). By the Markov property,
for any x > 0,

h1(1 − x, t) =
∫

u>0
P{Xr ∈ 1 − du, Xr < 1}hu(u − x, t − r)

=
∫

u>0
h1(1 − u, r)hu(u − x, t − r) du.

Divide both sides by x and let x → 0+. By Fatou’s lemma and m(c, t) =
n(t/cα)/c2,

n(t) ≥
∫

u>0
h1(1 − u, r)m(u, t − r) du =

∫

u>0
h1(1 − u, r)

n((t − r)/uα)

u2 du.

By Corollary 3, h1(1 − u, r) > 0 for all u > 0. Then, the integral on the r.h.s. is
positive, and so n(t) > 0.

(b) The convergence follows from (35). That hc(c − x, t)/cα−1 is a bounded function
of c on (0,∞) can be similarly proved as in (a).

��

Remark By duality, for t = 1, the limit in Lemma 16(a) can be written as

P{X1 ∈ dc − x | X1 > −x}
dc

× P{X1 > −x}
x

→ m(c, 1), x → 0.

Since P{X1 > −x} = P{τ−x > 1} = P{τ−1 > x−α} ∼ x/�(1 − 1/α) as x → 0,
then the display suggests that �(1 − 1/α)m(c, 1) can be regarded as the conditional
p.d.f. of X1 at c > 0 given X1 ≥ 0.

4 Exact Sampling for First Passage

In this section, it will be shown that it is possible to conduct exact joint sampling of Tc,
XTc−, and �Tc for a spectrally positive stable X satisfying (3). From Proposition 8,
this may be done in two steps. The first step is to jointly sample XTc− and �Tc ,
which is standard. The second step is to sample Tc given XTc−, which is the focus of
the section. Since by scaling, (Tc, XTc−,�Tc ) ∼ (cαT1, cXT1−, c�T1), it suffices to
consider c = 1.

4.1 Sampling of Pre-passageValue and Jump

Because P{X1 > 0} = 1−1/α ([2], p. 218), from Example 7 in [7], at every (x, z, w),
the joint p.d.f. of XT1−,�T1 , and X T1− takes valueC1{x ∨ 0 ≤ w < 1, z > 1 − x > 0}
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wα−2z−1−α , where C = π−1α(α−1) sin((α−1)π). It follows that XT1− ∼ ξ , where
ξ has p.d.f.

p(x) = C ′1{x < 1} [1 − (x ∨ 0)α−1](1 − x)−α

with C ′ > 0 a constant, and for every x < 1, conditionally on XT1− = x , �T1 ∼
(1 − x)ζ , where ζ has p.d.f. q(z) = α1{z > 1} z−α−1. Thus, the joint sampling of
XT1− and �T1 boils down to that of independent ξ ∼ p and ζ ∼ q. The sampling of
ζ is straightforward as ζ ∼ U−1/α , where U ∼ Uniform(0, 1). To sample ξ , it can be
seen that p(x) = θ p1(x)+(1−θ)p2, where θ = m1/(m1+m2)withm1 = (α−1)−1,
m2 = π/ sin((α − 1)π) − (α − 1)−1, and

p1(x)=1{x ≤ 0} (1 − x)−α/m1, p2(x)=1{0 < x < 1} (1 − xα−1)(1 −x)−α/m2

are two p.d.f.’s. On one hand, p1(x) is the p.d.f. of 1 − U−1/(α−1). On the other,
p2(x) ∝ 1{0 < x < 1} (1 − xα−1)(1 − x)−α < ρ(x) := 1{0 < x < 1} (1 − x)−α+1.
Using the fact that ρ(x) is proportional to the p.d.f. of 1−U 1/(2−α), p2 can be sampled
by the rejection sampling method ([5], Chapter II). In summary, p(x) can be sampled
as follows.

(a) Sample I from {1, 2} such that P{I = 1} = m1/(m1 + m2)

(b) If I = 1, then sample U ∼ Uniform(0, 1) and output 1 − U−1/(α−1), otherwise,
do the following iteration until an output is made.

• Sample U , V i.i.d. ∼ Uniform(0, 1), and set x = 1 − U 1/(2−α). If V ≤
(1 − xα−1)/(1 − x), then output x , otherwise repeat.

