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Abstract
The Vapnik–Chervonenkis dimension (in short, VC-dimension) of a graph is defined
as the VC-dimension of the set system induced by the neighborhoods of its vertices.
We show that every n-vertex graph with bounded VC-dimension contains a clique or
an independent set of size at least e(log n)1−o(1)

. The dependence on the VC-dimension
is hidden in the o(1) term. This improves the general lower bound, ec

√
log n , due to

Erdős and Hajnal, which is valid in the class of graphs satisfying any fixed nontrivial
hereditary property. Our result is almost optimal and nearly matches the celebrated
Erdős–Hajnal conjecture, according to which one can always find a clique or an inde-
pendent set of size at least e�(log n). Our results partially explain why most geometric
intersection graphs arising in discrete and computational geometry have exception-
ally favorable Ramsey-type properties. Our main tool is a partitioning result found by
Lovász–Szegedy and Alon–Fischer–Newman, which is called the “ultra-strong reg-
ularity lemma” for graphs with bounded VC-dimension. We extend this lemma to
k-uniform hypergraphs, and prove that the number of parts in the partition can be
taken to be (1/ε)O(d), improving the original bound of (1/ε)O(d2) in the graph setting.
We show that this bound is tight up to an absolute constant factor in the exponent.
Moreover, we give an O(nk)-time algorithm for finding a partitionmeeting the require-
ments. Finally, we establish tight bounds on Ramsey–Turán numbers for graphs with
bounded VC-dimension.
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1 Introduction

During the relatively short history of computational geometry, there were many break-
throughs that originated from results in extremal combinatorics [26]. Range searching
turned out to be closely related to discrepancy theory [9], linear programming to
McMullen’s Upper Bound theorem and to properties of the facial structure of simpli-
cial complexes [45], motion planning to the theory of Davenport–Schinzel sequences
and to a wide variety of other forbidden configuration results [39], graph drawing
and VLSI design to the crossing lemma, to the Szemerédi–Trotter theorem, and to
flag algebras [47]. A particularly significant example that found many applications in
discrete and computational geometry, was the discovery of Haussler and Welzl [29],
according to which many geometrically defined set systems have bounded Vapnik–
Chervonenkis dimension. Erdős’s “Probabilistic Method” [5] or “Random Sampling”
techniques, as they are often referred to in computational context, had been observed
to be “unreasonably effective” in discrete geometry and geometric approximation
algorithms [27]. Haussler and Welzl offered an explanation and a tool: set systems
of bounded Vapnik–Chervonenkis dimension admit much smaller hitting sets and
“epsilon-nets” than other set systems with similar parameters.

It was also observed a long time ago that geometrically defined graphs and set
systems have unusually strong Ramsey-type properties. According to the quantitative
version ofRamsey’s theorem, due toErdős andSzekeres [21], every graph on n vertices
contains a clique or an independent set of size at least 1

2 log n. In [14], Erdős proved
that this bound is tight up to a constant factor. However, every intersection graph of n
segments in the plane, say, has a much larger clique or an independent set, whose size
is at least nε for some ε > 0 [33]. The proof extends to intersection graphs of many
other geometric objects [3]. Interestingly, most classes of graphs and hypergraphs in
which a similar phenomenon has been observed turned out to have (again!) bounded
Vapnik–Chervonenkis dimension. (We will discuss this fact in a little more detail at
the end of the Introduction.)

The problem can be viewed as a special case of a celebrated conjecture of Erdős and
Hajnal [15], which is one of themost challenging open problems inRamsey theory. Let
P be a hereditary property of finite graphs, that is, if G has property P , then so do all of
its induced subgraphs. Erdős and Hajnal conjectured that for every hereditary property
P which is not satisfied by all graphs, there exists a constant ε(P) > 0 such that every
graph of n vertices with property P has a clique or an independent set of size at least
nε(P). They proved the weaker lower bound eε(P)

√
log n . According to the discovery of

Haussler and Welzl mentioned above, the Vapnik–Chervonenkis dimension of most
classes of “naturally” defined graphs arising in geometry is bounded from above by
a constant d. The property that the Vapnik–Chervonenkis dimension of a graph is at
most d, is hereditary.

The aim of this paper is to investigatewhether the observation that the Erdős–Hajnal
conjecture tends to hold for geometrically defined graphs can be ascribed to the fact
that they have bounded VC-dimension. Our first theorem (Theorem 1.1 below) shows
that the answer to this question is likely to be positive. To continue, we need to agree
on the basic definitions and terminology.
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Let F be a set system on a ground set V . The Vapnik–Chervonenkis dimension
(VC-dimension, for short) of F is the largest integer d for which there exists a d-
element set S ⊂ V such that for every subset B ⊂ S, one can find a member A ∈ F
with A ∩ S = B. Given a graph G = (V , E), for any vertex v ∈ V , let N (v) denote
the neighborhood of v in G, that is, the set of vertices in V that are connected to v.
We note that v itself is not in N (v). Then we say that G has VC-dimension d, if the
set system induced by the neighborhoods in G, i.e. F = {N (v) ⊂ V : v ∈ V }, has
VC-dimension d. Let us remark that although the edges of G also form a 2-uniform set
systemF ′ = {e ∈ E(G)}, the VC-dimension of G defined above is usually different
from the VC-dimension of F ′.

The VC-dimension of a set system is one of the most useful combinatorial param-
eters that measures its complexity, and, apart from its geometric applications, it has
proved to be relevant in many other branches of pure and applied mathematics, such
as statistics, logic, learning theory, and real algebraic geometry. The notion was intro-
duced by Vapnik and Chervonenkis [48] in 1971, as a tool in mathematical statistics.
Kranakis et al. [32] observed that the VC-dimension of a graph can be determined in
quasi-polynomial time and, for bounded degree graphs, in quadratic time. Schaefer
[38], addressing a question of Linial, proved that determining the VC-dimension of a
set system is �

p
3 -complete. For each positive integer d, Anthony et al. [6] determined

the threshold for the Erdős–Rényi random graph G(n, p) to have VC-dimension d
(see also [31]). Given a bipartite graph F , its closure is defined as the set of all graphs
that can be obtained from F by adding edges between two vertices in the same part.
It is known (see [34]) that there is a bipartite graph F such that a class of graphs
has bounded VC-dimension if and only if none of its members contains any induced
subgraph that belongs to the closure of F .

Our first result states that the Erdős–Hajnal conjecture “almost holds” for graphs
of bounded VC-dimension.

