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a b s t r a c t 

A unified theory and framework for the integration of process design, control, and scheduling based on 

a single high fidelity model is presented. The framework features (i) a mixed-integer dynamic optimiza- 

tion (MIDO) formulation with design, scheduling, and control considerations, and (ii) a multiparametric 

optimization strategy for the derivation of offline/explicit maps of optimal receding horizon policies. Ex- 

plicit model predictive control schemes are developed as a function of design and scheduling decisions, 

and similarly design dependent scheduling policies are derived accounting for the closed-loop dynamics. 

Inherent multi-scale gap issues are addressed by an offline design dependent surrogate model. The pro- 

posed framwork is illustrated by two example problems, a system of two continuous stirred tank reactor, 

and a small residential combined heat and power (CHP) network. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The complexity of decision making problems in the process in-

dustry has conventionally resulted in isolation of decisions with re-

spect to the time scales of their effects on the operation, ranging

from years-spanning supply chain management to seconds-long

process control decisions. The isolated layers are structured hier-

archically, as shown in Fig. 1 a, with an information flow allowed

dominantly in descending order in the time scales they span. How-

ever, independent and sequential assessment of the decision lay-

ers leads to suboptimal, even infeasible operations. Integration of

these layers across an enterprise is expected to deliver more prof-

itable and reliable operations by benefiting from the synergistic

interactions between different decisions ( Grossmann, 2005 ). Re-

cent advances in operational research and rapid decrease in the

cost of computational hardware provide an opportunity for the

academia and the industry to seek a tractable and systematic

methodology for simultaneous consideration of multi-scale deci-

sions ( Pistikopoulos and Diangelakis, 2016 ). However, seamless in-

tegration of decision layers at different time scales and objectives

is still an open question due to the high dimensionality and com-

plexity of each constituent problem, such that process systems en-
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ineering tools and perspectives can play a key role for a holistic

olution ( Daoutidis et al., 2018 ). 

Process design decisions, such as equipment selection and siz-

ng, span the widest time-scale in the functional hierarchy of a

hemical process, and they are typically established by solving

 steady-state design optimization problem ( Rafiei and Ricardez-

andoval, 2018 ). Operational decisions such as scheduling and con-

rol are usually assumed to take a nominal value to make the

roblem complexity tractable ( Nie et al., 2015 ). However, rapidly

hanging market conditions and process disturbances often force

he system to operate under a wide range of operating conditions,

hich may render the steady-state process design dynamically in-

easible. Design optimization under such operational uncertain-

ies have been extensively investigated in the literature by consid-

ring feasibility, flexibility, stability, controllability, and resilience

etrics ( Diangelakis et al., 2017b; Pistikopoulos and Ierapetritou,

995; Ricardez-Sandoval, 2012b ). An indicative list of contributions

owards the integration of operational decisions in the design

ptimization problem is presented in Table 1 . Similar to process

esign, operational decisions including production sequence, tran-

ition, allocation of tasks in multiple units are optimized with

imited consideration of the physical process dynamics. Overlook-

ng these fast dynamics while making longer term economical

ecisions creates an inherent mismatch between the operational

et points determined by the scheduler and the closed loop per-

ormance governed by the control strategy ( Baldea et al., 2015;

urnak et al., 2018b ). These inherently different domains of the

https://doi.org/10.1016/j.compchemeng.2019.03.004
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Table 1 

Design, scheduling, and control in the literature: An indicative list. 

Author (year) Contribution 

Design & control 

Narraway et al. (1991) , Soroush and Kravaris (1993b) , Soroush and 

Kravaris (1993a) , Papalexandri and Pistikopoulos (1994) , 

Mohideen et al. (1997) , Luyben and Floudas (1994) , Floudas (20 0 0) ; 

Floudas et al. (2001) , Bahri et al. (1997) , Chatrattanawet et al. (2014) , 

Gong et al. (1995) , Vega et al. (2014a) 

Feasibility, flexibility, stability, controllibility, resilience metrics in steady-state 

design optimization with MIDO or MINLP 

Bansal et al. (20 0 0a) , Bansal et al. (20 0 0b) , Bansal et al. (2002) , 

Georgiadis et al. (2002) , Bansal et al. (2003) , Sakizlis et al. (2003) , 

Sakizlis et al. (2004) , Malcolm et al. (2007) , Washington and Swartz (2014) , 

Ricardez-Sandoval (2012a) 

Integrated MIDO formulation/ decomposition with PID control or (mp)MPC 

Flores-Tlacuahuac and Biegler (2007) , Flores-Tlacuahuac and Biegler (2008) , 

Brengel and Seider (1992) , Ricardez-Sandoval et al. (2008) , Mehta and 

Ricardez-Sandoval (2016) , Rafiei-Shishavan et al. (2017) , Mohideen et al. (1996) , 

Kookos and Perkins (2002) , Kookos and Perkins (2016) , De La Fuente and 

Flores-Tlacuahuac (2009) , Chen et al. (2011a) , Chen et al. (2011b) , Li and 

Barton (2015) , Zhang et al. (2006) 

Iterative MINLP formulation with stochastic back-off formulation for 

uncertainty 

Ghobeity and Mitsos (2014) ; Ricardez-Sandoval (2011) ; 

Ricardez-Sandoval et al. (2009) ; Vega et al. (2014b) ; Yuan et al. (2012) 

Review articles on design and control integration 

Scheduling & control 

Flores-Tlacuahuac and Grossmann (2006) , Terrazas-Moreno et al. (2007) , 

Flores-Tlacuahuac and Grossmann (2010) , Flores-Tlacuahuac and 

Grossmann (2011) , Gutiérrez-Limón et al. (2012) , Gutiérrez-Limón et al. (2014) , 

Mitra et al. (2010) , Nie et al. (2012) , Nie et al. (2015) , 

Capón-García et al. (2013) , Chu and You (2013) , Pattison et al. (2016) , 

Kelley et al. (2018) 

Decomposition of MIDO or MINLP and open loop optimal control 

Chatzidoukas et al. (2003) ; Chu and You (2012) ; Costandy et al. (2018) ; 

Du et al. (2015) ; Mahadevan et al. (2002) ; Zhuge and Ierapetritou (2012) 

Formulation/ Decomposition of MIDO schedule with PID control 

Zhuge and Ierapetritou (2014) , Dias et al. (2018) , Ellis and Christofides (2014b) , 

Ellis and Christofides (2014a) , Ellis and Christofides (2015) , 

Alanqar et al. (2017) , Baldea et al. (2015) , Dias et al. (2018) , Jamaludin and 

Swartz (2017) , Diangelakis et al. (2017a) , Burnak et al. (2018b) , 

Charitopoulos et al. (2018) , Beal et al. (2018) 

(mp)MPC implementation in economic receding horizon policies 

Huercio et al. (1995) , Würth et al. (2011) , Amrit et al. (2011) , 

Subramanian et al. (2012) , Subramanian et al. (2013) , Kopanos et al. (2013) , 

Kopanos and Pistikopoulos (2014) , Touretzky and Baldea (2014) , Liu and 

Liu (2016) 

Control theory/ Economic MPC in scheduling problems 

Bassett et al. (1996) , Grossmann (2005) , Harjunkoski et al. (2009) , Engell and 

Harjunkoski (2012) , Baldea and Harjunkoski (2014) , Ellis et al. (2014) , Chu and 

You (2015) , Dias and Ierapetritou (2016) , Dias and Ierapetritou (2017) 

Review articles on scheduling and control integration 

Design, scheduling & control 

Patil et al. (2015) ; Terrazas-Moreno et al. (2008) Formulation of MIDO and open loop control under uncertainty 

Koller et al. (2018) PI control and stochastic back-off approach for uncertainty 

Burnak et al. (2018a) Explicit, design dependent optimal rolling horizon strategies 
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esign, scheduling, and control decisions are illustrated in Fig. 1 b.

ny decision that lies outside the intersection of all layers results

nto an inoperable point, where at least one of the layers fails to

nd a feasible decision. 

Integrated approaches aim to systematically assess the trade-

ffs between different decision layers by reconstructing the prob-

ems into a unified formulation. The reformulated problem aug-

ents the feasible space of operation by simultaneously consid-

ring the degrees of freedom of the constituent problems, en-

bling more cost effective and reliable decisions. Although such

onolithic approaches deliver the expected benefit of integration

 Flores-Tlacuahuac and Grossmann, 2006; 2010; Zhuge and Ier-

petritou, 2012; 2014 ), they are susceptible to process disturbances

nd changing demands. The discretization and reformulation steps

esult into a large scale non-convex mixed-integer nonlinear pro-

ramming (MINLP) problem that is computationally taxing to solve

nline after every disruptive event ( Engell and Harjunkoski, 2012 ).

 low-order representation of the high-fidelity model ( Du et al.,

015 ) and decomposition techniques ( Chu and You, 2012 ) have

een two fundamental approaches to acquire tractable and fast

olutions to this challenging problem. An indicative list of contri-

utions to integrate scheduling and control layers is presented in

able 1 . 
Model Predictive Control (MPC) has been shown to be a useful

ool for process automation with its capabilities to handle com-

lex interactions between multiple process outputs and multiple

anipulated actions (MIMO systems), to satisfy dynamic physical

nd operational constraints, and to predict the future outcomes of

he process ( Qin and Badgwell, 2003 ). Despite these advantages,

ntegration effort s using an MPC strategy is limited in the litera-

ure due to the implicit nature of the control structure. The neces-

ity to formulate an optimization problem at every sampling time

nder a longer time scale decision layer significantly increases the

verall problem complexity, making explicit control structures such

s PID controllers more suitable for integration purposes. How-

ver, multiparametric programming allows for an exact offline so-

ution of an MPC problem (referred as explicit MPC or mpMPC) as

 piecewise affine function of bounded parameters, including ini-

ial conditions, output set points, input reference trajectories, and

perational bounds ( Bemporad et al., 2002 ). Although there have

een successful implementations of mpMPC in design optimization

 Diangelakis et al., 2017b ), and scheduling ( Burnak et al., 2018b;

huge and Ierapetritou, 2014 ), a simultaneous integration of de-

ign, scheduling, and control with explicit maps of rolling horizon

trategies has never been attempted in the open literature. 
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Fig. 1. Decision making layers in an enterprise. 
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In this study, we present a novel framework to integrate de-

sign, scheduling, and control problems by deriving explicit maps

of optimal decision making strategies at both levels of operation

based on a single high fidelity model. We explicitly map the upper

level layer decisions on the lower levels by multiparametric pro-

gramming. The explicit expressions at the lower level layers enable

their representation in the upper level problems. In other words,

the control problem is derived as a function of design and schedul-

ing decisions, and similarly the scheduling decisions are design

dependent, and aware of the controller dynamics. These explicit

scheduling and control maps allow for an exact implementation in

a design optimization problem. Furthermore, we introduce a de-

sign dependent surrogate model formulation to bridge the time

scale gap between the schedule and the control problems, which

is also solved offline. Direct inclusion of operating strategies in the

design optimization ensures the process operability by enforcing

the decisions to be selected from the intersection of all layers from

Fig. 1 b. 