4.2 Sampling of Time of First Passage

Wenowconsider the samplingofT1 conditionally on XT1− = x ∈ (−∞, 1). ByPropo-
sition 9, if x < 0, then h1(x, ·)/v1(x) is the p.d.f. of τ ′ + ξ , with τ ′ ∼ h1(0, ·)/v1(0)
and ξ ∼ fx being independent. Since the sampling of ξ is well known [4], the sam-
pling of h1(x, ·)/v1(x) can be reduced to that of h1(0, ·)/v1(0). As a result, it only
remains to consider the case 0 ≤ x < 1.

We again will use the rejection sampling method. For this method, the normalizing
constant vc(x) is not important and one can just focus on h1(x, ·). We will use the
power series representation (5) of h1(x, ·). In order to handle the infinite number of
positive and negative terms in the series, we first describe the general approach to use.

Let p and q be two p.d.f.’s that are proportional to some explicit functions f and
g, respectively, whose normalizing constants may be intractable; g is known as an
envelope function. For the rejection sampling method, q must be easy to sample.
Suppose f can be decomposed as

f (t) =
∞∑

l=1

φl(t) such that for some explicit constants c1, c2, . . .

0 ≤ φl(t) ≤ cl g(t) with C :=
∑

cl < ∞.

(41)
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Then, p can be sampled as follows.

• Independently sample T ∼ q, U ∼ Uniform(0, 1), and � from the probability
mass function P{� = l} = cl/C . If U ≤ φ�(T )/(c�g(T )), then output T and stop,
otherwise repeat.

Indeed, by standard argument of the rejection samplingmethod, the p.d.f. of the output
of the procedure is proportional to

g(t)
∑

l

[
cl

C
× φl(t)

cl g(t)

]
=
∑

l

φl(t)/C = f (t)/C,

so it must be p. The point is that when f (t) is an infinite series that cannot be evaluated
in closed form, say f (t) = ∑a∈A fa(t), it is possible to have each φl(t) equal to the
sum of a finite set of fa(t). More precisely, φl(t) = ∑a∈Al (t) fa(t), where Al(t) is a
finite subset of A that may depend on t , and given t , A1(t), A2(t), …, form a partition
of A. It is also critical the Al(t)’s are such that φl(t) ≥ 0 for all l and t . In each
iteration, once T and � are sampled, only φl(T ) with l equal to the value of � needs
to be evaluated. As long as for any t , each fa(t) is easy to evaluate, and the set Al(t)
can be enumerated in a finite number of steps, φl(t) can be evaluated exactly.

To apply the above approach to h1(x, t), where x < 1 is fixed, the main issue is the
construction of the envelop function and the φl(t)’s. The next lemma gives an option
for the envelope function.

Lemma 17 Fixing any D ≥ supn≥1 2
n−1�(n)/�(αn), define

θ = 41/(α−1), Cα = (α�(1 − 1/α))−1 ∨ [D(θαeθ + 4)],
Hα(t) = Cαt−1/α ∧ t−1−α, t > 0.

Then, for every 0 ≤ x < 1 and t > 0, h1(x, t) ≤ Hα(t).

The normalized Hα(t) is θ p1(t) + (1 − θ)p2(t), where p1(t) = (1 −
1/α)1{0 < t < 1} t−1/α and p2(t) = α1{t > 1} t−α−1 are p.d.f.’s and θ = α2/(α2 +
α − 1). Thus, the normalized Hα can be sampled as follows.

• Sample U , V i.i.d. ∼ Uniform(0, 1). If U ≤ θ , return V α/(α−1), otherwise return
V −1/α .

As a result, Hα can be used as an envelope function.
Now, consider the construction of φl(t). Let cl = 2−l+1. Then, from (41), we wish

to construct 0 < φl(t) < 2−l+1Hα(t) such that h1(x, t) =∑∞
l=1 φl(t). Write

mk,n(s, u) = �(k/α + n)skun

πk!�(αn)
,

so that

h1(x, t) =
∞∑

k,n=1

sin(πk/α)mk,n(−(1 − x)t−1/α,−t−1).
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We shall construct for each t > 0 a sequence of finite sets �l(t) ⊂ N × N, l ≥ 0,
such that �l(t) ⊂ �l+1(t),

⋃∞
l=1 �l(t) = N × N and

Fl(t) :=
∑

(k,n)∈�l (t)

(−1)k+n sin(πk/α)Mk,n

is strictly increasing in l such that 0 < h1(x, t) − Fl(t) ≤ 2−l Hα(t), where Mk,n =
mk,n(s, u) with s = (1 − x)t−1/α and u = t−1. Once this is done, let φl(t) =
Fl(t)−Fl−1(t). Then,

∑∞
l=0 φl(t) = liml Fl(t) = h1(x, t) and 0 < φl(t) < h1(x, t)−

Fl−1(t) ≤ 2−l+1Hα(t), as desired. The construction is based on the following two
lemmas.