Theorem 1.1 Let d be a fixed positive integer. If G is an n-vertex graph with VC-
dimension at most d, then G contains a clique or independent set of size e(log n)1−o(1)

.

Note that the dependence of the bound on d is hidden in the o(1)-notation.
There has been a long history of studying off-diagonal Ramsey numbers, where

one is interested in finding the maximum size of an independent set guaranteed in a
Ks-free graph on n vertices with s fixed. An old result of Ajtai et al. [1] states that all

such graphs contain independent sets of size cn
1

s−1 (log n)
s−2
s−1 . In the other direction,

Spencer [43] used the Lovász Local Lemma to show that there are Ks-free graphs

on n vertices and with no independent set of size c′n
2

s+1 log n. This bound was later

improved by Bohman and Keevash [7] to c′n
2

s+1 (log n)
1− 2

(s+1)(s−2) . In Sect. 4, we give
a simple proof, extending Spencer’s argument, showing that there are Ks-free graphs
with bounded VC-dimension and with no large independent sets.

Theorem 1.2 For fixed s ≥ 3 and d ≥ 5 such that d ≥ s + 2, there exists a Ks-
free graph on n vertices with VC-dimension at most d and no independent set of size

cn
2

s+1 log n, where c = c(d).
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For large s (s > d), a result of Fox and Sudakov (Theorem 1.9 in [25]) implies that all
n-vertex Ks-free graphs G with VC-dimension d contain an independent set of size

n
1

c log s , where c = c(d).

Regularity Lemma for Hypergraphs with Bounded VC-Dimension. First, we gener-
alize the definition of VC-dimension for graphs to hypergraphs. Given a k-uniform
hypergraph H = (V , E), for any (k − 1)-tuple of distinct vertices v1, . . . , vk−1 ∈ V ,
let

N (v1, . . . , vk−1) = {u ∈ V : {v1, . . . , vk−1, u} ∈ E(H)}.

Then we say that H has VC-dimension d, if the set system

F = {N (v1, . . . , vk−1) : v1, . . . , vk−1 ∈ V }

has VC-dimension d. Of course, the hyperedges of H form a set system, but the VC-
dimension of this set system is usually different from the VC-dimension of H defined
above. The latter one is defined as the VC-dimension of the set systemF induced by
the neighborhoods of the vertices of H , rather than by the hyperedges.

The dual of the set system (V ,F ) on the ground set V is the set system obtained
by interchanging the roles of V and F . That is, it is the set system (F ,F ∗), where
the ground set is F and

F ∗ = {{A ∈ F : v ∈ A} : v ∈ V }.

For the set system in the definition of VC-dimension of a hypergraph above, F ∗ is
isomorphic to the set system whose ground set is

( V
k−1

)
, and each set is a maximal

collection of (k − 1)-tuples {S1, . . . , Sp} such that for all i , v ∪ Si ∈ E(H) for some
fixed v. Hence, we have (F ∗)∗ = F , and it is known that if F has VC-dimension
d, thenF ∗ has VC-dimension at most 2d+1 − 1 (see [35]). We say that H = (V , E)

has dual VC-dimension d ifF ∗ has VC-dimension d.
The main tool used to prove Theorem 1.1 is an ultra-strong regularity lemma for

graphs with bounded VC-dimension obtained by Lovász and Szegedy [34] and Alon
et al. [2]. Here, we extend the ultra-strong regularity lemma to uniform hypergraphs.

Given k vertex subsets V1, . . . , Vk of a k-uniform hypergraph H , we write
E(V1, . . . , Vk) to be the set of edges going across V1, . . . , Vk , that is, the set of
edges with exactly one vertex in each Vi . The density across V1, . . . , Vk is defined
as |E(V1,...,Vk )||V1|···|Vk | . We say that the k-tuple (V1, . . . , Vk) is ε-homogeneous if the density
across it is less than ε or greater than 1 − ε. A partition is called equitable if any two
parts differ in size by at most one.

In [34], Lovász andSzegedy established an ultra-strong regularity lemma for graphs
(k = 2) with bounded VC-dimension, which states that for any ε > 0, there is a (least)
K = K (ε) such that the vertex set V of a graph with VC-dimension d has a partition
into at most K ≤ (1/ε)O(d2) parts such that all but at most an ε-fraction of the pairs of
parts are ε-homogeneous. A better bound was obtained by Alon et al. [2] for bipartite
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graphs with bounded VC-dimension, who showed that the number of parts in the
partition can be taken to be (d/ε)O(d). Since the VC-dimension of a graph G is equal
to the dual VC-dimension of G, we generalize their result to hypergraphs with the
following result.

Theorem 1.3 Let ε ∈ (0, 1/4) and let H = (V , E) be an n-vertex k-uniform hyper-
graph with dual VC-dimension d. Then V has an equitable partition V = V1∪· · ·∪VK

with 8/ε ≤ K ≤ c(1/ε)2d+1 parts such that all but an ε-fraction of the k-tuples of
parts are ε-homogeneous. Here c = c(d, k) is a constant depending only on d and k.
Moreover, there is an O(nk) time algorithm for computing such a partition.

Our next result shows that the partition size in the theorem above is tight up to an
absolute constant factor in the exponent.

Theorem 1.4 There is an absolute constant c ∈ (0, 1) such that the following holds.
For d ≥ 16 and ε ∈ (0, 2−20c6/d3), there is a graph G with VC-dimension d such
that any equitable vertex partition of G with the property that all but an ε-fraction of
the pairs of parts are ε-homogeneous, requires at least (4

√
ε/c)−d/4 parts.

Ramsey–Turán Numbers. Let F be a fixed graph. The Ramsey–Turán number
RT(n, F, o(n)) is the maximum number of edges an n-vertex graph G can have with-
out containing F as a subgraph and having independence number o(n). Ramsey–Turán
numbers were introduced by Sós [42], motivated by the classical theorems of Ramsey
and Turán and their connections to geometry, analysis, and number theory. One of the
earliest results in Ramsey–Turán theory appeared in [20]. It states that for t ≥ 2, we
have

RT(n, K2t−1, o(n)) = 1

2

(
1 − 1

t − 1

)
n2 + o(n2).

For the case when the excluded clique has an even number of vertices, Szemerédi [46]
applied the graph regularity lemma to show that

RT(n, K4, o(n)) ≤ 1

8
n2 + o(n2),

and several years later, Bollobás andErdős [8] gave a surprising geometric construction
which shows that this bound is tight. For larger cliques, a result of Erdős et al. [17]
states that

RT(n, K2t , o(n)) = 1

2

(
1 − 3

3t − 2

)
n2 + o(n2)

holds for every t ≥ 2. For more results in Ramsey–Turán theory, see the survey of
Simonovits and Sós [41].

