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Abstract

For a spectrally positive and strictly stable process with index in (1, 2), a series repre-
sentation is obtained for the joint distribution of the “first passage triple” that consists
of the time of first passage and the undershoot and the overshoot at first passage. The
result leads to several corollaries, including (1) the joint law of the first passage triple
and the pre-passage running supremum, and (2) at a fixed time point, the joint law of
the process’ value, running supremum, and the time of the running supremum. The
representation can be decomposed as a sum of strictly positive functions that allow
exact sampling of the first passage triple.
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1 Introduction

Let X = (X;):>0 be a Lévy process and IT(dx) its Lévy measure. Denote by

AIZXI—le, Yl: Sup XS,

0<s<t

the jump and running supremum of X at 7, respectively. By convention, Xg— = Xo =
0. For ¢ > 0, the first passage time of X at level c is defined as

T, =inf{t > 0: X; > c},
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while for x € R, the first hitting time of X at x is defined as
7, = inf{t > 0: X, = x},

where by convention inf J = oo.

By definition, a Lévy process is spectrally positive if it only has positive jumps, i.e.,
its Lévy measure is concentrated on (0, 0o). It is well known that if X is spectrally
positive and is not a subordinator, then (t_x)x>0 is a subordinator, possibly killed
at an exponential time and for #, x > 0, tP{r_, € dt}dx = xP{X; € —dx}ds,
which is known as Kendall’s identity ([2], Chapter VII). If for each ¢ > 0, X; has a
probability density function (p.d.f.) g;(x), then for each x > 0, 7_, hasap.d.f. f_,(¢)
and Kendall’s identity can be written as

tf_x(@) =xgi(—x), x>0,1>0. (1)

In this paper, a p.d.f. is always defined with respect to (w.r.t.) the Lebesgue measure.

Let X be a spectrally positive and strictly stable process with index « € (1, 2). The
first passage of X at a fixed level ¢ > 0 is of particular interest and has already drawn
a lot of attention. The joint distribution of X7, and A7, is known [7] and so is the
distribution of T, [1,19,20]. Related to these random variables, the distribution of .
is classical when x < 0 [2] and is also known when x > 0 [16,19]. On the other hand,
the three random variables T, X7,—, and A7, completely describe what happens to
X at the moment of first passage. Although some general results are available [7],
explicit representations of the joint distribution of the triple have been unknown.

While there may be many different representations, those that allow exact sampling
are practically more useful and perhaps conceptually more satisfactory. Ideally, a
representation should also allow efficient implementation of the sampling. Although
such representations are available for the marginal distributions of X, X,, Tr, and 7,
[19,20,22], they seem much harder to get for the joint distribution of 7., X7.—, and
Ar., so we will content ourselves with a representation that allows exact sampling of
the triple regardless of efficiency.

The following function will play an important role. For ¢ > 0, x € (—o0, ¢), and
t > 0, define

]P){X[ € d.x,yt < C}

he(x,t) = P

@)

Since X has the scaling property, i.e., (X;;)r>0 ~ ()»”“X,)tzo for all A > 0, one can
assume without loss of generality that

E(e~9%1) = exp(1q®), >0, ¢ > 0. (3)
Because also by scaling

(TC’ XT£77 ATC) ~ (caT17 CXT]f’ CAT])7 (4)
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it suffices to consider ¢ = 1.

Theorem 1 Suppose X is a stable process with index a € (1,2) satisfying (3). Then,
the triple (T1, X1,—, A1) has a p.d.f. that at each (t, x, z) € (0,00) x R x [0, 00)
takes value

—0(—1

['(—a)

o1(t,x,2) = I{x <1l <x+z}thi(x, 1),

where for x € (—o00, 1),

e =~ Z( DS sinGrk /a1 = ot e s)
knl

The series in (5) converges absolutely for given x and t > Q.
Given ¢ > 0, by the scaling relation (4), (7, X7.—, A7,) has joint p.d.f.

a2 s e lx, 71,

QC(I,X,Z):C Ql(c

Furthermore,
he(x,t) = ¢ thy(e x, e 7). (6)

The core of Theorem 1 is (5), and a key step in its proof is to show

00 (n)

1 (@)

e =Y me s @
n=0

which can be formally written as

hi(x,-) = Ea,a(D)fxfla

where D is the differential operator and Eq « (s) is a Mittag—Leffler function ([8,15];
see Sect. 3.1). Many detailed asymptotics of fx('i)] (t) can be found in [10]. It will be
seen that conditionally on X7, = x, A7, and 7T} are independent, with the latter
having p.d.f. A1 (x, -)/v1(x), where

Y RS el AL i 8
Ul(x)—/o 1(x, 1) —T- ()

One may have noticed that when x € (0, 1), vi(x) is strictly smaller than 1/I'(«),
whereas the sum of the term-wise integrals of the series (7) is 1/I'(«). The lack
of interchangeability of summation and integration reflects the high oscillations of
f (”)1 (t) as functions of ¢, which are tricky to tackle directly. In this paper, (7) will
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be first established for x < a, where a < 0 is a certain constant, and then, it will be
established for all x < 1 by analytic extension.

Several results can be derived from Theorem 1. First, an integral representation of
hy(x,1).

Corollary 2 Under the same condition as above,
1 [ —a et e . Va
hi(x, 1) = — f SIS eostr/ ) gin (1 — x)s'/* sin( /1)) Ego (—5) ds.
T Jo

The next result on the support of &1 (x, t) will be used later and is of interest in its
own right.

Corollary3 hi(x,t) > O forallx < 1andt > 0.

In the last two corollaries, & (x, t) is regarded as a function of ¢ and x with ¢ = 1
being fixed. When ¢ is fixed and ¢ and x are treated as variables, /. (x, t) provides the
joint distribution of X, and X,. Specifically, from (5) and scaling, the following result
obtains. Since (X;, X;) ~ (112X, t1/*X ), it suffices to consider 7 = 1.

Corollary 4 X| and X have joint p.d.f.

P{X; € dx, X; € dc} dhe(x, 1)
-1 9hctx, 1)
T do {c > (x v0)} ae
with
oh (x D 1 Z D@1 g yetn ok faylke + @n — (e — 1))(e — 1)k =2

- I"'(an)k!

&)

Remark For a standard Brownian motion W, it is known that ([12], Corollary 3.2.1.2).

Tx do =1{c > (x v0)} Nir >

It will be shown in the “Appendix” that (10) can be deduced from (9). Note that by
(3), fora =2, (Xt)tzo ~ (W2t)t20-

The next corollary combined with Theorem 1 gives the joint distribution of 71,
X71,—, Ar,, and the pre-passage running supremum X 7, —

P{W; € dx, sup;; Wy € dc} 2(2¢ — x) {_(20 - x)z} . (10)

Corollary 5 Conditionally on Ty =t and X1, = x < 1, Ar, and YTI_ are indepen-
dent, such that Ar, follows a Pareto distribution with

P{A7, €dz| Ty =1, X7,— =x} =a(l —x)%z7% "1{z > 1 — x} dz,
and for each c € [x vV 0, 1],

P{X7,— <c|Ti=t,X7— =x} = he(x, 1) /hi(x, ).
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Remark The foundation of conditional probability and conditional p.d.f. is measure
theory [3]. In Corollary 5, each can be expressed in terms of a joint p.d.f. For example, if
k(z,t,x)isthejoint p.d.f. of X7,_, T7,and X7, _, then P{X7,_ <c| T\ =t, X1,—- =

x} = [y k(z, t,x)dz/ fol k(z,t,x)dz.

By further analysis of & (x, t), the joint p.d.f. of X, the running supremum X;,
and the time of the running supremum G; = sup{s < t : Xy = X} can be obtained.
Since by scaling

(G, X1, Xo) ~ (G, 112X, 11 X)),

it suffices to consider# = 1. As noted earlier, the distribution of X is known [1,19,20].
The distribution of G is also known. Indeed, G, = Ay,_, where ¥, = inf{s > 0 :
As > t} and A is the ladder time process of X, which is strictly stable with index
1 — 1/a ([2], Lemma VIIL1). Then, by scaling, G| ~ G,/t = Ay,_/t and letting
t — 0 yields G; ~ Beta(l — 1/a, 1 /o) according to the generalized arcsine law
(2], Theorem I1L6). That is, the p.d.f. of Gy at x € (0, 1) is 7~ ! sin( /a)x /(1 —
x)172=1_ Also, from the excursion theory ([2], IV.4), conditionally on G1, (X ,)I<G1
and (X, 5, — Xg,);<1_g, are independent. With this background, we have the next
result. By (G, X, X1) ~ (1 — G, X1 — X1, X1), where X, = info<s<; X; and
G, =sup{s <t : Xy = X}, italso provides the joint p.d.f. of G, X, and X.

Corollary6 G, X1, and X have joint p.d.f.