Lemma 18 Fix ε ∈ (0, 1/2) and s, u > 0. Let k and n ∈ N such that n >

(2u/ε)1/(α−1), k > (2s/ε)α/(α−1), and k/α ≤ n ≤ (2 − 1/α)k, then

∞∑

i, j=0,i+ j≥1

mk+i,n+ j (s, u) ≤ 24εmk,n(s, u), (42)

∞∑

j=1

mk′,n+ j (s, u) ≤ 2εmk′,n(s, u) ∀k′ ≤ k, (43)

∞∑

i=1

mk+i,n′(s, u) ≤ 2εmk,n′(s, u) ∀n′ ≤ n. (44)

Lemma 19 Let dα = (1/α−1/2)∧[1/2−1/(2α)] and Lα = �(α − 1/2)/(α − 1)�+
1 ≥ 2. Then, among any 2Lα consecutive integers, there exist an even number and an
odd number both belonging to Aα := ∪ j∈Z I j , where I j = [(2 j+dα)α, (2 j+1−dα)α].

Assume the two lemmas are true for now. Let �0(t) = ∅ and F0(t) = 0. By
Corollary 3 and Lemma 17, 0 < h1(x, t)− F0(t) = h1(x, t) ≤ Hα(t). Suppose �l(t)
has been constructed, such that Fl(t) ≥ 0 and 0 < h1(x, t) − Fl(t) ≤ 2−l+1Hα(t).
We need to construct �l+1(t) ⊃ �l(t), such that Fl+1(t) > Fl(t) and 0 < h1(x, t) −
Fl+1(t) ≤ 2−l Hα(t).

For r ∈ N, denote Sr = {(k, n) : k, n = 1, . . . , r} and ∂Sr = {(k, n) ∈ Sr :
k ∨ n = r} its “boundary.” Let dα and Aα be as in Lemma 19. Let δα = sin(dαπ) and
Kα = Z ∩ Aα . Then, δα > 0 and for k ∈ Kα , πk/α ∈ [(2 j + dα)π, (2 j + 1− dα)π ]
for some j ∈ Z, so for n of the same parity as k,

(−1)k+n sin(kπ/α) = sin(kπ/α) ≥ δα > 0.

Put ε = δα/24. Let R be the smallest integer such that

R >
2Lα

α − 1
∨
(
2u

ε

)1/(α−1)

∨
(
2s

ε

)α/(α−1)

, �l (t) ⊂ SR,
∑

(k,n)∈∂SR

Mk,n ≤ 2−l Hα(t)

24ε
.

Starting with r = R, do the following iteration.
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• For each n, let kn be the smallest number in Kα ∩ [r + 1,∞) that has the same
parity as n; kn exists because by Lemma 19, Kα ∩ {r + 1, . . . , r + 2Lα} contains
an even number and an odd number. In particular, 1 ≤ kn − r ≤ 2Lα . Define

S′′
r = Sr ∪

r⋃

n=1

{(k, n) : r < k < kn}

and S′
r = S′′

r ∪ {(k, r + 1) : (k, r) ∈ S′′
r , (−1)k+r sin(πk/α) > 0}. If

∑

(k,n)∈S′
r

(−1)k+n sin(πk/α)Mk,n > Fl(t),

then let �l+1(t) = S′
r and stop. Otherwise increase r by 1 and repeat.

Since h1(x, t) − Fl(t) > 0 and
∑

(k,n)∈S′
r
(−1)k+n sin(πk/α)Mk,n → h1(x, t) as

r → ∞, the iteration eventually will stop. It is clear that �l+1(t) = Sr ⊃ SR ⊃ �l(t)
and Fl+1(t) > Fl(t). Next,

h1(x, t) − Fl+1(t) =
∑

(k,n)/∈S′
r

(−1)k+n sin(πk/α)Mk,n ≤
∑

(k,n)/∈Sr

Mk,n ≤
∑

(k,n)/∈SR

Mk,n .