Here we give tight bounds on Ramsey–Turán numbers for graphs with bounded
VC-dimension, showing that the densities for K2t and for K2t−1 are the same in this
setting, and are different from what we have in the classical setting in the even case.
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Let RTd(n, Kt , o(n)) be the maximum number of edges that an n-vertex Kt -free
graph of VC-dimension at most d can have if its independence number is o(n).

Theorem 1.5 For fixed integers d ≥ 4 and t ≥ 3, we have

RTd(n, K2t−1, o(n)) = RTd(n, K2t , o(n)) = 1

2

(
1 − 1

t − 1

)
n2 + o(n2).

Semi-algebraic Graphs Versus Graphs with Bounded VC-Dimension. A semi-
algebraic graph G, is a graph whose vertices are points in R

d and edges are pairs
of points that satisfy a semi-algebraic relation of constant complexity.1 In a sequence
of recentworks [3,11,24], several authors have shown that classical Ramsey andTurán-
type results in combinatorics can be significantly improved for semi-algebraic graphs.

It follows from the Milnor–Thom theorem (see [35]) that semi-algebraic graphs of
bounded complexity have bounded VC-dimension. Therefore, all results in this paper
on properties of graphs of bounded VC-dimension apply to semi-algebraic graphs of
bounded description complexity. However, a graph being semi-algebraic of bounded
complexity is a much more restrictive condition than having bounded VC-dimension.
In particular, it is known (it follows, e.g., from [6]) that for each ε > 0 there is a positive
integer d = d(ε) such that the number of n-vertex graphs with VC-dimension d is
2�(n2−ε), while the Milnor–Thom theorem can be used to deduce that the number
of n-vertex semi-algebraic graphs coming from a relation with bounded “description
complexity” is only 2O(n log n). Furthermore, it is known [3] that semi-algebraic graphs
have the strong Erdős–Hajnal property, that is, there exists a constant δ > 0 such that
every n-vertex semi-algebraic graph of bounded complexity contains a complete or an
empty bipartite graph whose parts are of size at least δn. This is not true, in general,
for graphs with bounded VC-dimension. In particular, the probabilistic construction
in Sect. 4 shows the following.

Theorem 1.6 For fixed d ≥ 5 and for every sufficiently large n, there is an n-vertex
graph G = (V , E) with VC-dimension at most d with the property that there are no
two disjoint subsets A, B ⊂ V (G) such that |A|, |B| ≥ 4n4/d log n and (A, B) is
homogeneous, that is, either A × B ⊂ E(G) or (A × B) ∩ E(G) = ∅.

It follows from a result of Alon et al. [3] that a stronger regularity lemma holds for
semi-algebraic graphs of bounded description complexity, where all but an ε-fraction
of the pairs of parts in the equitable partition are complete or empty, instead of just ε-
homogeneous as in the bounded VC-dimension case (see [36]). This result was further
extended to k-uniform hypergraphs by Fox et al. [22], and the authors [24] recently
showed that it holds with a polynomial number of parts.

Organization. In the next section, we prove Theorem 1.3. In Sect. 3, we prove The-
orem 1.1, which nearly settles the Erdős–Hajnal conjecture for graphs with bounded
VC-dimension. In Sect. 4, we prove Theorems 1.2 and 1.6. In Sect. 5, we prove

1 A binary semi-algebraic relation E on a point set P ⊂ R
d is the set of pairs of points (u, v) from P

whose 2d coordinates satisfy a boolean combination of a fixed number of polynomial inequalities.
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Theorem 1.5. We conclude by discussing a number of other results for graphs and
hypergraphs with bounded VC-dimension. We systemically omit floors and ceilings
whenever they are not crucial for sake of clarity in our presentation. All logarithms
are natural logarithms.

2 Regularity Partition for Hypergraphs with Bounded VC-Dimension

In this section, we prove Theorem 1.3. We start by recalling several classic results on
set systems with bounded VC-dimension. Let F be a set system on a ground set V .
The primal shatter function ofF is defined as

πF (z) = max
V ′⊂V
|V ′|=z

|{A ∩ V ′ : A ∈ F }|.

In other words, πF (z) is a function whose value at z is the maximum possible number
of distinct intersections of the sets ofF with a z-element subset of V . The dual shatter
function of (V ,F ), denoted by π∗

F , whose value at z is defined as the maximum
number of equivalence classes on V defined by a z-element subfamily Y ⊂ F ,
where two points x, y ∈ V are equivalent with respect to Y if x belongs to the same
sets ofY as y does. In other words, the dual shatter function ofF is the primal shatter
function of the dual set system F ∗.

The VC-dimension ofF is closely related to its shatter functions. A famous result
of Sauer [37], Shelah [40], Perles, and Vapnik–Chervonenkis [48] states the following.

Lemma 2.1 If F is a set system with VC-dimension d, then

πF (z) ≤
d∑

i=0

(
z

i

)
.

On the other hand, suppose that the primal shatter function ofF satisfiesπF (z) ≤ czd

for all z. Then, if the VC-dimension ofF is d0, we have 2d0 ≤ c(d0)d , which implies
d0 ≤ 4d log(cd). It is known that if F has VC-dimension d, then F ∗ has VC-
dimension at most 2d+1 − 1.

Given two sets A1, A2 ∈ F , the symmetric difference of A1 and A2, denoted by
A1�A2, is the set (A1 ∪ A2) \ (A1 ∩ A2). Thus, we have |A1�A2| ≥ |A1 \ A2|. We
say that the set system F is δ-separated if for any two sets A1, A2 ∈ F we have
|A1�A2| ≥ δ. The following packing lemma was proved by Haussler in [28].

Lemma 2.2 Let F be a set system on a ground set V such that |V | = n and πF (z) ≤
czd for all z. If F is δ-separated, then |F | ≤ c1(n/δ)d where c1 = c1(c, d).

We will use Lemma 2.2 and the following lemma to prove Theorem 1.3.

Lemma 2.3 Let 0 < ε < 1/2 and H = (W1 ∪ · · · ∪ Wk, E) be a k-partite k-uniform
hypergraph such that |Wi | = m for all i . If (W1, . . . , Wk) is not ε-homogeneous, then
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there are at least ε(1 − ε)mk+1 pairs of k-tuples (e, e′), where |e ∩ e′| = k − 1,
e ∈ E(H), e′ /∈ E(H), and |e ∩ Wi | = |e′ ∩ Wi | = 1 for all i .