P{G; € dr, X; € dc, X € dx}

= (1= 11
drdedx m(c, r) fx—c(1 —r) (11)
forr € (0,1) and ¢ > x v 0, where
sin(7r /o) > I'd/o+n) 1+ 1 a—
, — -1 n.on Ja—n 12
m(c,r) — 2:; Tam DT (12)
3 o0
= m sl/wEW)[(—s)e_”/CCY ds > 0. (13)
Tc 0

Moreover, conditionally on G =rce€ O, 1), X, and X| — X, are independent, such
that

P(X, € dc| G, = r}

i =T —1/a)r'®*m(c,r), ¢>0, (14)
Cc

and

P(X| — X €dx |G =r} T(l/a)xgi_,(—x)

dx =—a_pva > *>0
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Remark (1) For any r > 0,

2

3)

P{X, e r'/®dc |G = r}
de

=T = 1/a)r*?*m@"%c,r) =T (1 — 1/a)m(c, 1),

and therefore, X | /Ei/a is independent of G. This is a special case of the result
in [14] that shows the independence for any strictly stable process.

By duality, it is natural to interpret I'(1/a)xg1(—x) = I'(1/a) f—x (1), x > 0, as
the conditional p.d.f. of X at —x given X| = 0. Likewise, by letting » = 1in (14)
and reading P{X| e dc |G| = 1}as P{X| edc| X = X1} =P{X; edc|X, =
0}, I'(1 —1/a)m(c, 1) may be interpreted as the conditional p.d.f. of X; atc given
X; = 0; see more comments in Sect. 3.

It is worth mentioning that, for a Lévy process X in general, if under its law O is
regular for (0, oo) and for (—o0, 0), then for any # > 0, X is continuous at G;.
First, G; € (0, 1) a.s. (see [2], p.- 157). Second, given € > 0, any #y € (0, t) where
X makes a positive jump of size at least € is a stopping time, so by the regularity
of 0 for (0, 00), there are infinitely many 1 > t, | fo with X, > X;, > X;,—. On
the other hand, any 7o € (0, r) where X makes a negative jump of absolute size
at least € is a stopping time, so by duality and the regularity of 0 for (—o0, 0),
there are infinitely many 0 < ¢, 1 7o with X, > X, > X,,. Since € > 0 is
arbitrary, this implies that G; cannot be a time where X makes a jump, and so X
is continuous at G,.

It can be seen that m(c, t) df dc is the renewal measure of the bivariate ascending

ladder (time and height) process of X, by using the quintuple law for first passage

in

[7] or more directly, by using E(e #X7) = «k(q,0)/x(q,8), ¢ > 0, 8 > 0,

where « (X, B) is the characteristic exponent of the ladder process, and t is a random
variable with p.d.f. ge~9*1{x > 0} independent of X ([2], p. 163). First, by (14) and
G ~ Beta(l — 1/, 1/a), the joint p.d.f. of (G1, X1) can be written down. Then, by
scaling and (13), for each ¢ > 0, (G;, X;) has joint p.d.f.

Ve (e~ Ve, r/t(l — r/l)l/"‘_ll{O <r <t} _ome,r)(t — Y110 < r < 1)

I'(1/a) r'(1/a)

Then,

- 1
E(e Xy = m(c, 1)t — )"/ e P drde x (ge™ ") dt
rd/a) ¢>0,t>r>0

=q' 1 f m(c,r)e " P dr de.
¢>0,r>0

On the other hand, « (¢, 0) = ql’l/“ ([21, p. 218). Therefore,

-1
k(g, B) = (/ m(c, rye =P dr dc) , (15)
c>0,r>0
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and so m(c, r) is the density of the renewal measure of the ladder process. From (13),

sin(/a) [ sYYEy q(—s) q

o
/ m(c,r)e 1 dr =
0 wc? 0 q+s/c®

The integral representation does not seem to provide an easy path to an explicit formula
for k (g, B). On the other hand, it can be shown that forg > 0, 8 > 0,

B* —q . 1
=z 7 f /e
ca.p=p—q P71 (16)
[Ze)c]ozﬁ‘)‘_1 else.

The formula can be derived from a series expansion of « (g, 8) in [11], which
holds for any non-monotone strictly stable process with index in a dense subset A
of (0,2) \ Q. In the case of X, provided « € (1,2) N A, the series can be reduced
to the closed form in (16). Then, by continuity, (16) holds for all @ € (1, 2). In the
“Appendix,” we will give an alternative proof of (16) without relying on the continuity
argument.

In the next section, as a preparation, some general results on first passage of a
Lévy process are derived. This section also collects some standard results on stable
processes. In Sect. 3, Theorem 1 and its corollaries are proved. In Sect. 4, we show
that (71, X1,—, ATy) can be sampled exactly. It will be seen that the main issue is
the sampling of 1 (x, -)/vi(x) for any fixed x < 1, which is the conditional p.d.f.
of T1 given X7,— = x. The key is to show that /1 (x, t) can be decomposed as the
sum of positive functions ¢ (¢), ¢2(¢), .... Even though these functions do not have a
closed form, given ¢ > 0, each can be evaluated in a finite number of steps, and for
the exact sampling, only a finite number of them have to be evaluated. It is important
to keep in mind that these functions are constructed with the value of /1 (x, t) being
intractable. The decomposition then allows the conditional p.d.f. of 77 to be sampled
by the rejection sampling method.

2 Some General Distributional Results

We first consider Lévy processes in general and then specialize to spectrally positive
ones.

2.1 Properties of First Passage by a General Lévy Process

Proposition7 Let X be a Lévy process and T1(dx) its Lévy measure.

(a) (Distribution when X jumps over a level). Foreveryc > 0,1t > 0, x e R, w € R,
andy > c,

P{T, € dt, X7, € dx, X1, € dy, X7, € dw}
=1{xVv0<y<cldTI(dy —x)P{X; € dx, X, € dw}. (17)
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(b)

Foreveryc >0, P{X7._ < X7, =c} =0.

Remark Part b) is known when X is strictly stable with index & > 1 ([2], Proposition
VIILY).

Proof (a) The proof is standard so we only give a sketch of it (cf. [2], p. 76).

(b)

Given a Borel function f(,x,y,w) = 0, f(Te, X7,—, X1,, X7,.-)1{ X7, > ¢} =
D a0 Hi(A),  where  H,(2) = fa, X, X~ +  z,
X;)1{z>c—X,— >0,X,_ <c}. Then, by the compensation formula ([2],
p- 7,

/f(t, x,y, W)y > c}P{T; e dt, X7, e dx, X7, € dy, YTL,_ e dw}
= /E[Ht(z)]dtl'[(dz).

However, E[H;(2)] = [f(t,x,x + zzw)l{z>c—x>0,xVv0<w <c¢}
P{X, € dx, X; € dw}. Plug the equation into the right-hand side (r.h.s.) of the
display. Since f is arbitrary, by comparing he integrals on both sides, (17) follows.
If 0 is not regular for (0, c0), then by the strong Markov property of X, there
is a random € > 0, such that X; < X7, fort € (T;, T, + €), implying X7, >
c¢. Now suppose 0 is regular for (0, 00). If X7, = ¢, then T, > 7 := inf{t :
X, = ¢, Xy < ¢Vs < t}. However, by the regularity of 0 and strong Markov
property, X;, > X, = c for an infinite sequence ¢, | 7, implying 7, = 7. Then,
X7, =c> Xr,_} < Y ,.p-0HX; =c. Xs < cVs < 1}. Then, by following
the argument for Proposition II1.2(ii) in [2] and noting that X is not compound
Poisson, the claim follows.

O
In the next preliminary result, denote TI(x) = I((x, 00)).
Proposition 8 Suppose T1(0) > 0 and each X; has a p.d.f. Fix ¢ > 0 and define
o0
Ve (x) =/ he(x, t)dr, (18)
0

where he(x,t) is as in (2). Let D, = {A1, > 0}, i.e., the event that X has a jump at
the first passage at level c.

(a)
(b)

Ve(x) < oo for a.e. x < c (in Lebesgue measure).

