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and similarly design dependent scheduling policies are derived accounting for the closed-loop dynamics.
Inherent multi-scale gap issues are addressed by an offline design dependent surrogate model. The pro-
posed framwork is illustrated by two example problems, a system of two continuous stirred tank reactor,
and a small residential combined heat and power (CHP) network.
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1. Introduction

The complexity of decision making problems in the process in-
dustry has conventionally resulted in isolation of decisions with re-
spect to the time scales of their effects on the operation, ranging
from years-spanning supply chain management to seconds-long
process control decisions. The isolated layers are structured hier-
archically, as shown in Fig. 1a, with an information flow allowed
dominantly in descending order in the time scales they span. How-
ever, independent and sequential assessment of the decision lay-
ers leads to suboptimal, even infeasible operations. Integration of
these layers across an enterprise is expected to deliver more prof-
itable and reliable operations by benefiting from the synergistic
interactions between different decisions (Grossmann, 2005). Re-
cent advances in operational research and rapid decrease in the
cost of computational hardware provide an opportunity for the
academia and the industry to seek a tractable and systematic
methodology for simultaneous consideration of multi-scale deci-
sions (Pistikopoulos and Diangelakis, 2016). However, seamless in-
tegration of decision layers at different time scales and objectives
is still an open question due to the high dimensionality and com-
plexity of each constituent problem, such that process systems en-
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gineering tools and perspectives can play a key role for a holistic
solution (Daoutidis et al., 2018).

Process design decisions, such as equipment selection and siz-
ing, span the widest time-scale in the functional hierarchy of a
chemical process, and they are typically established by solving
a steady-state design optimization problem (Rafiei and Ricardez-
Sandoval, 2018). Operational decisions such as scheduling and con-
trol are usually assumed to take a nominal value to make the
problem complexity tractable (Nie et al., 2015). However, rapidly
changing market conditions and process disturbances often force
the system to operate under a wide range of operating conditions,
which may render the steady-state process design dynamically in-
feasible. Design optimization under such operational uncertain-
ties have been extensively investigated in the literature by consid-
ering feasibility, flexibility, stability, controllability, and resilience
metrics (Diangelakis et al., 2017b; Pistikopoulos and lerapetritou,
1995; Ricardez-Sandoval, 2012b). An indicative list of contributions
towards the integration of operational decisions in the design
optimization problem is presented in Table 1. Similar to process
design, operational decisions including production sequence, tran-
sition, allocation of tasks in multiple units are optimized with
limited consideration of the physical process dynamics. Overlook-
ing these fast dynamics while making longer term economical
decisions creates an inherent mismatch between the operational
set points determined by the scheduler and the closed loop per-
formance governed by the control strategy (Baldea et al., 2015;
Burnak et al., 2018b). These inherently different domains of the
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Table 1
Design, scheduling, and control in the literature: An indicative list.

Author (year)
Design & control

Contribution

Narraway et al. (1991), Soroush and Kravaris (1993b), Soroush and

Kravaris (1993a), Papalexandri and Pistikopoulos (1994),

Mohideen et al. (1997), Luyben and Floudas (1994), Floudas (2000);
Floudas et al. (2001), Bahri et al. (1997), Chatrattanawet et al. (2014),

Gong et al. (1995), Vega et al. (2014a)

Bansal et al. (2000a), Bansal et al. (2000b), Bansal et al. (2002),

Georgiadis et al. (2002), Bansal et al. (2003), Sakizlis et al. (2003),

Sakizlis et al. (2004), Malcolm et al. (2007), Washington and Swartz (2014),
Ricardez-Sandoval (2012a)

Flores-Tlacuahuac and Biegler (2007), Flores-Tlacuahuac and Biegler (2008),
Brengel and Seider (1992), Ricardez-Sandoval et al. (2008), Mehta and
Ricardez-Sandoval (2016), Rafiei-Shishavan et al. (2017), Mohideen et al. (1996),
Kookos and Perkins (2002), Kookos and Perkins (2016), De La Fuente and
Flores-Tlacuahuac (2009), Chen et al. (2011a), Chen et al. (2011b), Li and
Barton (2015), Zhang et al. (2006)

Ghobeity and Mitsos (2014); Ricardez-Sandoval (2011);

Ricardez-Sandoval et al. (2009); Vega et al. (2014b); Yuan et al. (2012)

Scheduling & control

Feasibility, flexibility, stability, controllibility, resilience metrics in steady-state
design optimization with MIDO or MINLP

Integrated MIDO formulation/ decomposition with PID control or (mp)MPC

Iterative MINLP formulation with stochastic back-off formulation for
uncertainty

Review articles on design and control integration

Flores-Tlacuahuac and Grossmann (2006), Terrazas-Moreno et al. (2007),
Flores-Tlacuahuac and Grossmann (2010), Flores-Tlacuahuac and

Grossmann (2011), Gutiérrez-Limon et al. (2012), Gutiérrez-Limén et al. (2014),
Mitra et al. (2010), Nie et al. (2012), Nie et al. (2015),

Capén-Garcia et al. (2013), Chu and You (2013), Pattison et al. (2016),

Kelley et al. (2018)

Chatzidoukas et al. (2003); Chu and You (2012); Costandy et al. (2018);

Du et al. (2015); Mahadevan et al. (2002); Zhuge and lerapetritou (2012)
Zhuge and lerapetritou (2014), Dias et al. (2018), Ellis and Christofides (2014b),
Ellis and Christofides (2014a), Ellis and Christofides (2015),

Alangar et al. (2017), Baldea et al. (2015), Dias et al. (2018), Jamaludin and
Swartz (2017), Diangelakis et al. (2017a), Burnak et al. (2018b),

Charitopoulos et al. (2018), Beal et al. (2018)

Huercio et al. (1995), Wiirth et al. (2011), Amrit et al. (2011),

Subramanian et al. (2012), Subramanian et al. (2013), Kopanos et al. (2013),
Kopanos and Pistikopoulos (2014), Touretzky and Baldea (2014), Liu and

Liu (2016)

Bassett et al. (1996), Grossmann (2005), Harjunkoski et al. (2009), Engell and
Harjunkoski (2012), Baldea and Harjunkoski (2014), Ellis et al. (2014), Chu and
You (2015), Dias and lerapetritou (2016), Dias and lerapetritou (2017)

Design, scheduling & control

Decomposition of MIDO or MINLP and open loop optimal control

Formulation/ Decomposition of MIDO schedule with PID control

(mp)MPC implementation in economic receding horizon policies

Control theory/ Economic MPC in scheduling problems

Review articles on scheduling and control integration

Patil et al. (2015); Terrazas-Moreno et al. (2008)
Koller et al. (2018)
Burnak et al. (2018a)

Formulation of MIDO and open loop control under uncertainty
PI control and stochastic back-off approach for uncertainty
Explicit, design dependent optimal rolling horizon strategies

design, scheduling, and control decisions are illustrated in Fig. 1b.
Any decision that lies outside the intersection of all layers results
into an inoperable point, where at least one of the layers fails to
find a feasible decision.

Integrated approaches aim to systematically assess the trade-
offs between different decision layers by reconstructing the prob-
lems into a unified formulation. The reformulated problem aug-
ments the feasible space of operation by simultaneously consid-
ering the degrees of freedom of the constituent problems, en-
abling more cost effective and reliable decisions. Although such
monolithic approaches deliver the expected benefit of integration
(Flores-Tlacuahuac and Grossmann, 2006; 2010; Zhuge and ler-
apetritou, 2012; 2014), they are susceptible to process disturbances
and changing demands. The discretization and reformulation steps
result into a large scale non-convex mixed-integer nonlinear pro-
gramming (MINLP) problem that is computationally taxing to solve
online after every disruptive event (Engell and Harjunkoski, 2012).
A low-order representation of the high-fidelity model (Du et al.,
2015) and decomposition techniques (Chu and You, 2012) have
been two fundamental approaches to acquire tractable and fast
solutions to this challenging problem. An indicative list of contri-
butions to integrate scheduling and control layers is presented in
Table 1.

Model Predictive Control (MPC) has been shown to be a useful
tool for process automation with its capabilities to handle com-
plex interactions between multiple process outputs and multiple
manipulated actions (MIMO systems), to satisfy dynamic physical
and operational constraints, and to predict the future outcomes of
the process (Qin and Badgwell, 2003). Despite these advantages,
integration efforts using an MPC strategy is limited in the litera-
ture due to the implicit nature of the control structure. The neces-
sity to formulate an optimization problem at every sampling time
under a longer time scale decision layer significantly increases the
overall problem complexity, making explicit control structures such
as PID controllers more suitable for integration purposes. How-
ever, multiparametric programming allows for an exact offline so-
lution of an MPC problem (referred as explicit MPC or mpMPC) as
a piecewise affine function of bounded parameters, including ini-
tial conditions, output set points, input reference trajectories, and
operational bounds (Bemporad et al., 2002). Although there have
been successful implementations of mpMPC in design optimization
(Diangelakis et al., 2017b), and scheduling (Burnak et al., 2018b;
Zhuge and lerapetritou, 2014), a simultaneous integration of de-
sign, scheduling, and control with explicit maps of rolling horizon
strategies has never been attempted in the open literature.
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Fig. 1. Decision making layers in an enterprise.