Proof Observe that, for each j = 1, 2, . . . , k, there are exactly mk+1 pairs (e, e′) with
e, e′ ∈ W1 × · · · × Wk and e ∩ Wi = e′ ∩ Wi for i ∈ {1, 2, . . . , k} \ { j}. Let ε j be the
fraction of these pairs of k-tuples such that e is an edge of H and e′ is not an edge of
H . It suffices to show that ε1 + ε2 + · · · + εk ≥ ε(1 − ε).

Pick vertices ai , bi ∈ Wi uniformly at random with repetition for i = 1, 2, . . . , k.
For 0 ≤ i ≤ k, let ei = {a j : j ≤ i} ∪ {b j : j > i}. In particular, ek = (a1, . . . , ak)

and e0 = (b1, . . . , bk). Then let X be the event that e0 and ek have different adjacency,
that is, exactly one of them is an edge. Then we have

Pr[X ] ≥ 2ε(1 − ε),

since (W1, . . . , Wk) is not ε-homogeneous. Let Xi be the event that ei and ei+1 have
different adjacency, and let Y be the event that at least one event Xi occurs. Then by
the union bound, we have

Pr[Y ] ≤ Pr[X0] + Pr[X1] + · · · + Pr[Xk−1] = 2ε1 + 2ε2 + · · · + 2εk .

On the other hand, if X occurs, then Y occurs. Therefore 2ε1 + 2ε2 + · · · + 2εk ≥
Pr[Y ] ≥ Pr[X ] ≥ 2ε(1 − ε), which completes the proof. 
�
Proof of Theorem 1.3 Let 0 < ε < 1/4 , k ≥ 2, and H = (V , E) be an n-vertex
k-uniform hypergraph with dual VC-dimension d. For every vertex v ∈ V , let N (v)

denote the set of (k − 1)-tuples S ∈ ( V
k−1

)
such that v ∪ S ∈ E(H). Let F be the

set-system whose ground set is
( V

k−1

)
, and A ∈ F if and only if A = N (v) for some

vertex v ∈ V . Hence F = {N (v) : v ∈ V } has VC-dimension d. Set δ = ε2

4k2
( n

k−1

)
.

By examining each vertex and its neighborhood one by one, we greedily construct a
maximal set S ⊂ V such that F ′ = {N (s) : s ∈ S} is δ-separated. By Lemma 2.2,
we have |S| ≤ c1(4k2/ε2)d . Let S = {s1, s2, . . . , s|S|}.

We define a partition Q : V = U1 ∪ · · · ∪ U|S| of the vertex set such that v ∈ Ui

if i is the smallest index such that |N (v)�N (si )| < δ. Such an i always exists, since
S is maximal. By the triangle inequality, for u, v ∈ Ui , we have |N (u)�N (v)| < 2δ.
Set K = 8k|S|/ε. Partition each part Ui into parts of size |V |/K = n/K and possibly
one additional part of size less than n/K . Collect these additional parts and divide
them into parts of size |V |/K to obtain an equitable partitionP : V = V1 ∪ · · · ∪ VK

into K parts. The number of vertices of V belonging to parts Vi that are not fully
contained in one part of Q is at most |S||V |/K . Hence, the fraction of (unordered)
k-tuples (Vi1 , . . . , Vik ) such that at least one of the parts is not fully contained in some
part of Q is at most k|S|/K = ε/8. Let X denote the set of unordered k-tuples of
parts (Vi1 , . . . , Vik ) such that each part is fully contained in a part of Q (though, in
not necessarily the same part) and (Vi1 , . . . , Vik ) is not ε-homogeneous.

Let T be the set of pairs of k-tuples (e, e′), such that |e ∩ e′| = k − 1, e ∈ E(H),
e′ /∈ E(H), |e ∩ Vi j | = |e′ ∩ Vi j | = 1 for j = 1, 2, . . . , k, and (Vi1 , . . . , Vik ) ∈ X .
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Notice that for (e, e′) ∈ T , such that e ∩ Vi j = b, e′ ∩ Vi j = b′, b �= b′, and Vi j lies
completely inside a part ofQ, we have |N (b)�N (b′)| ≤ 2δ. Therefore

|T | ≤ K
( n

K

)2
2δ ≤ ε2

2K k2
n2

(
n

k − 1

)
.

On the other hand, by Lemma 2.3, every k-tuple of parts (Vi1 , . . . , Vik ) that is not
ε-homogeneous gives rise to at least ε(1 − ε)(n/K )k+1 pairs (e, e′) in T . Hence
|T | ≥ |X |ε(1 − ε)(n/K )k+1. Since ε < 1/4 and k ≥ 2, the inequalities above imply
that

|X | ≤ 2ε

3

(
K

k

)
.

Thus, the fraction of k-tuples of parts in P that are not ε-homogeneous is at most
ε/8 + 2ε/3 < ε, and K ≤ c(1/ε)2d+1 where c = c(k, d).

Finally, it remains to show that the partition P can be computed in O(nk) time.
Given two vertices s, v,∈ V , we have |N (s)�N (v)| = |N (s)| + |N (v)| − 2|N (s) ∩
N (v)|. Therefore we can determine if |N (s)�N (u)| < δ in O(nk−1) time. Hence the
maximal set S ⊂ V described above (and therefore the partitionQ) can be computed
in O(nk) time since |S| ≤ n. The final equitable partition P requires an additional
O(n) time, which gives a total running time of O(nk). 
�

We now establish Theorem 1.4 which shows that the partition size in Theorem 1.3
is tight up to an absolute constant factor in the exponent.

Proof of Theorem 1.4 Given two vertex subsets X , Y of a graph G, we write eG(X , Y )

for the number of edges between X and Y in G, and write dG(X , Y ) for the density
of edges between X and Y , that is, dG(X , Y ) = eG (X ,Y )

|X ||Y | . The pair (X , Y ) is said to
be (ε, δ)-regular if for all X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ δ|X | and |Y ′| ≥ δ|Y |, we
have |dG(X , Y ) − dG(X ′, Y ′)| ≤ ε. In the case where ε = δ, we just say ε-regular.
We will make use of the following construction due to Conlon and Fox.

Lemma 2.4 (follows from the proof of Corollary 3.3 in [10]) There is an absolute
constant c ∈ (0, 1) such that the following holds. For d ≥ 16 and ε ∈ (0, 2−20c6/d3),
there is a graph H on n = �(4√ε/c)−d/2� vertices such that for every equitable vertex
partition of H with at most

√
n parts, at least an

√
ε-fraction of the pairs of parts are

not c-regular.