Conditionally on D, X1,_ is concentrated on Q. = {x < c : TI(c—x)v.(x) > O}.
Moreover; conditionally on D. and X7, = x € (TC,YTC_) and Ar. are
independent, such that

_ Hz>c—x}T(dz)
N TI(c — x)
_ he(x, 1)

Ve (x) '

P{ATC € dZ | DC, XTC— = x}

P(T. € dt | De, X7,— = x}
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and for w € [x Vv 0, c]

_ hyw(x, 1)
P{Xr_ < Te=t,De, X7 =x} = ——.
{ T.— = wl|Te cy AT, x} ho(x. 1)

Proof (a) Fix —0o < a < b < c¢. By Fubini theorem,

(b)

b b © pPIx d 00
/ vc(x)dxff dx/ Mdl:/ Pla < X, < b} dt.
a a 0 dx 0

By definition, if X is transient, then the last integral is finite ([2]. p. 32) and so
fab ve < oo. Since a and b are arbitrary, v.(x) < oo for a.e. x < c¢. If X is not

transient, then it is recurrent, so X; — oo and X, — —ooas. ([2], p. 167-168).
Given r > 0, let T be an exponentially distributed random variable with mean 1/r
and independent of X. Then,

b o) o) b o o
/ dx/ e "he(x, 1) dt =/ e dt/ P{X, € dx, X; <c} =r'P{X; < ¢, X; € [a, ]}
a 0 0 a

Qo [10ss ey 0055y <hFE: € dIP-X, e dy)

<r'"P{X; €10, c}P{~X, € [(=b) VO, c —al},

where (%) is due to X, and X; — X, ~ X, being independent ([2], Theorem V1.5
and Proposition V1.3). As in the proof of Theorem VI.20 in [2] or Theorem 3 in
[7],1etr | 0. By monotone convergence, fab ve <U(O, c]) Zj([(—b) vO0,c—a)),
where U (resp. Z:i) is the renewal measure of the ascending (resp. descending)
ladder height process of X. Since both ladder processes are transient, the r.h.s. is
finite, again yielding v.(x) < oo for a.e. x.

By Proposition 7(b), fort > 0,x <c,x VO<w <c,and z > 0,

P{T, € dt, XTC,edx,YTC, <w,Ar. edz}=1z > c—x}dt hy(x, t) dx T1(dz).

Integrating over ¢ and z yields P{X7._ € dx,YTC_ < w,D.} = ﬁ(c —
X)vy (x) dx. In particular, letting w = ¢ gives P{X7._ € dx, A7, > 0} =
TI(c — x)v.(x)dx. This shows that conditionally on D., X7._ is concentrated
on 2. and, together last display, also shows that for x € Q,,

P{T, € dt, X7, < w, A7, €dz| X7, € dx, A7, > 0}
_ hy(x,t)dt » he(x,t) o 1{z > ¢ — x} TI(dz)
T he(x,) Ve (x) Me—x)

Then, the rest of the claim easily follows.
O
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2.2 The Spectrally Positive Case

Let X be a spectrally positive Lévy process that is not a subordinator. Then, single
points are not essentially polar for X, whether the process has bounded variation ([ 18],
Theorem 43.13) or not ([2], Corollary VIL.5). From potential theory ([2], Section IL.5),
it follows that X has a bounded g-coexcessive version of resolvent density u? (x) that
satisfies

u?(x) = E[e” 9% u?(0) (19)

for g > 0 and x € R, and if for every ¢ > 0, X; has a p.d.f. g, then

u?(x) =/ e g (x)dt, (20)
0

which can be extended to ¢ = 0 when X is transient. It will always be assumed that
g: 1s the unique version of p.d.f. that satisfies

/gs(y)gz(x —y)dy = gs4:(x)

forall x, y € R and s, t > 0. Equation (20) is stated in Remark 41.20 of [18] under
the assumption that g; is bounded and continuous. It is probably known that (20)
holds in general. However, we could not find an explicit proof in the literature, so for
convenience, one is given in the “Appendix.”

To evaluate . (x, t) defined in (2) for stable processes, the following result will be
used.

Proposition 9 Suppose that each X; has a p.d.f. g;. Then, given x < c,

he(x, 1) = gi(x) — /Ot Je($)gr—s(x —c)ds 2
=81(x) — /Ot Jr—e($)g1—s(c) ds. (22)

Furthermore, if x > 0, then h.(—x, -) is the convolution of h.(0, -) and f—_,, i.e.,
he(=x,) =he(0, ) * f_x. (23)
Proof Since X has no negative jumps and t. > T, a.s. ([2], Proposition VIIL8(ii)),
for each A C (—o0, ¢), l{Xt cA X, > c} = 1{X; € A, t. < t} as. Then, by the

strong Markov property of X, for any bounded continuous function k(x) > 0 with
support in (—o0, ¢),

t

Elk(X)U X, > c}] = E[k(X) Uz, < t}] = / Elk(X;—s + o)]P{z. € ds}
0
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t
=f [/ k(x +C)gt—s(x)dxi| fe(s)ds
0
t
= /k(x) [[ fe($)gi—s(x —¢) dS} dx.
0

On the other hand,
/k(x)hc(x, 1) dx = E[k(X)1{X; < c}] = E[k(X))] — E[k(X)1{X; > c}].

The two displays together with E[k(X;)] = f k(x)g:(x)dx give (21). Equation (22)
is essentially shown on p. 4/10 of [13] (also see [16]). Given x > 0, write
m_x(t) = g;(—x) as a function of t and L[m_,] its Laplace transform. By (19) and
(20), LIm_y] = ud(=x) = L] f-x1u?(0) = L[ f—x1L[mo]. Then, m_, = mqo * f_,.
Also, f_x_. = f—¢ * f—x. Plugging the two equations into (22) yields (23). O

2.3 Preliminaries on Stable Processes

From now on, let X be a spectrally positive and strictly stable process with index
o € (1, 2) satisfying (3). Then, the Lévy measure of X is

—a—1
M (dx) = % dx (24)

([9], p- 570). By scaling and [18], p. 88, g, has power series expansion on R,

o0

_ _ 1 'k/a) . _ _
S Ve N _ _+ kjo k—1
g(x) =t g1t X) = o kE:l * D! sin(km /o)t X (25)

By [2], Theorem VII.1, (7_y),>0 is strictly stable with index 1/«, such that

E(e 9™) = exp(—xq'/*), ¢ > 0. (26)

By scaling and [18], p. 88, or by Kendall’s identity, for x > 0 and ¢ > 0,

o]

1
far® =" =~

k=1

_Tk/a+1)

. sin(rk fo)xk 7K@l 27)

From (25), g;(x) as a function of (x, ¢) can be extended from R x (0, co) to
C x (C\ (—00,0]), such that for each fixed x € C, the extension is an analytic
function of t € C \ (—o0, 0], and for each fixed r € C \ (—o0, 0], it is an analytic
function of x € C. By (27), f—x(¢) can be similarly extended from (0, co) x (0, c0)
to C x (C\ (—o0, 0]). However, the extension is not the same as f_,(¢) for (x, ) €
(—00,0) x (0,00). Indeed, for x < 0 and # > 0, the extension necessarily has the
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power series expansion (27). On the other hand, for x < 0, the power series of f_ ()
is quite different ([20], Proposition 3).
Finally, for s € R ([21], Section 5.6),

re)rdad—s/oa)

> ifs € (—1, @)
/ Xgr(x)dx = { T(s(1 —1/a)I'A —s(1 — 1/a)) (28)
0 %) else
and
ra-—
00 TA =590 i < 1/a
/ £ fo(ydt =1 T(1—s) (29)
0 00 else.
3 Proof of Main Results
3.1 Initial Deduction by Laplace Transform
We need the following formulas from [20]. Given x > 0,
E(e™9™) =E(e™"™) = Fi(q"/*x) — aF,(q"/*x), (30)

where F,(x) = E,(x%) := E,1(x%) and for fixed a > 0 and d € C, the following
function of z € C

o n

Z
Ea,d(Z) = r;) m

is known as the Mittag—Leffler function. Then, F (ql/ “x) = E; (ql/ “x) =e4 VX and
from

0 an ¢ o0 _an—1
, . Z o Z
Fa(@) = (Z rd +an)> =2 T(an)’

n=0 n=1
it follows that

nfl/ozxomfl

o0
q

aFl(q"%) =« Z
o I'(an)

Fix x < 1. We seek the Laplace transform of /1 (x, -). For brevity, put

h(t) = hy(x,1).
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Proposition 10 For g > 0,

o —1 n—1 0)en— 1
Lihlg) = e ")Zr(an) IRARCILE (;C(Zn)) SNEI
n=1

Remark By (18), vi(x) = L[h](0+), which together with (31) yields (8).

Proof of Proposition 10 By (21) in Proposition 9, the Laplace transform of 7 is
e} t
L[11(q) =/0 e [gt(X) —/0 J1($)81—s(x — l)dS} dr
=ul(x) —EC ™) ud(x —1).

