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We study the realization of axion electrodynamics in QCD in the presence of a background magnetic
field at temperatures high enough for the occurrence of topological charge transitions that are reflected in
the presence of a θ-vacuum term in the action. We show that in this system, the Maxwell equations contain
two equal and opposite electric currents that are proportional to the time derivative of the axion field θ. One
of these currents comes directly from the Abelian chiral anomaly term in the action and can be interpreted
as a polarization current due to the magnetoelectricity of the system with CP-broken symmetry. The other
current is obtained from the regular tadpole diagrams and can be understood as produced by the medium
chiral imbalance and the single spin projection of the quarks in the lowest Landau level. Since the two
currents cancel out, the net electric charge separation along the magnetic field, a phenomenon known as the
chiral magnetic effect, does not take place. Thus, if chirally imbalanced QCD is correctly represented by the
model under consideration, then the chiral magnetic effect is absent. We discuss the similarities and
differences with Weyl semimetals in a magnetic field.
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I. INTRODUCTION

In recent years, the discovery of anomalous transport in
theoretical studies of QCD under extreme conditions and in
the presence of electric and magnetic fields has opened the
possibility to connect microscopic properties of new quark
matter phases to observable macroscopic effects, thus
becoming a hot topic of investigation [1]. The anomalous
effects have included the chiral magnetic effect (CME)
[2–5]; the chiral separation effect (CSE) [6]; the chiral
electric separation effect (CESE) [7]; and most recently,
the anomalous Hall effect (AHE) [8–10]. The CME has
been predicted to occur in the quark-gluon plasma (QGP) in
a magnetic field when there is chiral imbalance, which
manifests as a nonzero chiral “chemical potential” μ5.
The CSE is also predicted to occur in hot QGP in a
magnetic field, but at finite density, thus with a nonzero
baryon chemical potential μ. The CESE requires μ5, μ, and
a background electric field. The AHE is predicted to exist in
a phase of cold quark matter at finite density in the presence
of a magnetic field, so it requires a nonzero μ. Interestingly
enough, some of these anomalous transport phenomena
have similar counterparts in a very different context:

topological materials as topological insulators (TI) and
Weyl semimetals (WSM) [11].
In this paper we reconsider the phenomena of CME. We

are going to work with a chirally unbalanced QGP in the
presence of a background magnetic field. Let us recall the
arguments on how a chiral imbalance can be generated in
the hot QGP. As is known, the QCD vacuum is made of
an infinite number of topologically inequivalent gluon-
vacuum configurations, each characterized by a topologi-
cal charge or winding number, and separated from each
other by an energy barrier. Different vacua can be con-
nected via quantum tunneling by Euclidean gauge-field
configurations (instantons) that go to vacuum solutions of
different topological charge at ! infinity, thereby inducing
interesting P-odd effects [12–14]. At finite temperature,
instantons are suppressed by color screening and play no
role. However, in the hot QGP, a parity-odd environment
can be generated via sphaleron transitions over the
energy barrier that separates the topologically inequivalent
vacua [15].
The way to account for these transitions in the action is

by adding to the QCD Lagrangian a theta vacuum or axion
term that takes the form of a non-Abelian axial anomaly
term θGa

μνG̃
μν
a , with θ a pseudoscalar function known as the

θ-angle or the axion field. Here, Ga
μν is the gluon field

tensor and G̃μν
a its dual. For massless quarks, a constant θ

gives no observable consequence because the axion term
can be rotated away by a UAð1Þ transformation, but if θ is
spacetime dependent, it can lead to important physical
consequences.
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A time-dependent axion field gives rise to an asymmetry
in the number of right- and left-handed quarks via the chiral
anomaly. In the CME, a θ

2Nf
¼ μ5t with constant μ5 has

been considered [4]. Although μ5 has been termed “the
chiral chemical potential,” this terminology is not, strictly
speaking, quite accurate. The reason is that in the grand
canonical approach, a chemical potential is by definition
the thermodynamic conjugate of a conserved charge.
However, μ5 cannot be the conjugate to the axial charge
ψ̄γ0γ5ψ simply because this charge is anomalous and thus
not conserved at the quantum level.
The hallmark of the CME can be summarized then by the

statement that if θ
2Nf

¼ μ5t exists in the presence of a
background magnetic field, then the generated chiral
imbalance, combined with the single spin projection of
the massless quarks in the lowest Landau level (LLL), leads
to a net electric current parallel to the magnetic field
direction and thus to a net separation of the electric charges
along the direction of the magnetic field.
The topological origin of the CME hints that the effect

should last even at strong coupling. From a theoretical point
of view, the limit of strong coupling has been argued
to be accessible through the holographic correspondence,
which has motivated investigating the CME in this context
[16–18]. Interestingly, the CME was found to vanish in a
gauge theory with a gauge invariant ultraviolet regulariza-
tion [17]. Later on, it was argued that the net CME current
induced by a constant background axial vector AA

0 and a
magnetic field is indeed zero, but if instead, one introduces
a chiral chemical potential for the conserved axial charge,
meaning the one that incorporates the regular and anoma-
lous terms together, then the CME current is regained [18].
This last point is nevertheless questionable. As is known, to
construct the many-particle theory, one has to introduce in
the Hamiltonian H all the classically conserved charges
(obtained from the Noether theorem) multiplied by their
corresponding chemical potentials, HðμÞ ¼ H −

P
iμiJi.