Let H = (V , E) be the graph obtained from Lemma 2.4 on n = �(4√ε/c)−d/2�
vertices, where d ≥ 16 and ε ∈ (0, 2−20c6/d3), and consider a random subgraph G ⊂
H by picking each edge in E independently with probability p = n−2/d = 4

√
ε/c.

Then we have the following.

Lemma 2.5 In the random subgraph G, with probability at least 1 − n−2, every pair
of disjoint subsets X , Y ⊂ V with |X | ≤ |Y | satisfy

|eG(X , Y ) − p · eH (X , Y )| <
√

g, (1)
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where g = 2|X ||Y |2 ln(ne/|Y |).
Proof For fixed sets X , Y ⊂ V (G), where |X | = u1 and |Y | = u2, let EH (X , Y ) =
{e1, . . . , em}. We define Si = 1 if edge ei is picked and Si = 0 otherwise, and set
S = S1 + · · · + Sm . A Chernoff-type estimate (see Theorem A.1.4 in [5]) implies that
for a > 0, Pr[|S − pm| > a] < 2e−2a2/m . Since m ≤ u1u2, the probability that (1)
does not hold is less than 2e−2g/(u1u2). By the union bound, the probability that there
are disjoint sets X , Y ⊂ V (G) for which (1) does not hold is at most

n∑

u2=1

u2∑

u1=1

(
n

u2

)(
n − u2

u1

)
2e−2g/(u1u2) ≤

n∑

u2=1

u2∑

u1=1

(
ne

u2

)u2 (
ne

u1

)u1
2e−2g/(u1u2)

≤
n∑

u2=1

u2∑

u1=1

2

(
ne

u2

)−2u2
≤ n−2. 
�

By the analysis of Pr[CD] in the proof of Theorem 1.2 in Sect. 4, the probability
that G has VC-dimension at least d + 1 is at most

(
n

d + 1

)
n2d+1

p(d+1)2d ≤ nd+1n−2d+1/d <
1

10
,

since d ≥ 16. Therefore, the union bound implies that there is a subgraph G ⊂ H
such that G has VC-dimension at most d, and every pair of disjoint subsets X , Y ⊂ V ,
with |X | ≤ |Y |, satisfy

|eG(X , Y ) − p · eH (X , Y )| <

√
2|X ||Y |2 ln(ne/|Y |). (2)

We will now show that for every equitable vertex partition of G into fewer than√
n = (4

√
ε/c)−d/4 parts, there are at least an ε-fraction of the pairs of parts which

are not ε-homogenous.
Let P be a equitable partition of V into t parts, where t <

√
n = (4

√
ε/c)−d/4.

By Lemma 2.4, there are at least
√

ε
(t
2

)
pairs of parts inP which are not c-regular in

H . Let (X , Y ) be such a pair. Then there are subsets X ′ ⊂ X and Y ′ ⊂ Y such that
|X ′| ≥ c|X |, |Y ′| ≥ c|Y |, and

|dH (X , Y ) − dH (X ′, Y ′)| ≥ c.

Moreover, by (2), we have

|eG(X , Y ) − p · eH (X , Y )| ≤ √
2

(
n

t

)3/2

ln(te) ≤
√
2 ln(te)

n1/4

(
n

t

)2

.
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Since d ≥ 16 and ε ∈ (0, 2−20c6/d3), this implies

|eG(X , Y ) − p · eH (X , Y )| ≤
(
4
√

ε

c

)2√
2 ln(te)

(
n

t

)2

≤
√

ε

4

(
n

t

)2

.

Hence, |dG(X , Y ) − p · dH (X , Y )| ≤ √
ε/4. Therefore, we have

|dG(X ′, Y ′) − dG(X , Y )| ≥ p · |dH (X ′, Y ′) − dH (X , Y )| − 2

√
ε

4

≥ 4
√

ε −
√

ε

2
> 3

√
ε.

Therefore, (X , Y ) is not (
√

ε, c)-regular in G. Since
√

ε > ε, we have at least ε
(t
2

)

such pairs.
Finally, it is easy to see that (X , Y ) is not ε-homogeneous in G. Indeed, if (X , Y )

were ε-homogeneous, then we have either dG(X , Y ) < ε or dG(X , Y ) > 1− ε. In the
former case we have dG(X ′, Y ′) > 3

√
ε, and since ε ∈ (0, 2−20c6/d3), we have

eG(X , Y ) ≥ eG(X ′, Y ′) > 3
√

εc2|X ||Y | > ε|X ||Y |,

contradiction. In the latter case, we have d(X ′, Y ′) < 1− 3
√

ε, and a similar analysis
shows that eG(X , Y ) < (1 − ε)|X ||Y |, contradiction.

Thus, any equitable vertex partition of G such that all but an ε-fraction of the pairs
of parts are ε-homogeneous, requires at least (4

√
ε/c)−d/4 parts. 
�

3 Proof of Theorem 1.1

The family G of all complement reducible graphs, or cographs, is defined as follows:
The graph with one vertex is in G , and if two graphs G, H ∈ G , then so does their
disjoint union, and the graph obtained by taking their disjoint union and adding all
edges between G and H . Clearly, every induced subgraph of a cograph is a cograph,
and it is well known that every cograph on n vertices contains a clique or independent
set of size

√
n.

Let fd(n) be the largest integer f such that every graph G with n vertices and
VC-dimension at most d has an induced subgraph on f vertices which is a cograph.
Theorem 1.1 is an immediate consequence of the following result.

Theorem 3.1 For any δ ∈ (0, 1/2) and for every integer d ≥ 1, there is a c = c(d, δ)

such that fd(n) ≥ ec(log n)1−δ
for every n.

Proof For simplicity, let f (n) = fd(n). The proof is by induction on n. The base case
n = 1 is trivial. For the inductive step, assume that the statement holds for all n′ < n.
Let δ > 0 and let G = (V , E) be an n-vertex graph with VC-dimension d. We will
determine c ∈ (0, 1) later.
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Set ε = (1/32)e−3c(log n)1−δ
. We apply Theorem 1.3 to obtain an equitable partition

P : V = V1 ∪ · · · ∪ VK into at most K ≤ ε−c4 parts, where c4 = O(d), such that all
but an ε-fraction of the pairs of parts are ε-homogeneous. We call an unordered pair
of distinct vertices (u, v) bad if at least one of the following holds:

1. (u, v) lie in the same part, or
2. u ∈ Vi and v ∈ Vj , i �= j , where (Vi , Vj ) is not ε-homogeneous, or
3. u ∈ Vi and v ∈ Vj , i �= j , uv ∈ E(G) and |E(Vi , Vj )| < ε|Vi ||Vj |, or
4. u ∈ Vi and v ∈ Vj , i �= j , uv /∈ E(G) and |E(Vi , Vj )| > (1 − ε)|Vi ||Vj |.
By Theorem 1.3, the number of bad pairs of vertices in G is at most

K

(
n/K

2

)
+

( n

K

)2
ε

(
K

2

)
+ ε

( n

K

)2
(1 − ε)

(
K

2

)
≤ 2ε

(
n

2

)
.