By (20), scaling, and (25),

o0 00
u?(0) = / e_qut(o) dr = gl(())/ e Ve qr — o lql/a 1
0 0
Then, by (19),

LIEl(g) = a g *  [E(e ™) — E(e 7% E(e1™)]. (32)

Since x — 1 < 0, by (26), E(e=9%-1) = ¢&=Da"" If x <0, then E(e~9%) = ¢*¢'"

as well, and so applying (30) to E(e™9™),

., n 1/a
]E(e—q‘rx) _ ]E(e—q'fx—l)]E(e_qu) = eql/ =1 (eq - Z I'(an) )

n 1/a

g/ >
— “(x—1)
we Z C(an)

On the other hand, if x > 0, then applying (30) to both E(¢~9%) and E(e~9™),
]E(e*qfx) — E(e*fﬁx—l )E(e*qfl)

oV q - Vo) Y q" 1/a
S s D >
I'(an) I'(an)

n— l/ot an—1

N LLTCES)) 4
= aef Z T(an) Z T (an)

The above two identities for E(e ™9™ ) —E(e~9%-1)[E(e~ ™) combined with (32) then
lead to (31). O
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Given x < 1, fy_1 belongs to C5°([0, 00)), the family of infinitely differentiable
functions on [0, co) with derivative of any order equal to zero at 0 and oco. Since
¢=4""(0=%) s the Laplace transform of fy_1, in view of (31) and the relationship
between Laplace transform and differentiation, if x < 0, then it is possible to show (7)
by interchanging Laplace transform and the infinite summation on the r.h.s. of (31).
However, as noted in the introduction, for x > 0, the approach fails to work. In our
proof, (7) is first established for x < a and r > 0, where a < 0 is some constant. The
argument based on interchanging Laplace transform and infinite summation is carried
out. Then, the general case is resolved by analytic extension.

3.2 Proof of Theorem

Fixing t > 0, regard 21 (1 — x, t) as a function of x. We need a preliminary estimate
of the domain it can be analytically extended to. Recall that a domain is a connected
open set in C.

Lemma 11 Givent > 0, the mapping x — hi1(1 — x, t) can be analytically extended
from (0,00) 10 Q:={z € C: |argz] < 7/2 —7/Qu)}.

Proof The following fact will be used. Let D C C be a domain and J C R. Suppose
m(z, A) is a measurable function on D x J and v is a measure on J. If m(-, 1) is
analytic in D for each A € J, and the mapping z — | |m(z, A)|v(d)) is bounded
on any compact subset of D, then by Fubini’s theorem and Morera’s theorem ([17],
p. 208), M(z) = [ m(z, 2)v(dA) is analytic on D.

Given t > 0, by Proposition 9, h1(1 — x,t) = g(l — x) — fot fie —
s)gs(—x)ds. Since g; can be analytically extended to C, it suffices to show that
x — fot gs(—x) f1(t — s) ds can be analytically extended to 2. By Kendall’s identity

t 1 t
/0 &s(—=x) fit —s)ds = —/O sfox(s) f1(t —s)ds.

X

The Fourier transform of f_y is fox(A) = L[fxl(=ik) = e~ N ) ¢ R,
where —7 < arg(—iA) < m. Then, |f/‘\—x()\.)| — e Re(=inex _ —[iV*xcosa yith
a =m/(Q2a). As cosa > 0, Fourier inversion can be applied to get

1 Ry oo/
ffx(S) — 2_/ e—l s—(—=ir)/%x d)\.
T J-c0
and Fubini theorem can be applied to get
! 1 o0 (=i ey
gs(=x) fr(t —s)ds = o~ v (d)e da,
0 —00

where (L) = fot se™ ™ fi(t — s)ds is bounded. Given a compact C C £,
6o := sup,cc |arg(z)] < m/2 —a and ry := inf.ec |z| > 0. For z = rel? € C,
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Re((—ir)/%z) = A1/%r cos(f + a), where the sign of a is opposite to that of A. By
10 +a| <6y+a < m/2,Re((—ir)/%z) > cAl/® with ¢ = rocos(y +a) > 0. Then,
ffooo lﬂ()»)e_(_i)‘)l/az dA is bounded on C. As remarked at the beginning, this yields
the proof. O

Lemma 12 Foreveryx < landt > 0, the series in (5) and (7) converge absolutely and
are equal to each other, and as functions of (x, t) can be extended to C x (C\ (—o0, 0]),
such that for each fixed x € C, the extended function is analytic int € C \ (—o0, 0],
and for each fixed t € C\ (—o0, 0], the extended function is analytic in x € C.

Proof By (27), the series in (7) is

o0

1 a1 & k1 Dk/a+1) k,—k/a—1
;mw (; ;(—1) g sinGrk/e) (1 — 0

n—1
Z(F(ljm) Z( 1y 1M ek o) (1 — xki ke,

Then, to show the entire lemma, it suffices to show that series on (5) converges abso-
lutely. Letting M = [1 — (x A 0)]t’1, the sum of the absolute values of the terms in
the series is less than

00 o kjatn—1
Z Fg‘/“ ';‘") Mk/etn _ /OO S]‘* ¢ nk‘ e~5/M 4s
k,n=1 (an)k! o 2 Tl

oo [ © Snfl 00 sk/oz M [e’e] Va_s/m
= — e ds 5/ Ego(s)e’ M ds.  (33)
/0 n; [ (an) ; k! 0

From (22) onp. 210 0f [8],as 5 — 00, Eq.q(s)e’ " ~5/M = 0 (e>"" /M) Therefore,

the last integral is finite, yielding the desired absolute convergence. O

Given x > 0, denote
hy(@) = hi(1 —x,1)

and regard it as a function of t > 0. A key ingredient of the proof of Theorem 1 is to
show that /i, (¢) is identical to

& Mo
wy(t) = 2:(:) Tanta)" (34)

For this purpose, the following lemmas are needed.

Lemma 13 Given x > 0, hy(t) is a bounded and continuous function of t > 0
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Proof By Proposition 9, h, (1) < my(t) := g;(x). From (25), m,(t) is continuous in
t > 0 and is bounded on [a, co) for any a > 0. On the other hand, by scaling and
81(2) = 0z ") as z — 00, my(t) = g(x) =1~/ g1 (171/*x) = O(W) as 1 — 0.
Therefore, m, (¢) is bounded on (0, 00) and so is & (). Next, observe that both f_, (¢)
and m (¢) can be extended into uniformly continuous and integrable functions on the
entire R with values on (—o0, 0] equal to 0. As aresult, f_ xm is continuous. Then,
by Proposition 9, hy () = my(t) — (f—x * m1)(¢) is continuous. O

Lemma 14 Let xo = 1/ cos(w/(2a)) and fix x > x.

(a) The following function is bounded in t > 0,

TR0
gxm_,,zzo—wnﬂ)'

(b) wy(t) is a bounded and continuous function of t > O.

(©) Llwl(g) = LIh](q).

Proof (a) From the bound on |f_1 (1)] in the proof of Lemma 11, it follows that for
any n > 0, ffooo A" f—1(A)|dA < oo, so by Fourier inversion

o= % / WM () da

and hence

IA

1 = r L[> e
—f P 1 ()] dA = —f A= 0 gy
21 J_ o 7 Jo

ol (an + a)xg""’o‘

T

sup | £ (1)]
t

a [
- / )Lan+a—le—k/x0 dx =
T

Since £, (1) = x~ f_1 (x %), then £ (1) = x~@"~* £ (x~%1). As a result,

e )
()= v a)

n=0

o
_Z 5 /x)cm+a’
‘7[ _

and hence for x > xq, ¢, (¢) is bounded in 7 > 0.

(b) From (a), it follows that w, (¢) is bounded. The continuity of w, (¢) is implied in
Lemma 12.

(c) By(a),forx > xq,the summation and integration can interchange in the calculation
of L[{w,](g) to yield

LU L@ s d"
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Since x > 1, from Proposition 10, the r.h.s. is the Laplace transform of ,(-) =
hi(l —x, ).
O

Proof of Theorem 1 Again write h,(t) = h1(1 —x, t). By Lemma 14, forx > x¢ > 1,
wy (t) is bounded and L{wy](qg) = L[hx](g) for all ¢ > 0. Then, by the one-to-one
correspondence between bounded continuous functions and their Laplace transforms,
h,(t) = wy(t). Thus,

SIAN0
hl(l —X,t) = Zom

1 i I'(k/a + n)
_7'[

I"'(an)k! (= 1)k+nxk sin(nk/a)t—k/a_n'

k,n=1

Fixt > O andtreat x as the only variable. By Lemma 11, 41 (1 —x, #) can be analytically
extended from (0, co) to a domain 2 C C containing (0, co), while by Lemma 12,
the two series in the display converge absolutely and can be analytically extended to
the entire C. Since k(1 — x, t) and the two series agree on (xg, 00), they must be
equal on €2, in particular, on the entire (0, 0o0). It follows that for every fixed r > 0,
(5) and (7) hold for all x < 1. This completes the proof of (5) and (7). The rest of the
theorem follows by combining (5) and (7) with Proposition 7 and (24). O

3.3 Proofs of Corollaries

Proof of Corollary 2 From TI'(z) = fooo s%~1e™5 ds and the absolute convergence of

(D,

1 00 0 sk/ot+n 1 s . y
_ -5 ne1 _ : —k/o—n
hi(x,t) = < )y k;l Famk] (=D — x)* sin(wk/a)t ds
_ L7 i ((x = D(s/0)7*)* sinGrk/a) i sy
7 Jo — k! o I'(an)
= —/ “ T /a)(—l/t)Ea,a(—S/t)ds.
By change of variable, the integral representation follows. O

To prove the other corollaries, h.(x, t) is treated as a function of ¢ as well as x and
t. From (5) and the scaling relationship (6),
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1 00 cotn+a (n) (l)

b0 =2 2 Tan ) (35)
— l c M _ktng. Nk an—1 —kja—n
= Z T (an)k! (=D (c = x)"c sin(wk /o)t . (36)

k,n=1
Both series converge absolutely for given ¢ > 0.

