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Abstract

The Vapnik—Chervonenkis dimension (in short, VC-dimension) of a graph is defined
as the VC-dimension of the set system induced by the neighborhoods of its vertices.
We show that every n-vertex graph with bounded VC-dimension contains a clique or
an independent set of size at least elloem' ™V The dependence on the VC-dimension
is hidden in the o(1) term. This improves the general lower bound, ecVlogn , due to
Erd6s and Hajnal, which is valid in the class of graphs satisfying any fixed nontrivial
hereditary property. Our result is almost optimal and nearly matches the celebrated
Erd6s—Hajnal conjecture, according to which one can always find a clique or an inde-
pendent set of size at least e 1°2™) Our results partially explain why most geometric
intersection graphs arising in discrete and computational geometry have exception-
ally favorable Ramsey-type properties. Our main tool is a partitioning result found by
Lovasz—Szegedy and Alon-Fischer—-Newman, which is called the “ultra-strong reg-
ularity lemma” for graphs with bounded VC-dimension. We extend this lemma to
k-uniform hypergraphs, and prove that the number of parts in the partition can be
taken to be (1/¢)?@ improving the original bound of (1/¢) 0@ in the graph setting.
We show that this bound is tight up to an absolute constant factor in the exponent.
Moreover, we give an O (n¥)-time algorithm for finding a partition meeting the require-
ments. Finally, we establish tight bounds on Ramsey—Turdn numbers for graphs with
bounded VC-dimension.
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1 Introduction

During the relatively short history of computational geometry, there were many break-
throughs that originated from results in extremal combinatorics [26]. Range searching
turned out to be closely related to discrepancy theory [9], linear programming to
McMullen’s Upper Bound theorem and to properties of the facial structure of simpli-
cial complexes [45], motion planning to the theory of Davenport—Schinzel sequences
and to a wide variety of other forbidden configuration results [39], graph drawing
and VLSI design to the crossing lemma, to the Szemerédi—Trotter theorem, and to
flag algebras [47]. A particularly significant example that found many applications in
discrete and computational geometry, was the discovery of Haussler and Welzl [29],
according to which many geometrically defined set systems have bounded Vapnik—
Chervonenkis dimension. Erdds’s “Probabilistic Method™ [5] or “Random Sampling”
techniques, as they are often referred to in computational context, had been observed
to be “unreasonably effective” in discrete geometry and geometric approximation
algorithms [27]. Haussler and Welzl offered an explanation and a tool: set systems
of bounded Vapnik—Chervonenkis dimension admit much smaller hitting sets and
“epsilon-nets” than other set systems with similar parameters.

It was also observed a long time ago that geometrically defined graphs and set
systems have unusually strong Ramsey-type properties. According to the quantitative
version of Ramsey’s theorem, due to ErdSs and Szekeres [21], every graph on n vertices
contains a clique or an independent set of size at least % log n. In [14], Erd6s proved
that this bound is tight up to a constant factor. However, every intersection graph of n
segments in the plane, say, has a much larger clique or an independent set, whose size
is at least n® for some ¢ > 0 [33]. The proof extends to intersection graphs of many
other geometric objects [3]. Interestingly, most classes of graphs and hypergraphs in
which a similar phenomenon has been observed turned out to have (again!) bounded
Vapnik—Chervonenkis dimension. (We will discuss this fact in a little more detail at
the end of the Introduction.)

The problem can be viewed as a special case of a celebrated conjecture of Erdds and
Hajnal [15], which is one of the most challenging open problems in Ramsey theory. Let
P be a hereditary property of finite graphs, that is, if G has property P, then so do all of
its induced subgraphs. Erd6s and Hajnal conjectured that for every hereditary property
P which is not satisfied by all graphs, there exists a constant €(P) > 0 such that every
graph of n vertices with property P has a clique or an independent set of size at least
n®?) They proved the weaker lower bound (P )Wiogn According to the discovery of
Haussler and Welzl mentioned above, the Vapnik—Chervonenkis dimension of most
classes of “naturally” defined graphs arising in geometry is bounded from above by
a constant d. The property that the Vapnik—Chervonenkis dimension of a graph is at
most d, is hereditary.

The aim of this paper is to investigate whether the observation that the Erd6s—Hajnal
conjecture tends to hold for geometrically defined graphs can be ascribed to the fact
that they have bounded VC-dimension. Our first theorem (Theorem 1.1 below) shows
that the answer to this question is likely to be positive. To continue, we need to agree
on the basic definitions and terminology.
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Let .% be a set system on a ground set V. The Vapnik—Chervonenkis dimension
(VC-dimension, for short) of .% is the largest integer d for which there exists a d-
element set S C V such that for every subset B C S, one can find a member A € %
with AN S = B. Given a graph G = (V, E), for any vertex v € V, let N (v) denote
the neighborhood of v in G, that is, the set of vertices in V that are connected to v.
We note that v itself is not in N (v). Then we say that G has VC-dimension d, if the
set system induced by the neighborhoods in G, i.e. % = {N(v) C V : v € V}, has
VC-dimension d. Let us remark that although the edges of G also form a 2-uniform set
system .%’ = {e € E(G)}, the VC-dimension of G defined above is usually different
from the VC-dimension of .Z".

The VC-dimension of a set system is one of the most useful combinatorial param-
eters that measures its complexity, and, apart from its geometric applications, it has
proved to be relevant in many other branches of pure and applied mathematics, such
as statistics, logic, learning theory, and real algebraic geometry. The notion was intro-
duced by Vapnik and Chervonenkis [48] in 1971, as a tool in mathematical statistics.
Kranakis et al. [32] observed that the VC-dimension of a graph can be determined in
quasi-polynomial time and, for bounded degree graphs, in quadratic time. Schaefer
[38], addressing a question of Linial, proved that determining the VC-dimension of a
set system is Zf -complete. For each positive integer d, Anthony et al. [6] determined
the threshold for the Erd6s—Rényi random graph G (n, p) to have VC-dimension d
(see also [31]). Given a bipartite graph F, its closure is defined as the set of all graphs
that can be obtained from F by adding edges between two vertices in the same part.
It is known (see [34]) that there is a bipartite graph F such that a class of graphs
has bounded VC-dimension if and only if none of its members contains any induced
subgraph that belongs to the closure of F.

Our first result states that the Erd6s—Hajnal conjecture “almost holds” for graphs
of bounded VC-dimension.

Theorem 1.1 Let d be a fixed positive integer. If G is an n-vertex graph with VC-
. . . . . , 1-o(1)
dimension at most d, then G contains a clique or independent set of size ¢1°2™" """

Note that the dependence of the bound on d is hidden in the o(1)-notation.

There has been a long history of studying off-diagonal Ramsey numbers, where
one is interested in finding the maximum size of an independent set guaranteed in a
K-free graph on n vertices with s fixed. An old result of Ajtai et al. [1] states that all

1 s—=2
such graphs contain independent sets of size cns=1 (logn)s=1. In the other direction,
Spencer [43] used the Lovasz Local Lemma to show that there are K -free graphs

on n vertices and with no independent set of size ¢’n5+1 logn. This bound was later

2
improved by Bohman and Keevash [7] to ¢’ nﬁ (log n)l_ 6+D6-2 . In Sect. 4, we give
a simple proof, extending Spencer’s argument, showing that there are K-free graphs
with bounded VC-dimension and with no large independent sets.