Since R > (2u/ε)1/(α−1) ∨ (2s/ε)α/(α−1), by Lemma 18,

∑

(k,n)/∈SR

Mk,n =
∞∑

i, j=0,i+ j≥1

MR+i,R+ j +
R−1∑

k=1

∞∑

j=1

Mk,R+ j +
R−1∑

n=1

∞∑

i=1

MR+i,n

≤ 24εMR,R + 2ε
R−1∑

k=1

Mk,R + 2ε
R−1∑

n=1

MR,n ≤ 24ε
∑

(k,n)∈∂SR

Mk,n .

By the choice of R, the above two displays give h1(x, t)−Fl+1(t) < 2−l Hα(t). It only
remains to show h1(x, t)− Fl+1(t) > 0, i.e.,

∑
(k,n)/∈S′

r
(−1)k+n sin(πk/α)Mk,n > 0.

It can be seen that (N × N) \ S′
r can be partitioned into the following sets:

E1 = {(k, n) : k < kr , (−1)k+r sin(kπ/α) ≤ 0, n ≥ r + 1},
E2 = {(k, n) : k < kr , (−1)k+r sin(kπ/α) > 0, n ≥ r + 2},
E3 = {(k, n) : k ≥ kn, n ≤ r − 1},
E4 = {(k, n) : k ≥ kr , n ≥ r}.

As already seen, 1 ≤ kr − r ≤ 2Lα . Then, kr/α ≤ r +1 and r +2 ≤ (2−1/α)kr , the
first one due to r − kr/α ≥ (1−1/α)r −2Lα/α ≥ (1−1/α)R −2Lα/α > 0 and the
second one (2−1/α)kr −r −2 ≥ (2−1/α)(r +1)−r −2 ≥ (1−1/α)R −1/α ≥ 0.
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Also, r > (2u/ε)1/(α−1) and kr > (2s/ε)α/(α−1). Then, by (43) in Lemma 18, for
every k < kr ,

∑∞
j=1 Mk,r+1+ j ≤ 2εMk,r+1, giving

∑

n:(k,n)∈E1

(−1)k+n sin(kπ/α)Mk,n = (−1)k+r+1 sin(kπ/α)

⎡

⎣Mk,r+1 −
∑

n≥r+2

(−1)n−r−1Mk,n

⎤

⎦

≥ | sin(kπ/α)|(1 − 2ε)Mk,r+1 ≥ 0.

Since kr ≥ 2Lα +1, by Lemma 19, (−1)k+r+1 sin(kπ/α) > 0 for at least one k < kr .
Thus the sum over E1 is strictly positive. Likewise, the sum over E2 is strictly positive.
Next, the sum over E3 is at least

r−1∑

n=1

⎛

⎝(−1)kn+n sin(knπ/α)Mkn ,n −
∞∑

j=1

Mkn ,n+ j

⎞

⎠ ≥
r−1∑

n=1

⎛

⎝δ0Mkn ,n −
∞∑

j=1

Mkn ,n+ j

⎞

⎠ .

By (43) in Lemma 18, the last sum is strictly positive. Similar, using (42) in Lemma 18,
the sum over E4 is strictly positive. Thus h1(x, t) − Fl+1(t) > 0, as desired.

4.3 Proof of Lemmas

Proof of Lemma 17 Given x ∈ [0, 1), by (21), (25), and gt being decreasing on [0,∞)

([18], p. 416),

h1(x, t) ≤ gt (x) ≤ gt (0) = t−1/α/(α�(1 − 1/α)), t > 0.

On the other hand, for t ≥ 1, from (33),

h1(x, t) ≤ t−1/α−1
∞∑

k,n=1

�(k/α + n)

k!�(αn)
≤ Bt−1/α−1,

where B = ∫∞
0 Eα,α(s)es1/α−s ds. By Eα,α(s) = ∑∞

n=1 sn−1/�(αn) ≤ D
∑∞

n=1(s/2)
n−1/�(n) = Des/2, B ≤ D

∫∞
0 es1/α−s/2 ds ≤ D(

∫ θα

0 es1/α ds +∫∞
θα e−s/4 ds) ≤ D(θαeθ + 4), which together with the displays yields the proof.