Proof of Corollary 3 Fixx < landt > 0.Putg(c) = h.(x,t) > Oandcy = x V0. We
shall show that ¢ (c) > 0 for all ¢ > ¢¢. From its definition in (2), ¢ (c) is increasing on
(co, 00). By Proposition 9, ¢ (c) = g; (x)—f(; ko(s)ds,where k. (s) = fr—c(s)gi—s(C).
Forc > co+ 1, fie(s) = (c —x)7%f_1((c —x)™%s) < supf_jandass 1 ft,
gi—s() = (1 =) Vg1 (c(t —5)"V/*) = (1 = 5)"V/O((t = )'*/*) = 0(1). As
¢ — 00, k.(s) — Ofors € (0, t). Then, by dominated convergence, ¢(c) — g:(x) >
0. On the other hand, from (36), ¢(c) can be analytically extended to C \ (—o0, 0].
If ¢(c) = 0 for some ¢ > cp, then by monotonicity, ¢(z) = 0 for all z € (¢, ¢).
Then, by analyticity, ¢(z) = O for all z > cp, yielding ¢(z) — 0 as z — o0, a
contradiction. O

Proof of Corollary 4 Fix t = 1 and x. Then, each term in the series (36) is a function
of ¢, denoted d ,(c). It is seen that d,’c’n(c) is the (k, n)™ term in the series (9). For
each bounded interval I = [a, b] C (x VvV 0, 00), letting M = b + |x|,forall c € I
and k,n > 1,

C(k/a + n)
d, <Dppi=——-——
;.0 (@ = Dk, T (an)k!

(k 4+ an — HM*e=1q.

By argument similar to that for Lemma 12, Z,Cfn:l Din < o00. As a result,
dhe(x, 1)/dc = m~! Z,ff’n=l d,’(’n(c) for ¢ € I. Since I is arbitrary, then (9) holds
for all ¢ > x Vv 0, as claimed. O

Proof of Corollary 5 This is immediate from Proposition 8 and the fact that being spec-
trally positive with infinite variation X does not creep, i.e., A7, > 0 a.s. ([6], p. 64).
]

Proof of Corollary 6 Let

P{X| e dx, X| e dc, G| <r)} dhe(x, 1)
’ b(xaca t) = 5. -

dx dc dc

alx,c,r) =

Although Corollary 4 provides a series expression of b(x, c, t), it is not very useful
here. Instead, by (22), for x < c,

a t
b e =~ [ /O Feee()g15(©) ds]

"'TOfi e ’
= —/ [%gt—s(c) + fx—c(s)gt—s(c)i| ds, @7
0 C
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where the interchange of integration and differentiation on the second line is justified
by the uniform boundedness of d( fx—(s)g:—s(c))/dc as a function of (c, s) on any
compact set in (x Vv 0, 0o) x [0, 00).

Givenr € (0, 1), for each € € (0, 1 — r), by conditioning on X, and X, and the
Markov property of X,

P{X, edx, X, ede,r <Gy < r+ €}
= / P{X, € du, X, < ¢} P{X. € dv, X¢ € dc — u}
u<c,v<c—u
XP{X|_pe€dx —u—v,X|—pe <C—u—uv}
= / P{X, € du, X, < c¢}P{X. € dv, X € dc — u}
u<c,v<c—u
XP{X|_y_e €dx —u — v,yl,r,g <c—u—v},
where the second equation is due to X, and X|_,_. having continuous distributions
according to Corollary 4. Make change of variables y = c —uandz = c —u — v.

Then, divide both sides of the above display by € dx dc and use (2) and Corollary 4 to
get

alx,c,r +¢€)—alx,c,r)

€

b T Ky Vs
=/ hote—y. ) 2Y 22O i —r—e)dydz. (38)
y>0,z>0 €

From (37), it follows that for y > 0 and z > 0,

€ df_.
b(y —z,y,€) = —/ |:gs—s(Y) fa )
0 Z

+ g;_s<y>f_z<s>] .

By fo:(s) =z7% fL1(z™%s),

9 f—z(s) _

3 —az %) + 5270 (%)),
z

Make change of variable s = ew. Then,

b(y_Z,y,E) _

!
€ az™! /0 Ge(l—wy W f=1(ez7%w) + ez %wf’ | (ez27%w)] dw

1
-z f gé(l_w)(y)f—l (ez”%w) dw.
0
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Put u = ¢ /%y and v = e !z%. Then, 8e(l—w)(¥) = e Vg (e Vay) =
e Vg y)and g, (v) =€ 2% (e7/y) = €] (), and so

€

b(y —z,y, e a1 1 ,
by =239 _ e-tiaymam /0 1@ fo1 (/) + (/o) £ (w/v)] dw

1
—e e / &1y ) fo1 (w/v) dw
0

=e 2y, v),

where the second equality is obtained by replace z with (ev)!/* and
1
I(u, v) = av™ !/ / 1w @ f=1(w/v) + W/v) £ (w/v)] dw
0
1
- /0 g1 @) fo1(w/v) dw.

Combined with (38) and dy dz = €?/*a~'v!/*~1 du dv, the above display yields

a(x,c,r+¢€)—a(x,c,r)
€

= ¢ 2ol f he(c—y,r) x v (u, v)h,(x —c+2z,1—r —e)dydz
y>0,z>0

1 h _ /a ,
_ _/ hee= € D) oI, v)
u>0,v>0

o el/ay
h (€N —(c—x),1—r—c¢
o M (€)= (€~ ) ) dudo. (39)
(Ev)l_l/“

We need the following two lemmas.

Lemma 15 The function (u/v)I(u, v) is integrable over u > 0 and v > 0 with
f (u/v)I(u,v)dudv =T (ax +1).
u>0,v>0

Lemma 16 The following statements hold.

(@) Givenc > 0andt > 0, he(c — x,t)/x as a function of x is bounded on (0, 00)
and

he(c — x, 1
lim €= xD e,
x—0+ X

Furthermore, given ¢ > 0, m(c, t) is bounded in t > 0.
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(b) Givenx > 0andt > 0, he(c —x,1)/c* " as a function of ¢ is bounded on (0, 50)
and

. hee—x, 1) fox(D)
lim = .
c—0 co—1 I'w)

Assuming the lemmas are true, let ¢ — 0 in (39). By the lemmas and dominated
convergence, the limit is m(c, r) fy—.(1 — r). With similar argument, [a(x, c,r) —
a(x,c,r — €)]/e converges to the same limit as € — 0. Then, (11) is proved.

To prove the rest of the corollary, integrate (11) over x < c. From the identity
Jo© f=x(s)dx = sY*=1/ T (1/a) ([18], p. 270), it follows that G| and X have joint
p.d.f.

P{G € dr,X; €dc}  m(c,r)(1 —r)!/e!

drdc 'd/a) (40)

The conditiona_l independence of X and X; — X, given G, follows from (11).
As noted earlier, G| follows the Beta(l — 1/«, 1/«) distribution. This can be directly
proved by integrating the above joint p.d.f. over ¢ > 0. Since by (13),

o0 : o0 (o 0]
/ m(c,r)dc = Mf sV Eg (=) [/ ¢ 2esr/et dc] ds oc r= Ve,
0 T 0 0

the p.d.f. of G| is in proportion to 7 =1/ (1 —r)1/*~1 so it must be Beta(1 —1/a, 1/a).
Then, conditionally on G 1, the p.d.f. of X | follows by dividing the joint p.d.f. of X | and
G by the p.d.f. of G, and the p.d.f. of X | — X/ follows from integrating fy_.(1 —r)
over x < ¢ and Kendall’s identity (1). O

Proofof Lemma 15 From the definition of I(u,v), to show the integrability of
(u/v)I(u, v), it suffices to show

1
I ;:[ up~1-1/e [/ gl_w(u)f_l(w/v)dwj| dudv < oo,
u,v>0 0
1
b ;:/ up~ 2 1e [/ wgl_w(u)|fll(w/v)|dwi| dudv < oo,
u,v>0 0
1
I :/ uv ! [f |g§w(u)|f_1(w/v)dwi| dudv < oo.
u,v>0 0

By (28), for w € (0, 1), [,_ougi—w()du = E[X|_, V0] = (1 — w)"/*/T'(1/a).
Then, by Fubini’s theorem and (29),

1 ! e
I = W/o (1 —w)'/e [/O v‘l‘l/“fl(w/v)dv} dw

: : —1/a 1/a o0 1/a—1 B r‘(a)
F(l/a)/o w (1 —w) [/() t f—l(t)dt] dw = .
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Similarly,

1 1 0 /
b= F(l/a)/o wt —w UO ”‘””“If_l(w/vndv} dw

1 ! ~ /
F(1/a) fo W] — /e [/0 tl/alf_l(t)ldt] o = o

It follows that

1
I :=/ up =21/ [/ wgl_w(u)f/l(w/v)dw:| du dv
u,v>0 0

= 1 : —1/a 1/a o 1o 41
_F(l/“)/o w (1—w) |:/0 t f—l(t)dfi|dw

_ 1 b e va | 7 1/a=1 X))
_—mA w (l—U)) |:/(; t f_l(t)dt}dW——m.