HðμÞ is then inserted in the partition function of the
quantum-statistic theory and used to calculate all the
physical quantities. What was proposed in [18] is to
construct the partition function with a Hamiltonian that
already depends on a quantum correction given by the
anomalous term.
In our approach, however, we do not have to deal with

this kind of potentially disputable argument, since in this
case μ5 enters in the theory only through the theta vacuum
term, which as argued above is a consequence of the
nontrivial QCD vacuum and the sphaleron-induced tran-
sitions between topologically inequivalent vacuum con-
figurations. It is in this framework that we are going to
revisit the CME phenomenon with the goal to shed new
light on the debate about its existence. We will base our
analysis on a systematic derivation of all the possible
contributions to the electric current. With that aim in mind,
we perform a UAð1Þ local axial transformation of the

fermion fields that allows us to transfer the axial anomaly
from the non-Abelian (gluonic) sector to the Abelian
(electromagnetic) sector of the theory. In other words, it
eliminates the original term ∼θGa

μνG̃
μν
a and produces a new

Abelian axion term ∼θFμνF̃μν as a function of the electro-
magnetic field Fμν and its dual. To show this, we use the
Fujikawa approach [19,20] to regularize the fermion
Jacobian produced by the lack of invariance of the fermion
measure under the local axial transformation. Once this
is done, one can integrate out the fermions to find the
electromagnetic action of the theory and then derive the
Maxwell equations. The electromagnetic charges and
currents are thus readily obtained in a way similar to the
one used in high-density QCD [8,9].
Following the procedure described above, we find that

the Maxwell equations in the hot QGP in a magnetic
field are actually those of axion electrodynamics. As a
consequence, in addition to the ordinary current—found
from the tadpole diagram and depending on μ5 through
the modified spectrum of the LLL fermions—an extra,
anomalous current coming from the term ∼θFμνF̃μν also
appears. These two currents are equal and opposite, thus
canceling each other out. This implies that there is no net
CME current and therefore, there is no net charge
separation in the frame we are using to model chirally
imbalanced QCD.
We call the readers’ attention to the fact that the situation

is different for dense QCD in the magnetic dual-chiral-
density-wave (MDCDW) phase, where the axion field θðxÞ
only depends on the spatial coordinate [21]. In the
MDCDW phase, the anomalous current is not canceled
out by the ordinary one. In fact, in this case the anomalous
current turns out to be a dissipationless Hall current with
important transport consequences [8,9].
The paper is organized as follows. In Sec. II, we

introduce the equations of axion electrodynamics for a
general axion field θ and highlight the different contri-
butions to the total four-current: the anomalous, coming
from the axion term of the action, and the ordinary,
obtained from the tadpole and polarization operators
diagram. In Sec. III, we define the QCD × QED
Lagrangian density with the QCD θ-vacuum contribution
and discuss its topological characteristics and how it is
related to the axial anomaly. In Sec. IV, we study in detail
the Fujikawa approach for the partition function under
a local chiral transformation of the QCD × QED model.
Then, in Sec. V, we calculate the corresponding charge
and current densities (anomalous and ordinary) for this
theory in the presence of a magnetic field and show that
these two currents are equal in magnitude but opposite in
direction. In Sec. VI, we briefly discuss the phenomena
of CME and AHE in Weyl semimetals, and we highlight
the analogies and differences with topological QCD
systems. Finally, in Sec. VII, we provide our concluding
remarks.
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II. AXION ELECTRODYNAMICS

Recently, new macroscopically observable quantum
effects that manifest through the interaction of matter with
electromagnetic fields in QCD and condensed matter
physics have become a focus of attention [1–11]. These
effects are connected to the nontrivial topology of these
systems and are related to parity and/or time-reversal
symmetry violation. The interaction between the electro-
magnetic field and matter with nontrivial topology is
described by the equations of axion electrodynamics
initially proposed by Wilzcek [22]. They incorporate the
effects of adding a general axion term κ

4 θFμνF̃μν to the
ordinary Maxwell Lagrangian,

∇ · E ¼ J0 þ Janom0 ; ð1Þ

∇ ×B −
∂E
∂t ¼ JV þ Janom; ð2Þ

∇ · B ¼ 0; ∇ ×Eþ ∂B
∂t ¼ 0: ð3Þ

The anomalous charge and current densities in the first two
equations are derived from the axion term κ