In this study, we present a novel framework to integrate de-
sign, scheduling, and control problems by deriving explicit maps
of optimal decision making strategies at both levels of operation
based on a single high fidelity model. We explicitly map the upper
level layer decisions on the lower levels by multiparametric pro-
gramming. The explicit expressions at the lower level layers enable
their representation in the upper level problems. In other words,
the control problem is derived as a function of design and schedul-
ing decisions, and similarly the scheduling decisions are design
dependent, and aware of the controller dynamics. These explicit
scheduling and control maps allow for an exact implementation in
a design optimization problem. Furthermore, we introduce a de-
sign dependent surrogate model formulation to bridge the time
scale gap between the schedule and the control problems, which
is also solved offline. Direct inclusion of operating strategies in the
design optimization ensures the process operability by enforcing
the decisions to be selected from the intersection of all layers from
Fig. 1b.

The remainder of the paper is organized as follows.
Section 2 defines the integration problem that is addressed in
this study, and describes the proposed framework to approach
the problem. The framework is showcased in Section 3 on sys-
tems of reactors and residential combined heat and power (CHP)
units. Lastly, Section 4 presents concluding remarks and future
directions.

2. Integration of design, scheduling, and control via
multiparametric optimization

In this section, we define the extent of the integrated problem,
provide the mathematical representation of the considered prob-

lem formulation, and introduce the tools and the framework to de-
liver the targeted objectives.

2.1. Problem definition

We consider a generic process where the interactions between
the long term (design), middle term (schedule), and short term
(control) decisions are sufficiently significant to impact the feasi-
bility and the optimality of each individual decision. Therefore, we
define the following problem that encapsulates all three decisions
simultaneously.

(i) Given: A high fidelity model based on first principles or
data-driven modeling techniques that accurately captures
the dynamics of the system, any physical limitations of the
system due to process safety considerations or product spec-
ifications, unit costs for design, raw material, energy, and in-
ventory, revenue for unit product, and an accurate demand
forecast.

(ii) Determine: Production sequence throughout an operating
horizon, closed loop control strategy that delivers the prod-
uct specifications, set points for the operation tailored for
the dynamics of the closed loop strategy, size of the pro-
cessing equipment that ensures operability of the process.

(iii) Objective: Minimize the operating and capital costs.

Note that the objective of the problem can be replaced by the
minimization of the energy utilization, CO, emissions, processing
time, or a combination of these tasks based on the application
without changing the framework. In this study, we showcase the
minimization of costs as it is the most frequently used objective in
process operations.

2.2. Problem formulation

A generalized mathematical representation of the simulta-
neous design, scheduling, and control problem introduced in
Section 2.1 is given by Eq. (1) in the form of a mixed integer dy-
namic optimization (MIDO) problem.

u,s,des

T
min ]:/ P(x,y,u,s,des,d)dt
0

st. x= f(x,u,s,des,d)
y<y=gxu,s,des,d)<y (1)
u<u=h(xu,s,des,d) <u
s

3]
IA

m(x,u,s,des,d) <s
d<d<d

where x are the states of the system, y are the system outputs, u
are the control actions, s are the scheduling decisions, des are the
design variables, and d are the measured disturbances, P is the cost
function accounting for the operating and capital costs, f and g are
differential and algebraic relations, h and m are the implicit rela-
tions that describe the operational decisions, and lower and upper
bars are the bounds on the variables. We also differentiate the dis-
turbances at the control level, d°Cd, such as the variations in the
feed conditions, and the disturbances at the scheduling level, d*cd,
such as the fluctuating market prices and demand rates. Note that
discrete design and scheduling decisions such as the number of
trays in a distillation column and the product to be manufactured
at a particular time instance render Problem 1 a mixed-integer op-
timization problem.

The problem definition detailed in Section 2.1 states that the
high fidelity model given by f and g, the cost function P, the
bounds on the variables are known, and a realistic demand sce-
nario is available. The goal is to minimize the objective P over a

des < des < des,

1=

X <X,
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time horizon 7 by manipulating the degrees of freedom of the sys-
tem available in the long term (des), middle term (s), and short
term (c).

The significantly distinct time scales of the manipulated vari-
ables yield a large scale MIDO problem that is computationally in-
tractable by the established approaches such as the direct, indi-
rect, and dynamic programming based approaches. In this work,
we propose a process agnostic decomposition strategy to address
Eq. (1) through the use of the Parametric Optimization and Con-
trol (PAROC) framework (Pistikopoulos et al., 2015). The proposed
methodology comprises (i) developing an offline control policy that
takes into account the different process dynamics stemming from
the selection of the unit design and online economical decisions,
(ii) deriving a scheduling policy based on the closed loop behavior
of the system, and (iii) determining the design that minimizes the
capital and operating costs for a given time period by utilizing the
offline control and scheduling policies simultaneously.

2.3. Design-scheduling-control integration

The PAROC framework presents an in-silico environment to de-
sign offline model based receding horizon control and economi-
cal optimization policies (Pistikopoulos et al., 2015). In our previ-
ous works, we applied this framework on (i) the simultaneous pro-
cess design and control problem where a design dependent control
strategy is developed and embedded in a MIDO formulation to de-
termine the control dependent optimal design (Diangelakis et al.,
2017b), and (ii) the integrated scheduling and control problem
where the dynamics of the offline control strategy is embedded in
the schedule through a surrogate model formulation (Burnak et al.,
2018b). Here, we propose a systematic approach to consider the
design, scheduling, and control problems simultaneously by taking
into account their interplay to yield cost effective and more reli-
able decisions.

The proposed methodology is based on developing explicit de-
sign dependent control and scheduling strategies to be directly im-
plemented in a MIDO problem to determine the optimal design si-
multaneously with the control and scheduling decisions. In other
words, we derive explicit functions for h and m in Eq. (1) that re-
turn the control and scheduling decisions, respectively.

In the proposed framework, the design, scheduling, and control
decisions are based on a single dynamic high fidelity model that
represents the essential characteristics of the system with suffi-
cient accuracy. Using the high fidelity model, we derive each in-
dividual decision with an increasing order in their time scales,
i.e. control, schedule, and design, respectively.! Explicit strategies
for both the control and the schedule include the decisions from
their upper level problems as bounded parameters. Hence, the ex-
act same control strategy is applicable under a range of operating
set points from the schedule and different design options. Simi-
larly, a single scheduling policy spans a range of different design
realizations in real time operations. Furthermore, we develop a de-
sign dependent surrogate model formulation based on the closed
loop dynamics of the system to account for the time scale differ-
ence between the scheduler and the controller. The derived offline
strategies are nested in a MIDO formulation for the design opti-
mization problem.

The following are the key steps of the PAROC framework
tailored to address the integrated design, scheduling, and con-
trol problem, describing the derivation of (i) design dependent,
schedule-aware controller, (ii) design dependent, control-aware
schedule, and (iii) optimal design based on the offline control and
scheduling policies, all summarized in Fig. 2. The interplay be-

1 Clearly, if a first principle high fidelity model is not available or derived, a grey
box or data driven model can be used instead.

tween the offline decision layers and the information flow in the
overall MIDO formulation is illustrated in Fig. 2a. The derivation of
the explicit MPC is explained schematically in Fig. 2b. Lastly, the
derivation of the offline scheduler is summarized in Fig. 2c.

2.3.1. Design dependent and schedule-aware controller

We initialize the framework by mapping the upper level deci-
sion layers in an offline control strategy, described as follows. The
development of the controller scheme, aware of the design and
scheduling decisions, is summarized in Fig. 2b.

Step 1: High fidelity dynamic modeling. A rigorous and accurate rep-
resentation of the system dynamics is postulated based on first
principles, empirical correlations, and/or data-driven techniques.
The resulting mathematical form is typically described by a set of
differential algebraic equations (DAE), of which a generalized rep-
resentation is given in Eq. (2).

x= f(x(t),u(t),s(t), des, d(t),t)
y=g(x(t),u(t),s(t),des,d(t),t)

Step 2: Model approximation. The high fidelity model presented in
Eq. (2) can be highly nonlinear for process systems, rendering it
impractical to derive the explicit map of optimal control strate-
gies. Therefore, we generate approximate models that accurately
captures the dynamics of Eq. (2) based on subspace identification
or model reduction techniques. In this study, we use the MAT-
LAB System Identification Toolbox™ to approximate the high fi-
delity model, yielding the discrete time state space model given in
Eq. (3).

q — AlG44 q qrAT T 1T
X 1 =A% +Blu, +C [dy .s;..des"]

Ji. = DI + E%u;, + FI[d], s, des"]"

(2)

(3)

where t. is the discrete time step of the controller, and y is the
output prediction. We also denote g as the index of the state space
model, as multiple models can be used to identify different oper-
ating regions. Note that the scheduling and design decisions are
treated as bounded parameters in the model. Also note that ap-
proximating a nonlinear process with a linear model creates a mis-
match between the real output, y, and the predicted output, y. Ad-
dressing the mismatch in designing the controller will be discussed
in the next step.