Theorem 1.2 For fixed s > 3 and d > 5 such that d > s + 2, there exists a K-
free graph on n vertices with VC-dimension at most d and no independent set of size

cn% log n, where ¢ = c(d).
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For large s (s > d), aresult of Fox and Sudakov (Theorem 1.9 in [25]) implies that all

n-vertex K -free graphs G with VC-dimension d contain an independent set of size
1

ncloegs where ¢ = c(d).

Regularity Lemma for Hypergraphs with Bounded VC-Dimension.  First, we gener-
alize the definition of VC-dimension for graphs to hypergraphs. Given a k-uniform
hypergraph H = (V, E), for any (k — 1)-tuple of distinct vertices vy, ..., vk—1 € V,
let

Nwi,...,vu—)={ueV:{v,...,v_1,u} € E(H)}.
Then we say that H has VC-dimension d, if the set system
F={NWi,...,0_1) :V],..., 01 €V}

has VC-dimension d. Of course, the hyperedges of H form a set system, but the VC-
dimension of this set system is usually different from the VC-dimension of H defined
above. The latter one is defined as the VC-dimension of the set system .# induced by
the neighborhoods of the vertices of H, rather than by the hyperedges.

The dual of the set system (V, %) on the ground set V is the set system obtained
by interchanging the roles of V and .%. That is, it is the set system (%, .%*), where
the ground set is .% and

Fr={{Ae F:veAl:ve V)]

For the set system in the definition of VC-dimension of a hypergraph above, .7 * is
isomorphic to the set system whose ground set is (kf 1), and each set is a maximal
collection of (k — 1)-tuples {S1, ..., Sy} such that forall i, v U §; € E(H) for some
fixed v. Hence, we have (#*)* = .%, and it is known that if .% has VC-dimension
d, then .Z* has VC-dimension at most 2911 — 1 (see [35]). We say that H = (V, E)
has dual VC-dimension d if .#* has VC-dimension d.

The main tool used to prove Theorem 1.1 is an ultra-strong regularity lemma for
graphs with bounded VC-dimension obtained by Lovasz and Szegedy [34] and Alon
et al. [2]. Here, we extend the ultra-strong regularity lemma to uniform hypergraphs.

Given k vertex subsets Vi,..., Vi of a k-uniform hypergraph H, we write
E(Vi, ..., Vi) to be the set of edges going across Vi, ..., Vg, that is, the set of
edges with exactly one vertex in each V;. The density across Vi, ..., Vi is defined
as W We say that the k-tuple (V1, ..., Vi) is e-homogeneous if the density
across it is less than ¢ or greater than 1 — . A partition is called equitable if any two
parts differ in size by at most one.

In [34], Lovész and Szegedy established an ultra-strong regularity lemma for graphs
(k = 2) with bounded VC-dimension, which states that for any ¢ > 0, there is a (least)
K = K (¢) such that the vertex set V of a graph with VC-dimension d has a partition
into at most K < (1/¢) 0@ parts such that all but at most an e-fraction of the pairs of
parts are e-homogeneous. A better bound was obtained by Alon et al. [2] for bipartite
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graphs with bounded VC-dimension, who showed that the number of parts in the
partition can be taken to be (d/¢)?@. Since the VC-dimension of a graph G is equal
to the dual VC-dimension of G, we generalize their result to hypergraphs with the
following result.

Theorem 1.3 Let ¢ € (0,1/4) and let H = (V, E) be an n-vertex k-uniform hyper-
graphwith dual VC-dimension d. Then V has an equitable partition V = V{U---UVg
with 8/ < K < c(1/e)** parts such that all but an e-fraction of the k-tuples of
parts are e-homogeneous. Here ¢ = c(d, k) is a constant depending only on d and k.
Moreover; there is an O (n*) time algorithm for computing such a partition.

Our next result shows that the partition size in the theorem above is tight up to an
absolute constant factor in the exponent.

Theorem 1.4 There is an absolute constant ¢ € (0, 1) such that the following holds.
Ford > 16 and ¢ € (0, 2_2066/d3), there is a graph G with VC-dimension d such
that any equitable vertex partition of G with the property that all but an e-fraction of
the pairs of parts are e-homogeneous, requires at least (4/€/c)~%/* parts.

Ramsey-Turdn Numbers. Let F be a fixed graph. The Ramsey—Turdn number
RT (n, F, o(n)) is the maximum number of edges an n-vertex graph G can have with-
out containing F as a subgraph and having independence number o(n). Ramsey—Turdn
numbers were introduced by So6s [42], motivated by the classical theorems of Ramsey
and Turdn and their connections to geometry, analysis, and number theory. One of the
earliest results in Ramsey—Turén theory appeared in [20]. It states that for t > 2, we
have

2

1
RT(n, K1, 0(n)) = = (1 v

> n? + o(nz).

For the case when the excluded clique has an even number of vertices, Szemerédi [46]
applied the graph regularity lemma to show that

1
RT(n, K4, 0(m) < o n? + o(n?),

and several years later, Bollobds and Erd&s [8] gave a surprising geometric construction
which shows that this bound is tight. For larger cliques, a result of Erdds et al. [17]
states that

2

1
RT(n, K2, 0(n)) = = (1 v

) n® + o(nz)
holds for every ¢ > 2. For more results in Ramsey—Turan theory, see the survey of
Simonovits and Sés [41].

Here we give tight bounds on Ramsey—Turdn numbers for graphs with bounded
VC-dimension, showing that the densities for K»; and for K»;_; are the same in this
setting, and are different from what we have in the classical setting in the even case.
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Let RT;(n, K;, o(n)) be the maximum number of edges that an n-vertex K,-free
graph of VC-dimension at most d can have if its independence number is o(n).

Theorem 1.5 For fixed integers d > 4 and t > 3, we have

RT;(n, Ky;—1,0(n)) = RTy(n, Ky, 0(n)) = % (1 — ; i ) n’ + o(nz).

1

Semi-algebraic Graphs Versus Graphs with Bounded VC-Dimension. A semi-
algebraic graph G, is a graph whose vertices are points in R? and edges are pairs
of points that satisfy a semi-algebraic relation of constant complexity.! In a sequence
of recent works [3,11,24], several authors have shown that classical Ramsey and Turdn-
type results in combinatorics can be significantly improved for semi-algebraic graphs.