The remainder of the paper is organized as follows.

Section 2 defines the integration problem that is addressed in

this study, and describes the proposed framework to approach

the problem. The framework is showcased in Section 3 on sys-

tems of reactors and residential combined heat and power (CHP)

units. Lastly, Section 4 presents concluding remarks and future

directions. 

2. Integration of design, scheduling, and control via 

multiparametric optimization 

In this section, we define the extent of the integrated problem,

provide the mathematical representation of the considered prob-
em formulation, and introduce the tools and the framework to de-

iver the targeted objectives. 

.1. Problem definition 

We consider a generic process where the interactions between

he long term (design), middle term (schedule), and short term

control) decisions are sufficiently significant to impact the feasi-

ility and the optimality of each individual decision. Therefore, we

efine the following problem that encapsulates all three decisions

imultaneously. 

(i) Given : A high fidelity model based on first principles or

data-driven modeling techniques that accurately captures

the dynamics of the system, any physical limitations of the

system due to process safety considerations or product spec-

ifications, unit costs for design, raw material, energy, and in-

ventory, revenue for unit product, and an accurate demand

forecast. 

(ii) Determine : Production sequence throughout an operating

horizon, closed loop control strategy that delivers the prod-

uct specifications, set points for the operation tailored for

the dynamics of the closed loop strategy, size of the pro-

cessing equipment that ensures operability of the process. 

(iii) Objective : Minimize the operating and capital costs. 

Note that the objective of the problem can be replaced by the

inimization of the energy utilization, CO 2 emissions, processing

ime, or a combination of these tasks based on the application

ithout changing the framework. In this study, we showcase the

inimization of costs as it is the most frequently used objective in

rocess operations. 

.2. Problem formulation 

A generalized mathematical representation of the simulta-

eous design, scheduling, and control problem introduced in

ection 2.1 is given by Eq. (1) in the form of a mixed integer dy-

amic optimization (MIDO) problem. 

min 

u,s,des 
J = 

∫ τ

0 

P (x, y, u, s, des, d) dt 

s.t. ˙ x = f (x, u, s, des, d) 

y ≤ y = g(x, u, s, des, d) ≤ y 

u ≤ u = h (x, u, s, des, d) ≤ u 

s ≤ s = m (x, u, s, des, d) ≤ s 

x ≤ x ≤ x , des ≤ des ≤ des , d ≤ d ≤ d 

(1)

here x are the states of the system, y are the system outputs, u

re the control actions, s are the scheduling decisions, des are the

esign variables, and d are the measured disturbances, P is the cost

unction accounting for the operating and capital costs, f and g are

ifferential and algebraic relations, h and m are the implicit rela-

ions that describe the operational decisions, and lower and upper

ars are the bounds on the variables. We also differentiate the dis-

urbances at the control level, d c ⊆d , such as the variations in the

eed conditions, and the disturbances at the scheduling level, d s ⊆d ,

uch as the fluctuating market prices and demand rates. Note that

iscrete design and scheduling decisions such as the number of

rays in a distillation column and the product to be manufactured

t a particular time instance render Problem 1 a mixed-integer op-

imization problem. 

The problem definition detailed in Section 2.1 states that the

igh fidelity model given by f and g , the cost function P , the

ounds on the variables are known, and a realistic demand sce-

ario is available. The goal is to minimize the objective P over a
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ime horizon τ by manipulating the degrees of freedom of the sys-

em available in the long term ( des ), middle term ( s ), and short

erm ( c ). 

The significantly distinct time scales of the manipulated vari-

bles yield a large scale MIDO problem that is computationally in-

ractable by the established approaches such as the direct, indi-

ect, and dynamic programming based approaches. In this work,

e propose a process agnostic decomposition strategy to address

q. (1) through the use of the Parametric Optimization and Con-

rol (PAROC) framework ( Pistikopoulos et al., 2015 ). The proposed

ethodology comprises (i) developing an offline control policy that

akes into account the different process dynamics stemming from

he selection of the unit design and online economical decisions,

ii) deriving a scheduling policy based on the closed loop behavior

f the system, and (iii) determining the design that minimizes the

apital and operating costs for a given time period by utilizing the

ffline control and scheduling policies simultaneously. 

.3. Design-scheduling-control integration 

The PAROC framework presents an in-silico environment to de-

ign offline model based receding horizon control and economi-

al optimization policies ( Pistikopoulos et al., 2015 ). In our previ-

us works, we applied this framework on (i) the simultaneous pro-

ess design and control problem where a design dependent control

trategy is developed and embedded in a MIDO formulation to de-

ermine the control dependent optimal design ( Diangelakis et al.,

017b ), and (ii) the integrated scheduling and control problem

here the dynamics of the offline control strategy is embedded in

he schedule through a surrogate model formulation ( Burnak et al.,

018b ). Here, we propose a systematic approach to consider the

esign, scheduling, and control problems simultaneously by taking

nto account their interplay to yield cost effective and more reli-

ble decisions. 

The proposed methodology is based on developing explicit de-

ign dependent control and scheduling strategies to be directly im-

lemented in a MIDO problem to determine the optimal design si-

ultaneously with the control and scheduling decisions. In other

ords, we derive explicit functions for h and m in Eq. (1) that re-

urn the control and scheduling decisions, respectively. 

In the proposed framework, the design, scheduling, and control

ecisions are based on a single dynamic high fidelity model that

epresents the essential characteristics of the system with suffi-

ient accuracy. Using the high fidelity model, we derive each in-

ividual decision with an increasing order in their time scales,

.e. control, schedule, and design, respectively. 1 Explicit strategies

or both the control and the schedule include the decisions from

heir upper level problems as bounded parameters. Hence, the ex-

ct same control strategy is applicable under a range of operating

et points from the schedule and different design options. Simi-

arly, a single scheduling policy spans a range of different design

ealizations in real time operations. Furthermore, we develop a de-

ign dependent surrogate model formulation based on the closed

oop dynamics of the system to account for the time scale differ-

nce between the scheduler and the controller. The derived offline

trategies are nested in a MIDO formulation for the design opti-

ization problem. 

The following are the key steps of the PAROC framework

ailored to address the integrated design, scheduling, and con-

rol problem, describing the derivation of (i) design dependent,

chedule-aware controller, (ii) design dependent, control-aware

chedule, and (iii) optimal design based on the offline control and

cheduling policies, all summarized in Fig. 2 . The interplay be-
1 Clearly, if a first principle high fidelity model is not available or derived, a grey 

ox or data driven model can be used instead. 

s  

a  

c  

i

ween the offline decision layers and the information flow in the

verall MIDO formulation is illustrated in Fig. 2 a. The derivation of

he explicit MPC is explained schematically in Fig. 2 b. Lastly, the

erivation of the offline scheduler is summarized in Fig. 2 c. 

.3.1. Design dependent and schedule-aware controller 

We initialize the framework by mapping the upper level deci-

ion layers in an offline control strategy, described as follows. The

evelopment of the controller scheme, aware of the design and

cheduling decisions, is summarized in Fig. 2 b. 

tep 1: High fidelity dynamic modeling. A rigorous and accurate rep-

esentation of the system dynamics is postulated based on first

rinciples, empirical correlations, and/or data-driven techniques. 

he resulting mathematical form is typically described by a set of

ifferential algebraic equations (DAE), of which a generalized rep-

esentation is given in Eq. (2) . 

˙ x = f (x (t) , u (t) , s (t) , des, d(t) , t) 

y = g(x (t) , u (t) , s (t) , des, d(t) , t) 
(2) 

tep 2: Model approximation. The high fidelity model presented in

q. (2) can be highly nonlinear for process systems, rendering it

mpractical to derive the explicit map of optimal control strate-

ies. Therefore, we generate approximate models that accurately

aptures the dynamics of Eq. (2) based on subspace identification

r model reduction techniques. In this study, we use the MAT-

AB System Identification Toolbox TM to approximate the high fi-

elity model, yielding the discrete time state space model given in

q. (3) . 

x q 
t c +1 

= A 

q x q t c 
+ B 

q u t c + C q [ d T t c 
, s T t c 

, des T ] T 

ˆ y t c = D 

q x q t c 
+ E q u t c + F q [ d T t c 

, s T t c 
, des T ] T 

(3) 

here t c is the discrete time step of the controller, and ˆ y is the

utput prediction. We also denote q as the index of the state space

odel, as multiple models can be used to identify different oper-

ting regions. Note that the scheduling and design decisions are

reated as bounded parameters in the model. Also note that ap-

roximating a nonlinear process with a linear model creates a mis-

atch between the real output, y , and the predicted output, ˆ y . Ad-

ressing the mismatch in designing the controller will be discussed

n the next step. 

Developing accurate approximate representations of the high fi-

elity model is a pivotal step to generate reliable closed loop con-

rol strategies. Katz et al. (2018) investigated the effects of vari-

us model approximation techniques and introduces novel error

etrics to evaluate the open and closed loop performances in the

ontext of multiparametric programming. In this study, we employ

hese strategies to increase confidence in the approximate models

eveloped. However these details are omitted here for brevity and

o focus on the integration framework. 

tep 3: Multiparametric model predictive control (mpMPC). The ap-

roximate model given by Eq. (3) is incorporated in a model pre-

ictive control (MPC) scheme that maintains closed-loop stability

nd set point tracking. The formulated MPC problem is converted

nto an mpMPC problem by treating the initial conditions, out-

ut set points, reference input trajectories, measured disturbances

o the system, design and scheduling decisions as unknown but

ounded parameters. Note that inclusion of the scheduling and

ontrol variables in the parametric space of the mpMPC problem

esults in a control strategy that is an explicit function of the deci-

ions in the longer time scales. Therefore, regardless of the design

nd scheduling decisions, the exact same control strategy is appli-

able on the system. The generalized mpMPC problem formulation

s presented in Eq. (4) . 
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Fig. 2. The integration of process design, scheduling, and control decisions via multiparametric optimization. 
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Y  
u t c (θ ) = arg min 

u t c 
‖ x N c ‖ 

2 
P + 

N c −1 ∑ 

t c =1 

‖ x t c ‖ 

2 
Q + 

N c −1 ∑ 

t c =1 

‖ y t c − y SP 
t c 

‖ 

2 
QR 

+ 

M c −1 ∑ 

t c =0 

‖ u t c − u 

SP 
t c 

‖ 

2 
R + 

M c −1 ∑ 

t c =0 

‖ �u t c ‖ 

2 
R 1 

s.t. x t c +1 = Ax t c + Bu t c + C[ d T t c 
, s T t c 

, des T ] T 

ˆ y t c = Dx t c + Eu t c + F [ d T t c 
, s T t c 

, des T ] T 

y t c = 

ˆ y t c + e 

e = y t c =0 − ˆ y t c =0 

x ≤ x t c ≤ x , y ≤ y t c ≤ y 

u ≤ u t c ≤ u , �u ≤ �u t c ≤ �u 
P  
θ = [ x T t c =0 , u 

T 
t c = −1 , d 

T 
t c =0 , s 

T 
t c 
, des T ] T 

{ y SP 
t c 

, u 

SP 
t c 

} ⊆ s t c , ∀ t c ∈ { 0 , 1 , . . . , N c − 1 } (4)

here θ is the set of bounded parameters, N c is the output hori-

on, M c is the control horizon, ‖ · ‖ � denotes weighted vector

orm with a weight matrix � , SP denotes set point, P, Q, QR, R ,

nd R 1 are the corresponding weight matrices. We also define an

rror term, e , to account for the mismatch between the actual sys-

em output and the predicted output at the time of measurement.

ddition of the error to the model prediction carries over the mis-

atch through the entire output horizon. 