Developing accurate approximate representations of the high fi-
delity model is a pivotal step to generate reliable closed loop con-
trol strategies. Katz et al. (2018) investigated the effects of vari-
ous model approximation techniques and introduces novel error
metrics to evaluate the open and closed loop performances in the
context of multiparametric programming. In this study, we employ
these strategies to increase confidence in the approximate models
developed. However these details are omitted here for brevity and
to focus on the integration framework.

Step 3: Multiparametric model predictive control (mpMPC). The ap-
proximate model given by Eq. (3) is incorporated in a model pre-
dictive control (MPC) scheme that maintains closed-loop stability
and set point tracking. The formulated MPC problem is converted
into an mpMPC problem by treating the initial conditions, out-
put set points, reference input trajectories, measured disturbances
to the system, design and scheduling decisions as unknown but
bounded parameters. Note that inclusion of the scheduling and
control variables in the parametric space of the mpMPC problem
results in a control strategy that is an explicit function of the deci-
sions in the longer time scales. Therefore, regardless of the design
and scheduling decisions, the exact same control strategy is appli-
cable on the system. The generalized mpMPC problem formulation
is presented in Eq. (4).
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Fig. 2. The integration of process design, scheduling, and control decisions via multiparametric optimization.

Nc—1 Nc—1
U (0) = argmin - [lxn |3+ D x5+ D llye =32 I3
te te=1 te=1
M1 Mc—1
+ ) e —uPllR+ D I Aue Iz
te=0 te=0

s.t.

Xie1 = Axe, + Bug, +Cldl, s], des™]"
Jt. = Dx¢, + Eug, + F[d], s{, des™]"
Y. =Fi +e

€=Y-0— V-0

X<X <X Y=<y, =<y

u<ug <u, Auc<Au, <Au

c

T T T T T1T
0 = [X_g Up__1.d; g, S, des ]

X ufy c s, Vtee{0,1,....N.—1} (4)

where 6 is the set of bounded parameters, N is the output hori-
zon, M. is the control horizon, || -]y denotes weighted vector
norm with a weight matrix W, SP denotes set point, P, Q, QR, R,
and R1 are the corresponding weight matrices. We also define an
error term, e, to account for the mismatch between the actual sys-
tem output and the predicted output at the time of measurement.
Addition of the error to the model prediction carries over the mis-
match through the entire output horizon.

Eq. (4) is reformulated into a multiparametric linearly con-
strained quadratic programming problem (mpQP) by using the
YALMIP toolbox (Lofberg, 2004) and solved exactly by using the
Parametric OPtimization (POP) Toolbox (Oberdieck et al., 2016).
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The solution of the resulting problem yields explicit piecewise
affine functions of the uncertain parameters for the control strat-
egy, as presented in Eq. (5).

u, () =K0 +1,, VO €CRy
CR,:={0€®|L,0 <by}, Vne{l,2,...,NC}
where CRj is the active polyhedral partition of the feasible param-

eter space, NC is the number of critical regions, and ® is a closed
and bounded set.

(5)

Remark 1. The piecewise affine control strategy, u., is an explicit
function of both the design and the scheduling decisions. There-
fore, Eq. (5) is a single design dependent, schedule-aware mpMPC
solution that is applicable under different operating conditions dic-
tated by the upper level decision layers.

Step 4: Closed loop validation. The control strategy is developed
based on an approximation of the real process dynamics, design
decisions, and operating conditions. Therefore, validity of the con-
troller is exhaustively tested in-silico against the actual process
under numerous design alternatives and operating conditions dic-
tated by the schedule. The control scheme is accepted if it main-
tains effective set-point tracking, fast adaptation to changes in
the operating level, operational stability, while satisfying the pro-
cess constraints. Otherwise, a new control strategy is developed
by either tuning the weight matrices in the objective function of
Eq. (4) or by deriving a new approximate model.

2.3.2. Design dependent and control-aware scheduler

Analogous to designing the control scheme, we aim to derive
an offline map of the optimal scheduling decisions as a function of
its complementing decisions. Burnak et al. (2018b) proposed a two
level scheduling scheme with (i) an upper level problem that reg-
ulates the operation based on profitability and feasibility, and (ii) a
lower level problem that translates the upper level decisions into
the time steps of the control problem to bridge the time scale dif-
ference. In this work, we propose an extension to this approach
by incorporating the design decisions explicitly into the map of
scheduling actions. The steps to develop the offline receding hori-
zon policies, and their implementation in the design optimization
problem is summarized in Fig. 2c.

Step 1: High fidelity model with closed loop dynamics. The explicit
expressions for the control strategy given by Eq. (5) is directly im-
plemented in the high fidelity model (Eq. (2)). The resulting model
describes the system with the closed loop dynamics.

Step 2: Model approximation. Inclusion of the explicit control law
in the high fidelity model changes the dynamics of the system,
and thus necessitates a new approximate model that represents
the new dynamics. Therefore, we use the MATLAB System Iden-
tification Toolbox™ to approximate the output of the system for
a given scheduling decision, such as the output set point and in-
put reference trajectory. However, the time scale of the scheduling
model is typically orders of magnitude greater than the time scale
of the controller. This discrepancy is accounted for by resampling
the scheduling model in finer time intervals that match the output
horizon of the controller for the construction of a surrogate model
in the next step.

Step 3: Multiparametric schedule and surrogate model. A common
practice to determine optimal production schedule is to postulate
an MILP problem that treats the processing times as fixed pa-
rameters. Subramanian et al. (2012) presents an excellent frame-
work to transform this problem into an equivalent state space form
that represents the system of interest. Kopanos and Pistikopou-
los (2014) used multiparametric programming to derive the offline
map of optimal schedule based on the transformed problem as an

explicit function of the initial conditions of the system and the de-
mand rates. Burnak et al. (2018b) introduced an offline surrogate
model formulation as a lower level scheduling decision to bridge
the gap between the longer term scheduling actions and short
term control strategies. In this study, we extend this approach by
incorporating the design decision as a bounded uncertain parame-
ter in both the scheduling and the surrogate model formulations.

A general representation of the longer term scheduling deci-
sions is presented in Eq. (6).

Ns—1
OCTth + Z ,BTSts
1 ts=0

Ns

St () = argmin

) gszs ®) fe

Sit. Xp11 = Axg, + Bsi, + Cdy,
s, = ()", W)

X = Xpg = X

(6)

sYi, < s, <5sY;,
0= [XZ;=O, dz;]T
Vt; €{0,1,...,Ns}

where the Greek letters « and B denote cost parameters, and
Yi, € s, denotes the set of binary scheduling decisions that dic-
tate the operating window based on the production regime. The
state space matrices are derived at the previous step, and are dif-
ferent from the control model since they (i) represent the closed
loop dynamics, and (ii) span a significantly greater time scale. Note
that apart from the disruptive scheduling events, the design deci-
sion is included as a measured disturbance in d;, and treated as a
bounded uncertain parameter in Eq. (6).

The schedule formulated in Eq. (6) is classified as a mp-
MILP problem, which is solved exactly via the POP toolbox
(Oberdieck et al., 2016). The solution is a piecewise affine expres-
sion that maps the optimal scheduling decisions offline as a func-
tion of the initial conditions of the system, any disruptive events
in the future, and the design of the process.

We further need to address the gap between the scheduler and
the controller stemming from the large time scale differences and
the plant-model mismatch created by the approximation of the
closed loop dynamics. Therefore, we formulate a surrogate model
as an mpQP problem that readjusts the upper level scheduling de-
cisions in the time steps of the control scheme, as presented in
Eq. (7).

NS”I

> NS, — Socoll?

tsm=0

arg min

St

s.t. )h('thr] = A)?tsm + BS}S,,, + Cdl’sm

& P\T (7iSP\TT
St = [T, (@]

(7)

X <X, <X
Yoo < St < Yeon

T T T T T
0 =[x, —0- dt,,» St.—0, Y,

tsm tsm

Vtgm € {0,1, ..., N}

where the tilde symbol ( ~ ) denotes the scheduling variables read-
justed by the surrogate model. Eq. (7) describes an mpQP problem
that modifies the long term scheduling decisions from Eq. (6) in
the time steps of the controller. The time steps of the surrogate
model Atgy is selected such that one step spans the entire control
horizon (i.e. Atsym = At:Nc). Similarly, the output horizon of the
surrogate model is set to be greater than the discretization step
of the scheduler (i.e. Nspm > Ats/Atsy) to translate the scheduling
decision at the first time step.

The solution to Eq. (7) maps the readjusted operating set points
for the controller as a function of the longer term scheduling
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decisions and design variables offline. During the online imple-
mentation, the set points passed to the controller are updated ev-
ery Atgy time increments based on the states of the closed loop
system and the upper level scheduling decisions by the explicit so-
lution of Eq. (7).