��
To prove Lemma 18, we need the following.

Lemma 20 Let k and n ∈ N, and s, u > 0.

(a) If n ≥ k/α, then 2umk,n(s, u)/(n − 1)α−1 > mk,n+1(s, u).
(b) If n ≤ (2 − 1/α)(k + 1), then 2smk,n(s, u)/(k + 1)1−1/α > mk+1,n(s, u).
(c) If k/α ≤ n ≤ (2 − 1/α)(k + 1), then 6sumk,n(s, u)/(n − 1)α−1(k + 1)1−1/α >

mk+1,n+1(s, u).
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Proof (a) For k ≥ 1 and n ≥ k/α,

mk,n(s, u)

mk,n+1(s, u)
= u−1�(αn + α)

�(αn)(k/α + n)
≥ u−1

2n

�(αn + α)

�(αn)
.

By Gautschi’s inequality ([15], p. 138), �(αn +α)/�(αn) > (αn +α − 1)(αn +
α − 2)α−1 > n(n − 1)α−1, which together with the display yields the proof.

(b) By Gautschi’s inequality, �((k + 1)/α + n) < �(k/α + n)((k + 1)/α + n)1/α .
Then,

mk,n(s, u)

mk+1,n(s, u)
= s−1�(k/α + n)(k + 1)

�((k + 1)/α + n)
>

s−1(k + 1)

((k + 1)/α + n)1/α
.

If n ≤ (2− 1/α)(k + 1), then ((k + 1)/α + n)1/α ≤ [2(k + 1)]1/α < 2(k + 1)1/α ,
leading to the proof.

(c) From the above argument, if n ≥ k/α, then

mk,n(s, u)

mk+1,n+1(s, u)
= mk,n(s, u)

mk,n+1(s, u)

mk,n+1(s, u)

mk+1,n+1(s, u)
≥ (su)−1(n − 1)α−1

2

(k + 1)

((k + 1)/α + n + 1)1/α
.

Then, for n ≤ (2− 1/α)(k + 1), (k + 1)/α + n + 1 ≤ 2(k + 1)+ 1 ≤ 3(k + 1), so

(k + 1)

((k + 1)/α + n + 1)1/α
≥ (k + 1)

(3(k + 1))1/α
,

which together with the previous display yields the proof.
��

Proof of Lemma 18 Write mk,n = mk,n(s, u) and Sk,n = ∑∞
i, j=0 mk+i,n+ j . Then,

(42) is equivalent to Sk,n ≤ (1 + 24ε)mk,n for k, n satisfying the conditions in the
lemma. Let k0 = k and for l ≥ 1, kl = �α(n + l − 1) + 1�. Then, by α ∈ (1, 2),
k0 < k1 < k2 < . . . and kl/α ≤ (kl+1 − 1)/α ≤ n + l ≤ (2 − 1/α)kl for l ≥ 0. Put
dl = kl+1 − kl . Then,

Sk,n =
∞∑

l=0

⎛

⎝
dl−1∑

i=0

∞∑

j=1

mkl+i,n+l+ j +
∞∑

i=0

mkl+i,n+l

⎞

⎠ .

For 0 ≤ i < dl , and j ≥ 1, since n+l + j −1 ≥ n+l ≥ (kl+1−1)/α ≥ (kl +i)/α, by
Lemma 20(a),mkl+i,n+l+ j/mkl+i,n+l+ j−1 ≤ 2u(n+l + j −2)1−α ≤ 2u(n−1)1−α <

ε. Then, by induction,

dl−1∑

i=0

∞∑

j=1

mkl+i,n+l+ j <

dl−1∑

i=0

∞∑

j=1

ε j mkl+i,n+l ≤ ε

1 − ε

∞∑

i=0

mkl+i,n+l
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and hence

Sk,n <
1

1 − ε

∞∑

l=0

∞∑

i=0

mkl+i,n+l .

For each i ≥ 1, sincen+l ≤ (2−1/α)(kl+i), byLemma20(b),mkl+i,n+l/mkl+i−1,n+l

≤ 2s(kl + i)1/α−1 < 2sk1/α−1 < ε. Then, by induction, mkl+i,n+l ≤ εi mkl ,n+l ,
resulting in

Sk,n <
1

(1 − ε)2

∞∑

l=0

mkl ,n+l .