Eq. (4) is reformulated into a multiparametric linearly con-

trained quadratic programming problem (mpQP) by using the

ALMIP toolbox ( Löfberg, 2004 ) and solved exactly by using the

arametric OPtimization (POP) Toolbox ( Oberdieck et al., 2016 ).
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he solution of the resulting problem yields explicit piecewise

ffine functions of the uncertain parameters for the control strat-

gy, as presented in Eq. (5) . 

u t c (θ ) = K n θ + r n , ∀ θ ∈ CR n 

CR n := { θ ∈ � | L n θ ≤ b n } , ∀ n ∈ { 1 , 2 , . . . , NC} (5) 

here CR n is the active polyhedral partition of the feasible param-

ter space, NC is the number of critical regions, and � is a closed

nd bounded set. 

emark 1. The piecewise affine control strategy, u t c , is an explicit

unction of both the design and the scheduling decisions. There-

ore, Eq. (5) is a single design dependent, schedule-aware mpMPC

olution that is applicable under different operating conditions dic-

ated by the upper level decision layers. 

tep 4: Closed loop validation. The control strategy is developed

ased on an approximation of the real process dynamics, design

ecisions, and operating conditions. Therefore, validity of the con-

roller is exhaustively tested in-silico against the actual process

nder numerous design alternatives and operating conditions dic-

ated by the schedule. The control scheme is accepted if it main-

ains effective set-point tracking, fast adaptation to changes in

he operating level, operational stability, while satisfying the pro-

ess constraints. Otherwise, a new control strategy is developed

y either tuning the weight matrices in the objective function of

q. (4) or by deriving a new approximate model. 

.3.2. Design dependent and control-aware scheduler 

Analogous to designing the control scheme, we aim to derive

n offline map of the optimal scheduling decisions as a function of

ts complementing decisions. Burnak et al. (2018b) proposed a two

evel scheduling scheme with (i) an upper level problem that reg-

lates the operation based on profitability and feasibility, and (ii) a

ower level problem that translates the upper level decisions into

he time steps of the control problem to bridge the time scale dif-

erence. In this work, we propose an extension to this approach

y incorporating the design decisions explicitly into the map of

cheduling actions. The steps to develop the offline receding hori-

on policies, and their implementation in the design optimization

roblem is summarized in Fig. 2 c. 

tep 1: High fidelity model with closed loop dynamics. The explicit

xpressions for the control strategy given by Eq. (5) is directly im-

lemented in the high fidelity model ( Eq. (2) ). The resulting model

escribes the system with the closed loop dynamics. 

tep 2: Model approximation. Inclusion of the explicit control law

n the high fidelity model changes the dynamics of the system,

nd thus necessitates a new approximate model that represents

he new dynamics. Therefore, we use the MATLAB System Iden-

ification Toolbox TM to approximate the output of the system for

 given scheduling decision, such as the output set point and in-

ut reference trajectory. However, the time scale of the scheduling

odel is typically orders of magnitude greater than the time scale

f the controller. This discrepancy is accounted for by resampling

he scheduling model in finer time intervals that match the output

orizon of the controller for the construction of a surrogate model

n the next step. 

tep 3: Multiparametric schedule and surrogate model. A common

ractice to determine optimal production schedule is to postulate

n MILP problem that treats the processing times as fixed pa-

ameters. Subramanian et al. (2012) presents an excellent frame-

ork to transform this problem into an equivalent state space form

hat represents the system of interest. Kopanos and Pistikopou-

os (2014) used multiparametric programming to derive the offline

ap of optimal schedule based on the transformed problem as an
xplicit function of the initial conditions of the system and the de-

and rates. Burnak et al. (2018b) introduced an offline surrogate

odel formulation as a lower level scheduling decision to bridge

he gap between the longer term scheduling actions and short

erm control strategies. In this study, we extend this approach by

ncorporating the design decision as a bounded uncertain parame-

er in both the scheduling and the surrogate model formulations. 

A general representation of the longer term scheduling deci-

ions is presented in Eq. (6) . 

s t s (θ ) = arg min 

s t s (θ ) 

N s ∑ 

t s =1 

αT x t s + 

N s −1 ∑ 

t s =0 

βT s t s 

s.t. x t s +1 = Ax t s + Bs t s + Cd t s 

s t s = [(y SP 
t s 

) T , (u 

SP 
t s 

) T ] T 

x t s ≤ x t s ≤ x t s 

s Y t s ≤ s t s ≤ s Y t s 

θ = [ x T t s =0 , d 
T 
t s 

] T 

∀ t s ∈ { 0 , 1 , . . . , N s } 

(6) 

here the Greek letters α and β denote cost parameters, and

 t s ⊆ s t s denotes the set of binary scheduling decisions that dic-

ate the operating window based on the production regime. The

tate space matrices are derived at the previous step, and are dif-

erent from the control model since they (i) represent the closed

oop dynamics, and (ii) span a significantly greater time scale. Note

hat apart from the disruptive scheduling events, the design deci-

ion is included as a measured disturbance in d t s and treated as a

ounded uncertain parameter in Eq. (6) . 

The schedule formulated in Eq. (6) is classified as a mp-

ILP problem, which is solved exactly via the POP toolbox

 Oberdieck et al., 2016 ). The solution is a piecewise affine expres-

ion that maps the optimal scheduling decisions offline as a func-

ion of the initial conditions of the system, any disruptive events

n the future, and the design of the process. 

We further need to address the gap between the scheduler and

he controller stemming from the large time scale differences and

he plant-model mismatch created by the approximation of the

losed loop dynamics. Therefore, we formulate a surrogate model

s an mpQP problem that readjusts the upper level scheduling de-

isions in the time steps of the control scheme, as presented in

q. (7) . 

arg min 

˜ s t s (θ ) 

N sm ∑ 

t sm =0 

‖ ̃

 s t sm 
− s t s =0 ‖ 

2 
R 

s.t. ˜ x t sm +1 = A ̃

 x t sm 
+ B ̃

 s t sm 
+ Cd t sm 

˜ s t sm 
= [( ̃  s SP 

t sm 
) T , ( ̃  u 

SP 
t sm 

) T ] T 

x ≤ ˜ x t sm 
≤ x 

s Y t sm 
≤ ˜ s t sm 

≤ s Y t sm 

θ = [ x T t sm =0 , d 
T 
t sm 

, s T t s =0 , Y 
T 

t sm 
] T 

∀ t sm 

∈ { 0 , 1 , . . . , N sm 

} 

(7) 

here the tilde symbol ( ∼ ) denotes the scheduling variables read-

usted by the surrogate model. Eq. (7) describes an mpQP problem

hat modifies the long term scheduling decisions from Eq. (6) in

he time steps of the controller. The time steps of the surrogate

odel �t sm 

is selected such that one step spans the entire control

orizon (i.e. �t sm 

= �t c N c ). Similarly, the output horizon of the

urrogate model is set to be greater than the discretization step

f the scheduler (i.e. N sm 

≥�t s / �t sm 

) to translate the scheduling

ecision at the first time step. 

The solution to Eq. (7) maps the readjusted operating set points

or the controller as a function of the longer term scheduling



170 B. Burnak, N.A. Diangelakis and J. Katz et al. / Computers and Chemical Engineering 125 (2019) 164–184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

3

 

m  

a  

p  

p

d  

p  

t  

t  

r  

d  

t  

a  

r

(

 

s  

t  

i  

t  

v  

t  

a  

i  

d

 

l

 

 

 

 

 

 

t  

d  

t  

t  

u  

c  

r  

e  

t

 

t  

d  

p

 

i

 

 

a  

s  

t  
decisions and design variables offline. During the online imple-

mentation, the set points passed to the controller are updated ev-

ery �t sm 

time increments based on the states of the closed loop

system and the upper level scheduling decisions by the explicit so-

lution of Eq. (7) . 

Step 4: Closed loop validation. The hierarchical scheduling scheme

is validated in tandem with the control strategy against the high

fidelity model. The offline solutions of problems Eq. (6) and

Eq. (7) are used simultaneously with Eq. (5) to govern the feasi-

bility and profitability of the process described with Eq. (2) . The

offline strategies are tested against a range of design options and

varying market scenarios. The scheduling schemes are accepted if

they yield feasible and profitable closed loop profiles for the given

range of design and market conditions uncertainties. Otherwise,

the tuning parameter of the surrogate model is modified, or a new

approximate model is derived for the closed loop dynamics. 

2.3.3. Design optimization based on explicit scheduling and control 

The offline maps for the optimal scheduling and control strate-

gies draws explicit relations as a function of the design decisions.

Therefore, incorporation of these functional forms for the opera-

tional decisions reduces the overall degrees of freedom of Problem

1 from the union of the design, scheduling, and control variables to

the design variables only. Furthermore, direct inclusion of the de-

sign dependent operating strategies in the MIDO problem ensures

the operability of the resulting design configuration for a range of

process and market disturbances. For more details on embedding

the multiparametric solution in a MIDO problem, the reader is re-

ferred to Diangelakis et al. (2017b) . 

Remark 2. Postulating all decision layers as optimization prob-

lems in the framework has practical benefits to be able to impose

any physical limitations in each individual problem as hard or soft

constraints. Such physical limitations can include safety considera-

tions, thermodynamics, or operational policies. Implementation of

these limitations is discussed and demonstrated in detail in the fol-

lowing examples. 

Remark 3. The offline maps of optimal economical and operational

decisions alleviate the computational burden of real-time opti-

mization. During the online operation, we can simply determine

the optimal actions exactly by a look-up table and affine function

evaluations, instead of solving any optimization problems. On the

other hand, determining the offline maps via multiparametric pro-

gramming and solving the integrated MIDO problem can be com-

putationally expensive. However, these steps of the framework are

evaluated once and completely offline. 