Step 4: Closed loop validation. The hierarchical scheduling scheme
is validated in tandem with the control strategy against the high
fidelity model. The offline solutions of problems Eq. (6) and
Eq. (7) are used simultaneously with Eq. (5) to govern the feasi-
bility and profitability of the process described with Eq. (2). The
offline strategies are tested against a range of design options and
varying market scenarios. The scheduling schemes are accepted if
they yield feasible and profitable closed loop profiles for the given
range of design and market conditions uncertainties. Otherwise,
the tuning parameter of the surrogate model is modified, or a new
approximate model is derived for the closed loop dynamics.

2.3.3. Design optimization based on explicit scheduling and control

The offline maps for the optimal scheduling and control strate-
gies draws explicit relations as a function of the design decisions.
Therefore, incorporation of these functional forms for the opera-
tional decisions reduces the overall degrees of freedom of Problem
1 from the union of the design, scheduling, and control variables to
the design variables only. Furthermore, direct inclusion of the de-
sign dependent operating strategies in the MIDO problem ensures
the operability of the resulting design configuration for a range of
process and market disturbances. For more details on embedding
the multiparametric solution in a MIDO problem, the reader is re-
ferred to Diangelakis et al. (2017b).

Remark 2. Postulating all decision layers as optimization prob-
lems in the framework has practical benefits to be able to impose
any physical limitations in each individual problem as hard or soft
constraints. Such physical limitations can include safety considera-
tions, thermodynamics, or operational policies. Implementation of
these limitations is discussed and demonstrated in detail in the fol-
lowing examples.

Remark 3. The offline maps of optimal economical and operational
decisions alleviate the computational burden of real-time opti-
mization. During the online operation, we can simply determine
the optimal actions exactly by a look-up table and affine function
evaluations, instead of solving any optimization problems. On the
other hand, determining the offline maps via multiparametric pro-
gramming and solving the integrated MIDO problem can be com-
putationally expensive. However, these steps of the framework are
evaluated once and completely offline.

Remark 4. The aim of the proposed framework is not to deter-
mine the global minimum of Eq. (1). Due to pre-postulation of
scheduling and control strategies in the design optimization prob-
lem, Eq. (1) in fact describes a lower bound on the reconstructed
MIDO. However, the reference trajectories acquired by Eq. (1) may
be unattainable by the scheduling and control schemes when they
are not explicitly accounted for, resulting into suboptimal, even in-
feasible operations. The proposed framework guarantees the oper-
ability of the system by properly embedding the operational strate-
gies.

Remark 5. The proposed framework is not geared towards speed-
ing up the computational time to solve Eq. (1). Because the solu-
tion profile and objective value can be suboptimal to Eq. (1) in the
proposed framework (see Remark 4), the MIDO algorithm may ter-
minate faster compared to the monolithic solution. In other words,
any observed speed up in computational time is due to the search
for a suboptimal but operable design, rather than an artifact of the
solution strategy.

3. Case studies
3.1. CSTR with three inputs and three outputs

This case study is adapted from Flores-Tlacuahuac and Gross-
mann (2006), a widely used problem for simultaneous scheduling
and control studies. The CSTR is operated isothermally and is ex-
pected to deliver three products on a single production line, as
presented in Fig. 3. In the figure, R; denotes the ith reactant, P;
denotes the jth product, Demandpj denotes the demand rate for
product P;, and V¢srg denotes the volume of the CSTR. The reac-
tor is allowed to produce a single product at a given time, and
the product at the exit stream is required to satisfy a certain pu-
rity threshold to be stored in the inventory tanks. A time variant
demand rate for all products is satisfied continuously from these
tanks. Therefore, a feasible operation requires storing a nonzero
amount of the products in the inventory tanks. The mathematical
representation of the high fidelity model is given in Egs. (A.1b)-
(A.1h) in Appendix A.

The limitation on producing a single product at a given in-
stance enforces the reactor to undergo transition regions between
the productions of different products. The system dynamics dur-
ing the transition regions are affected by the operation history and
target operating points, which are ultimately dictated by the time
variant demand rates and products stored in the inventories. These
transitions should be accounted for while making economic oper-
ational decisions, as they cost raw materials and time. Therefore,
incorporating the closed loop system dynamics in the scheduling
decisions improves the economic performance of the reactor.

Considering this motivation, the problem statement is formu-
lated as follows:

(i) Given: A high-fidelity model of the three product CSTR, unit
inventory costs, a functional expression for the CSTR fixed
cost, a scenario of product demands.

(ii) Determine: Volume of the CSTR, production sequence, pro-
duction rates, optimal reactant volumetric flow rates to
achieve the target production rate and to reach the thresh-
old purity.

(iii) Objective: Minimize the sum of operating and capital costs.

The objective in the problem definition can be achieved by de-
termining the reactor design, production schedule, and closed loop
dynamics that minimize the wasted raw materials and processing
time. Therefore, (i) the controller is expected to deliver optimal
transitions between all operating points determined by the sched-
uler, (ii) the scheduling decisions have to minimize the operating
costs while accounting for the closed loop dynamics, and (iii) the
reactor must be large enough to remain feasible throughout the
entire operation, while avoiding overdesign to minimize the capi-
tal costs.

We formulate the MIDO problem given in Eq. (A.1) to achieve
the targeted goals. The following discussion breaks down the
derivation and the solution strategy of the given multi-level MIDO
problem.

High-fidelity dynamic model. The reaction network in the CSTR
is given in Eq. (8).

2R1 - P]
Ri+Ry, > P, (8)
R] =+ R3 — P3

Eq. (8) shows that R; is required to produce all three products,
and is the only raw material to produce P;. Based on the reaction
stoichiometry, P; is expected to be generated as an impurity during

the production of other products. Therefore, any control scheme
needs to monitor the impurity level during the production periods
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Fig. 3. Example 1 - CSTR flowsheet with the online implementation of the scheduling and control schemes.

to achieve high selectivity and satisfy the purity threshold. For fur-
ther details regarding the governing equations and relevant system
and cost parameters, the reader is referred to Burnak et al. (2018b)

Model approximation. This case study is used to illustrate using
multiple approximate models to represent the dynamics of a sin-
gle high fidelity model. The input space is partitioned into multiple
mutually exclusive subspaces which are concatenated into a sin-
gle state space representation. Note that using a single state space
model model maintains the identical design dependence in every
constituent subspace. MATLAB® System Identification Toolbox ™ is
used to derive the approximate model.

Determining the number of input partitions creates a trade-
off between the accuracy of the representation and computational
complexity of solving the offline control problem. Rigorous open
loop simulations of the high fidelity model suggest that two par-
titions for each degree of freedom is sufficient to capture the dy-
namics of the overall system. According to these simulations, the
input space is set up as presented in Eq. (9).

u=[ur,uz, us, ug]"

u; =ap, a €[0,0.5)

Uy =ay, a; € [0.5,1] (9)
usz =as, az €[0,0.55)

uy =as, as € [0.55,1]

where a, and as are the volumetric fractions of R, and R3 in the
feed stream, respectively. Therefore, in the state space approximate
model given in Eq. (3), x are the identified states, u are the volu-
metric fractions of the reactants with all respective partitions, d
are the total volumetric flow rate and the reactor volume, and y
are the product concentrations. The state space matrices and the
step response profile of the model are given in Appendix B.

Design of the mpMPC. The control scheme is based on the stan-
dard MPC formulation given in Eq. (4) with two major additions:
(i) Incorporation of mutually exclusive control decisions, (ii) Intro-
duction of soft constraints to minimize the transition time in the
control level.

In the model approximation step, we introduced mutually ex-
clusive control decisions that account for different ranges of a
given manipulated variable. A big-M formulation is employed to
enforce the controller to select only one of the subspaces, as pre-
sented in Eq. (10).

uz <u; <uz.ie{l,...,NP}

NP
Zzi =1
i=1

where u; are continuous decision variables, z; are binary decision
variables, and NP denotes the number of partitions in the input
space. Note that incorporating the binary variables results into an
mpMIQP problem, for which the POP toolbox features an exact al-
gorithm (Oberdieck et al., 2016).

The second addition to the control scheme aims to penalize
the transition times between the production regimes. The soft con-
straints, presented in Eq. (11), features slack variables that have to
take a nonzero value to satisfy the inequality.

— Y +Pur Y yi<—e+M(1-Y).e€[0,1]

ieProd

(11)

where y are the system outputs (i.e. molar concentrations), Pury,
is the threshold purity level to initiate the production regime, &
are the slack variables, M is the big-M parameter, Y is the bi-
nary switch parameter determined by the schedule, Prod is the set
of products {P;, P,, P3}, and “*” denotes the product of interest
at a given time. Note that time subscript t is omitted for brevity.
Eq. (11) forces the slack variables to be nonzero if the concentra-
tion of the product of interest is below the purity threshold. This
purity constraint is enforced for all products, but is only activated
or relaxed based on Y, determined by the schedule. Therefore, pe-
nalizing the slack variables along the output horizon entails mini-
mizing the transition time. The additional penalty term used in the
objective function of the control scheme is presented in Eq. (12).