By Turán’s Theorem (see Theorem 5.1 in Sect. 5), there is a subset R ⊂ S of
at least 1

4ε vertices such that R does not contain any bad pairs. This implies that all
vertices of R are in distinct parts ofP . Furthermore, if uv are adjacent in R, then the
corresponding parts Vi , Vj satisfy |E(Vi , Vj )| ≥ (1 − ε)|Vi ||Vj |, and if uv are not
adjacent, then we have |E(Vi , Vj )| < ε|Vi ||Vj |. Since the induced graph G[R] has
VC-dimension at most d, G[R] contains a cograph U0 of size t = f (1/(4ε)), which,
by the induction hypothesis, is a set of size at least ec(log(1/4ε))1−δ

. Without loss of
generality, assume that each of V1, . . . , Vt contains an element of U0. Each such part
contains n/K vertices.

For each vertex u ∈ V1, let db(u) denote the number of bad pairs uv, where v ∈ Vi

for i = 2, . . . , t . Then there is a subset V ′
1 ⊂ V1 of size n/(2K ), such that each vertex

u ∈ V ′
1 satisfies db(u) < 8tε(n/K ). Indeed, otherwise at least n/(2K ) vertices in V1

satisfy db(u) ≥ 8tε(n/K ), which implies

n

2K

8tεn

K
≤

∑

u∈V ′
1

db(u) ≤
∑

u∈V1

db(u) ≤ ε(t − 1)
( n

K

)2
,

and hence a contradiction. By the induction hypothesis, we can find a subset U1 ⊂ V ′
1

such that the induced subgraphG[U1] is a cograph of size f (n/(2K )). If the inequality

f
( n

2K

)
8tε

n

K
>

n

4t K

is satisfied, then we have

f 3(n) ≥ f
( n

2K

)
t2 >

1

32ε
.

Recall that 1
ε

= 32e3c(log n)1−δ
, we have f (n) ≥ ec(log n)1−δ

and we are done.
Therefore, we can assume that

f
( n

2K

)
8tε

n

K
≤ n

4t K
.
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Hence, by deleting any vertex v ∈ V2 ∪ · · · ∪ Vt that is in a bad pair with a vertex in
U1, we have deleted at most n

4t K vertices in each Vi for i = 2, . . . , t .
We repeat this entire process on the remaining vertices in V2, . . . , Vt . At step i , we

will find a subset Ui ⊂ Vi that induces a cograph of size

f
( n

2K
− i

n

4K t

)
≥ f

( n

4K

)
,

and again, if the inequality

f
( n

4K

)
8tε

n

K
>

n

4t K

is satisfied, then we are done by the same argument as above. Therefore we can assume
that our cograph G[Ui ] has the property that there are at most n/(4t K ) bad pairs
between Ui and Vj for j > i . At the end of this process, we obtain subsetsU1, . . . , Ut

such that the union U1 ∪ · · · ∪Ut induces a cograph of size at least t f
( n
4K

)
. Therefore

we have

f (n) ≥ f
( 1

4ε

)
f
( n

4K

)

≥ f
(

e3c(log n)1−δ
)

f
(

elog n−c·c5(log n)1−δ
)

≥ ec
(
3c(log n)1−δ

)1−δ

ec
(
log n−c·c5(log n)1−δ

)1−δ

,

(3)

where c5 = c5(d). Notice we have the following estimate:

(
log n − c · c5(log n)1−δ

)1−δ = (log n)1−δ

(
1 − c · c5

logδ n

)1−δ

≥ (log n)1−δ

(
1 − c · c5

(log n)δ

)

≥ (log n)1−δ − c · c5(log n)1−2δ.

(4)

Plugging (4) into (3) gives

f (n) ≥ ec
(
3c(log n)1−δ

)1−δ · ec(log n)1−δ−c2·c5(log n)1−2δ

≥ ec(log n)1−δ · e
(
31−δc2(log n)1−2δ+δ2−c2c5(log n)1−2δ

)
.

(5)

The last inequality follows from the fact that c < 1. Let n0 = n0(d, δ) be theminimum
integer such that for all n ≥ n0 we have

31−δ(log n)1−2δ+δ2 − c5(log n)1−2δ ≥ 0.

We now set c = c(d, t) to be sufficiently small such that the statement is trivial for all
n < n0. Hence we have f (n) ≥ ec(log n)1−δ

for all n. 
�
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4 Random Constructions

Here we prove Theorems 1.2 and 1.6. The proof of Theorem 1.2 uses the Lovász Local
Lemma [18] in a similar manner as Spencer [43] to give a lower bound on Ramsey
numbers.

Lemma 4.1 (Lovász Local Lemma) Let A be a finite set of events in a probability
space. For A ∈ A let �(A) be a subset of A such that A is independent of all events
in A \ ({A} ∪ �(A)). If there is a function x : A → (0, 1) such that for all A ∈ A ,

Pr[A] ≤ x(A)
∏

B∈�(A)

(1 − x(B)),

then Pr
[⋂

A∈A A
] ≥ ∏

A∈A (1 − x(A)). In particular, with positive probability no
event in A holds.

Proof of Theorem 1.2 Let s and d be positive integers such that d > s +2. Let G(n, p)

denote the random graph on n vertices in which each edge appears with probability p
independently of all the other edges, where p = n−2/(s+1) and n is a sufficiently large
number. For each set S of s vertices, let AS be the event that S induces a complete
graph. For each set T of t vertices, let BT be the event that T induces an empty graph.
Clearly, we have Pr[AS] = p(s

2) and Pr[BT ] = (1 − p)(
t
2).