Remark 4. The aim of the proposed framework is not to deter-

mine the global minimum of Eq. (1) . Due to pre-postulation of

scheduling and control strategies in the design optimization prob-

lem, Eq. (1) in fact describes a lower bound on the reconstructed

MIDO. However, the reference trajectories acquired by Eq. (1) may

be unattainable by the scheduling and control schemes when they

are not explicitly accounted for, resulting into suboptimal, even in-

feasible operations. The proposed framework guarantees the oper-

ability of the system by properly embedding the operational strate-

gies. 

Remark 5. The proposed framework is not geared towards speed-

ing up the computational time to solve Eq. (1) . Because the solu-

tion profile and objective value can be suboptimal to Eq. (1) in the

proposed framework (see Remark 4 ), the MIDO algorithm may ter-

minate faster compared to the monolithic solution. In other words,

any observed speed up in computational time is due to the search

for a suboptimal but operable design, rather than an artifact of the
solution strategy. n  
. Case studies 

.1. CSTR with three inputs and three outputs 

This case study is adapted from Flores-Tlacuahuac and Gross-

ann (2006) , a widely used problem for simultaneous scheduling

nd control studies. The CSTR is operated isothermally and is ex-

ected to deliver three products on a single production line, as

resented in Fig. 3 . In the figure, R i denotes the i th reactant, P j 
enotes the j th product, Demand P j denotes the demand rate for

roduct P j , and V CSTR denotes the volume of the CSTR. The reac-

or is allowed to produce a single product at a given time, and

he product at the exit stream is required to satisfy a certain pu-

ity threshold to be stored in the inventory tanks. A time variant

emand rate for all products is satisfied continuously from these

anks. Therefore, a feasible operation requires storing a nonzero

mount of the products in the inventory tanks. The mathematical

epresentation of the high fidelity model is given in Eqs. (A.1b) –

A.1h) in Appendix A . 

The limitation on producing a single product at a given in-

tance enforces the reactor to undergo transition regions between

he productions of different products. The system dynamics dur-

ng the transition regions are affected by the operation history and

arget operating points, which are ultimately dictated by the time

ariant demand rates and products stored in the inventories. These

ransitions should be accounted for while making economic oper-

tional decisions, as they cost raw materials and time. Therefore,

ncorporating the closed loop system dynamics in the scheduling

ecisions improves the economic performance of the reactor. 

Considering this motivation, the problem statement is formu-

ated as follows: 

(i) Given : A high-fidelity model of the three product CSTR, unit

inventory costs, a functional expression for the CSTR fixed

cost, a scenario of product demands. 

(ii) Determine : Volume of the CSTR, production sequence, pro-

duction rates, optimal reactant volumetric flow rates to

achieve the target production rate and to reach the thresh-

old purity. 

(iii) Objective : Minimize the sum of operating and capital costs. 

The objective in the problem definition can be achieved by de-

ermining the reactor design, production schedule, and closed loop

ynamics that minimize the wasted raw materials and processing

ime. Therefore, (i) the controller is expected to deliver optimal

ransitions between all operating points determined by the sched-

ler, (ii) the scheduling decisions have to minimize the operating

osts while accounting for the closed loop dynamics, and (iii) the

eactor must be large enough to remain feasible throughout the

ntire operation, while avoiding overdesign to minimize the capi-

al costs. 

We formulate the MIDO problem given in Eq. (A.1) to achieve

he targeted goals. The following discussion breaks down the

erivation and the solution strategy of the given multi-level MIDO

roblem. 

High-fidelity dynamic model. The reaction network in the CSTR

s given in Eq. (8) . 

2 R 1 → P 1 

R 1 + R 2 → P 2 

R 1 + R 3 → P 3 

(8)

Eq. (8) shows that R 1 is required to produce all three products,

nd is the only raw material to produce P 1 . Based on the reaction

toichiometry, P 1 is expected to be generated as an impurity during

he production of other products. Therefore, any control scheme

eeds to monitor the impurity level during the production periods
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Fig. 3. Example 1 - CSTR flowsheet with the online implementation of the scheduling and control schemes. 
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o achieve high selectivity and satisfy the purity threshold. For fur-

her details regarding the governing equations and relevant system

nd cost parameters, the reader is referred to Burnak et al. (2018b)

Model approximation. This case study is used to illustrate using

ultiple approximate models to represent the dynamics of a sin-

le high fidelity model. The input space is partitioned into multiple

utually exclusive subspaces which are concatenated into a sin-

le state space representation. Note that using a single state space

odel model maintains the identical design dependence in every

onstituent subspace. MATLAB 

® System Identification Toolbox 
TM 

is

sed to derive the approximate model. 

Determining the number of input partitions creates a trade-

ff between the accuracy of the representation and computational

omplexity of solving the offline control problem. Rigorous open

oop simulations of the high fidelity model suggest that two par-

itions for each degree of freedom is sufficient to capture the dy-

amics of the overall system. According to these simulations, the

nput space is set up as presented in Eq. (9) . 

u = 

[
u 1 , u 2 , u 3 , u 4 

]
T 

u 1 = a 2 , a 2 ∈ [0 , 0 . 5) 

u 2 = a 2 , a 2 ∈ [0 . 5 , 1] 

u 3 = a 3 , a 3 ∈ [0 , 0 . 55) 

u 4 = a 3 , a 3 ∈ [0 . 55 , 1] 

(9) 

here a 2 and a 3 are the volumetric fractions of R 2 and R 3 in the

eed stream, respectively. Therefore, in the state space approximate

odel given in Eq. (3) , x are the identified states, u are the volu-

etric fractions of the reactants with all respective partitions, d

re the total volumetric flow rate and the reactor volume, and y

re the product concentrations. The state space matrices and the

tep response profile of the model are given in Appendix B . 

Design of the mpMPC. The control scheme is based on the stan-

ard MPC formulation given in Eq. (4) with two major additions:

i) Incorporation of mutually exclusive control decisions, (ii) Intro-

uction of soft constraints to minimize the transition time in the

ontrol level. 

In the model approximation step, we introduced mutually ex-

lusive control decisions that account for different ranges of a

iven manipulated variable. A big-M formulation is employed to

nforce the controller to select only one of the subspaces, as pre-

ented in Eq. (10) . 

u z i ≤ u i ≤ u z i , i ∈ { 1 , . . . , NP } 
NP ∑ 

i =1 

z i = 1 

(10) 
here u i are continuous decision variables, z i are binary decision

ariables, and NP denotes the number of partitions in the input

pace. Note that incorporating the binary variables results into an

pMIQP problem, for which the POP toolbox features an exact al-

orithm ( Oberdieck et al., 2016 ). 

The second addition to the control scheme aims to penalize

he transition times between the production regimes. The soft con-

traints, presented in Eq. (11) , features slack variables that have to

ake a nonzero value to satisfy the inequality. 

− y ∗ + P ur min 

∑ 

i ∈ Prod 

y i ≤ −ε + M (1 − Y ) , ε ∈ [0 , 1] (11) 

here y are the system outputs (i.e. molar concentrations), P ur min 

s the threshold purity level to initiate the production regime, ε
re the slack variables, M is the big-M parameter, Y is the bi-

ary switch parameter determined by the schedule, Prod is the set

f products { P 1 , P 2 , P 3 }, and “∗” denotes the product of interest

t a given time. Note that time subscript t is omitted for brevity.

q. (11) forces the slack variables to be nonzero if the concentra-

ion of the product of interest is below the purity threshold. This

urity constraint is enforced for all products, but is only activated

r relaxed based on Y , determined by the schedule. Therefore, pe-

alizing the slack variables along the output horizon entails mini-

izing the transition time. The additional penalty term used in the

bjective function of the control scheme is presented in Eq. (12) . 

M ∑ 

t=1 

‖ ε t ‖ 

2 
P1 (12) 

here M is the control horizon, and P 1 is a positive definite

enalty matrix for the slack variables. Note that a linear penalty

unction will also derive the slack variables to zero, as they are de-

ned as nonnegative variables. However, a quadratic penalty term

s preferred to avoid any potential dual degenracies in the multi-

arametric problem. 

The mpMPC is developed based on the standard form given

n Eq. (4) , with the addition of Eq. (12) in the objective func-

ion, and the inclusion of Eqs. (10) and ( 11 ) in the constraints. The

ontrol parameters are determined based on heuristic MPC tuning

ethods, and are provided in Table 2 . It should be noted that the

pMPC scheme treats the two upper level decisions, i.e. total feed

ow rate (schedule) and reactor volume (design) as bounded pa-

ameters. Therefore, the solution of the constructed mpMPC prob-

em yields a unified explicit control strategy that accounts for

 range of scheduling and design decisions that are specified in

able 2 . 
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Table 2 

Tuning parameters for the mpMPC of the CSTR for Ex- 

ample 1. 

mpMPC Design Parameters Value 

N c 6 

M c 2 

QR 

⎡ 

⎣ 

10 2 0 0 

0 10 0 

0 0 10 

⎤ 

⎦ 

R 1 50 

P 1 90 

Pur min 0.9 

y [0, 0, 0] T 

u [0, 0.5, 0, 0.55] T 

d [0, 0.4] T 

y [1, 1, 1] T 

u [0.5, 1, 0.55, 1] T 

d [500, 1.0] T 

Fig. 4. Example 1 - Step change in set points in two reactors with different vol- 

umes. 
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Closed loop validation. The developed mpMPC is validated

against the high-fidelity model, under a range of scheduling de-

cisions and design options. Fig. 4 presents 4 h closed loop simula-

tions for two reactor volumes ( V 1 = 0 . 4 m 

3 , V 2 = 1 . 0 m 

3 ). The pro-

cess undergoes a step change from P 2 to P 3 after 2 h of operation

to test the validity of the control scheme under different schedul-
ng decisions and design configurations. Note that all operations

re governed by a single explicit control law that is a function of

he design and scheduling decisions. 

The closed loop simulations presented in Fig. 4 shows that the

eveloped control scheme is suitable for a range of scheduling and

esign options. The control scheme (i) achieves effective set point

racking for all three products simultaneously, (ii) minimizes tran-

ition time by prioritizing the purity satisfaction, (iii) recognizes

he dynamics introduced by different scheduling decisions and de-

ign configurations, and (iv) maintains the operation within the in-

erent/imposed bounds of the system. 

High-fidelity model with the mpMPC embedded. The explicit con-

rol law is integrated to the original high fidelity model. The inte-

rated model yields the closed loop dynamics of the system that is

equired to formulate the scheduling problem. 

Model approximation. Two approximate models are derived with

he discretization time steps of the scheduler (1 h) and the con-

roller (1 min), respectively. For this particular example, the ap-

roximate model for the scheduler is derived based on a simpli-

ed first principle mole balance as presented in Eq. (13) instead

f an input-output based system identification. The mole balance

xpressions yield linear expressions that are directly implemented

n a scheduling problem in the form of an mpMILP ( Burnak et al.,

018b ). 

dW j 

dt 
= F j − DR j 

(13)

here W j is the inventory level, F j is the product molar flow rate

t the exit of the reactor, and DR j is the demand rate of product P j ,

espectively. 