M
D lleell;
t=1

where M is the control horizon, and P1 is a positive definite
penalty matrix for the slack variables. Note that a linear penalty
function will also derive the slack variables to zero, as they are de-
fined as nonnegative variables. However, a quadratic penalty term
is preferred to avoid any potential dual degenracies in the multi-
parametric problem.

The mpMPC is developed based on the standard form given
in Eq. (4), with the addition of Eq. (12) in the objective func-
tion, and the inclusion of Egs. (10) and (11) in the constraints. The
control parameters are determined based on heuristic MPC tuning
methods, and are provided in Table 2. It should be noted that the
mpMPC scheme treats the two upper level decisions, i.e. total feed
flow rate (schedule) and reactor volume (design) as bounded pa-
rameters. Therefore, the solution of the constructed mpMPC prob-
lem yields a unified explicit control strategy that accounts for
a range of scheduling and design decisions that are specified in
Table 2.

(12)
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Table 2
Tuning parameters for the mpMPC of the CSTR for Ex-
ample 1.

mpMPC Design Parameters  Value

Ne 6
M, 2
10? 0 0
QR 0 10 0
0 0 10
R1 50
P1 90
Purpin 0.9

[0, 0, 0]

[0, 0.5, 0, 0.55]"
[0, 0.4]
11,1

[0.5, 1,055, 1]
[500, 1.0]7
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Fig. 4. Example 1 - Step change in set points in two reactors with different vol-
umes.

Closed loop validation. The developed mpMPC is validated
against the high-fidelity model, under a range of scheduling de-
cisions and design options. Fig. 4 presents 4 h closed loop simula-
tions for two reactor volumes (V; = 0.4m3, V, = 1.0m?3). The pro-
cess undergoes a step change from P, to P3 after 2 h of operation
to test the validity of the control scheme under different schedul-

ing decisions and design configurations. Note that all operations
are governed by a single explicit control law that is a function of
the design and scheduling decisions.

The closed loop simulations presented in Fig. 4 shows that the
developed control scheme is suitable for a range of scheduling and
design options. The control scheme (i) achieves effective set point
tracking for all three products simultaneously, (ii) minimizes tran-
sition time by prioritizing the purity satisfaction, (iii) recognizes
the dynamics introduced by different scheduling decisions and de-
sign configurations, and (iv) maintains the operation within the in-
herent/imposed bounds of the system.

High-fidelity model with the mpMPC embedded. The explicit con-
trol law is integrated to the original high fidelity model. The inte-
grated model yields the closed loop dynamics of the system that is
required to formulate the scheduling problem.

Model approximation. Two approximate models are derived with
the discretization time steps of the scheduler (1 h) and the con-
troller (1 min), respectively. For this particular example, the ap-
proximate model for the scheduler is derived based on a simpli-
fied first principle mole balance as presented in Eq. (13) instead
of an input-output based system identification. The mole balance
expressions yield linear expressions that are directly implemented
in a scheduling problem in the form of an mpMILP (Burnak et al.,
2018b).

%%:ﬁ—u& (13)
where W; is the inventory level, F; is the product molar flow rate
at the exit of the reactor, and DR; is the demand rate of product P;,
respectively.

Three surrogate models are identified for three distinct products
via the MATLAB System Identification Toolbox. The surrogate mod-
els take the total volumetric flow rate and reactor volume as inputs
and determines the product concentration set point and reference
reactant composition at the feed based on the closed loop behav-
ior. The state space matrices and the step and impulse responses
of the surrogate models are presented in Appendix B.

Design of the scheduler. The objective of the schedule is to
minimize the inventory costs while satisfying continuous de-
mand rate forecast within the scheduling horizon. Therefore, the
objective function to be minimized is formulated as presented
in Eq. (14).

N
2> W (14)

j=1 t=1

where N; is the scheduling horizon, ¢; is the storage unit cost, and
W;; is the inventory level of P; at discretized time step t. This ob-
jective function is subjected to the governing dynamic approximate
model given in Eq. (13), discretized as presented in Eq. (15).
Wjii1 =W, + AtF; — AtDR;,, Vj, Vte{l,...,Ns—1} (15)

The reactor is allowed to produce one product at a given time
instance. Therefore, product assignment constraints are employed
to enforce the system to select only one product at a time, as pre-
sented in Eq. (16).

Zyj,t =1
j=1

Fyje <Fj; < ij,t

(16)

Capacity constraints are used to impose the physical limitations
of the storage tanks, as presented in Eq. (17).

W<W,<W a7
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Table 3
System parameters of the scheduling
problem for Example 1.

System parameters Value

Ns 3

o ($/h.mol) [10, 1.5, 1.8]"
At(min) 60

F [50, 50, 50]
w [50, 50, 50]"
D 160, 60, 60]"
F [0, 0, 0]

w [0, 0, 0]

D [0, 0, O]

The initial conditions and the demand rate forecast are defined
as uncertain and bounded parameters as presented in Eq. (18).

0 = [Wjt—0. DRj;]

Z 18
0<0<0 (18)

Therefore, the overall scheduling problem is constructed to
minimize Eq. (14), subjected to Eqs. (15)-(18). The parameters of
the scheduling problem are provided in Table 3.

Design of the surrogate model. The time scale gap between the
scheduler and the controller is addressed by a quadratic objective
function that minimizes the L2 norm between the volumetric flow
rate determined by the schedule and the transformed decision that
is passed to the controller, as presented in Eq. (19). An additional
term is included for the slack variables that take place in the purity
governing soft constraints.

Msm - NSYH
Z ”Qtotal,t - Qtotal,[”%’ + Z ||8£||1231’ (19)
t=0 t=1

where thal,r is the scheduling decision, and is defined in Eq. (20).

~ 2 iFie
Qtotal,t = C
P*,t=0

(20)

The objective function constructed in Eq. (19) is subjected to
the approximate closed loop dynamic models given in Appendix B,
box constraints on the inputs, outputs, and the parameters
(Eqg. (21)), as well as the purity soft constraints (Eq. (11) discretized
in the time steps of the surrogate model).

=

U= [Qrotal,t:cil:, gl<u
=ye:=[Cl=y (21)

y
Q = d:= [dtotal,t’ des] = a

Three mpQP problems are constructed for three products. The
surrogate model parameters are tuned to improve the closed loop
performance, and are provided in Table 4.

Closed loop validation of the integrated scheduling and control
scheme. The controller, surrogate model, and the scheduler are op-
erated simultaneously on the high fidelity model under a range of
design options and product demand variations. Fig. 5 showcases
the closed loop profiles for 12 h at the lower bound (V; = 0.4m?3)
and the upper bound (V, = 1.0m3) of the design range. Note that
the same design dependent offline strategies are used in two re-
actors. The demand profiles for the products are randomly regen-
erated every hour, and the scheduling decisions are updated in a
rolling horizon manner. The closed-loop simulations validate that
the integrated scheduling and control scheme (i) maintains low in-
ventory levels in the storage tanks, (ii) reactively adapts to changes
in the demand profile, (iii) is applicable for a range of different de-
sign options. A sample of the offline scheduling and control deci-
sions is demonstrated in Table 5, where a snapshot of the online
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Fig. 5. Example 1 - Closed-loop validation of the integrated scheduling and control
scheme in two reactors with different volumes.

operation of the large CSTR at t = 5 h is tabulated. Such explicit ex-
pressions are available for the range of design decisions, and will
be used for design optimization described as follows.

Design optimization. The validated offline scheduling and con-
trol strategies are embedded in the overall MIDO problem given
in Eq. (1) in the gPROMS environment. The capital investment-
ment for the reactor is determined by Eq. (22) (Towler and Sin-
nott, 2013).

Co=a+bvn (22)

where C, is the annualized reactor cost, and a, b, n are cost param-
eters given in Appendix C, along with the cost escalation indexes
for year 2018. The minimum total annual cost is found as $330k/yr
at V =0.69m3. Note that the scheduling and control strategies
yield feasible operation for the optimal reactor volume as a result
of their design dependence. Therefore, treating the design, schedul-
ing, and control problems simultaneously ensures the operability
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Table 4
System parameters for the surrogate model for Example 1.
System parameters ~ Model 1 Model 2 Model 3
Nsm 10 10 10
Msm 1 1 1
Atgn (min) 6 6 6
104 0 104 0
/ 3
. 0 S
PY 104 108 108
T [500,1,1,1,1,1, 1] [500,1,1,1,1, 1, 1]7 [500, 1,1, 1,1, 1, 1]
y 1,1, 1] [1,1, 1" 1,1, 1"
d [500, 1.0]" [500, 1.0]" [500, 1.0]
u [0,0,0,0,0,0,0] [0,0,0,0,0,0,0]" [0,0,0,0,0,0,0]"
y [0, 0, 0]" [0, 0, 0] [0, 0, 0]
d [0, 0.4]" [0, 0.4]" [0, 0.4]"
Table 5 15FT T T T I TTTTTT N Q
Example 1 - An illustration of the offline map of receding horizon policies <1.0 i il id e -E Cél
at t =5 h for the large CSTR (V, = 1.0m3). Observe that the volume of the = 0'5 a4 i [ 3 5
reactor has a direct impact on the control action for this particular instance. O-O T : J‘ _E l ‘,7 ?f ff f; -
Decision variable  Affine expression 02 46 8 1012 0 2 4 6 8 1012
B0 = —~16.7W5 + DR3 (o + DR3 r_14 + DR3 (o 15 T TrrT £
Be=tn = —16.7W + DRyt~ + DRy 1 + DRy ¢—2n K£1.0 : : Ll i = C’g
F ean = —16.7W; + DRy 10 + DRy t—1n + DRy ¢—on =050 "Li_é‘-'i il i i.l S =
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o = 05546 x 10-3V 12 habdetadetbnl, L e 5
10t o Ph =
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of the system, as the MIDO problem comprises the exact closed
loop strategies that will be used online during the operation.