For each set D of d vertices, let CD be the event that D is shattered. Then

Pr[CD] ≤
∏

W⊂D

Pr[ ∃ v ∈ V (G) : N (v) ∩ D = W ]

=
∏

W⊂D

(
1 −

(
1 − p|W |(1 − p)d−|W |)n)

=
d∏

j=0

(
1 −

(
1 − p j (1 − p)d− j

)n)(d
j)

≤
d∏

j=1

(
n · p j (1 − p)d− j

)(d
j)

≤
d∏

j=1

n(d
j) · p j(d

j)

≤ n2d · pd2d−1
.

Next we estimate the number of events dependent on each AS , BT and CD . Let
S ⊂ V such that |S| = s. Then the event AS is dependent on atmost

(s
2

)( n
s−2

) ≤ s2ns−2

events AS′ , where |S′| = s. Likewise, AS is dependent on at most
(n

t

)
events BT where

|T | = t . Finally AS is dependent on at most
(s
2

)( n
d−2

) ≤ s2nd−2 events CD where
|D| = d.
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Let T ⊂ V be a set of vertices such that |T | = t . Then the event BT is dependent
on at most

(t
2

)( n
s−2

) ≤ t2ns−2 events AS where |S| = s. Likewise, BT is dependent on
at most

(n
t

)
events BT ′ where |T ′| = t . Finally BT is dependent on at most

(t
2

)( n
d−2

) ≤
t2nd−2 events CD where |D| = d.

Let D ⊂ V be a set of vertices such that |D| = d. Then the event CD is dependent
on at most

(d
2

)( n
s−2

) ≤ d2ns−2 events AS where |S| = s. Likewise,CD is dependent on

at most
(n

t

)
events BT where |T | = t . Finally CD is dependent on at most

(d
2

)( n
d−2

) ≤
d2nd−2 events CD′ where |D′| = d.

By Lemma 4.1, it suffices to find three real numbers x, y, z ∈ (0, 1) such that

p(s
2) ≤ x(1 − x)s2ns−2

(1 − y)(
n
t)(1 − z)s2nd−2

, (6)

(1 − p)(
t
2) ≤ y(1 − x)t2ns−2

(1 − y)(
n
t)(1 − z)t2nd−2

, (7)

and

n2d · pd2d−1 ≤ z(1 − x)d2ns−2
(1 − y)(

n
t)(1 − z)d2nd−2

. (8)

Recall that p = n
−2
s+1 , s ≥ 3, and d > s + 2. We now set t = c1n

2
s+1 log n,

x = c2n
−2(s

2)
s+1 , y = e−c3n

2
s+1 (log n)2 , and z = c4n2d− 2

s+1 d2d−1
, where c1, c2, c3, c4 only

depend on s and d. By letting c1 > 10c3, setting c1, c2, c3, c4 sufficiently large, an
easy (but tedious) calculation shows that (6), (7), (8) are satisfied when n is sufficiently
large. By Lemma 4.1, there is an n-vertex Ks-free graph G with VC-dimension at most

d and independence number at most c1n
2

s+1 log n. 
�
Proof of Theorem 1.6 Let d ≥ 5 and n be a sufficiently large integer that will be
determined later. Consider the random n-vertex graph G = G(n, p), where each
edge is chosen independently with probability p = n−4/d . By choosing n sufficiently
large, the union bound and the analysis above imply that the probability that G has
VC-dimension at least d is at most 1/3.

Let A, B ⊂ V (G) be vertex subsets, each of size k. The probability that (A, B) is
homogenous is at most

pk2 + (1 − p)k2 ≤ n−4k2/d + e−n−4/d k2 .

The probability that G contains a homogeneous pair (A, B), where |A|, |B| = k, is at
most

(
n

k

)(
n − k

k

)(
n−4k2/d + e−n−4/d k2

)
< 1/3,

for k = 4n4/d log n and n sufficiently large. Thus, again by the union bound, there is
a graph with VC-dimension less than d, with no two disjoint subsets A, B ⊂ V (G)

such that (A, B) is homogeneous and |A|, |B| = 4n4/d log n. 
�
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5 Ramsey–Turán Numbers for Graphs with Bounded VC-Dimension

In this section we prove Theorem 1.5. First let us recall a classical theorem in graph
theory.

Theorem 5.1 (Turán) Let G = (V , E) be a Kt -free graph with n vertices. Then the
number of edges in G is at most 1

2

(
1 − 1

t−1 + o(1)
)
n2.

Together with a sampling argument of Varnavides [49], we have the following
lemma (see also Lemma 2.1 in [30]).

Lemma 5.2 For ε > 0, every n-vertex graph G = (V , E) with |E | ≥ 1
2

(
1− 1

t−1+ε
)
n2

has at least δnt copies of Kt , where δ = δ(t, ε).

In order to establish the upper bound in Theorem 1.5, it suffices to show

RTd(n, K2t , o(n)) ≤ 1

2

(
1 − 1

t − 1

)
n2 + o(n2),

since we have RTd(n, K2t−1, o(n)) ≤ RT(n, K2t−1, o(n)). The following theorem
implies the inequality above.

Theorem 5.3 Let ε > 0 and let G = (V , E) be an n-vertex graph with VC-dimension
d. If G is K2t -free and |E | > 1

2

(
1 − 1

t−1 + ε
)
n2, then G contains an independent set

of size γ n, where γ = γ (d, t, ε).

Proof By Lemma 5.2, G contains at least δnt copies of Kt , where δ = δ(ε, t). Without
loss of generality, we can assume that δ is sufficiently small and will be determined
later. We apply the regularity lemma (Lemma 1.3) with approximation parameter δ/4
to obtain a (near) equipartition P : V = V1 ∪ · · · ∪ VK such that 4/δ ≤ K ≤
c (4/δ)2d+1, where c = c(d), and all but a δ

4 -fraction of the pairs of parts in P are
(δ/4)-homogeneous.

By deleting all edges inside each part, we have deleted at most

K

(
n/K

2

)
≤ n2

2K
≤ n2

8
δ

edges. By deleting all edges between pairs of parts that are not (δ/4)-homogeneous,
we have deleted an additional

( n

K

)2 δ

4

(
K

2

)
≤ n2

8
δ

edges. Finally, by deleting all edges between pairs (Vi , Vj ) with density less than δ/4,
we have deleted at most

δ

4

( n

K

)2 (
K

2

)
≤ n2

8
δ
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edges, which implies we have deleted in total less than n2δ/2 edges in G. The only
edges remaining in G are edges between pairs of parts (Vi , Vj ) with density greater
than 1− δ

4 . Since each edge lies in at most nt−2 copies of Kt , we have deleted at most
δnt/2 Kt -s in G. Therefore there is at least one copy of Kt remaining, which implies
that there are t parts Vi1 , . . . , Vit ∈ P that pairwise have density at least 1 − δ

4 , with|Vi j | = n/K . Set δ1 = δ/4.
For fixed j ∈ {2, . . . , t}, notice that there are at least (1 − 1/(2t))(n/K ) vertices

v ∈ Vi1 such that |N (v) ∩ Vi j | ≥ (1 − 4δ1t)n/K . Indeed, otherwise we would have

|E(Vi1 , Vi j )| ≤
( n

K

)(
1 − 1

2t

) ( n

K

)
+ n/K

2t
(1 − 4δ1t)

n

K
=

( n

K

)2 − 2δ1
( n

K

)2
.