For each l ≥ 1, since (kl − 1)/α ≤ n + l − 1 ≤ (2 − 1/α)(kl − 1), by Lemma 20(c)
mkl ,n+l/mkl−1,n+l−1 < 6su(n − 1)1−αk1/α−1 < ε. Then, by induction, Sk,n < (1 −
ε)−3mk,n < (1 + 24ε)mk,n , as desired. The proof for (43) and (44) is very similar to
that for (42) and hence is omitted. ��
Proof of Lemma 19 Recall that I j is defined to be [(2 j + dα)α, (2 j + 1 − dα)α].
Then, |I j | ≥ 1. Let B j = ((2 j + 1 − dα)α, (2 j + 2 + dα)α). Then, |B j | ≤ 2 and
Ac

α = ∪ j∈ZB j . If two consecutive integers both belong to Ac
α , they must belong to

the same B j , for otherwise there would be an Ii strictly between the two, implying
|Ii | < 1. Moreover, no three consecutive integers can all belong to Ac

α , for otherwise
they had to be in the same B j , implying |B j | > 2. Assume that for some i , none of the
even numbers in S = {i +1, i +2, . . . , i +2Lα} is in Kα . Then, all the odd numbers in
S are in Kα . Consequently, the even numbers belong to Lα different B j ’s, and the odd
ones to Lα different I j ’s. The union of these intervals has Lebesgue measure 2αLα .
Since the union lies between i + 1 − |C | and i + 2Lα + |D|, where C is the interval
containing i +1 and D the one containing i +2Lα , then 2αLα ≤ Lα −1+|C |+ |D|.
Observe that either C is an I j and D is a Bl , or vice versa. Then, |C | + |D| = 2α, so
2αLα ≤ 2Lα − 1 + 2α, contradicting the choice for Lα . This shows there is at least
one even number in S belonging to Kα . Likewise, there is at least one odd number in
S belonging to Kα . ��
Acknowledgements The research is partially supported by NSF Grant DMS 1720218. The author would
like to thank two referees for their careful reading of the manuscript and useful suggestions, in particular,
one that significantly simplifies the proof of the main theorem.

Appendix

On the connection between (9) and (10) When α = 2, sin(πk/α) is 0 if k is even and
is (−1) j is k = 2 j + 1 for integer j ≥ 0. Then, the series in (9) can be written as

1

π

∞∑

j=0,n=1

�( j + 1/2 + n)

(2 j + 1)!(2n − 1)! (−1) j+n+1[(2 j + 1)c + (2n − 1)(c − x)](c − x)2 j c2n−2.
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Write n = l + 1 and m = j + l. Then, the series becomes

1

π

∞∑

j,l=0

�( j + l + 3/2)

(2 j + 1)!(2l + 1)! (−1) j+l [(2 j + 1)(c −x)2 j c2l+1+(2l + 1)(c −x)2 j+1c2l ]

= 1

π

∞∑

m=0

�(m + 3/2)

(2m + 1)! (−1)m
m∑

j=0

[
(c − x)2 j c2m−2 j+1

(2 j)!(2m − 2 j + 1)! + (c − x)2 j+1c2m−2 j

(2 j + 1)!(2m − 2 j)!
]

= 1

π

∞∑

m=0

�(m + 3/2)

(2m + 1)! (−1)m
2m+1∑

s=0

(2m + 1)!
s!(2m + 1 − s)! (c − x)sc2m+1−s

= 1

π

∞∑

m=0

√
π

22m+1m! (−1)m(2c − x)2m+1

= 2c − x

2
√

π
exp

{
− (2c − x)2

4

}
.

Since (Xt )t≥0 ∼ (W2t )t≥0, this is essentially the same result as (10). ��
Proof of Eq. (16) We need the following refined version of Lemma 16(a).

Lemma 21 There is a constant M > 0, such that for all 0 < x < 1/2 and all t > 0,

h1(1 − x, t) ≤ Mx(t + t1−1/α).