It follows from the Milnor—Thom theorem (see [35]) that semi-algebraic graphs of
bounded complexity have bounded VC-dimension. Therefore, all results in this paper
on properties of graphs of bounded VC-dimension apply to semi-algebraic graphs of
bounded description complexity. However, a graph being semi-algebraic of bounded
complexity is a much more restrictive condition than having bounded VC-dimension.
In particular, it is known (it follows, e.g., from [6]) that for each ¢ > 0 there is a positive
integer d = d(e) such that the number of n-vertex graphs with VC-dimension d is
29("2_5), while the Milnor-Thom theorem can be used to deduce that the number
of n-vertex semi-algebraic graphs coming from a relation with bounded “description
complexity” is only 20102 Furthermore, it is known [3] that semi-algebraic graphs
have the strong Erdds—Hajnal property, that is, there exists a constant § > 0 such that
every n-vertex semi-algebraic graph of bounded complexity contains a complete or an
empty bipartite graph whose parts are of size at least 6n. This is not true, in general,
for graphs with bounded VC-dimension. In particular, the probabilistic construction
in Sect. 4 shows the following.

Theorem 1.6 For fixed d > 5 and for every sufficiently large n, there is an n-vertex
graph G = (V, E) with VC-dimension at most d with the property that there are no
two disjoint subsets A, B C V(G) such that |A|, |B| > 4n*?logn and (A, B) is
homogeneous, that is, either A x B C E(G) or (A x B) N E(G) = 0.

It follows from a result of Alon et al. [3] that a stronger regularity lemma holds for
semi-algebraic graphs of bounded description complexity, where all but an e-fraction
of the pairs of parts in the equitable partition are complete or empty, instead of just -
homogeneous as in the bounded VC-dimension case (see [36]). This result was further
extended to k-uniform hypergraphs by Fox et al. [22], and the authors [24] recently
showed that it holds with a polynomial number of parts.

Organization. In the next section, we prove Theorem 1.3. In Sect. 3, we prove The-
orem 1.1, which nearly settles the Erd6s—Hajnal conjecture for graphs with bounded
VC-dimension. In Sect. 4, we prove Theorems 1.2 and 1.6. In Sect. 5, we prove

LA binary semi-algebraic relation £ on a point set P C R is the set of pairs of points (u, v) from P
whose 2d coordinates satisfy a boolean combination of a fixed number of polynomial inequalities.
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Theorem 1.5. We conclude by discussing a number of other results for graphs and
hypergraphs with bounded VC-dimension. We systemically omit floors and ceilings
whenever they are not crucial for sake of clarity in our presentation. All logarithms
are natural logarithms.

2 Regularity Partition for Hypergraphs with Bounded VC-Dimension

In this section, we prove Theorem 1.3. We start by recalling several classic results on
set systems with bounded VC-dimension. Let .% be a set system on a ground set V.
The primal shatter function of .F is defined as

T7(2) = ‘1/1/12)‘(/ HANV':AeZF).
|V'|=z

In other words, 7 & (2) is a function whose value at z is the maximum possible number
of distinct intersections of the sets of .% with a z-element subset of V. The dual shatter
Sfunction of (V,.%), denoted by n}, whose value at z is defined as the maximum
number of equivalence classes on V defined by a z-element subfamily # C #,
where two points x, y € V are equivalent with respect to % if x belongs to the same
sets of % as y does. In other words, the dual shatter function of .% is the primal shatter
function of the dual set system .7 *.

The VC-dimension of .% is closely related to its shatter functions. A famous result
of Sauer [37], Shelah [40], Perles, and Vapnik—Chervonenkis [48] states the following.

Lemma 2.1 If.% is a set system with VC-dimension d, then

w7 (2) < Z (j)
i=0
On the other hand, suppose that the primal shatter function of .Z satisfies 7 7 (z) < cz?
for all z. Then, if the VC-dimension of .% is dy, we have 2% < c(do)d, which implies
dy < 4dlog(cd). It is known that if .# has VC-dimension d, then .#* has VC-
dimension at most 29+ — 1.

Given two sets A1, Ay € %, the symmetric difference of A} and A;, denoted by
A1AA, isthe set (A1 U Ap) \ (A1 N Az). Thus, we have |[A1AAs| > |A] \ Az]. We
say that the set system .7 is 8-separated if for any two sets Ay, Ay € .% we have
|A1AA;| = §. The following packing lemma was proved by Haussler in [28].

Lemma 2.2 Let % be a set system on a ground set V such that |V| = n and w7 (z) <
cz? for all z. If F is 8-separated, then |.F| < c¢1(n/8)? where c1 = ci(c, d).

We will use Lemma 2.2 and the following lemma to prove Theorem 1.3.

Lemma23 Let0 <e < 1/2and H= (W U---UWg, E) be a k-partite k-uniform
hypergraph such that |W;| = m for alli. If (Wq, ..., W) is not e-homogeneous, then
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there are at least (1 — &)m**t! pairs of k-tuples (e, '), where le N €| = k — 1,
ec E(H),e¢ ¢ E(H),and |leNW;| = |e' N W;| =1 foralli.

Proof Observe that, foreach j = 1,2, ..., k, there are exactly mk+1 pairs (e, ') with
e, e Wi x---xWyandenNW; =e' NW,fori € {1,2,...,k}\{j}. Lete; be the
fraction of these pairs of k-tuples such that e is an edge of H and ¢’ is not an edge of
H . It suffices to show that e; + & + -+ + & > (1 — ¢).

Pick vertices a;, b; € W; uniformly at random with repetition fori = 1,2, ..., k.
ForO <i <k,lete; ={aj:j <i}U{b;: j > i}. Inparticular, ex = (ay, ..., ax)
andeg = (b1, ..., by). Then let X be the event that eg and e have different adjacency,

that is, exactly one of them is an edge. Then we have
Pr[X] > 2e(1 —¢),

since (Wy, ..., W) is not e-homogeneous. Let X; be the event that ¢; and e; | have
different adjacency, and let Y be the event that at least one event X; occurs. Then by
the union bound, we have

Pr[Y] < Pr(Xo] +Pr[X ]+ -+ Pr[Xzx—1] =2e1 + 265 + - - - + 2¢;.

On the other hand, if X occurs, then Y occurs. Therefore 2e| + 2&> + - - - + 2 >
Pr[Y] > Pr[X] > 2¢(1 — €), which completes the proof. O

Proofof Theorem 1.3 Let 0 < ¢ < 1/4 ,k > 2,and H = (V, E) be an n-vertex
k-uniform hypergraph with dual VC-dimension d. For every vertex v € V, let N (v)

denote the set of (k — 1)-tuples S € (kﬁl) such that v U § € E(H). Let .Z be the

set-system whose ground set is (kzl), and A € .% if and only if A = N (v) for some

vertex v € V. Hence .% = {N(v) : v € V} has VC-dimension d. Set § = %(kfl).
By examining each vertex and its neighborhood one by one, we greedily construct a
maximal set S C V such that #' = {N(s) : s € S} is §-separated. By Lemma 2.2,
we have |S| < ¢1(4k?/e2)?. Let S = {s1, 52, o 88))

We define a partition £ : V = U; U --- U Us) of the vertex set such that v € U;
if i is the smallest index such that |N(v)AN(s;)| < §. Such an i always exists, since
S is maximal. By the triangle inequality, for u, v € U;, we have |N(u)AN (v)| < 26.
Set K = 8k|S|/e. Partition each part U; into parts of size |V |/K = n/K and possibly
one additional part of size less than n/K. Collect these additional parts and divide
them into parts of size |V|/K to obtain an equitable partition & : V = Vi U-.-U Vg
into K parts. The number of vertices of V belonging to parts V; that are not fully
contained in one part of 2 is at most |S||V|/K. Hence, the fraction of (unordered)
k-tuples (V;;, ..., Vi) such that at least one of the parts is not fully contained in some
part of 2 is at most k|S|/K = &/8. Let X denote the set of unordered k-tuples of
parts (V;,, ..., V;,) such that each part is fully contained in a part of 2 (though, in
not necessarily the same part) and (V;,, ..., V;) is not e-homogeneous.