Next, since C := [ ulg|(u)|du < coandg|_, (u) = (1—w)~/*g| (1—w)~V/u),

1 00 o
I3 = / {/ v o (w/v) [/ ulgy_, W)l du] dv} dw
0 0 0

1 00
:c/ {/ vlf_l(w/v)dv}dw:CF(l—f—a) < 00
0 0

and
~ 1 0 00
L= f {f v (w/v) U ug/lw(u)du] dv} dw
0 0 0
=I(a+ l)f ugi(u)ydu = —T(a)(a — 1).
0
Since f(u/v)](u, v)dudv = a(l; + L) — I3, the proof then follows. O

Proof of Lemma 16 (a) From the absolute convergence of the series (36), as x — 0+,
he(c — x,t)/x converges to the limit with the expression (12), which is m(c, t).
To show that m(c, t) has the integral expression (13), first prove it for n(t) :=
m(l,t) = limy_o4+[h1(1 — x, t)/x] using the integral representation in Corol-
lary 2 and then prove it in general using scaling. Finally, by (21) on p. 210 of [8],
Eqyo(—s) = O(s %) as s — oo. Then, givent > 0,

o0
(@) < n—lf 1% By o (—5)]ds < 00,
0

so h1(1 — x,t)/x is bounded for x € (0, xg) for small enough xo > 0. On the
other hand, by (22) A1 (1 — x,t) < g:(1 — x), so h1(1 — x, t)/x is bounded on
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[x0, 00). Thus, k(1 — x, t)/x is bounded on (0, co). Furthermore, from (12), n(-)
has an analytic extension to {z € C : Rez > 0}. As a result, n(z) > 0 for almost
every ¢ > 0 under the Lebesgue measure. Fix » € (0, ¢). By the Markov property,
for any x > 0,

hi(l —x,1) =/ P{X, el —du, X, < Uh,(u—x,t—r)
u>0

=/ hi(l —u,r)h,(u —x,t —r)du.
u>0

Divide both sides by x and let x — 0. By Fatou’s lemma and m(c,t) =
n(t/c)/c?,

n(t)z/ hl(l—u,r)m(u,t—r)dl,t:/ hl(l—u,r)n(([_u—;)/lmdu.
u>0 u

>0

By Corollary 3, A1 (1 — u,r) > O for all u > 0. Then, the integral on the r.h.s. is
positive, and so n(t) > 0.
(b) The convergence follows from (35). That h.(c — x, t)/c“ ~1is a bounded function
of ¢ on (0, 0o) can be similarly proved as in (a).
O

Remark By duality, for r = 1, the limit in Lemma 16(a) can be written as

P{X;edc—x|X; >—x} PX;>—x}
X
de

- m(c, 1), x—0.

Since P{X|, > —x} =P{t_y > 1} =P{r_1 > x7 %} ~x/T(1 - 1/a)asx — O,
then the display suggests that I'(1 — 1/«a)m(c, 1) can be regarded as the conditional
p.d.f. of X| atc > 0 given X; > 0.

4 Exact Sampling for First Passage

In this section, it will be shown that it is possible to conduct exact joint sampling of T,
Xr.—, and A7, for a spectrally positive stable X satisfying (3). From Proposition 8,
this may be done in two steps. The first step is to jointly sample X7._ and A7,
which is standard. The second step is to sample 7, given X7,_, which is the focus of
the section. Since by scaling, (T, X1.—, A1) ~ (c¢*T1, cX1,—, cA7)), it suffices to
consider ¢ = 1.

4.1 Sampling of Pre-passage Value and Jump

Because P{X; >0} =1—-1/« (LZ],p. 218), from Example 7 in [7], at every (x, z, w),
thejointp.d.f.of X7, _, Ar,,and X, _ takesvalueCl{x VO <w < 1,z > 1 —x > 0}
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w* 27717 where C = n’la(a — 1) sin((o — 1)7r). It follows that X7, ~ &, where
& has p.d.f.

p(x)=C'1l{x < 1}[1 = (x vO)* (1 = x)™@

with C" > 0 a constant, and for every x < 1, conditionally on X7, = x, A, ~
(1 — x)¢, where ¢ has p.d.f. ¢(z) = al{z > 1}z7*!. Thus, the joint sampling of
X7, and A7, boils down to that of independent & ~ p and { ~ ¢. The sampling of
¢ is straightforward as { ~ U —le where U ~ Uniform(0, 1). To sample &, it can be
seen that p(x) = 0 p;(x)+(1—0) pr, where 0 = m1/(m+m») withm| = (@—1)"",
ms = m/sin((@ — 1)) — (@ — 1)1, and

pr®)=1x <0} (1 —x)"/my, pa)=10 < x < 1} (1 —x*" (1 —x)"*/my

are two p.d.f.’s. On one hand, pi(x) is the p.d.f. of 1 — U~1/@=D_On the other,
@) {0 <x <131 —x"H1 -0 <px) =10 <x <1} (1 —x)*L.
Using the fact that p (x) is proportional to the p.d.f. of 1 —U!/?=® p; can be sampled
by the rejection sampling method ([5], Chapter II). In summary, p(x) can be sampled
as follows.

(a) Sample I from {1, 2} such that P{I = 1} = m/(m + m2)
(b) If I = 1, then sample U ~ Uniform(0, 1) and output 1 — U —1/@=1 otherwise,
do the following iteration until an output is made.

e Sample U, V i.i.d. ~ Uniform(0, 1), and set x = 1 — ule-o v <
(1 —x*~1/(1 = x), then output x, otherwise repeat.

4.2 Sampling of Time of First Passage

‘We now consider the sampling of 77 conditionally on X7,— = x € (=00, 1). By Propo-
sition 9, if x < 0, then A1 (x, -)/v1(x) is the p.d.f. of T/ + &, with T/ ~ h1(0, -)/v1(0)
and £ ~ f, being independent. Since the sampling of & is well known [4], the sam-
pling of h1(x, -)/v1(x) can be reduced to that of /41(0, -)/v1(0). As a result, it only
remains to consider the case 0 < x < 1.

We again will use the rejection sampling method. For this method, the normalizing
constant v.(x) is not important and one can just focus on A (x, -). We will use the
power series representation (5) of /1 (x, -). In order to handle the infinite number of
positive and negative terms in the series, we first describe the general approach to use.

Let p and g be two p.d.f.’s that are proportional to some explicit functions f and
g, respectively, whose normalizing constants may be intractable; g is known as an
envelope function. For the rejection sampling method, ¢ must be easy to sample.
Suppose f can be decomposed as

oo
f@ = Z ¢i(t) such that for some explicit constants cy, c2, . ..
=1
0<¢i(1) <cg(t) with C:=) ¢ < oo,

(41)
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Then, p can be sampled as follows.

e Independently sample 7 ~ g, U ~ Uniform(0, 1), and £ from the probability
mass function P{¢ =1} = ¢;/C. If U < ¢¢(T)/(ceg(T)), then output T and stop,
otherwise repeat.

Indeed, by standard argument of the rejection sampling method, the p.d.f. of the output
of the procedure is proportional to

a ¢ | _
g(t) le [E X m} = leqsz(r)/c =f/C,

so it must be p. The point is that when f (¢) is an infinite series that cannot be evaluated
in closed form, say f(1) =), ca fa(?), it is possible to have each ¢ () equal to the
sum of a finite set of f,(¢). More precisely, ¢;(t) = ZaeA;(t) fa(t), where A;(t) is a
finite subset of A that may depend on ¢, and given ¢, A{(¢), A2 (), ..., form a partition
of A. It is also critical the A;(¢)’s are such that ¢;(¢) > O for all / and ¢. In each
iteration, once T and ¢ are sampled, only ¢;(T) with [ equal to the value of £ needs
to be evaluated. As long as for any ¢, each f,(¢) is easy to evaluate, and the set A;(¢)
can be enumerated in a finite number of steps, ¢;(¢) can be evaluated exactly.

To apply the above approach to /1 (x, t), where x < 1 is fixed, the main issue is the
construction of the envelop function and the ¢;(¢)’s. The next lemma gives an option
for the envelope function.

Lemma 17 Fixing any D > sup,-; 2"~ 'T'(n)/ T (an), define

0 =40 Cy = (@l —1/a)~" v [D@E% + )],
Hy(t) = Cot Ve At™17%, 1> 0.

Then, for every ) < x < landt > 0, hi(x,t) < Hy,(t).