Three surrogate models are identified for three distinct products

ia the MATLAB System Identification Toolbox. The surrogate mod-

ls take the total volumetric flow rate and reactor volume as inputs

nd determines the product concentration set point and reference

eactant composition at the feed based on the closed loop behav-

or. The state space matrices and the step and impulse responses

f the surrogate models are presented in Appendix B . 

Design of the scheduler. The objective of the schedule is to

inimize the inventory costs while satisfying continuous de-

and rate forecast within the scheduling horizon. Therefore, the

bjective function to be minimized is formulated as presented

n Eq. (14) . 

∑ 

j=1 

N s ∑ 

t=1 

α j W j,t (14)

here N s is the scheduling horizon, αj is the storage unit cost, and

 j,t is the inventory level of P j at discretized time step t . This ob-

ective function is subjected to the governing dynamic approximate

odel given in Eq. (13) , discretized as presented in Eq. (15) . 

W j,t+1 = W j,t + �tF j,t − �tDR j,t , ∀ j, ∀ t ∈ { 1 , . . . , N s − 1 } (15)

The reactor is allowed to produce one product at a given time

nstance. Therefore, product assignment constraints are employed

o enforce the system to select only one product at a time, as pre-

ented in Eq. (16) . ∑ 

j=1 

y j,t = 1 

F y j,t ≤ F j,t ≤ F y j,t 

(16)

Capacity constraints are used to impose the physical limitations

f the storage tanks, as presented in Eq. (17) . 

W ≤ W j,t ≤ W 

(17)
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Table 3 

System parameters of the scheduling 

problem for Example 1. 

System parameters Value 

N s 3 

α ($/ h.mol ) [1.0, 1.5, 1.8] T 

�t ( min ) 60 

F [50, 50, 50] T 

W [50, 50, 50] T 

D [60, 60, 60] T 

F [0, 0, 0] T 

W [0, 0, 0] T 

D [0, 0, 0] T 
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Fig. 5. Example 1 - Closed-loop validation of the integrated scheduling and control 

scheme in two reactors with different volumes. 
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The initial conditions and the demand rate forecast are defined

s uncertain and bounded parameters as presented in Eq. (18) . 

θ = [ W j,t=0 , DR j,t ] 

θ ≤ θ ≤ θ
(18) 

Therefore, the overall scheduling problem is constructed to

inimize Eq. (14) , subjected to Eqs. (15) –(18) . The parameters of

he scheduling problem are provided in Table 3 . 

Design of the surrogate model. The time scale gap between the

cheduler and the controller is addressed by a quadratic objective

unction that minimizes the L 2 norm between the volumetric flow

ate determined by the schedule and the transformed decision that

s passed to the controller, as presented in Eq. (19 ). An additional

erm is included for the slack variables that take place in the purity

overning soft constraints. 

M sm ∑ 

t=0 

‖ Q total,t − ˜ Q total,t ‖ 

2 
R ′ + 

N sm ∑ 

t=1 

‖ ε ′ t ‖ 

2 
P1 ′ (19) 

here ˜ Q total,t is the scheduling decision, and is defined in Eq. (20) .

˜ Q total,t = 

∑ 

j F j,t 

C P ∗,t=0 

(20) 

The objective function constructed in Eq. (19) is subjected to

he approximate closed loop dynamic models given in Appendix B ,

ox constraints on the inputs, outputs, and the parameters

 Eq. (21) ), as well as the purity soft constraints ( Eq. (11) discretized

n the time steps of the surrogate model). 

u ≤ u t := [ Q total,t , C 
SP 
j,t , ε 

′ 
t ] ≤ u 

y ≤ y t := [ C j,t ] ≤ y 

d ≤ d := [ ̃  Q total,t , des ] ≤ d 

(21) 

Three mpQP problems are constructed for three products. The

urrogate model parameters are tuned to improve the closed loop

erformance, and are provided in Table 4 . 

Closed loop validation of the integrated scheduling and control

cheme. The controller, surrogate model, and the scheduler are op-

rated simultaneously on the high fidelity model under a range of

esign options and product demand variations. Fig. 5 showcases

he closed loop profiles for 12 h at the lower bound ( V 1 = 0 . 4 m 

3 )

nd the upper bound ( V 2 = 1 . 0 m 

3 ) of the design range. Note that

he same design dependent offline strategies are used in two re-

ctors. The demand profiles for the products are randomly regen-

rated every hour, and the scheduling decisions are updated in a

olling horizon manner. The closed-loop simulations validate that

he integrated scheduling and control scheme (i) maintains low in-

entory levels in the storage tanks, (ii) reactively adapts to changes

n the demand profile, (iii) is applicable for a range of different de-

ign options. A sample of the offline scheduling and control deci-

ions is demonstrated in Table 5 , where a snapshot of the online
peration of the large CSTR at t = 5 h is tabulated. Such explicit ex-

ressions are available for the range of design decisions, and will

e used for design optimization described as follows. 

Design optimization. The validated offline scheduling and con-

rol strategies are embedded in the overall MIDO problem given

n Eq. (1) in the gPROMS environment. The capital investment-

ent for the reactor is determined by Eq. (22) ( Towler and Sin-

ott, 2013 ). 

C e = a + bV 

n (22) 

here C e is the annualized reactor cost, and a, b, n are cost param-

ters given in Appendix C , along with the cost escalation indexes

or year 2018. The minimum total annual cost is found as $330 k / yr

t V = 0 . 69 m 

3 . Note that the scheduling and control strategies

ield feasible operation for the optimal reactor volume as a result

f their design dependence. Therefore, treating the design, schedul-

ng, and control problems simultaneously ensures the operability
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Table 4 

System parameters for the surrogate model for Example 1. 

System parameters Model 1 Model 2 Model 3 

N sm 10 10 10 

M sm 1 1 1 

�t sm ( min ) 6 6 6 

R ′ 10 3 

[
10 −4 0 

0 10 −1 

] [
10 −4 0 

0 10 −1 

]
P 1 ′ 10 4 10 6 10 8 

u [500, 1, 1, 1, 1, 1, 1] T [500, 1, 1, 1, 1, 1, 1] T [500, 1, 1, 1, 1, 1, 1] T 

y [1, 1, 1] T [1, 1, 1] T [1, 1, 1] T 

d [500, 1.0] T [500, 1.0] T [500, 1.0] T 

u [0, 0, 0, 0, 0, 0, 0] T [0, 0, 0, 0, 0, 0, 0] T [0, 0, 0, 0, 0, 0, 0] T 

y [0, 0, 0] T [0, 0, 0] T [0, 0, 0] T 

d [0, 0.4] T [0, 0.4] T [0, 0.4] T 

Table 5 

Example 1 - An illustration of the offline map of receding horizon policies 

at t = 5 h for the large CSTR ( V 2 = 1 . 0 m 

3 ). Observe that the volume of the 

reactor has a direct impact on the control action for this particular instance. 

Decision variable Affine expression 

F 3 ,t=0 = −16 . 7 W 3 + DR 3 ,t=0 + DR 3 ,t=1 h + DR 3 ,t=2 h 

F 2 ,t=1 h = −16 . 7 W 2 + DR 2 ,t=0 + DR 2 ,t=1 h + DR 2 ,t=2 h 

F 1 ,t=2 h = −16 . 7 W 1 + DR 1 ,t=0 + DR 1 ,t=1 h + DR 1 ,t=2 h 

Q total,t=0 = 500 

CP SP 
2 ,t=0 = 0 . 91(CP 1 ,t=0 − 0 . 003) − 0 . 007(CP 2 ,t=0 − 0 . 14) − 0 . 12 

a 1 = 0 . 45 − 6 × 10 −3 V 

a 2 = 0 . 55 + 6 × 10 −3 V 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Example 2 - Closed loop validation of the generalized scheduling scheme in 

two reactors operating in parallel. The volumes of the reactors are V 1 = 0 . 4 m 

3 and 

V 2 = 1 . 0 m 

3 , respectively. 
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of the system, as the MIDO problem comprises the exact closed

loop strategies that will be used online during the operation. 

3.2. Two CSTRs operating in parallel 

This case study presents an extension of the single CSTR exam-

ple discussed in Section 3.1 to two CSTRs operating in parallel. The

exact same control strategy and the surrogate model formulations

are employed because the open loop dynamics of the system re-

mains unchanged. The cooperative operation of the two CSTRs is

maintained by a centralized scheduler that allocates the produc-

tion tasks on the reactors based on their volumes and their pro-

duction regimes at a given time. 

Design of the scheduler. The governing approximate model given

in Eq. (15) is generalized to represent multiple CSTRs operating in

parallel, as presented in Eq. (23) . 

W j, t +1 =W j, t + 

N CSTR ∑ 

p=1 

�t F j,t,p − �t DR j,t ∀ j, ∀ t ∈ { 1 , . . . , N s − 1 }

(23)

where the number of the reactors, N CSTR , equals 2 by the problem

definition. The product assignment constraints are also generalized

as presented in Eq. (24) . ∑ 

j=1 

y j,t,p = 1 

F y j,t,p ≤ F j,t,p ≤ F y j,t,p 

(24)

Closed loop validation. The generalized offline scheduling

scheme is validated against the high fidelity model of the two re-

actor system. Fig. 6 showcases a scenario with one small reactor

( V 1 = 0 . 4 m 

3 ) and one larger reactor ( V 2 = 1 . 0 m 

3 3 ) operated in par-

allel. The integrated scheduling and control scheme is able to drive

the inventory level of the most costly product, W P 3 
, close to zero

by assigning it to the larger reactor. The large reactor is capable of

satisfying the demand on P standalone, and the small reactor has
3 
 faster transition rate because of the lower retention time. There-

ore recognizing the closed loop dynamics and the capacity of the

eactors, the integrated schedule assigns the costly product, P 3 , to

he large reactor, and alternates the production between P 1 and P 2 
n the small reactor. 

Design optimization. The offline maps of scheduling and control

re embedded in the overall MIDO problem in the gPROMS envi-

onment. The reactor configuration with volumes V 1 = 0 . 44 m 

3 and

 2 = 0 . 92 m 

3 minimizes the total annual cost accounting for the

apital and operating costs. Note that one large reactor and one

mall reactor is selected to deliver (i) uninterrupted production of

ne of the products depending on their unit storage prices and de-

and rates throughout the horizon, and (ii) fast transitions for al-

ernating production of the remaining products, respectively. 