3.2. Two CSTRs operating in parallel

This case study presents an extension of the single CSTR exam-
ple discussed in Section 3.1 to two CSTRs operating in parallel. The
exact same control strategy and the surrogate model formulations
are employed because the open loop dynamics of the system re-
mains unchanged. The cooperative operation of the two CSTRs is
maintained by a centralized scheduler that allocates the produc-
tion tasks on the reactors based on their volumes and their pro-
duction regimes at a given time.

Design of the scheduler. The governing approximate model given
in Eq. (15) is generalized to represent multiple CSTRs operating in
parallel, as presented in Eq. (23).

Nestr

Wj t+1=Wj.t+ Y  AtF,, — AtDR;; VjVte({l,... Ny—1}
p=1

(23)

where the number of the reactors, Ncsrr, equals 2 by the problem
definition. The product assignment constraints are also generalized
as presented in Eq. (24).

Zyjlt.p =1
=1

Fyjep <Fjitp < ij,t,p

Closed loop validation. The generalized offline scheduling
scheme is validated against the high fidelity model of the two re-
actor system. Fig. 6 showcases a scenario with one small reactor
(V; = 0.4m3) and one larger reactor (V, = 1.0m33) operated in par-
allel. The integrated scheduling and control scheme is able to drive
the inventory level of the most costly product, Wp,, close to zero
by assigning it to the larger reactor. The large reactor is capable of
satisfying the demand on P3 standalone, and the small reactor has

(24)
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Fig. 6. Example 2 - Closed loop validation of the generalized scheduling scheme in
two reactors operating in parallel. The volumes of the reactors are V; = 0.4m> and
V, = 1.0m?3, respectively.

a faster transition rate because of the lower retention time. There-
fore recognizing the closed loop dynamics and the capacity of the
reactors, the integrated schedule assigns the costly product, P3, to
the large reactor, and alternates the production between P; and P,
in the small reactor.

Design optimization. The offline maps of scheduling and control
are embedded in the overall MIDO problem in the gPROMS envi-
ronment. The reactor configuration with volumes V; = 0.44m?3 and
V, = 0.92m3 minimizes the total annual cost accounting for the
capital and operating costs. Note that one large reactor and one
small reactor is selected to deliver (i) uninterrupted production of
one of the products depending on their unit storage prices and de-
mand rates throughout the horizon, and (ii) fast transitions for al-
ternating production of the remaining products, respectively.

3.3. Residential combined heat and power (CHP) unit

This case study presents an application of a combined heat and
power generation system (CHP) on a residential scale. In our previ-
ous work (Diangelakis et al., 2017b), we developed design depen-
dent explicit controllers to simultaneously optimize the design and
control decisions in a MIDO formulation. In this study, we extend
this approach by taking into account the external factors that af-
fect the desired level of operation, i.e. the fluctuations in the heat
and power demand rates, and changing market prices for the elec-
tricity and fuel. We consider a residential district with 10 units,
all of which are supplied hot water for heating purposes and elec-
tricity from a single CHP unit. The hot water can be stored in a
buffer tank if the produced heat content exceeds the demand rate.
Additional electricity can be supplied from the central grid if the



B. Burnak, N.A. Diangelakis and ]. Katz et al./ Computers and Chemical Engineering 125 (2019) 164-184 175

Residential
district

District Electricity
Network

District Hot Water
Network

Combined
heat and power
Unit (CHP) ==

Combined

Unit (CHP)

heat and power -

[ ——

Natural
Gas

Supplementary

Hot water Boiler

buffer tank

Fig. 7. Example 3 - A generalized flowsheet of the CHP system.

CHP unit falls short, and a supplementary boiler is assumed to be
available at all times to provide more heat content. Excess elec-
tricity produced from the CHP unit can be sold to the central grid
for revenue, and excess hot water can be disposed of at an ex-
pense. Note that the rapidly changing electricity prices in day time
and night time has a significant economic impact on the operation
of a CHP unit. For instance, it may be more profitable to operate
the CHP unit at a higher capacity during the day time because of
the increased cost of electricity purchase, and at a lower capacity
at the night time when the cost decreases. Therefore, determining
the most cost effective operation can be achieved by taking into
account the fluctuation in the prices, demands rates, as well as the
dynamics of the CHP units. A generalized flowsheet of the CHP sys-
tem with two parallel CHP units is presented in Fig. 7. However in
this section, we focus on a system with a single CHP system sup-
plying the heat and power to the residential units. Parallel opera-
tion of multiple units will be discussed in the subsequent example.
The problem statement of the problem is given as follows:

(i) Given: A high-fidelity model of the CHP, a demand scenario
for electricity and heat consumption, investment cost of the
CHP unit as a function of its size, market prices of fuel and
purchasing/selling electricity.

(ii) Determine: Internal combustion engine (ICE) size of the CHP,
a schedule for the transactions with the grid and fuel pur-
chases, operating level of the CHP.

(iii) Objective: Minimize the sum of operating and capital costs.

The size of the ICE directly affects the process time of the sys-
tem, and thus the responsiveness of the CHP to fluctuations in the
demand rates and market prices. ICEs smaller in size have lower
transition time, hence they can deliver fast responses to changes in
the operating set points. On the other hand, larger ICEs can supply
more power and heat to the residential units when the demand
rates are high. The trade-off between the responsiveness and the
capacity of the CHP is addressed by integrating a design depen-
dent scheduler and controller in the design optimization problem.

High-fidelity dynamic model. There are two main components
taken into account in the CHP model, (i) a natural gas powered ICE
to produce electrical power, and (ii) a cooling system that recovers
the excess heat content of the ICE. We also include the dynamics
of the throttle valve that manipulates the inlet air mass flow rate,
and the intake manifold that distributes the air into the ICE cylin-
ders. For the detailed mathematical model, the reader is referred
to Diangelakis et al. (2014).

Model approximation. The original high fidelity model is a DAE
system with 364 algebraic and 15 differential relations in the con-
tinuous domain. In our previous studies, the complexity of the
overall system is addressed by decomposition into two approxi-
mate models, namely a power production subsystem and a heat
recovery subsystem (Diangelakis et al., 2016; 2017b). The former

operating mode gives the relation between the throttle valve open-
ing and the power output of the CHP, while the latter is used
to estimate the water temperature at the outlet as a function of
the power output and the water flow rate into the heat recovery
system. Eq. (25) presents the identified state-space model for the
power production subsystem.

Xr+1 = 0.9799x; + 0.0006u, + 6.516V

(25)
Ve = 7839)([

where x; is the identified state, u; is the throttle valve opening, V
is the volume of the ICE, y; is the electrical power generated by
the CHP.

The heat recovery subsystem is an explicit function of the out-
put of the power production subsystem and is given in Eq. (26).

0997 0103 -0.003 -0.008  0.001
Xs1=|-0.002 0940  0.116 |x+| 0280 —0.033 |u
~0.058 —0.056 0.179 ~1.280  0.146

ye=[-5299 -2.827 0.252]x
(26)

where x; is the set of identified states, u; are the power generation
level and water flow rate, respectively, and y; is the temperature
of the hot water at the outlet. The discretization time steps of the
models presented in Eqs. (25) and (26) are both 0.1 s.

Design of the mpMPC. The two subsystems derived in the pre-
vious step are operated by a decentralized control policy, which
comprises interlinked control strategies for each subsystem. We
define two operational modes for the decentralized control policy
defined as follows.

* Electricity driven mode (Mode 1): The operating level of the CHP,
i.e. the power set point, is determined based on the power de-
mand. Therefore, the throttle valve opening is manipulated pri-
marily to satisfy the demand on electricity. The operating level
projected by the electricity generation subsystem is treated as
a measured disturbance by the heat recovery subsystem, hence
the produced heat is a function of the power output of the CHP.
The heat production level of a standalone CHP unit can be in-
sufficient to satisfy the heat demand at a given time, requiring
the use of the supplementary boiler. It is also possible that the
produced heat content exceeds the heat demand, in which case
the hot water is stored in a buffer tank.