Let T be the set of pairs of k-tuples (e, €’), such that e Ne'| =k — 1,e € E(H),
e ¢ E(H),lenVy|=leNVy|=1forj=12,....kand (V;,..., V) € X.
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Notice that for (e, ¢’) € T, such that e N Vi; =D, e'n Vi; = b',b # b, and Vi, lies
completely inside a part of .2, we have |[N(b)AN (b)| < 28. Therefore

n\2 e L n
71 5K<E> Ry ek (k—l)'

On the other hand, by Lemma 2.3, every k-tuple of parts (V;, ..., V;,) that is not
e-homogeneous gives rise to at least (1 — es)(n/K)k+l pairs (e, ¢’) in T. Hence
IT| > |X|e(1 —e)(n/K)**!. Since ¢ < 1/4 and k > 2, the inequalities above imply

that
2¢ (K
xi<= (7).
3 \k

Thus, the fraction of k-tuples of parts in & that are not e-homogeneous is at most
e/8+2/3 <¢g,and K < c(l/fs:)zd+l where ¢ = c(k, d).

Finally, it remains to show that the partition &2 can be computed in O (n) time.
Given two vertices s, v, € V, we have [N(s)AN ()| = [N(s)| + |[N(v)| —2|N(s) N
N (v)|. Therefore we can determine if |[N(s)AN (u)| < § in O (n*~1) time. Hence the
maximal set S C V described above (and therefore the partition 2) can be computed
in O(nk) time since |S| < n. The final equitable partition & requires an additional
O (n) time, which gives a total running time of 0 (n). O

We now establish Theorem 1.4 which shows that the partition size in Theorem 1.3
is tight up to an absolute constant factor in the exponent.

Proof of Theorem 1.4 Given two vertex subsets X, Y of a graph G, we write eg(X, Y)
for the number of edges between X and Y in G, and write dg (X, Y) for the density
of edges between X and Y, thatis, dg(X,Y) = ef)gﬁ)’,Yl). The pair (X, Y) is said to
be (e, 8)-regular if for all X’ C X and Y/ C Y with |X’| > §|X| and |Y’'| > §|Y|, we
have |dg(X,Y) —dg(X',Y")| < e. In the case where ¢ = §, we just say e-regular.
We will make use of the following construction due to Conlon and Fox.

Lemma 2.4 (follows from the proof of Corollary 3.3 in [10]) There is an absolute
constant ¢ € (0, 1) such that the following holds. Ford > 16 and ¢ € (0,2720¢%/d3),
there is a graph H onn = [(4//c)~%/?] vertices such that for every equitable vertex
partition of H with at most \/n parts, at least an \/e-fraction of the pairs of parts are
not c-regular.

Let H = (V, E) be the graph obtained from Lemma 2.4 onn = [(4ﬁ/c)_d/2]
vertices, where d > 16and ¢ € (0, 27206 /d 3), and consider a random subgraph G C
H by picking each edge in E independently with probability p = n=%/? = 4,/¢/c.
Then we have the following.

2

Lemma 2.5 In the random subgraph G, with probability at least 1 — n™*, every pair
of disjoint subsets X, Y C V with |X| < |Y| satisfy
leg(X,Y) —p-en(X,Y)| < /8, ()
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where g = 2|X||Y|?In(ne/|Y]).

Proof For fixed sets X,Y C V(G), where |X| = uj and |Y| = up, let Exg(X,Y) =
{e1,...,em}. We define S; = 1 if edge e; is picked and S; = 0 otherwise, and set
S =81+ -+ Spu. A Chernoff-type estimate (see Theorem A.1.4 in [5]) implies that
fora > 0, Pr[|S — pm| > a] < 2e=24* /M Since m < uyuy, the probability that (1)
does not hold is less than 2¢~2¢/142) By the union bound, the probability that there
are disjoint sets X, Y C V(G) for which (1) does not hold is at most

n uz _ n uz up uj
3 A" T2 gp28/wiu) < 3 ne €\ p28/iu)
u U o uz uj
ury=1luy=1 ur=1lu;=1

n uz ne —2uy 5 g
<y 32() e

ur=1lu;=1

By the analysis of Pr[Cp] in the proof of Theorem 1.2 in Sect. 4, the probability
that G has VC-dimension at least d + 1 is at most

o)t a2 s, —2tta L
d+1 - 10°

since d > 16. Therefore, the union bound implies that there is a subgraph G C H
such that G has VC-dimension at most d, and every pair of disjoint subsets X, Y C V,
with | X| < |Y|, satisfy

leg(X, Y) —p-en(X,Y)| < \/2|X||Y|21n(ne/lyl)- 2

We will now show that for every equitable vertex partition of G into fewer than
Jn = (4y/¢ /c)~4/* parts, there are at least an e-fraction of the pairs of parts which
are not e-homogenous.

Let & be a equitable partition of V into ¢ parts, where t < /n = (4/¢/c) "4/,
By Lemma 2.4, there are at least /¢ (;) pairs of parts in & which are not c-regular in
H. Let (X, Y) be such a pair. Then there are subsets X’ C X and Y’ C Y such that
|X'| = c|X], [Y'] = c|Y|, and

ldu(X,Y) —du(X', Y| > c.
Moreover, by (2), we have

nl/4 t

32 2
6 (X, V) — p-en(X. V) <2 (?) In(re) < Y2100 <f> .

@ Springer



Discrete & Computational Geometry (2019) 61:809-829 819

Since d > 16 and ¢ € (0, 272¢%/d3), this implies

2
leG(X,Y) — p-en(X,Y)| < (%E) V2 In(te) <’:> < % (?) .

Hence, |dg(X,Y) — p-dy (X, Y)| < /e/4. Therefore, we have

(X', Y") —dg(X, V)| = p-ldu(X",Y') —du(X,Y)| —2\/75

- avi- Yok

Therefore, (X, Y) is not (\/z, ¢)-regular in G. Since /& > &, we have at least &(})
such pairs.

Finally, it is easy to see that (X, Y) is not e-homogeneous in G. Indeed, if (X, Y)
were e-homogeneous, then we have either dg (X, Y) < e¢ordg(X,Y) > 1 —¢.Inthe
former case we have dg (X', Y’) > 3./, and since ¢ € (0, 272066 /43, we have

eG(X,Y) > eg(X',Y') > 3/e?|X||Y| > e|X||Y],

contradiction. In the latter case, we have d(X’, Y') < 1 —3./¢, and a similar analysis
shows that eg (X, Y) < (1 — ¢)|X]|Y|, contradiction.