On the other hand, |E(Vi1 , Vi j )| ≥ (1 − δ1) (n/K )2. This implies 2δ1 < δ1 which is
a contradiction.

Therefore there is a subset V ′
i1

⊂ Vi1 with |V ′
i1
| ≥ |Vi1 |/2 such that each vertex v ∈

V ′
i1
satisfies |N (v)∩Vi j | ≥ (1−4δ1t)|Vi j | for all j = 2, . . . , t . If V ′

i1
is an independent

set, then we are done since |V ′
i1
| ≥ n/(2K ). Otherwise we have an edge uv in V ′

i1
. For

j = 2, . . . , t , the pigeonhole principle implies that |Vi j ∩N (u)∩N (v)| ≥ n
K (1−8δ1t).

We define V (2)
i j

to be a set of exactly n
K (1−8δ1t) elements in Vi j ∩N (u)∩N (v). Notice

that the graph induced on the vertex set V (2)
i2

∪ · · · ∪ V (2)
it

is K2t−2-free. Moreover, the

density between each pair of parts (V (2)
i j

, V (2)
i	

) is at least 1−δ2 where δ2 = δ1+16δ1t .

We repeat this process on the remaining t − 1 parts V (2)
i2

, . . . , V (2)
it

.
After j steps, we have either found an independent set of size at least

n

2K
(1 − 8δ1t)(1 − 8δ2(t − 1)) · · · (1 − 8δ j−1(t − j + 2)),

where δk is defined recursively as δ1 = δ/4 and δk = δk−1 + 16δk−1t , or we have
obtained subsets V ( j)

i j
, . . . , V ( j)

it
such that

|V ( j)
i	

| = n

K
(1 − 8δ1t)(1 − 8δ2(t − 1)) · · · (1 − 8δ j−1(t − j)),

for 	 = j, . . . , t , V ( j)
i j

∪ · · · ∪ V ( j)
it

is K2t−2 j -free, and the density between each pair

of parts (V ( j)
ik

, V ( j)
i	

) is at least 1 − δ j .

By letting δ = δ(ε, t) be sufficiently small such that δk < 1
100t for all k ≤ t , we

obtain an independent set of size γ n, where γ = γ (d, t, ε). 
�

The lower bound on RTd(n, K2t−1, o(n)) and RTd(n, K2t , o(n)) in Theorem 1.5
follows from a geometric construction of Fox et al. in [23] (see page 15), which is a
graph with VC-dimension at most four.
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6 Concluding Remarks

Many interesting results arose in our study of graphs and hypergraphs with bounded
VC-dimension. In particular, we strengthen several classical results from extremal
hypergraph theory for hypergraphs with bounded VC-dimension. Below, we briefly
mention two of them.

Hypergraphs with Bounded VC-Dimension. Erdős et al. [16] showed that every
3-uniform hypergraph on n vertices contains a clique or independent set of size
c log log n. A famous open question of Erdős asks if log log n is the correct order
of magnitude for Ramsey’s theorem for 3-uniform hypergraphs. According to the best
known constructions, there are 3-uniform hypergraphs on n vertices with no clique or
independent set of size c′√log n. For k ≥ 4, the best known lower and upper bounds on
the size of the largest clique or independent set in every n-vertex k-uniform hypergraph

is of the form c log(k−1) n (the (k − 1)-times iterated logarithm) and c′
√
log(k−2) n,

respectively (see [12] for more details). By combining Theorem 1.1 with an argument
of Erdős and Rado [19], one can significantly improve these bounds for hypergraphs
of bounded (neighborhood) VC-dimension.

Theorem 6.1 Let k ≥ 3 and d ≥ 1. Every k-uniform hypergraph on n vertices with

VC-dimension d contains a clique or independent set of size e
(
log(k−1) n

)1−o(1)

.

Geometric constructions given by Conlon et al. [11] show that Theorem 6.1 is tight
apart from the o(1) term in the second exponent. That is, for fixed k ≥ 3, there are k-
uniform hypergraphs on n vertices with VC-dimension d = d(k) such that the largest
clique or independent set is of size O(log(k−2) n).

The Erdős–Hajnal Conjecture for Tournaments. A tournament T = (V , E) on a set
V is an orientation of the edges of the complete graph on the vertex set V , that is, for
u, v ∈ V we have either (u, v) ∈ E or (v, u) ∈ E , but not both. A tournament with no
directed cycle is called transitive. If a tournament has no subtournament isomorphic
to T , then it is called T -free.

An old result due to Entringer et al. [13] and Spencer [44] states that every tourna-
ment on n vertices contains a transitive subtournament of size c log n, which is tight
apart from the value of the constant factor. Alon et al. [4] showed that the Erdős–Hajnal
conjecture is equivalent to the following conjecture.

Conjecture 6.2 For every tournament T , there is a positive δ = δ(T ) such that every
T -free tournament on n vertices has a transitive subtournament of size nδ .

In particular, it is known that every T -free tournament on n vertices contains a
transitive subtournament of size ec

√
log n , where c = c(T ). Herewe note that this bound

can be improved in the special case where the forbidden tournament T = (V , E) is
2-colorable, that is, there is a 2-coloring on V (T ) such that each color class induces
a transitive subtournament.

123



Discrete & Computational Geometry (2019) 61:809–829 827

Theorem 6.3 For fixed integer k > 0, let T be a 2-colorable tournament on k vertices.
Then every T -free tournament on n vertices contains a transitive subtournament of
size e(log n)1−o(1)

.

The idea of the proof of Theorem 6.3 is to use the fact that a tournament T is 2-
colorable if and only if the outneighborhood set system of every T -free tournament
has VC-dimension at most c(T ). There is a straightforward analogue of Theorem 1.3
for tournaments whose outneighborhood set system has bounded VC-dimension, and
with this analogous tool, the proof of Theorem 6.3 is essentially the same as the proof
of Theorem 1.1.
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