Heat production driven mode (Mode 2): The operating level of
the CHP is determined based on the heat demand. Tracking a
water temperature set point at 70°C, heat recovery subsystem
(i) determines an operating level set point to ensure sufficient
heat production by the power production subsystem, and (ii)
manipulates the cooling water flow rate to recover enough heat
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Fig. 8. Example 3 - Closed loop simulation of a CHP unit with V = 1500cc, operated with mode 1.

to satisfy the demand. Analogous to mode 1, the power pro-
duction level may not match the electricity demand. In case of
insufficient power, additional electricity is purchased from the
central grid, and excess electricity is sold back to the grid for
revenue.

The reader is referred to Diangelakis et al. (2016),
Diangelakis et al. (2017b) and Diangelakis and Pistikopou-
los (2017) for more details on the operating modes and a
quantified evaluation of the decentralized control policy.

Note that changing the operating modes creates an offset be-
tween the new set point and the current output of the system.
This offset has economical consequences on the operation and dic-
tates the quantity of electricity purchases/sales, usage of the buffer
tank and the supplementary boiler. These economical aspects are
addressed and mitigated in the following steps.

Closed loop validation. The design dependent decentralized con-
trol policy is validated against the high fidelity model under a
range of different design and scheduling decisions. Fig. 8 shows a
closed loop simulation of a CHP with V = 1500cc operated with
mode 1 only. The power set point is subject to random changes
throughout the operation.

Similarly, closed loop simulation on a larger CHP (V = 5000cc)
is demonstrated in Fig. 9. Note that due to operating mode 2, the
power set point is subject to changes dictated by the heat recovery
subsystem.

High fidelity model with the mpMPC embedded. The explicit form
of the decentralized control policy is implemented in the original
high fidelity model.

Model approximation. The closed loop high fidelity model is
used to develop an approximate model for the scheduler via the
MATLAB System Identification Toolbox. The identified model estab-
lishes a relation between the power production and heat storage
levels, and the change in the power production set point, as pre-
sented in Eq. (27).

E.] [0999 o J[E][99.5 o 0 gft
Ben| T [ 379 o0955)[B || 0 12 -1m2f|Y
t

(27)

+ [—1(;.2] &

where E; is the energy production level, B; is the heat storage level,
R; is the change in the power production set point, Q; is the addi-
tional heat supplied from the boiler, D; is the disposed heat, {th is
the heat demand, and the time step of the model is 10 s. We also
use an overall energy balance for the relation between the power
production, power demand, and electricity purchases from the cen-
tral grid, presented in Eq. (28).

P+E =0+ W, (28)

where P; is the electricity purchase, {tp is the power demand, and
W; is the excess electricity sold back to the grid.

Design of the scheduler. The objective of the schedule is to mini-
mize the operating costs, including energy production, energy pur-
chases and sales, and inventory costs, as given in Eq. (29).

Ng

Z,BEt + PP — veWe +6:Qr + D + v B
t=1

(29)

where the Greek letters denote the corresponding cost parame-
ters. Note that the CHP unit is assumed to be operational through-
out the scheduling horizon. Hence, on/off switching costs are ex-
cluded in the objective function. This assumption will be relaxed
in Section 3.4 where we discuss a parallel operation of multiple
CHP units. The objective function is subject to the approximate
CHP model derived in Eqgs. (27) and (28), as well as the lower and
upper bounds on the optimization variables.

The power production capacity of the CHP unit is a function of
the ICE size (i.e. E = E(V)). The schedule treats this design variable
as a bounded parameter along with the initial conditions of the
system, power and heat demands, unit cost of purchasing fuel and
power, and unit revenue of selling power, as listed in Eq. (30).

0 =[V.E..Be. £¢). Br. e, vi, i oor. i) (30)

Design of the surrogate model. Eqs. (27) and (28) are resampled
in the time steps of the controller, and substituted in the surrogate
model formulation presented in Eq. 7. The resampled state space
matrices are given in Appendix B.

Closed-loop validation. The integrated scheduling and control
scheme is validated against an extensive set of design options and
demand profiles. Fig. 10 shows a snapshot of a closed loop sim-
ulation of a CHP unit with a volume V = 5000cc. Note that the
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Fig. 9. Example 3 - Closed loop simulation of a CHP unit with V = 5000cc, operated with mode 2.
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Fig. 10. Example 3 - Closed-loop validation of the integrated scheduling and control scheme on a CHP with V = 5000cc.

power set point throughout the operation is determined by the of-
fline schedule, and translated into the time steps of the controller
by the surrogate model.

Design optimization. We formulate a MIDO problem in the
gPROMS environment using the high fidelity model, the explicit
design dependent relations for the scheduler, surrogate model, and
the controller. The capital investment cost is assumed to be a lin-
ear function of V, and is given in Appendix C. A CHP unit with
an ICE volume of V = 1710 cc yields the scheduling and control
strategies that minimizes the total annualized cost that includes
the capital and operating costs.

3.4. Two CHPs operating in parallel

The single CHP case study presented in Section 3.3 is ex-
tended to include two CHP units operating in parallel. We

generalize the scheduling formulation to account for multiple
CHP units, and showcase the proposed algorithm on a system
with two units. We also include the dynamics stemming from
switching on/off the units, and their impact on the operational
optimization.

Design of the scheduler. Evidently, multiple CHP units have a
greater capacity to supply heat and power compared to a sin-
gle unit. However, the total production rate of multiple units
can exceed the demand rates significantly even when they
are operated at their lowest capacities. In other words, op-
erating one CHP unit standalone can be more cost effective
than operating two CHPs simultaneously at low demand rates.
Therefore, we include the start-up and shut-down dynamics
in the schedule to account for the trade-off between switch-
ing on/off the operation and maintaining the operating status
of a unit.
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Fig. 11. Example 4 - Closed loop simulation of the generalized scheduling scheme in two CHP units operating in parallel. The volumes of the ICE are V; = 1500cc and

V, = 4500cc, respectively.

The cost of switching on/off is described by Eq. (31).
Neyp Ns

> diSic + wikis (31)
i=1 t=1

where Neyp is the number of CHP units, S;; and F;; are binary
variables that indicate the start-up and shut-down status, and ¢;
and mr; are their unit costs, respectively. The impact of the switch-
ing status variables is incorporated in the schedule by introducing
lifting-state variables, S; , and E ,, as presented in Eq. (32).
51',[,11:0 = Sit (32)
Fi,t,n=0 = Fi,t

Sit+1.n = Sitn-1s
Fi,t+1,n = Fi,t,n—l )

The state lifting-variables determine the operating status of the
CHP units as described in Eq. (33).

Sit —Fe =Xt — Xit1

5
Xit = Zgi,t,n
n=0 (33)
an
1-Xir > Zﬁi,t,n
n=0

where X;, is a binary variable that indicate the operating
status, 8,.”” and 8;’" are the start-up and shut-down times
of the ith CHP unit. The interested reader is referred to
Subramanian et al. (2012) for more details on scheduling with
lifting-state variables, and to Kopanos and Pistikopoulos (2014) for
an application of reactive scheduling using lifting-state variables on
a CHP system.

The cost function given in Eq. (29) is generalized to encapsulate
the operating cost of multiple CHP units, as presented in Eq. (34).

Newp Ns Ny

Z Z'BE“ + Z WP — viWe + £Qr + Dy + ¥ Bt (34)

i=1 t=1 t=1

The objective function of the schedule comprises the operating
and purchasing costs described by Eq. (34) and the switching costs
given in Eq. (33).

Closed loop validation. The developed scheduling strategy is im-
plemented on the high fidelity model and operated in tandem with
the offline controller. Fig. 11 shows a snapshot of the schedul-
ing level decisions of an operation with two CHP units with ICE
volumes V; = 1500cc and V, = 4500cc, under a rapidly escalating
demand profile given in Fig. 12. The following are some observa-
tions and remarks on the closed loop performance of the devel-
oped scheduling and control strategies.

+ The small CHP is operated standalone at low demand rates.
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Fig. 12. Example 4 - Snapshot of the electricity and heat demand profiles. Note the
steep increase in demand in short notice.

« The large CHP is operated when either of the demand rates are
high.

+ Due to the time loss during the start-up of the large CHP, grid
electricity is used to supplement the deficit.

+ The recovered heat content is not wasted by disposal.

« In both CHP units, set point tracking is achieved via the same
design-dependent control strategy, which is developed and dis-
cussed in Section 3.3. The closed loop profiles of water temper-
ature, power output, cooling water flow rate, and valve position
are omitted here fore brevity.

Design optimization. The MIDO problem is formulated by em-
bedding the offline scheduling and control schemes in the high fi-
delity model in the gPROMS environment. A CHP system with ICE
volumes of V; =2050cc and V5, = 2700cc yields the most cost ef-
fective scheduling and control strategies, minimizing both the cap-
ital and operating costs. Note that one small CHP unit is selected
to be operated continuously even at low demand rates, and one
larger CHP unit to be operational under higher demand rates, a
similar outcome of the case study presented in Section 3.2.