Thus, any equitable vertex partition of G such that all but an e-fraction of the pairs
of parts are e-homogeneous, requires at least (44/c/c)~%/4 parts. O

3 Proof of Theorem 1.1

The family ¢ of all complement reducible graphs, or cographs, is defined as follows:
The graph with one vertex is in ¢, and if two graphs G, H € ¥, then so does their
disjoint union, and the graph obtained by taking their disjoint union and adding all
edges between G and H. Clearly, every induced subgraph of a cograph is a cograph,
and it is well known that every cograph on n vertices contains a clique or independent
set of size /7.

Let f4(n) be the largest integer f such that every graph G with n vertices and
VC-dimension at most d has an induced subgraph on f vertices which is a cograph.
Theorem 1.1 is an immediate consequence of the following result.

Theorem 3.1 For any § € (0, 1/2) and for every integer d > 1, there is a ¢ = c¢(d, 3)
such that fy(n) > ecllogm)!? for every n.

Proof For simplicity, let f(n) = f;(n). The proof is by induction on n. The base case
n = 1 is trivial. For the inductive step, assume that the statement holds for all n’ < n.
Let§ > Oand let G = (V, E) be an n-vertex graph with VC-dimension d. We will
determine ¢ € (0, 1) later.
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Sete = (1/32)e3¢og m'™ We apply Theorem 1.3 to obtain an equitable partition
&PV =V U---UVg into at most K < g~ parts, where c4 = O(d), such that all
but an e-fraction of the pairs of parts are e-homogeneous. We call an unordered pair
of distinct vertices (u, v) bad if at least one of the following holds:

1. (u, v) lie in the same part, or

2. ueViandv € V;,i # j, where (V;, V;) is not e-homogeneous, or

3. ueViandv € V;,i # j,uv € E(G) and |E(V;, Vj)| < &|Vi||V;], or

4. ueViandveV;,i # j,uv ¢ E(G)and |E(V;, V)| > (1 —&)|VilIV;l].

By Theorem 1.3, the number of bad pairs of vertices in G is at most

K(n/K> + (£>2 8<K> +e (2)2 (1—¢) (K> < 25(”)
2 K 2 K 2) 2)

By Turdn’s Theorem (see Theorem 5.1 in Sect. 5), there is a subset R C S of
at least % vertices such that R does not contain any bad pairs. This implies that all
vertices of R are in distinct parts of 2. Furthermore, if uv are adjacent in R, then the
corresponding parts V;, V; satisfy |E(V;, V;)| > (1 — &)|V;||V;], and if uv are not
adjacent, then we have |E(V;, V;)| < €|V;||V;]. Since the induced graph G[R] has
VC-dimension at most d, G[R] contains a cograph Uy of size t = f(1/(4¢)), which,
by the induction hypothesis, is a set of size at least e<1°2(1/4)'™ Without loss of
generality, assume that each of V1, ..., V; contains an element of Uy. Each such part
contains n/K vertices.

For each vertex u € Vi, let dj(u) denote the number of bad pairs uv, where v € V;
fori =2, ..., t. Then there is a subset Vl’ C Vj of size n/(2K), such that each vertex
u e V]’ satisfies dp,(u) < 8te(n/K). Indeed, otherwise at least n/(2K) vertices in Vj
satisfy dp (1) > 8te(n/K), which implies

S = Y dyw < e -1 (&),

2K K
ueVy/ ueVy

and hence a contradiction. By the induction hypothesis, we can find a subset Uy C V/{
such that the induced subgraph G[U;]is a cograph of size f(n/(2K)).If the inequality

f ( n >8t n n
2K K 4K
is satisfied, then we have
f3(n) > f (L) 2> L
- 2K 32¢"

1-68 1-68
Recall that % = 32¢3¢10gm) ™ e have f(n) > e102m) ™ and we are done.
Therefore, we can assume that

n n n
f (—) 8te — < —.
2K K ~ 4K
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Hence, by deleting any vertex v € V, U --- U V; that is in a bad pair with a vertex in
Ui, we have deleted at most ﬁ vertices ineach V; fori =2, ...,1.

We repeat this entire process on the remaining vertices in Va, ..., V;. Atstep i, we
will find a subset U; C V; that induces a cograph of size

5k ~am) =/ (3%)-

and again, if the inequality

f (L) gre Lo

4K K 4K
is satisfied, then we are done by the same argument as above. Therefore we can assume
that our cograph G[U;] has the property that there are at most n/(4¢K) bad pairs
between U; and V; for j > i. Atthe end of this process, we obtain subsets Uy, ..., U;

such that the union Uy U - - - U U, induces a cograph of size at least ¢ f (&) Therefore
we have

o= (1) (1)
> f<e30(108")1_5)f(elogn—c»cs(logn)'_3> (3)

ec(3c(log n)!=3) 1=8 ec(logn—c-05 (log n)l"s)lﬂs

v

3

where c5 = c5(d). Notice we have the following estimate:

1—s . 1-6
<logn—c-05(10gn)178) = (logn)' ™ (1_ li)g‘sci)

> (logn)' % (1— e 4)
N (logn)?
> (logn)' =% — ¢ - es(logn)' 2.
Plugging (4) into (3) gives
Fln) = ecCetosn ™)' ettogm! P~ estogm)! =

(&)

2
- ec(logn)l_‘s ) e(31_5c'2(logrz)l_25'*"s —c205(10gn)1_2‘5).

The last inequality follows from the fact thatc < 1. Letng = ng(d, §) be the minimum
integer such that for all n > ny we have

31—8(10g n)l—25+32 _ C5(10g n)l—28 > 0.

We now set ¢ = c(d, t) to be sufficiently small such that the statement is trivial for all
n < ng. Hence we have f(n) > ¢c102m'™ for all . O
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4 Random Constructions

Here we prove Theorems 1.2 and 1.6. The proof of Theorem 1.2 uses the Lovédsz Local
Lemma [18] in a similar manner as Spencer [43] to give a lower bound on Ramsey
numbers.

Lemma 4.1 (Lovdsz Local Lemma) Let <7 be a finite set of events in a probability
space. For A € o let T'(A) be a subset of </ such that A is independent of all events
in o/ \ {AYUT(A)). If there is a function x : o/ — (0, 1) such that for all A € <7,

PriA] <x(A) [ a—xBy,

Bel(A)

then Pr [ﬂAe% K] > [[acy (1 = x(A)). In particular, with positive probability no
event in </ holds.

Proof of Theorem 1.2 Let s and d be positive integers such thatd > s+ 2. Let G(n, p)
denote the random graph on n vertices in which each edge appears with probability p
independently of all the other edges, where p = n=2/¢*D and n is a sufficiently large
number. For each set S of s vertices, let Ag be the event that S induces a complete
graph. For each set T of ¢ vertices, let B be the event that 7" induces an empty graph.
Clearly, we have Pr[As] = p®) and Pr[Br] = (1 — p)®.