The normalized Hy(r) is Op1(t) + (1 — O)pa(t), where pi(t) = (1 —
1/a)1{0 <1 < 1}t~/ and pp(t) = al{t > 1}~ L are p.d.f’s and 6 = o?/(a® +
o — 1). Thus, the normalized H, can be sampled as follows.

e Sample U, V i.i.d. ~ Uniform(0, 1). If U < 6, return ye/@=1 otherwise return
/e,

As aresult, H, can be used as an envelope function.
Now, consider the construction of ¢; (). Let ¢; = 2~ 1 Then, from (41), we wish
to construct 0 < ¢ (1) < 27TV H, () such that by (x, 1) = 372, ¢u(t). Write

_ T(k/a + n)sku"

Mien (521 = = )
so that
oo
i) =) sin(rk/e)mpa(—(1 =)V~
k,n=1
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We shall construct for each + > 0 a sequence of finite sets A;(r) C N x N,/ > 0,
such that A;(t) C Aj41(1), U2 A1) = N x Nand

F@):= ) (=D sinGrk/o) My,
(k,n)eA;(t)

is strictly increasing in / such that 0 < hy(x,t) — Fi(t) < 2-'H, (1), where My, =
Mg (s, u) with s = (1 — x)t~ Y% and u = t~!. Once this is done, let ¢;(r) =
Fi(t)—Fj—1(t). Then, Y ;2 ¢y (1) = lim; Fy (1) = hi(x,t)and0 < ¢y (1) < hi(x,1)—
Fi_1(t) < 27"*1H,(t), as desired. The construction is based on the following two
lemmas.

Lemma18 Fix ¢ € (0,1/2) and s, u > 0. Let k and n € N such that n >
Qu/e)V/ @D k> (25/6) @D and kja < n < (2 — 1/a)k, then

o0
D Migingj(s,u) < 2demp (s, w), (42)
i,j=0,i+j>1
o
> (s u) < 2emp (s, u) VK <k, (43)
j=1
o
kaﬂ',n/(s, u) < 2emyy(s,u) Vo' <n. (44)

i=1

Lemma19 Letdy = (1/a—1/2)A[1/2—1/QRa)]and Ly = (@ — 1/2) /(@ — 1)] +
1 > 2. Then, among any 2L, consecutive integers, there exist an even number and an
oddnumber bothbelongingto Ay := Ujezlj, wherel; = [(2j+dy)a, 2j+1—dy)al.

Assume the two lemmas are true for now. Let Ag(r) = @ and Fyp(t) = 0. By
Corollary 3 and Lemma 17,0 < hy(x,t) — Fo(t) = h1(x,t) < H,(t). Suppose A;(t)
has been constructed, such that Fj(r) > 0 and 0 < hy(x,t) — Fi(t) < 27"V H, (1).
We need to construct Aj41(t) D A;(2), such that Fj41(t) > F;(¢t) and 0 < hy(x,t) —
Fip1(t) <27 Ho (0).

For r € N, denote S, = {(k,n) : k,n = 1,...,r}and 3S, = {(k,n) € S, :
kv n =r}its “boundary.” Let d, and Ay be as in Lemma 19. Let 6, = sin(dy7r) and
Ky =7Z N Ay.Then, 6, > Oand fork € Ky, mk/a € [2j +dy)m, 2j + 1 —dy)7]
for some j € Z, so for n of the same parity as k,

(=D)** " sin(kn /o) = sin(kr/a) > 84 > 0.

Put € = §,/24. Let R be the smallest integer such that

2L 2u\ /@D roge/e=D 27'H, (t
R> —* v(—”) v(—s) . A C SR Y My < alf)

a—1 € € myedSk 24¢

Starting with r = R, do the following iteration.
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e For each n, let k,, be the smallest number in K, N [r + 1, 00) that has the same
parity as n; k, exists because by Lemma 19, K, N{r +1,...,r + 2Ly} contains
an even number and an odd number. In particular, 1 < k,, —r < 2L,. Define

,
S/ =8, Ul Jlk.n) i r <k <ky)
n=1

and S, = 8" U{(k.r +1): (k.r) € S/, (=D} sin(k/a) > 0}. If

> (=D sin(rk /)My > Fi(0),
(k,n)es].
then let A;41(t) = S, and stop. Otherwise increase r by 1 and repeat.

Since h{(x,t) — F;(t) > 0 and Z(k’n)esc(—l)k*'" sin(wk /)My n — hi(x,t) as
r — 00, the iteration eventually will stop. It is clear that A; () = S, D Sgp D A;(¢)
and Fj11(¢) > Fi(t). Next,

h 0 —Fa@= Y (D" sinrk/a) My < Y Min < Y Mi.
(k,n)¢ S/ (k,n)¢Sy (k,n)¢SR

Since R > (2u/e)!/ @D v (25/€)*/@=D by Lemma 18,

(o) R—1 o© R—1 o©
Z My = Z MRy rtj + Z Z My pyj + Z Z MR+in
(k.n)¢Sk i, j=0,i+j>1 k=1 j=1 n=l i=1
R—1 R—1
<24eMpr+26 Y Myg+2€Y Mpyn <24 Y M,
k=1 n=1 (k.n)ed Sk

By the choice of R, the above two displays give i1 (x, 1) — Fj41(t) < 27" Hy(¢). It only
remains to show hi(x,t) — Fj41(¢t) > 0, 1.e., Z(k,n)¢s’, (—1)ktn sin(wk /)My, > 0.
It can be seen that (N x N) \ S/ can be partitioned into the following sets:

E1 = {(k,n) : k < kr, (=X sin(kn /o) < 0,n > r + 1},
E» = {(k,n) : k < ky, (=) sin(kr/a) > 0,n > r + 2},
Es={(k,n) :k>k,,n<r—1},

Es={(tk,n): k>k,,n>r}

As already seen, | <k, —r <2L,.Then, k, /o <r+1landr+2 < (2—1/a)k,, the
firstoneduetor —k, /oo > (1 —1/a)r —2Ly/a > (1 —1/a)R —2Ly /¢ > 0 and the
secondone 2—1/a)k, —r—2> 2—1/a)(r+1)—r—2> {1 —-1/0)R—1/a > 0.
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Also, 7 > Qu/e)!/@=D and k, > (25/€)*/@~1_ Then, by (43) in Lemma 18, for
every k < kr, 3721 Mi 414 < 2€ M 11, giving

> (=0 sintken fa) My = (=1 sin(kr /o) |:Mk,r+l - (U""“Mk,n}

n:(k,n)eE n>r+2

> |sin(kn/@)|(1 — 2€) M r11 = 0.

Since k, > 2Lq+1,by Lemma 19, (— 1)+ sin(km /) > 0 for at least one k < k.
Thus the sum over E is strictly positive. Likewise, the sum over Ej is strictly positive.
Next, the sum over E3 is at least

r—1

0 r—1 0
o[ 0 sinkm /) Miy =Y Mini | =D [ S0Mryn—) Mi,
j=1 n=1 j=1

n=1

By (43) in Lemma 18, the last sum is strictly positive. Similar, using (42) in Lemma 18,
the sum over Ej is strictly positive. Thus h1(x, t) — Fj41(¢) > 0, as desired.

4.3 Proof of Lemmas

Proofof Lemma 17 Given x € [0, 1), by (21), (25), and g; being decreasing on [0, c0)
([18], p. 416),

hi(x, 1) < g(x) < g(0)=1""*/(@l(1 - 1/a)), > 0.

On the other hand, for r > 1, from (33),

k]

o0
g I'(k/o +n) g
i) < a1 < gy—l/e-1
106, 1) = k; KC(an) —

where B = [° Equ(s)e’ "5 ds. By Eqals) = Y20, 5" '/T(@n) < D
Y2 (s/2" /Ty = De’?, B < D[P =12ds < DY e ds +
feio e$/*ds) < D%’ + 4), which together with the displays yields the proof.

O

To prove Lemma 18, we need the following.
Lemma20 Letk andn € N, and s, u > 0.

(@) Ifn > k/a, then 2umy_, (s, u)/(n — D> My 4108, ).

() Ifn < 2 — 1/a)(k + 1), then 2smy (s, u)/(k + D'V > myp iy (s, u).

() Ifk/a <n < 2 —1/a)(k + 1), then 6sumy (s, u)/(n — D~ (k + 1) 71/ >
Mt 1,n+1(8, u).
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Proof (a) Fork > 1 andn > k/a,

Mg (s, 1) _ u’ll"(om + ) - EF(an—i—a)
M ns1(s,u)  Tlan)(k/a+n) ~ 2n  T(an)

By Gautschi’s inequality ([15], p. 138), '(en +«)/ '(an) > (en+o — 1)(an +
a —2)*"1'> n(n — 1)*~!, which together with the display yields the proof.