.3. Residential combined heat and power (CHP) unit 

This case study presents an application of a combined heat and

ower generation system (CHP) on a residential scale. In our previ-

us work ( Diangelakis et al., 2017b ), we developed design depen-

ent explicit controllers to simultaneously optimize the design and

ontrol decisions in a MIDO formulation. In this study, we extend

his approach by taking into account the external factors that af-

ect the desired level of operation, i.e. the fluctuations in the heat

nd power demand rates, and changing market prices for the elec-

ricity and fuel. We consider a residential district with 10 units,

ll of which are supplied hot water for heating purposes and elec-

ricity from a single CHP unit. The hot water can be stored in a

uffer tank if the produced heat content exceeds the demand rate.

dditional electricity can be supplied from the central grid if the
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Fig. 7. Example 3 - A generalized flowsheet of the CHP system. 
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HP unit falls short, and a supplementary boiler is assumed to be

vailable at all times to provide more heat content. Excess elec-

ricity produced from the CHP unit can be sold to the central grid

or revenue, and excess hot water can be disposed of at an ex-

ense. Note that the rapidly changing electricity prices in day time

nd night time has a significant economic impact on the operation

f a CHP unit. For instance, it may be more profitable to operate

he CHP unit at a higher capacity during the day time because of

he increased cost of electricity purchase, and at a lower capacity

t the night time when the cost decreases. Therefore, determining

he most cost effective operation can be achieved by taking into

ccount the fluctuation in the prices, demands rates, as well as the

ynamics of the CHP units. A generalized flowsheet of the CHP sys-

em with two parallel CHP units is presented in Fig. 7 . However in

his section, we focus on a system with a single CHP system sup-

lying the heat and power to the residential units. Parallel opera-

ion of multiple units will be discussed in the subsequent example.

The problem statement of the problem is given as follows: 

(i) Given : A high-fidelity model of the CHP, a demand scenario

for electricity and heat consumption, investment cost of the

CHP unit as a function of its size, market prices of fuel and

purchasing/selling electricity. 

(ii) Determine : Internal combustion engine (ICE) size of the CHP,

a schedule for the transactions with the grid and fuel pur-

chases, operating level of the CHP. 

(iii) Objective : Minimize the sum of operating and capital costs. 

The size of the ICE directly affects the process time of the sys-

em, and thus the responsiveness of the CHP to fluctuations in the

emand rates and market prices. ICEs smaller in size have lower

ransition time, hence they can deliver fast responses to changes in

he operating set points. On the other hand, larger ICEs can supply

ore power and heat to the residential units when the demand

ates are high. The trade-off between the responsiveness and the

apacity of the CHP is addressed by integrating a design depen-

ent scheduler and controller in the design optimization problem. 

High-fidelity dynamic model. There are two main components

aken into account in the CHP model, (i) a natural gas powered ICE

o produce electrical power, and (ii) a cooling system that recovers

he excess heat content of the ICE. We also include the dynamics

f the throttle valve that manipulates the inlet air mass flow rate,

nd the intake manifold that distributes the air into the ICE cylin-

ers. For the detailed mathematical model, the reader is referred

o Diangelakis et al. (2014) . 

Model approximation. The original high fidelity model is a DAE

ystem with 364 algebraic and 15 differential relations in the con-

inuous domain. In our previous studies, the complexity of the

verall system is addressed by decomposition into two approxi-

ate models, namely a power production subsystem and a heat

ecovery subsystem ( Diangelakis et al., 2016; 2017b ). The former
perating mode gives the relation between the throttle valve open-

ng and the power output of the CHP, while the latter is used

o estimate the water temperature at the outlet as a function of

he power output and the water flow rate into the heat recovery

ystem. Eq. (25) presents the identified state-space model for the

ower production subsystem. 

x t+1 = 0 . 9799 x t + 0 . 0 0 06 u t + 6 . 516 V 

y t = 7 . 839 x t 
(25) 

here x t is the identified state, u t is the throttle valve opening, V

s the volume of the ICE, y t is the electrical power generated by

he CHP. 

The heat recovery subsystem is an explicit function of the out-

ut of the power production subsystem and is given in Eq. (26) .

x t+1 = 

[ 

0 . 997 0 . 103 −0 . 003 

−0 . 002 0 . 940 0 . 116 

−0 . 058 −0 . 056 0 . 179 

] 

x t + 

[ −0 . 008 0 . 001 

0 . 280 −0 . 033 

−1 . 280 0 . 146 

] 

u t

y t = 

[
−529 . 9 −2 . 827 0 . 252 

]
x t 

(26) 

here x t is the set of identified states, u t are the power generation

evel and water flow rate, respectively, and y t is the temperature

f the hot water at the outlet. The discretization time steps of the

odels presented in Eqs. (25) and ( 26 ) are both 0.1 s. 

Design of the mpMPC. The two subsystems derived in the pre-

ious step are operated by a decentralized control policy, which

omprises interlinked control strategies for each subsystem. We

efine two operational modes for the decentralized control policy

efined as follows. 

• Electricity driven mode (Mode 1): The operating level of the CHP,

i.e. the power set point, is determined based on the power de-

mand. Therefore, the throttle valve opening is manipulated pri-

marily to satisfy the demand on electricity. The operating level

projected by the electricity generation subsystem is treated as

a measured disturbance by the heat recovery subsystem, hence

the produced heat is a function of the power output of the CHP.

The heat production level of a standalone CHP unit can be in-

sufficient to satisfy the heat demand at a given time, requiring

the use of the supplementary boiler. It is also possible that the

produced heat content exceeds the heat demand, in which case

the hot water is stored in a buffer tank. 

• Heat production driven mode (Mode 2): The operating level of

the CHP is determined based on the heat demand. Tracking a

water temperature set point at 70 ◦C, heat recovery subsystem

(i) determines an operating level set point to ensure sufficient

heat production by the power production subsystem, and (ii)

manipulates the cooling water flow rate to recover enough heat
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Fig. 8. Example 3 - Closed loop simulation of a CHP unit with V = 1500 cc, operated with mode 1. 
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to satisfy the demand. Analogous to mode 1, the power pro-

duction level may not match the electricity demand. In case of

insufficient power, additional electricity is purchased from the

central grid, and excess electricity is sold back to the grid for

revenue. 

The reader is referred to Diangelakis et al. (2016) ,

Diangelakis et al. (2017b) and Diangelakis and Pistikopou-

los (2017) for more details on the operating modes and a

quantified evaluation of the decentralized control policy. 

Note that changing the operating modes creates an offset be-

tween the new set point and the current output of the system.

This offset has economical consequences on the operation and dic-

tates the quantity of electricity purchases/sales, usage of the buffer

tank and the supplementary boiler. These economical aspects are

addressed and mitigated in the following steps. 

Closed loop validation. The design dependent decentralized con-

trol policy is validated against the high fidelity model under a

range of different design and scheduling decisions. Fig. 8 shows a

closed loop simulation of a CHP with V = 1500 cc operated with

mode 1 only. The power set point is subject to random changes

throughout the operation. 

Similarly, closed loop simulation on a larger CHP ( V = 50 0 0 cc)

is demonstrated in Fig. 9 . Note that due to operating mode 2, the

power set point is subject to changes dictated by the heat recovery

subsystem. 

High fidelity model with the mpMPC embedded. The explicit form

of the decentralized control policy is implemented in the original

high fidelity model. 

Model approximation. The closed loop high fidelity model is

used to develop an approximate model for the scheduler via the

MATLAB System Identification Toolbox. The identified model estab-

lishes a relation between the power production and heat storage

levels, and the change in the power production set point, as pre-

sented in Eq. (27) . [
E t+1 

B t+1 

]
= 

[
0 . 999 0 

37 . 9 0 . 955 

][
E t 
B t 

][
99 . 5 0 0 

0 11 . 2 −11 . 2 

][ 

R t 

Q t 

D t 

] 

+ 

[
0 

−11 . 2 

]
ζ h 

t (27)
here E t is the energy production level, B t is the heat storage level,

 t is the change in the power production set point, Q t is the addi-

ional heat supplied from the boiler, D t is the disposed heat, ζ h 
t is

he heat demand, and the time step of the model is 10 s. We also

se an overall energy balance for the relation between the power

roduction, power demand, and electricity purchases from the cen-

ral grid, presented in Eq. (28) . 

P t + E t = ζ p 
t + W t (28)

here P t is the electricity purchase, ζ p 
t is the power demand, and

 t is the excess electricity sold back to the grid. 

Design of the scheduler. The objective of the schedule is to mini-

ize the operating costs, including energy production, energy pur-

hases and sales, and inventory costs, as given in Eq. (29) . 

N s ∑ 

t=1 

βE t + ψ t P t − νt W t + ξt Q t + ω t D t + γ B t (29)

here the Greek letters denote the corresponding cost parame-

ers. Note that the CHP unit is assumed to be operational through-

ut the scheduling horizon. Hence, on/off switching costs are ex-

luded in the objective function. This assumption will be relaxed

n Section 3.4 where we discuss a parallel operation of multiple

HP units. The objective function is subject to the approximate

HP model derived in Eqs. (27) and (28) , as well as the lower and

pper bounds on the optimization variables. 

The power production capacity of the CHP unit is a function of

he ICE size (i.e. E = E (V ) ). The schedule treats this design variable

s a bounded parameter along with the initial conditions of the

ystem, power and heat demands, unit cost of purchasing fuel and

ower, and unit revenue of selling power, as listed in Eq. (30) . 

θ = [ V, E t , B t , ζ
h 
t ζ

p 
t , βt , ψ t , νt , ξt , ω t , γt ] (30)

Design of the surrogate model. Eqs. (27) and (28) are resampled

n the time steps of the controller, and substituted in the surrogate

odel formulation presented in Eq. 7 . The resampled state space

atrices are given in Appendix B . 

Closed-loop validation. The integrated scheduling and control

cheme is validated against an extensive set of design options and

emand profiles. Fig. 10 shows a snapshot of a closed loop sim-

lation of a CHP unit with a volume V = 50 0 0 cc. Note that the
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Fig. 9. Example 3 - Closed loop simulation of a CHP unit with V = 50 0 0 cc, operated with mode 2. 

Fig. 10. Example 3 - Closed-loop validation of the integrated scheduling and control scheme on a CHP with V = 50 0 0 cc. 
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ower set point throughout the operation is determined by the of-

ine schedule, and translated into the time steps of the controller

y the surrogate model. 

Design optimization. We formulate a MIDO problem in the

PROMS environment using the high fidelity model, the explicit

esign dependent relations for the scheduler, surrogate model, and

he controller. The capital investment cost is assumed to be a lin-

ar function of V , and is given in Appendix C . A CHP unit with

n ICE volume of V = 1710 cc yields the scheduling and control

trategies that minimizes the total annualized cost that includes

he capital and operating costs. 

.4. Two CHPs operating in parallel 

The single CHP case study presented in Section 3.3 is ex-

ended to include two CHP units operating in parallel. We
eneralize the scheduling formulation to account for multiple

HP units, and showcase the proposed algorithm on a system

ith two units. We also include the dynamics stemming from

witching on/off the units, and their impact on the operational

ptimization. 