For each set D of d vertices, let Cp be the event that D is shattered. Then

PriCpl < [] Prl3veV(G) : Nw)ND=W]
wcD

- IL(0- (== )

wcD
. 1— (1 —pi(l — p)dj)n)(?)
¢

=[(n pia- p)d*f)(-c’l')

d
I1
j=1

d
I1
Jj=1

NORNIH)

IA

24 god-l

IA

n

Next we estimate the number of events dependent on each Ag, By and Cp. Let
S C V suchthat|S| = s. Then the event A is dependent onatmost (3)(,”,) < s?n*~2

events Ag, where |S'| = s. Likewise, A is dependent on at most (’:) events By where
|T| = t. Finally Ag is dependent on at most (5)(,",) < s?n?~2 events Cp where
|D| =d.
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Let T C V be a set of vertices such that |T| = . Then the event Br is dependent
onatmost (5)(,",) < t*n*~? events Ag where |S| = 5. Likewise, Br is dependent on
atmost () events By where |T’| = ¢. Finally By is dependent on at most (5)(,",) <
2n9=2 events Cp where |D| = d.

Let D C V be a set of vertices such that | D| = d. Then the event Cp is dependent
on at most (g) (,",) < d*n*"2events Ag where |S| = 5. Likewise, Cp is dependent on

n
t

events Cp where |D'| = d.
By Lemma 4.1, it suffices to find three real numbers x, y, z € (0, 1) such that

) events By where |T| = ¢. Finally Cp is dependent on at most ([21) (,"n) <

at most (
d2nd—2

D <x1—x)" 71—y D=7, 6)
1=p® <yd—x)" 71— y»Oa— g™, %

and
n P <=0 = D= P ®)

—2 2
Recall that p = ns¥1, s > 3,and d > s + 2. We now set t = cins+1 logn,

*2(%) e ns-%—l (o ’1)2 d__2_ gpd—1
X =cnsH ,y=¢e9 )" and 7 = cqn” " SH , where c1, ¢2, ¢3, cq only

depend on s and d. By letting ¢; > 10c3, setting c1, c2, c3, c4 sufficiently large, an

easy (but tedious) calculation shows that (6), (7), (8) are satisfied when n is sufficiently

large. By Lemma 4.1, there is an n-vertex K-free graph G with VC-dimension at most
2

d and independence number at most c¢jn 5+ log n. O

Proof of Theorem 1.6 Let d > 5 and n be a sufficiently large integer that will be
determined later. Consider the random n-vertex graph G = G(n, p), where each
edge is chosen independently with probability p = n~%/¢. By choosing n sufficiently
large, the union bound and the analysis above imply that the probability that G has
VC-dimension at least d is at most 1/3.

Let A, B C V(G) be vertex subsets, each of size k. The probability that (A, B) is
homogenous is at most

pkz +(- p)k2 < pHd g

The probability that G contains a homogeneous pair (A, B), where |A|, |B| = k, is at

most
n\/n—k —4k2d 42
(k)( K >(” rer ) <1,

for k = 4n*/?log n and n sufficiently large. Thus, again by the union bound, there is
a graph with VC-dimension less than d, with no two disjoint subsets A, B C V(G)
such that (A, B) is homogeneous and |A|, | B| = 4n*/¢ logn. m|

@ Springer



824 Discrete & Computational Geometry (2019) 61:809-829

5 Ramsey-Turan Numbers for Graphs with Bounded VC-Dimension

In this section we prove Theorem 1.5. First let us recall a classical theorem in graph
theory.

Theorem 5.1 (Turdn) Let G = (V, E) be a K,-free graph with n vertices. Then the
number of edges in G is at most %(1 — % + 0(1))n2.

Together with a sampling argument of Varnavides [49], we have the following
lemma (see also Lemma 2.1 in [30]).
Lemma5.2 Fore > 0, everyn-vertex graph G = (V, E) with |E| > %(l — ﬁ—i—s)nz
has at least 8n' copies of K;, where § = §(t, €).

In order to establish the upper bound in Theorem 1.5, it suffices to show

1 1 5 5
RTd(l’l, Kzla 0(71)) =< 5 1 - P n +0(n )’

1

since we have RT;(n, K2;—1,0(n)) < RT(n, K2—1, o(n)). The following theorem
implies the inequality above.

Theorem 5.3 Let ¢ > Q0 and let G = (V, E) be an n-vertex graph with VC-dimension
d. If G is Kys-free and |E| > %(1 — ﬁ + s)nz, then G contains an independent set
of size yn, where y = y(d, t, €).

Proof By Lemma 5.2, G contains at least Sn’ copies of K;, where § = (¢, t). Without
loss of generality, we can assume that § is sufficiently small and will be determined
later. We apply the regularity lemma (Lemma 1.3) with approximation parameter §/4
to obtain a (near) equipartition & : V = V| U--- U Vg such that 4/§ < K <
c (4/8)%*! where ¢ = c¢(d), and all but a f—l-fraction of the pairs of parts in &2 are
(8/4)-homogeneous.

By deleting all edges inside each part, we have deleted at most

n/K n? n?
K <—=<-—=3
2 )7 2K 8

edges. By deleting all edges between pairs of parts that are not (§/4)-homogeneous,
we have deleted an additional

() 3(5) <%

edges. Finally, by deleting all edges between pairs (V;, V;) with density less than §/4,

we have deleted at most
§ yn\2 (K n?
5 (5) <5
4 \K 2 8

@ Springer



Discrete & Computational Geometry (2019) 61:809-829 825

edges, which implies we have deleted in total less than n%8/2 edges in G. The only
edges remaining in G are edges between pairs of parts (V;, V;) with density greater
than 1 — %. Since each edge lies in at most n’ ~2 copies of K;, we have deleted at most
dn' /2 K;-s in G. Therefore there is at least one copy of K; remaining, which implies
that there are ¢ parts V;, ..., V;, € & that pairwise have density at least 1 — é, with
[Vi;| =n/K.Setd; =é/4.

For fixed j € {2,...,t}, notice that there are at least (1 — 1/(2¢))(n/K) vertices
v € Vj, such that [N (v) N Vj;| > (1 —43;¢)n/K. Indeed, otherwise we would have

= (1)1 ) (1) 4 25 0 s 2= (2 - (1)

On the other hand, |E(V;,, V,~j)| > (1-2461) (n/K)Z. This implies 261 < &1 which is
a contradiction.

Therefore there is a subset Vl’l C Vi, with |Vl’l | > | Vi, 1/2 such that each vertex v €
V’ satisfies [IN(v)NV;; | = (1-4810)|V;; [ forall j =2,... 1. IfV’ is an independent
set then we are done since |V/ | >n/ (2K ). Otherwise we have an edge uv in V . For
j =2,...,t,the pigeonhole pr1n01ple implies that |V;, AN (u) NN (v)| > z (1= 881t)

We define V(2) tobe aset of exactly % (1 —881¢) elements in V;; NN (u)NN (v). Notice
that the graph induced on the vertex set Vigz) ..U Vlf ) is K»;_>-free. Moreover, the
density between each pair of parts (Vig,z), Vif)) is atleast 1 — &, where §p = 81+ 164,¢.