(b) By Gautschi’s inequality, I'((k + 1)/ 4+ n) < T'(k/a + n)((k + 1)/a + n)'/2.
Then,

M n (s, u) sTI0(k /o +n)(k + 1) sTlk+ 1)

misinGouw) | T(k+ Dja+n)  (k+ Dja+mie

Ifn < 2 —1/a)(k+1), then ((k+ 1)/a+n)"/* < [2(k + D]V* < 2k + 1)1/?,
leading to the proof.
(c) From the above argument, if n > k /o, then

M (S, W) Micn(s,u) - Minti(s,u) (su)~M(n — D! (k+1)
Mt 1 (S, 1) Mppg1 (S, 0) Mt g1 (5, 1) 2 ((k+1)/a+n+ /e’

Then, forn < 2—1/a)(k+1),(k+1)/a+n+1<2(kk+1)+1<3(k+1),s0

(k+1) - (k+1)
((k+D/a+n+DVe = B+ 1))/’

which together with the previous display yields the proof.
O

Proof of Lemma 18 Write my , = my (s, u) and Sg, = Z?,Oj:o Mitintj. Then,
(42) is equivalent to Sy, < (1 + 24€)my , for k, n satisfying the conditions in the
lemma. Let kp = k and for!/ > 1, k; = la(n+1— 1)+ 1]. Then, by ¢ € (1, 2),
ko <ky <ky<...andkj/a < (kjy1 — D)/a <n+1 < 2 —1/a)k forl > 0. Put
d[ = kl-i—l — k[. Then,

00 di—1 oo

o0
Sk = Z Z ka1+i,n+l+j + ) Migtint
i=0

=0 i=0 j=1

ForO <i <dj,and j > l,sincen+I+j—1>n+Il > (kj+1—1)/a > (k;+1i)/c, by
Lemma 20(a), M4 n+i+] /Mig+inti+j—1 < 2u(n+14j—=2)17% < 2u(m—1)1"% <
€. Then, by induction,

di—1 oo di—1 oo

o
: €
E E Migtintitj < E E €' My tint1 < - E My +in+l
i—0

i=0 j=1 i=0 j=1
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and hence

o0 o
Skon < — Z Z Mkt n+l-

=0 i=0

Foreachi > 1,sincen+Il < (2—1/a)(k;+i), by Lemma20(b), my, 4, n+1/mk,+, L+
< 25k + )1 < 25k1/e=1 < ¢ Then, by induction, my,4in+1 < € miy ntis
resulting in

1 0
Skn < m kal,n+l-
=0

Foreach! > 1,since (k; — 1)/ <n+1—1< (2 — 1/a)(k; — 1), by Lemma 20(c)
Mg 1 /Mgy ni—1 < 6su(n — D17¢kY/e=1 < ¢ Then, by induction, S, < (1 —
e)_3mk,n < (1 4 24€)my ,, as desired. The proof for (43) and (44) is very similar to
that for (42) and hence is omitted. O

Proofof Lemma 19 Recall that /; is defined to be [(2j + do)o, 2j + 1 — dy)a].
Then, |1;] > 1. Let B; = ((2j + 1 — dy)a, (2j + 2 + dy)a). Then, |B;| < 2 and
A, = UjezB;. If two consecutive integers both belong to A, they must belong to
the same B, for otherwise there would be an I; strictly between the two, implying
|1;| < 1. Moreover, no three consecutive integers can all belong to A¢,, for otherwise
they had to be in the same B}, implying | B;| > 2. Assume that for some i, none of the
evennumbersinS = {i+1,i+2,...,i4+2Ly}isin K. Then, all the odd numbers in
S are in K. Consequently, the even numbers belong to L,, different B;’s, and the odd
ones to L, different /;’s. The union of these intervals has Lebesgue measure 2oLy .
Since the union lies between i + 1 — |C| and i + 2L, + | D], where C is the interval
containing i 4+ 1 and D the one containing i +2L, then 2L, < Ly — 1+ |C|+|D]|.
Observe that either C is an /; and D is a By, or vice versa. Then, |C| + |D| = 2, so
2Ly < 2Ly — 1 4 2¢, contradicting the choice for L. This shows there is at least
one even number in S belonging to K. Likewise, there is at least one odd number in
S belonging to K. O
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Appendix

On the connection between (9) and (10) When o = 2, sin(;rk /) is 0 if k is even and
is (—1)/ isk = 2j + 1 for integer j > 0. Then, the series in (9) can be written as

o0

1 Z L'(Gj+1/2+n)

— 27+ DiGn =D (=7 H2) + De + 2n — 1)(c — x)]1(c — ) 72

T
j=0,n=1
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Write n = [ + 1 and m = j + [. Then, the series becomes

li L(j+1+3/2)
— (2j + D2+ 1)!

_1 Z C(m+3/2) 1" i [ (c — x)2J 2m=2j+1 (c — x)2H1c2m=2j ]

(=)@ + D —x0)P A+l + 1) (c —x)2 e

+1)' eHICm =24+ D! 25+ D!I@2m —2))!
2m+1
_ 1 Z 'm+3/2) (_1)m Z 2m +1)! (c — x)sC_2m+l—s
— 2m 4+ 1)! = s!2m+1—9)!
e V7 m m
= Zom(—l) (¢ — x)?m+!

2c—x (2¢ — x)?
el )

Since (X;)i>0 ~ (Wa;)r>0, this is essentially the same result as (10). O
Proof of Eq. (16) We need the following refined version of Lemma 16(a).

Lemma 21 There is a constant M > 0, such that for all0 < x < 1/2and allt > 0,
hi(1—x,1) < Mx(t 4=V,

Assume the lemma is true for now. Then, given ¢ > 0, by scaling, forall0 < x < ¢/2,
he(c—x,1) < Mx(t +t1/%) for some M = M(c) > 0. Then, by Lemma 16(a) and
dominated convergence, for each g > 0,

[e¢]

oo ot 1 —qt
m(c,t)e 9" dt = lim — he(c —x,t)e 1" dt.
0 x=0x Jo

However, by scaling (6) and Proposition 10, for 0 < x < ¢/2,

n—lcan—l

_gl/e 00
1 o] qa'r 1
L[ e = T
x Jo X o I'(an)

qn—l[can—l _ (C _ x)an—l]
xI'(an)

+2
n=1
As a result,

nlanl

'S} © qn—lcom—Z q
f m(c, t)e_qt dr = _ l/a E _
0 — I'(an — 1) I'(an)
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Provided that 8 > ¢!/¢, integration term by term of the r.h.s. yields

/OO </Oom(c e 1 dt) e Pde = q" o= gl g’ = P—a”
’ an— an a _ :
o \Jo —p — P B* —q

By analytic extension, the equality still holds for 0 < g < ql/ %. Then, by (15), the
proof is complete. O

Proofof Lemma 21 By (22) and integral by parts,

! 8gr(l)
hl(l—x,t)=gt(1—X)—gt(1)+fO F_i(t —5) ds, (45)

where F_ (1) = [ f_,(s)ds = P{r_, > 1}.For0 < x < 1/2,g(1—x)—g /(1) =
—g/(z)x for some z € (1 — x,1). Clearly, z > 1/2. It is not hard to show that
My := sup,_o[y**|g{(»)[] < oo ([18], p. 88). On the other hand, by g (z) =
1=V g (171/97), g (z) = t72/%g| (t~/%z). Then,

lgr(1 —x) — g ()| = xt =g 7V | < xe ™My (17 V%2) ™72 < My 2% 2z,
(46)

Next, by go(1) = s~ g1 (s71/%), Jogs()/ds| < (Ufa)[s~ /¥ gi(s71/%) +

s72/e=] 18] (s~1/%)|] is bounded. Then, for some M, > 0,

t as
‘/ (_)g()
0

where the equality is due to F_,(s) = F_1(x~%s) and change of variable. Because
F_1(s) is decreasing with F_;(0) = 1 and is slowly varying at co with index —1 /e,
there is a constant M3 > 0 such that f§ F_i(s)ds < M3y'~"/% forall y > 0.1t
follows that

—o

t X t
<M, / F_,(s)ds = Mx* f F_i(s)ds,
0 0

t
/ F_y(t— )agS() < MoMsxt'~1/e. (47)
0

Then, the proof is complete by combining (45)—(47). O

Proof of Eq. (20) Denote the r.h.s. of (20) by v?(x). The task is to show vl = ud,
where, for example, vl (x) = v?(—x). Since v7 is a version of the g-resolvent density,
according to the proof of Proposition I.13 of [2], (r —q)U o4 0 ud asr — 00, where
U’ is the r-resolvent operator. For r > ¢,
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U (x) = / TR [0 (X,) ] dr
0

_ / ¥ et [ / < / " e g (=) ds) gy —x) dy} dr
0 0

o oo
= f / e_”_qng,(—x) dS dt
0 0

A /0 (1 4 "%)e 05 g (—x) ds.

Then, by monotone convergence, (r — q)U ’ﬁ(x) — vl (x), giving vi (x) = Lﬁ(x).

O
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