Design of the scheduler. Evidently, multiple CHP units have a

reater capacity to supply heat and power compared to a sin-

le unit. However, the total production rate of multiple units

an exceed the demand rates significantly even when they

re operated at their lowest capacities. In other words, op-

rating one CHP unit standalone can be more cost effective

han operating two CHPs simultaneously at low demand rates.

herefore, we include the start-up and shut-down dynamics

n the schedule to account for the trade-off between switch-

ng on/off the operation and maintaining the operating status

f a unit. 
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Fig. 11. Example 4 - Closed loop simulation of the generalized scheduling scheme in two CHP units operating in parallel. The volumes of the ICE are V 1 = 1500 cc and 

V 2 = 4500 cc, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Example 4 - Snapshot of the electricity and heat demand profiles. Note the 

steep increase in demand in short notice. 
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The cost of switching on/off is described by Eq. (31 ). 

N CHP ∑ 

i =1 

N s ∑ 

t=1 

φi S i,t + πi F i,t (31)

where N CHP is the number of CHP units, S i,t and F i,t are binary

variables that indicate the start-up and shut-down status, and φi 

and π i are their unit costs, respectively. The impact of the switch-

ing status variables is incorporated in the schedule by introducing

lifting-state variables, ˜ S i,t,n and 

˜ F i,t,n , as presented in Eq. (32) . 

˜ S i,t+1 ,n = 

˜ S i,t,n −1 , ˜ S i,t,n =0 = S i,t 

˜ F i,t+1 ,n = 

˜ F i,t,n −1 , ˜ F i,t,n =0 = F i,t 
(32)

The state lifting-variables determine the operating status of the

CHP units as described in Eq. (33) . 

S i,t − F i,t = X i,t − X i,t−1 

X i,t ≥
δup 

i ∑ 

n =0 

˜ S i,t,n 

1 − X i,t ≥
δdn 

i ∑ 

n =0 

˜ F i,t,n 

(33)

where X i,t is a binary variable that indicate the operating

status, δup 
i 

and δdn 
i 

are the start-up and shut-down times

of the i th CHP unit. The interested reader is referred to

Subramanian et al. (2012) for more details on scheduling with

lifting-state variables, and to Kopanos and Pistikopoulos (2014) for

an application of reactive scheduling using lifting-state variables on

a CHP system. 

The cost function given in Eq. (29) is generalized to encapsulate

the operating cost of multiple CHP units, as presented in Eq. (34) .

N CHP ∑ 

i =1 

N s ∑ 

t=1 

βE i,t + 

N s ∑ 

t=1 

ψ t P t − νt W t + ξt Q t + ω t D t + γ B t (34)

The objective function of the schedule comprises the operating

and purchasing costs described by Eq. (34) and the switching costs

given in Eq. (33) . 

Closed loop validation. The developed scheduling strategy is im-

plemented on the high fidelity model and operated in tandem with

the offline controller. Fig. 11 shows a snapshot of the schedul-

ing level decisions of an operation with two CHP units with ICE

volumes V 1 = 1500 cc and V 2 = 4500 cc, under a rapidly escalating

demand profile given in Fig. 12 . The following are some observa-

tions and remarks on the closed loop performance of the devel-

oped scheduling and control strategies. 

• The small CHP is operated standalone at low demand rates. 
• The large CHP is operated when either of the demand rates are

high. 

• Due to the time loss during the start-up of the large CHP, grid

electricity is used to supplement the deficit. 

• The recovered heat content is not wasted by disposal. 

• In both CHP units, set point tracking is achieved via the same

design-dependent control strategy, which is developed and dis-

cussed in Section 3.3 . The closed loop profiles of water temper-

ature, power output, cooling water flow rate, and valve position

are omitted here fore brevity. 

Design optimization. The MIDO problem is formulated by em-

edding the offline scheduling and control schemes in the high fi-

elity model in the gPROMS environment. A CHP system with ICE

olumes of V 1 = 2050 cc and V 2 = 2700 cc yields the most cost ef-

ective scheduling and control strategies, minimizing both the cap-

tal and operating costs. Note that one small CHP unit is selected

o be operated continuously even at low demand rates, and one

arger CHP unit to be operational under higher demand rates, a

imilar outcome of the case study presented in Section 3.2 . 

. Conclusions 

In this study, we introduced a novel, process agnostic frame-

ork to integrate the design, scheduling, and control problems

ased on a single high fidelity model. Using multiparametric pro-

ramming, we derived offline piecewise strategies for (i) a con-

rol scheme as a function of the design and scheduling decisions,

ii) a scheduling scheme as a function of design, and aware of

he closed-loop dynamics through a surrogate model formulation.

he offline maps of strategies allowed for a direct implementa-

ion in a MIDO formulation for design optimization. The proposed
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ramework was able to determine the process design that guaran-

ees the operability of the system under a range of bounded pro-

ess and market uncertainties by simultaneously considering the

ptimal scheduling and control strategies used in closed-loop im-

lementation. 

Postulating all layers of decisions as optimization problems has

pecific benefits to tailor each individual problem based on the

eeds of the system of interest. This advantage was illustrated by

sing soft constraints to satisfy product purity in the CSTR exam-

les, and by using a decentralized control structure in the CHP ex-

mples. Note that the framework was applied on both problems

ithout appealing to further modifications. 

The computational complexities of the proposed framework

rise in solving the multiparametric programming problems and

he integrated MIDO problem. The former scales exponentially

ith the number of optimization variables and constraints, which

s commensurate with the degrees of freedom of the control prob-

em, number of scheduling decisions, and prediction horizon of

he operating strategies. However, the parametric solution provides

iecewise affine functions that are directly incorporated into the

IDO problem. Handling these piecewise affine functions in the

ntegrated MIDO problem is less significant compared to the com-

utational burden associated with the inherent nonlinearities of

he open loop design optimization problem. 

The major bottleneck of the proposed framework is employ-

ng approximate models in the control and scheduling levels. Al-

hough the confidence on the models were increased by using

ell-established and previously proposed error metrics ( Katz et al.,

018 ), the approximation creates a mismatch between the real pro-

ess dynamics and the decision making optimization problems. Fu-

ure work will focus on incorporating robust counterparts of the

cheduling and control problems to account for the mismatch.

owever, robust multiparametric receding horizon policies result

n an explosion in the number of critical regions in the parametric

olution space. This explosion should be handled by theoretical de-

elopments in multiparametric programming to explore larger crit-

cal regions in volume, and using a partial solution with the critical

egions that occupy the significant portion of the parametric solu-

ion space. 
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ppendix A. Complete MIDO formulation of integrated design, 

cheduling, and control problem for Example 1 

The mathematical representation of the integrated design,

cheduling, and control problem for Example 1 is given by

q. (A.1) , in the form of an MIDO formulation. 

min 

,s,des 

Fixed cost ︷ ︸︸ ︷ 
a + bV 

n + 

Operating cost ︷ ︸︸ ︷ ∫ τ

0 

∑ 

i ∈ P 
αi (t) W i (t) dt (A.1a) 

.t. 
dC i 
dt 

= 

Q i C 
f 

i 
− Q total C i 

V 

+ 

∑ 

j∈ J 
s i, j R j , i ∈ (R ∪ P ) (A.1b) 

 j = k j 
∏ 

i ∈ Rxn 

C 
ν j 

i 
, j ∈ J (A.1c) 
 total = 

∑ 

i ∈ R 
Q i (A.1d) 

dW i 

dt 
= 

{
Q total C i − DR i , if P ur i ≥ 0 . 90 

−DR i , if P ur i < 0 . 90 

, i ∈ P (A.1e) 

 ur i = 

C i ∑ 

i ∈ P C i 
(A.1f) 

 i = 

Q i 

Q total 

, i ∈ R (A.1g) 

es := [ V ] (A.1h) 

 i,t s (θs ) = arg min 

u t s 

∑ 

i 

∑ 

t s 

αi,t s W i,t s 

s.t. W i,t s +1 = W i,t s + �t s F i,t s − �t s DR i,t s 

F (V ) y i,t s ≤ F i,t s ≤ F (V ) y i,t s ∑ 

y i,t = 1 

W ≤ F i,t s ≤ W 

θs = [ V, W i,t s =0 , DR i,t s ] 

t s ∈ { 0 , �t s , . . . , N s �t s } (A.1i) 

 = arg min 

∑ 

t sm 

‖ Q total,t sm 
− ˜ Q total,t sm 

‖ 

2 
R ′ + 

∑ 

t sm 

‖ ε ′ t sm 
‖ 

2 
P1 ′ 

s.t. x t sm +1 = A sm 

x t sm 
+ B sm 

s t sm 
+ C sm 

des 

˜ Q total,t sm 
= 

∑ 

i F i,t sm 

C ∗
t sm =0 

θsm 

= [ C T t sm =0 , F 
T 

i,t sm 
, des T ] T 

s ≤ s t sm 
≤ s 

C ≤ C t sm 
≤ C 

t sm 

∈ { 0 , �t sm 

, . . . , N sm 

�t sm 

} (A.1j) 

 := [ Q total,t sm 
(θsm 

) , C SP 
i,t sm 

(θsm 

)] (A.1k) 

 = arg min 

a i,t c ,ε t c ,z p 

N c −1 ∑ 

t c =1 

‖ C i,t c − C SP 
i,t c 

‖ 

2 
QR + 

M c −1 ∑ 

t c =0 

‖ �u t c ‖ 

2 
R 1 + 

N c ∑ 

t=1 

‖ ε t c ‖ 

2 
P1 

s.t. x t c +1 = A c x t c + B c u t c + C c [ d 
T 
t c 
, s T t c 

, des T ] T 

ˆ C i,t c = D c x t c + E c u t c + F c [ d 
T 
t c 
, s T t c 

, des T ] T 

C i,t c = 

ˆ C i,t c + e 

e = C i,t c =0 − ˆ C i,t c =0 

u z p ≤ u t c ≤ u z p ∑ 

p∈ NP 

z p = 1 

− C ∗t c + P ur min 

∑ 

i 

C i,t c =0 ≤ −ε t c + M (1 − Y ∗t c ) 

x ≤ x t c ≤ x , C i ≤ C i,t c ≤ C i 

u ≤ u t c ≤ u , �u ≤ �u t c ≤ �u 

θ = [ x T t c =0 , u 

T 
t c = −1 , d 

T 
t c =0 , s 

T 
t c 
, des T ] T 

∀ t c ∈ { 0 , 1 , . . . , N c − 1 } , z p ∈ { 0 , 1 } , i ∈ P (A.1l) 

https://doi.org/10.13039/501100008982
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Table A1 

Parameters of the high-fidelity CSTR model. 