We repeat this process on the remaining ¢ — 1 parts Vigz), ceey Vi<2).
After j steps, we have either found an independent set of size at least

S (L= 801)(1 = 882(¢ = 1)+ (1 = 88,11 = j +2)),

where §; is defined ;ecursively as 81 = §/4 and §y = Sk—1 + 168x—1¢, or we have
obtained subsets Vlij )L, Vlf] ) such that

VPl = 2 (1= 8810)(1 = 88(r — 1)) -+ (1 = 88,1t = j)).

for =j,...,1t, Vl.ij) U---u Vl.fj) is Ko, j-free, and the density between each pair
of parts (Vi;({j)’ Viij)) isatleast 1 — ;.

By letting § = (e, t) be sufficiently small such that §; < 100[ forall k < ¢, we
obtain an independent set of size yn, where y = y(d, t, ¢€). O

The lower bound on RT;(n, K»;_1, 0(n)) and RT;(n, K»;, 0o(n)) in Theorem 1.5
follows from a geometric construction of Fox et al. in [23] (see page 15), which is a
graph with VC-dimension at most four.
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6 Concluding Remarks

Many interesting results arose in our study of graphs and hypergraphs with bounded
VC-dimension. In particular, we strengthen several classical results from extremal
hypergraph theory for hypergraphs with bounded VC-dimension. Below, we briefly
mention two of them.

Hypergraphs with Bounded VC-Dimension. Erdds et al. [16] showed that every
3-uniform hypergraph on n vertices contains a clique or independent set of size
cloglogn. A famous open question of Erdds asks if loglogn is the correct order
of magnitude for Ramsey’s theorem for 3-uniform hypergraphs. According to the best
known constructions, there are 3-uniform hypergraphs on n vertices with no clique or
independent set of size ¢’+/log n. For k > 4, the best known lower and upper bounds on
the size of the largest clique or independent set in every n-vertex k-uniform hypergraph

is of the form clog(k’l) n (the (k — 1)-times iterated logarithm) and ¢’/ log(kfz) n,
respectively (see [12] for more details). By combining Theorem 1.1 with an argument
of Erd6s and Rado [19], one can significantly improve these bounds for hypergraphs
of bounded (neighborhood) VC-dimension.

Theorem 6.1 Let k > 3 and d > 1. Every k-uniform hypergraph on n vertices with

. . . . . ; k=1) p\1=oM
VC-dimension d contains a clique or independent set of size ellog""n) .

Geometric constructions given by Conlon et al. [11] show that Theorem 6.1 is tight
apart from the o(1) term in the second exponent. That is, for fixed k > 3, there are k-
uniform hypergraphs on n vertices with VC-dimension d = d (k) such that the largest
clique or independent set is of size O (log*~=2 n).

The Erd6s-Hajnal Conjecture for Tournaments. A tournament T = (V, E) on a set
V is an orientation of the edges of the complete graph on the vertex set V, that is, for
u,v € V we have either (u#, v) € E or (v, u) € E, but not both. A tournament with no
directed cycle is called transitive. If a tournament has no subtournament isomorphic
to T, then it is called T -free.

An old result due to Entringer et al. [13] and Spencer [44] states that every tourna-
ment on n vertices contains a transitive subtournament of size c log n, which is tight
apart from the value of the constant factor. Alon et al. [4] showed that the Erd6s—Hajnal
conjecture is equivalent to the following conjecture.

Conjecture 6.2 For every tournament 7', there is a positive § = §(T') such that every

T-free tournament on 7 vertices has a transitive subtournament of size n°.

In particular, it is known that every 7-free tournament on n vertices contains a
transitive subtournament of size evV'°¢” where ¢ = ¢(T'). Here we note that this bound
can be improved in the special case where the forbidden tournament 7 = (V, E) is

2-colorable, that is, there is a 2-coloring on V (T') such that each color class induces
a transitive subtournament.
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Theorem 6.3 For fixed integer k > 0, let T be a 2-colorable tournament on k vertices.

Then every T -free tournament on n vertices contains a transitive subtournament of

size elogm' "

The idea of the proof of Theorem 6.3 is to use the fact that a tournament 7 is 2-
colorable if and only if the outneighborhood set system of every T-free tournament
has VC-dimension at most c¢(7). There is a straightforward analogue of Theorem 1.3
for tournaments whose outneighborhood set system has bounded VC-dimension, and
with this analogous tool, the proof of Theorem 6.3 is essentially the same as the proof
of Theorem 1.1.

Acknowledgements We would like to thank Lisa Sauermann for pointing out a small error in an earlier
version of the proof of Lemma 2.3.

Funding Funding were provided by NSF Division of Mathematical Sciences (Grant Nos. 1800746,
1352121, 1651782), Alfred P. Sloan Foundation, a Packard fellowship, Schweizerischer Nationalfonds
zur Forderung der Wissenschaftlichen Forschung (Grant Nos. 200020-144531, 200021-162884, 200021-
137574).

References

1. Ajtai, M., Komlés, J., Szemerédi, E.: A note on Ramsey numbers. J. Comb. Theory Ser. A 29(3),
354-360 (1980)
2. Alon, N., Fischer, E., Newman, I.: Efficient testing of bipartite graphs for forbidden induced subgraphs.
SIAM J. Comput. 37(3), 959-976 (2007)
3. Alon, N., Pach, J., Pinchasi, R., Radoici¢, R., Sharir, M.: Crossing patterns of semi-algebraic sets. J.
Comb. Theory Ser. A 111(2), 310-326 (2005)
4. Alon, N., Pach, J., Solymosi, J.: Ramsey-type theorems with forbidden subgraphs. Combinatorica
21(2), 155-170 (2001)
5. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics
and Optimization, 3rd edn. Wiley, Hoboken (2008)
6. Anthony, M., Brightwell, G., Cooper, C.: The Vapnik—Chervonenkis dimension of a random graph.
Discrete Math. 138(1-3), 43-56 (1995)
7. Bohman, T., Keevash, P.: The early evolution of the H-free process. Invent. Math. 181(2), 291-336
(2010)
8. Bollobas, B., Erdds, P.: On a Ramsey—Turan type problem. J. Comb. Theory Ser. B 21(2), 166-168
(1976)
9. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press,
New York (2000)
10. Conlon, D., Fox, J.: Bounds for graph regularity and removal lemmas. Geom. Funct. Anal. 22(5),
1191-1256 (2012)
11. Conlon, D., Fox, J., Pach, J., Sudakov, B., Suk, A.: Ramsey-type results for semi-algebraic relations.
Trans. Am. Math. Soc. 366(9), 5043-5065 (2014)
12. Conlon, D., Fox, J., Sudakov, B.: Hypergraph Ramsey numbers. J. Am. Math. Soc. 23(1), 247-266
(2010)
13. Entringer, R.C., Erds, P, Harner, C.C.: Some extremal properties concerning transitivity in graphs.
Period. Math. Hung. 3(3—4), 275-279 (1973)
14. Erdds, P.: Some remarks on the theory of graphs. Bull. Am. Math. Soc. 53(4), 292-294 (1947)
15. Erdés, P, Hajnal, A.: Ramsey-type theorems. Discrete Appl. Math. 25(1-2), 37-52 (1989)
16. Erdss, P, Hajnal, A., Rado, R.: Partition relations for cardinal numbers. Acta Math. Acad. Sci. Hung.
16, 93-196 (1965)
17. Erdés, P, Hajnal, A., S6s, V.T., Szemerédi, E.: More results on Ramsey—Turan type problem. Combi-
natorica 3(1), 69-82 (1983)

@ Springer



828

Discrete & Computational Geometry (2019) 61:809-829

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.
45.