4. Conclusions

In this study, we introduced a novel, process agnostic frame-
work to integrate the design, scheduling, and control problems
based on a single high fidelity model. Using multiparametric pro-
gramming, we derived offline piecewise strategies for (i) a con-
trol scheme as a function of the design and scheduling decisions,
(ii) a scheduling scheme as a function of design, and aware of
the closed-loop dynamics through a surrogate model formulation.
The offline maps of strategies allowed for a direct implementa-
tion in a MIDO formulation for design optimization. The proposed
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framework was able to determine the process design that guaran-
tees the operability of the system under a range of bounded pro-
cess and market uncertainties by simultaneously considering the
optimal scheduling and control strategies used in closed-loop im-
plementation.

Postulating all layers of decisions as optimization problems has
specific benefits to tailor each individual problem based on the
needs of the system of interest. This advantage was illustrated by
using soft constraints to satisfy product purity in the CSTR exam-
ples, and by using a decentralized control structure in the CHP ex-
amples. Note that the framework was applied on both problems
without appealing to further modifications.

The computational complexities of the proposed framework
arise in solving the multiparametric programming problems and
the integrated MIDO problem. The former scales exponentially
with the number of optimization variables and constraints, which
is commensurate with the degrees of freedom of the control prob-
lem, number of scheduling decisions, and prediction horizon of
the operating strategies. However, the parametric solution provides
piecewise affine functions that are directly incorporated into the
MIDO problem. Handling these piecewise affine functions in the
integrated MIDO problem is less significant compared to the com-
putational burden associated with the inherent nonlinearities of
the open loop design optimization problem.

The major bottleneck of the proposed framework is employ-
ing approximate models in the control and scheduling levels. Al-
though the confidence on the models were increased by using
well-established and previously proposed error metrics (Katz et al.,
2018), the approximation creates a mismatch between the real pro-
cess dynamics and the decision making optimization problems. Fu-
ture work will focus on incorporating robust counterparts of the
scheduling and control problems to account for the mismatch.
However, robust multiparametric receding horizon policies result
in an explosion in the number of critical regions in the parametric
solution space. This explosion should be handled by theoretical de-
velopments in multiparametric programming to explore larger crit-
ical regions in volume, and using a partial solution with the critical
regions that occupy the significant portion of the parametric solu-
tion space.
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Appendix A. Complete MIDO formulation of integrated design,
scheduling, and control problem for Example 1

The mathematical representation of the integrated design,
scheduling, and control problem for Example 1 is given by
Eq. (A1), in the form of an MIDO formulation.

Operating cost

leed cost
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Table A1
Parameters of the high-fidelity CSTR model.

Reaction rate constants ~ Value  Reactant concentration at the feed = Value  Unit cost  Value

ke 0.1 a 10 o 1.0

ka 09 cl 08 o 15

ks 15 C,{j 1.0 a3 18

. [235.10032 -147-103 -1.82-103 3.36-103 7
1= 1011 (B £10c). 29 (60)] (A1m) 146.103 -1.36.103 3.38.103 —1.76.103
The objective function, given by Eq. (A.1a), takes into account 269.102 -5.12-103 7.85.103 —-7.13.10°3
the annualized investment cost as a function of the reactor volume, B=|-775-103 5.44.103 1.62-102 6.43-1073
and the operating cost as a function of the stored product in the -356-103 236-103 531.1073 1.37-103
inventory. Eqgs. (A.1b)-(A.1h) are the dynamic high fidelity model 1.51.102 -1.36-1072 —-341.102 -5.63.103
of the multiproduct CSTR. More specifically, Eq. (A.1b) is the mass | -1.28-1072 -4.08-103 -1.10-10"2 -3.00-1073 |
balance for the set of reactants (R) and products (P), Eq. (A.1c) is (B.1d)
the rate expression for all reactions (J), Eq. (A.1d) is the volume
balance at the exit of the reactor (mixture density is assumed to
be constant), Eq. (A.le) is the dynamics of the inventory levels [—5.37-10°6 9.54.1077 ]
in the storage tanks, Eq. (A.1f) is the purity of product ieP, and 5.32.10°6 —1.05-10°6
Eq. (A.1g) defines the volumetric fraction of the reactants at the —5.07-1073 9.44.10°6
inlet. The The scheduling decisions are governed by Eqs. (A.1i) and C=1|-250-10" 4.15-10°¢ (B.1e)
(A.1j) to determine the operating region, and the closed loop con- -8.96-1077 6.44-10°8
trol is regulated by Table A.6. The parameters of the high-fidelity 486-10> —-8.22.10°6
CSTR model are provided in Table A.6. | 5.89-10> —-1.07-107 |
2.73.-1072 -7.48 3.03 202-102 -8.16-102 6.13-102 4.94.10""
D= 5.82 497 9.08-10°!' -3.16-100' -3.06-10"! 1.61-102 4.02.102 (B.1f)
-7.05 7.30 1.34 2.82-101 -433.107' 546-102 4.80-102

Observe that the scheduling and control decisions are postu-
lated as lower level optimization problems, nested in an MIDO
problem. Due to the implicit nature of the lower level optimiza-
tion problems, Eq. (A.1) is a challenging class of problem. Multi-
parametric programming allows for an offline map of solutions of
the lower level decisions that can be implemented exactly in the
upper level optimization problem.

Appendix B. Approximate models with their step responses

Here, we provide the approximate model that represents the
open loop dynamics of the CSTR used in Example 1. The closed
form of the state space model is given in Eqs. (B.1a) and (B.1b), and
the corresponding matrices are provided in Eqs. (B.1¢)-(B.1f).

Uy,

Xi1 =Ax, +B Zz-ff +C[Qf°‘;ﬂ’~tf] (B.1a)
3.t
Ugt,
G =Dx,, icP (B.1b)
967-10-1  800-104 -230-10-3 -9.15.102
210-103  965-107! -1.19.-102 8361073
7.49.103 -753.103 8.61-10""  2.14-1072
A=| 656-102 1.72-102  127-102  9.54.10"!
1.87-102  1.79-102  2.19-10~2  3.88.10~4
~1.44.10-!  -151-102 -1.93-102 —7.41-102
| 149.102 1.13.107' -365.103 -3.18.103

where x; is the vector of identified states. The step responses
of the product concentrations with respect to the system inputs,
scheduling, and design variables are presented in Fig. B.1.
Similarly, the approximate models that represent the closed
loop dynamics are given in Eqs. (B.2)-(B.4). Note that the dis-
cretization time of the models are identical at 15 min.
Surrogate model 1.

0.004 —0.001 0.002
Xepe1=|—0.031 —0.010 0.045 |x,,
~0.118 -0.026 0.118

-7.2 1.7
+ | 4.7 [107*Quotare,, + | 1.4 | 1073V (B.2)
-3.1 2.1
0.340 -0.037 0.066
G, =]0072 —-0.040 0031 |x,,, icP
0.048 —0.042 0.041
-231-1073 -2.00-103 512.107* ]
-7.93.102 475.-10° —3.89.102
-1.06-10!  3.47.1072 1.36-10"!
1.04-10-2  227-100' —-3.09.10°2 (B.1c)
9.85.10°'  879.-102 -3.98.1072
-1.38.102 5.65.10"! 1.48 - 102
-820-10° 579-10°  6.95-10" |
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Fig. B.1. Step response of the identified approximate model with respect to the system inputs, as well as scheduling and design variables (Qy and V, respectively).
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Fig. B.2. Step response of Surrogate Model 1 with respect to the scheduling (Q) and design decisions (V).
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Fig. B.3. Step response of Surrogate Model 2 with respect to the scheduling (G3”, Qu¢a) and design decisions (V).
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Fig. B4. Step response of Surrogate Model 3 with respect to the scheduling (G3”, Qu¢q) and design decisions (V).
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where x;, is the vector of identified states. The step responses of
the surrogate models are provided in Figs. B.2-B.4.

The closed form of the approximate model used in the surro-
gate model formulation for the CHP system (Examples 3 and 4) is
given in Eq. (B.5).

E,«|_ [10000 0 T [E,
B,.1| 03880 09995~ |B.,,

0.9954 0 0 gis’”
-19.2613 0.1143 -0.1143 D o
tsm

0 0 h
* [—0.1143 0.0001} [gf}”] (B.5)

Appendix C. Cost functions and parameters for the examples

For the CSTR cost functions used in Example 1 and 2, we use
Eq. (22) to estimate the fixed design cost. The cost parameters g,
b, and n are listed in Table C.1 for year 2010.

Table C.1

Example 1 - Reactor
cost  parameters for
year 2010 (Towler and
Sinnott, 2013).

Parameter  Value
a 61,500
b 32,500
n 0.6

The cost estimation from 2010 is projected to 2018 by us-
ing Eq. (C.1) the Chemical Engineering Plant Cost Index (CEPCI)
(che, 2018).

CEPClyp1
CEPClyp19

where the cost indexes CEPClyg;9 and CEPClyg1g are 532.9 and
588.0, respectively.

For the CHP fixed cost estimation, on the other hand, we use a
linear function, given in Eq. (C.2) (Diangelakis et al., 2017b)

Costcyp = 370 + 0.0857Vcyp

Costy91g = Costaoro (Cl)

(C2)
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