Reaction rate constants Value Reactant concentration at the feed Value Unit cost Value 

k 1 0.1 C f 
R 1 

1.0 α1 1.0 

k 2 0.9 C f 
R 2 

0.8 α2 1.5 

k 3 1.5 C f 
R 3 

1.0 α3 1.8 
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u := [ a i,t c (θc ) , ε t c (θc ) , z p (θc )] (A.1m)

The objective function, given by Eq. (A.1a) , takes into account

the annualized investment cost as a function of the reactor volume,

and the operating cost as a function of the stored product in the

inventory. Eqs. (A .1b) –(A .1h) are the dynamic high fidelity model

of the multiproduct CSTR. More specifically, Eq. (A.1b) is the mass

balance for the set of reactants ( R ) and products ( P ), Eq. (A.1c) is

the rate expression for all reactions ( J ), Eq. (A.1d) is the volume

balance at the exit of the reactor (mixture density is assumed to

be constant), Eq. (A.1e) is the dynamics of the inventory levels

in the storage tanks, Eq. (A.1f) is the purity of product i ∈ P , and

Eq. (A.1g) defines the volumetric fraction of the reactants at the

inlet. The The scheduling decisions are governed by Eqs. (A.1i) and

(A.1j) to determine the operating region, and the closed loop con-

trol is regulated by Table A.6 . The parameters of the high-fidelity

CSTR model are provided in Table A.6 . 

Observe that the scheduling and control decisions are postu-

lated as lower level optimization problems, nested in an MIDO

problem. Due to the implicit nature of the lower level optimiza-

tion problems, Eq. (A.1) is a challenging class of problem. Multi-

parametric programming allows for an offline map of solutions of

the lower level decisions that can be implemented exactly in the

upper level optimization problem. 

Appendix B. Approximate models with their step responses 

Here, we provide the approximate model that represents the

open loop dynamics of the CSTR used in Example 1. The closed

form of the state space model is given in Eqs. (B.1a) and ( B.1b ), and

the corresponding matrices are provided in Eqs. (B.1c) –( B.1f ). 

x t c +1 = Ax t c + B 

⎡ 

⎢ ⎣ 

u 1 ,t c 

u 2 ,t c 

u 3 ,t c 

u 4 ,t c 

⎤ 

⎥ ⎦ 

+ C 

[
Q total,t c 

V 

]
(B.1a)

ˆ 
 i,t c = Dx t c , i ∈ P (B.1b)

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

9 . 67 · 10 

−1 8 . 00 · 10 

−4 −2 . 30 · 10 

−3 −9 . 15 · 10

2 . 10 · 10 

−3 9 . 65 · 10 

−1 −1 . 19 · 10 

−2 8 . 36 · 10 

−

7 . 49 · 10 

−3 −7 . 53 · 10 

−3 8 . 61 · 10 

−1 2 . 14 · 10 

−

6 . 56 · 10 

−2 1 . 72 · 10 

−2 1 . 27 · 10 

−2 9 . 54 · 10 

−

1 . 87 · 10 

−2 1 . 79 · 10 

−2 2 . 19 · 10 

−2 3 . 88 · 10 

−

−1 . 44 · 10 

−1 −1 . 51 · 10 

−2 −1 . 93 · 10 

−2 −7 . 41 · 10

1 . 49 · 10 

−2 1 . 13 · 10 

−1 −3 . 65 · 10 

−3 −3 . 18 · 10

D = 

[ 

2 . 73 · 10 

−2 −7 . 48 3 . 03 2 . 02 · 10 

−2 −8 . 16 ·
5 . 82 4 . 97 9 . 08 · 10 

−1 −3 . 16 · 10 

−1 −3 . 06 ·
−7 . 05 7 . 30 1 . 34 2 . 82 · 10 

−1 −4 . 33 ·
−2 . 31 · 10 

−3 −2 . 00 · 10 

−3 5 . 12 · 10 

−4 

−7 . 93 · 10 

−2 4 . 75 · 10 

−3 −3 . 89 · 10 

−2 

−1 . 06 · 10 

−1 3 . 47 · 10 

−2 1 . 36 · 10 

−1 

1 . 04 · 10 

−2 2 . 27 · 10 

−1 −3 . 09 · 10 

−2 

9 . 85 · 10 

−1 8 . 79 · 10 

−2 −3 . 98 · 10 

−2 

−1 . 38 · 10 

−2 5 . 65 · 10 

−1 1 . 48 · 10 

−2 

−8 . 20 · 10 

−3 5 . 79 · 10 

−3 6 . 95 · 10 

−1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.1

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 . 35 · 10 

−3 −1 . 47 · 10 

−3 −1 . 82 · 10 

−3 3 . 36 · 10 

−3 

1 . 46 · 10 

−3 −1 . 36 · 10 

−3 3 . 38 · 10 

−3 −1 . 76 · 10 

−3 

2 . 69 · 10 

−3 −5 . 12 · 10 

−3 7 . 85 · 10 

−3 −7 . 13 · 10 

−3 

−7 . 75 · 10 

−3 5 . 44 · 10 

−3 1 . 62 · 10 

−2 6 . 43 · 10 

−3 

−3 . 56 · 10 

−3 2 . 36 · 10 

−3 5 . 31 · 10 

−3 1 . 37 · 10 

−3 

1 . 51 · 10 

−2 −1 . 36 · 10 

−2 −3 . 41 · 10 

−2 −5 . 63 · 10 

−3 

−1 . 28 · 10 

−2 −4 . 08 · 10 

−3 −1 . 10 · 10 

−2 −3 . 00 · 10 

−3 

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.1d)

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−5 . 37 · 10 

−6 9 . 54 · 10 

−7 

5 . 32 · 10 

−6 −1 . 05 · 10 

−6 

−5 . 07 · 10 

−5 9 . 44 · 10 

−6 

−2 . 50 · 10 

−5 4 . 15 · 10 

−6 

−8 . 96 · 10 

−7 6 . 44 · 10 

−8 

4 . 86 · 10 

−5 −8 . 22 · 10 

−6 

5 . 89 · 10 

−5 −1 . 07 · 10 

−5 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.1e)

 6 . 13 · 10 

−2 4 . 94 · 10 

−1 

 1 . 61 · 10 

−2 4 . 02 · 10 

−2 

 5 . 46 · 10 

−2 4 . 80 · 10 

−2 

] 

(B.1f)

here x t c is the vector of identified states. The step responses

f the product concentrations with respect to the system inputs,

cheduling, and design variables are presented in Fig. B.1 . 

Similarly, the approximate models that represent the closed

oop dynamics are given in Eqs. (B.2) –(B.4) . Note that the dis-

retization time of the models are identical at 15 min. 

Surrogate model 1. 

x t sm +1 = 

[ 

0 . 004 −0 . 001 0 . 002 

−0 . 031 −0 . 010 0 . 045 

−0 . 118 −0 . 026 0 . 118 

] 

x t sm 

+ 

[ −7 . 2 

−4 . 7 

−3 . 1 

] 

10 

−4 Q total,t sm 
+ 

[ 

1 . 7 

1 . 4 

2 . 1 

] 

10 

−3 V 

ˆ C i,t sm 
= 

[ 

0 . 340 −0 . 037 0 . 0 6 6 

0 . 072 −0 . 040 0 . 031 

0 . 048 −0 . 042 0 . 041 

] 

x t sm 
, i ∈ P 

(B.2)
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Fig. B.1. Step response of the identified approximate model with respect to the system inputs, as well as scheduling and design variables ( Q total and V , respectively). 

Fig. B.2. Step response of Surrogate Model 1 with respect to the scheduling ( Q total ) and design decisions ( V ). 

Fig. B.3. Step response of Surrogate Model 2 with respect to the scheduling ( C SP 
2 , Q total ) and design decisions ( V ). 
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Fig. B.4. Step response of Surrogate Model 3 with respect to the scheduling ( C SP 
3 , Q total ) and design decisions ( V ). 

 

 

 

 

 

 

 

 

Table C.1 

Example 1 - Reactor 

cost parameters for 

year 2010 ( Towler and 

Sinnott, 2013 ). 

Parameter Value 

a 61,500 

b 32,500 

n 0.6 

 

i  

(

C  

w  

5

 

l

C  

R

A  

 

A  

 

B  

B  

B  

 

B  

 

B  

 

B  

 

B  

 

B  

 

 

Surrogate model 2. 

x t sm +1 = 

[ 

0 . 045 0 . 027 −0 . 012 

0 . 089 −0 . 022 −0 . 035 

0 . 027 0 . 021 −0 . 092 

] 

x t sm 

+ 

[ 

2 . 4 · 10 

−4 0 . 130 

9 . 0 · 10 

−5 −0 . 749 

2 . 9 · 10 

−6 −0 . 716 

] [
Q total,t sm 

C SP 
P 2 ,t sm 

]
+ 

[ −3 . 8 

0 . 2 

3 . 5 

] 

10 

−5 V 

ˆ C i,t sm 
= 

[ 

0 . 105 −0 . 038 −0 . 018 

0 . 738 −1 . 005 −0 . 381 

0 0 0 

] 

x t sm 
, i ∈ P 

(B.3)

Surrogate model 3. 

x t sm +1 = 

[ −0 . 011 −0 . 012 −0 . 016 

−0 . 067 0 . 112 0 . 117 

0 . 134 −0 . 148 0 . 220 

] 

x t sm 

+ 

[ 

2 . 5 · 10 

−4 0 . 171 

9 . 8 · 10 

−5 −0 . 620 

−5 . 5 · 10 

−5 0 . 192 

] [
Q total,t sm 

C SP 
P 3 ,t sm 

]
+ 

[ −2 . 5 

0 . 2 

−1 . 0 

] 

10 

−5 V 

ˆ C i,t sm 
= 

[ 

0 . 014 −0 . 008 0 . 004 

0 0 0 

0 . 516 −1 . 081 0 . 477 

] 

x t sm 
, i ∈ P 

(B.4)

where x t c is the vector of identified states. The step responses of

the surrogate models are provided in Figs. B.2 –B.4 . 

The closed form of the approximate model used in the surro-

gate model formulation for the CHP system (Examples 3 and 4) is

given in Eq. (B.5) . [
E t sm +1 

B t sm +1 

]
= 

[
1 . 0 0 0 0 0 

0 . 3880 0 . 9995 

]
= 

[
E t sm 

B t sm 

]

+ 

[
0 . 9954 0 0 

−19 . 2613 0 . 1143 −0 . 1143 

][ 

R t sm 

Q t sm 

D t sm 

] 

+ 

[
0 0 

−0 . 1143 0 . 0 0 01 

][
ζ h 

t sm 

V 

]
(B.5)

Appendix C. Cost functions and parameters for the examples 

For the CSTR cost functions used in Example 1 and 2, we use

Eq. (22) to estimate the fixed design cost. The cost parameters a,

b , and n are listed in Table C.1 for year 2010. 
The cost estimation from 2010 is projected to 2018 by us-

ng Eq. (C.1) the Chemical Engineering Plant Cost Index (CEPCI)

 che, 2018 ). 

 ost 2018 = C ost 2010 
C EP C I 2018 

C EP C I 2010 

(C.1)

here the cost indexes CEPCI 2010 and CEPCI 2018 are 532.9 and

88.0, respectively. 

For the CHP fixed cost estimation, on the other hand, we use a

inear function, given in Eq. (C.2) ( Diangelakis et al., 2017b ) 

ost CHP = 370 + 0 . 0857 V CHP (C.2)
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