Assume the lemma is true for now. Then, given c > 0, by scaling, for all 0 < x < c/2,
hc(c − x, t) ≤ Mx(t + t1−1/α) for some M = M(c) > 0. Then, by Lemma 16(a) and
dominated convergence, for each q > 0,

∫ ∞

0
m(c, t)e−qt dt = lim

x→0

1

x

∫ ∞

0
hc(c − x, t)e−qt dt .

However, by scaling (6) and Proposition 10, for 0 < x < c/2,

1

x

∫ ∞

0
hc(c − x, t)e−qt dt = e−q1/αx − 1

x

∞∑

n=1

qn−1cαn−1

�(αn)

+
∞∑

n=1

qn−1[cαn−1 − (c − x)αn−1]
x�(αn)

.

As a result,

∫ ∞

0
m(c, t)e−qt dt =

∞∑

n=1

qn−1cαn−2

�(αn − 1)
− q1/α

∞∑

n=1

qn−1cαn−1

�(αn)
.
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Provided that β > q1/α , integration term by term of the r.h.s. yields

∫ ∞

0

(∫ ∞

0
m(c, t)e−qt dt

)
e−βc dc =

∞∑

n=1

qn−1

βαn−1 − q1/α
∞∑

n=1

qn−1

βαn
= β − q1/α

βα − q
.

By analytic extension, the equality still holds for 0 ≤ β ≤ q1/α . Then, by (15), the
proof is complete. ��

Proof of Lemma 21 By (22) and integral by parts,

h1(1 − x, t) = gt (1 − x) − gt (1) +
∫ t

0
F−x (t − s)

∂gs(1)

∂s
ds, (45)

where F−x (t) = ∫∞
t f−x (s) ds = P{τ−x > t}. For 0 < x < 1/2, gt (1− x)−gt (1) =

−g′
t (z)x for some z ∈ (1 − x, 1). Clearly, z > 1/2. It is not hard to show that

M1 := supy>0[yα+2|g′
1(y)|] < ∞ ([18], p. 88). On the other hand, by gt (z) =

t−1/αg1(t−1/αz), g′
t (z) = t−2/αg′

1(t
−1/αz). Then,

|gt (1 − x) − gt (1)| = xt−2/α|g′
1(t

−1/αz)| ≤ xt−2/α M1(t
−1/αz)−α−2 ≤ M12

α+2xt .
(46)

Next, by gs(1) = s−1/αg1(s−1/α), |∂gs(1)/∂s| ≤ (1/α)[s−1/α−1g1(s−1/α) +
s−2/α−1|g′

1(s
−1/α)|] is bounded. Then, for some M2 > 0,

∣∣∣∣
∫ t

0
F−x (t − s)

∂gs(1)

∂s
ds

∣∣∣∣ ≤ M2

∫ t

0
F−x (s) ds = M2xα

∫ x−α t

0
F−1(s) ds,

where the equality is due to F−x (s) = F−1(x−αs) and change of variable. Because
F−1(s) is decreasing with F−1(0) = 1 and is slowly varying at ∞ with index −1/α,
there is a constant M3 > 0 such that

∫ y
0 F−1(s) ds ≤ M3y1−1/α for all y > 0. It

follows that

∣∣∣∣
∫ t

0
F−x (t − s)

∂gs(1)

∂s
ds

∣∣∣∣ ≤ M2M3xt1−1/α. (47)

Then, the proof is complete by combining (45)–(47). ��

Proof of Eq. (20) Denote the r.h.s. of (20) by vq(x). The task is to show v̂q = ûq ,
where, for example, v̂q(x) = vq(−x). Since vq is a version of the q-resolvent density,
according to the proof of Proposition I.13 of [2], (r −q)Ur v̂q ↑ ûq as r → ∞, where
Ur is the r -resolvent operator. For r > q,
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Ur v̂q(x) =
∫ ∞

0
e−r t

E
x [v̂q(Xt )] dt

=
∫ ∞

0
e−r t

[∫ (∫ ∞

0
e−qs gs(−y) ds

)
gt (y − x) dy

]
dt

=
∫ ∞

0

∫ ∞

0
e−r t−qs gs+t (−x) ds dt

= (r − q)−1
∫ ∞

0
(1 − e(q−r)s)e−qs gs(−x) ds.

Then, by monotone convergence, (r − q)Ur v̂q(x) → v̂q(x), giving v̂q(x) = ûq(x).
��
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