Erdés, P., Lovdsz, L.: Problems and results on 3-chromatic hypergraphs and some related questions.
In: Hajnal, A., Rado, R., Sds, V.T (eds.) Infinite and Finite Sets, Vol. II, pp. 609-627. Colloquia
Mathematica Societatis Janos Bolyai, vol. 10. North-Holland, Amsterdam (1975)

Erdés, P, Rado, R.: Combinatorial theorems on classifications of subsets of a given set. Proc. Lond.
Math. Soc. 3, 417439 (1952)

Erdés, P., Sos, V.T.: Some remarks on Ramsey’s and Turdn’s theorem. In: ErdGs, P., Rényi, A., Sos,
V.T. (eds.) Combinatorial Theory and Its Applications, Vol. II. Colloquia Mathematica Societatis Janos
Bolyali, vol. 4, pp. 395-404. North-Holland, Amsterdam (1970)

Erdés, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463—470 (1935)
Fox, J., Gromov, M., Lafforgue, V., Naor, A., Pach, J.: Overlap properties of geometric expanders. J.
Reine Angew. Math. 671, 49-83 (2012)

Fox, J., Pach, J., Suk, A.: Semi-algebraic colorings of complete graphs (2015). arXiv:1505.07429
Fox, J., Pach, J., Suk, A.: A polynomial regularity lemma for semi-algebraic hypergraphs and its
applications in geometry and property testing. SIAM J. Comput. 45(6), 2199-2223 (2016)

Fox, J., Sudakov, B.: Density theorems for bipartite graphs and related Ramsey-type results. Combi-
natorica 29(2), 153—-196 (2009)

Goodman, J.E., O’Rourke, J., Téth, C.D. (eds.): Handbook of Discrete and Computational Geometry.
Discrete Mathematics and its Applications (Boca Raton). Chapman Hill/CRC Press, Boca Raton (2017)
Har-Peled, S.: Geometric Approximation Algorithms. Mathematical Surveys and Monographs, vol.
173. American Mathematical Society, Providence (2011)

Haussler, D.: Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik—
Chervonenkis dimension. J. Comb. Theory Ser. A 69(2), 217-232 (1995)

Haussler, D., Welzl, E.: e-nets and simplex range queries. Discrete Comput. Geom. 2(2), 127-151
(1987)

Keevash, P.: Hypergraph Turan problems. In: Chapman, R. (ed.) Surveys in Combinatorics. London
Mathematical Society Lecture Note Series, vol. 392, pp. 83—139. Cambridge University Press, Cam-
bridge (2011)

Komlés, J., Pach, J., Woeginger, G.: Almost tight bounds for e-nets. Discrete Comput. Geom. 7(2),
163-173 (1992)

Kranakis, E., Krizanc, D., Ruf, B., Urrutia, J., Woeginger, G.: The VC-dimension of set systems defined
by graphs. Discrete Appl. Math. 77(3), 237-257 (1997)

Larman, D., Matousek, J., Pach, J., Tor6esik, J.: A Ramsey-type result for convex sets. Bull. Lond.
Math. Soc. 26(2), 132-136 (1994)

Lovasz, L., Szegedy, B.: Regularity partitions and the topology of graphons. In: Barany, 1., Solymosi,
J. (eds.) An Irregular Mind. Bolyai Society Mathematical Studies, vol. 21, pp. 415-446. Jdnos Bolyai
Mathematical Society, Budapest (2010)

Matousek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212., Springer,
New York (2002)

Pach, J., Solymosi, J.: Structure theorems for systems of segments. In: Akiyama, J., Kano, M., Urabe,
M. (eds.) Discrete and Computational Geometry. Lecture Notes in Computer Science, vol. 2098, pp.
308-317. Springer, Berlin (2001)

Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13, 145-147 (1972)

Schaefer, M.: Deciding the Vapnik—Cervonenkis dimension is E;’,—complete. J. Comput. Syst. Sci. 58,
177-182 (1999)

Sharir, M., Agarwal, PK.: Davenport—Schinzel Sequences and Their Geometric Applications. Cam-
bridge University Press, Cambridge (1995)

Shelah, S.: A combinatorial problem; stability and order for models and theories in infinitary languages.
Pac. J. Math. 41, 247-261 (1972)

Simonovits, M., S6s, V.T.: Ramsey—Turdn theory. Discrete Math. 229(1-3), 293-340 (2001)

Sés, V.T.: On extremal problems in graph theory. In: Guy, R., Hanani, H., Sauer, N., Schonheim, J.
(eds.) Combinatorial Structures and their Applications, pp. 407-410. Gordon and Beach, New York
(1969)

Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Math. 20(1), 69-76 (1977)
Spencer, J.: Random regular tournaments. Period. Math. Hung. 5, 105-120 (1974)

Stanley, R.P.: Combinatorics and Commutative Algebra. 2nd edn. Progress in Mathematics, vol. 41.
Birkhiuser, Boston (1996)

@ Springer


http://arxiv.org/abs/1505.07429

Discrete & Computational Geometry (2019) 61:809-829 829

46. Szemerédi, E.: On graphs containing no complete subgraphs with 4 vertices. Mat. Lapok 23, 111-116
(1972). (in Hungarian)

47. Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization. Discrete Mathematics and its
Applications (Boca Raton). Chapman and Hall/CRC Press, Boca Raton (2013)

48. Vapnik, V.N., Chervonenkis, A.Ya.: On the uniform convergence of relative frequencies of events to
their probabilities. Theory Probab. Appl. 16, 264280 (1971)

49. Varnavides, P.: On certain sets of positive density. J. Lond. Math. Soc. 34, 358-360 (1959)

Affiliations

Jacob Fox' . Janos Pach? . Andrew Suk3
Jacob Fox
jacobfox @stanford.edu

Janos Pach
pach@cims.nyu.edu

Andrew Suk
asuk@ucsd.edu

1 Department of Mathematics, Stanford University, Stanford, CA 94305, USA
Alfréd Rényi Institute, Hungarian Academy of Sciences, 1364 Budapest, Hungary
3 Department of Mathematics, University of California San Diego, La Jolla, CA 92093-0112, USA

@ Springer



	Erdős–Hajnal Conjecture for Graphs with Bounded VC-Dimension
	Abstract
	1 Introduction
	2 Regularity Partition for Hypergraphs with Bounded VC-Dimension
	3 Proof of Theorem 1.1
	4 Random Constructions
	5 Ramsey–Turán Numbers for Graphs with Bounded VC-Dimension
	6 Concluding Remarks
	Acknowledgements
	References