4 θFμνF̃μν. They
depend on the axion field θ as

Janom0 ¼ κ∇θ ·B ð4Þ

Janom ¼ −κ
!∂θ
dt

Bþ∇θ × E
"
; ð5Þ

where the coefficient, κ, and the axion field, θðx; tÞ, are
model-dependent parameters. In Eqs. (1) and (2), J0 and JV
are, respectively, the ordinary charge and current densities
found from tadpole and polarization operator diagrams.
In condensed matter, terms of this form have been shown

to emerge in: (1) topological insulators (TI) [23], where θ
depends on the band structure of the insulator; (2) Weyl
semimetals [24], materials with points of degeneracy
between two bands, called Weyl nodes, that lie on the
Fermi surface (in this case the angle θ is related to the
energy and/or momentum separation between the two
nodes); and (3) Dirac semimetals (DM) [25], with band-
touching nodes like the WSM, but the nodes lie out of the
Fermi surface.
For quark matter, an electromagnetic axion term can be

generated via two separate mechanisms, one at high temper-
ature (T) [3–5] and the other at high density [8–10]. At high
T, a nontrivial axion field θ can arise thanks to the sphaleron
transitions over the barrier that separates topologically
inequivalent vacua [15]. Even though θ originally enters
coupled to the gluon field, performing a local axial trans-
formation followed by a proper regularization scheme based
on the Fujikawa method [19], the non-Abelian axion term is
eliminated (see Sec. IV).At the same time, a new axion term,

κ
4 θFμνF̃μν, in the QED sector of the theory emerges. This
Abelian axion term couples θ to the electromagnetic field
Fμν and its dual. Wewill see below that, with a time-varying
θ and in the presence of a background magnetic field, such
an induced term leads to a time-dependent medium
polarization.
The mechanism at high density [8–10], takes place in the

MDCDW phase of dense quark matter [21], where θ is
related to the modulation q of the chiral condensate as
θ ¼ qz=2. The axion field in this case gives rise to a
dissipationless Hall current and an anomalous electric
charge [8–10].
We call the reader’s attention to an important fact: the

generation of an axion term κ
4 θFμνF̃μν is a necessary but not

sufficient condition to have anomalous electromagnetic
transport in the system. The actual conclusion depends on
whether the anomalous contributions to the four-current are
not canceled by the ordinary components that enter in the
Maxwell equations (1) and (2),

JTotal0 ¼ J0 þ Janom0 ð6Þ

JTotal ¼ JV þ Janom: ð7Þ

Anomalous transport then requires that the ordinary con-
tributions do not eliminate their anomalous counterparts.
As will be shown in Sec. V, in the model under

consideration, JV ¼ −Janom, and so the net current is zero,
in contrast with what occurs in the high-density case,
where the ordinary longitudinal current JlongV is zero, while
the ordinary JHV and the anomalous Janom Hall currents are
both different from zero, but JHV does not eliminate
Janom [8,9].
A possible explanation for the lack of anomalous trans-

port found here in hot QGP in a magnetic field and its
existence in the dense matter case can be argued as follows.
At high T the nontrivial topology of the system comes from
the topologically inequivalent gluon vacuum configura-
tions, but the topology never gets reflected in the quark
spectrum, which remains symmetric even after the axial
local transformation and hence continues to be topologi-
cally trivial. That is why the topology of the gluon vacuum
does not actually manifest in the electromagnetic transport,
which occurs via the fermions. In contrast, in the dense
quark matter case, the LLL quarks of the MDCDW phase
have an asymmetric spectrum that is characterized by a
topological index [26] and thereby produces anomalous
electromagnetic transport [8–10].

III. QCD ×QED WITH θ-VACUUM TERM

Let us consider the Lagrangian of massless QCD × QED
with the contribution of the P and CP-odd θ-vacuum
term [5],
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LQCDþQED ¼ −
1

4
Ga

μνG
μν
a −

1

4
FμνFμν −

g2

32π2
θGa

μνG̃
μν
a

þ ψ̄

#
iγμ

!
∂μ − igGa

μ
λa
2
þ iQAμ

"$
ψ : ð8Þ

Here, Ga
μ and Aμ represent the gluon and photon fields,

respectively; λa=2 are the color SU(3) group generators in
the fundamental representation; Ga

μν ¼ ∂μGa
ν − ∂νGa

μ þ
gfabcGb

μGc
ν, where the fabc-coefficients with (a;b; c¼

1;…;8) are the totally antisymmetric structure constant
of SU(3); G̃μν

a ¼ 1
2 ϵ

μνρσGa
ρσ; ψT ¼ ðu; d; sÞ; and Q ¼

diagðqu; qd; qsÞ ¼ diagð23 e;−
1
3 e;−

1
3 eÞ is a matrix in flavor

space that accounts for the electric charge of the quarks.
We assume a general pseudoscalar axion field θðx⃗; tÞ. The
electromagnetic potential Aμ is formed by the background
Āμ ¼ ð0; 0; Bx1; 0Þ, which corresponds to a constant and
uniform magnetic field B in the z direction, plus the
fluctuation field Ãμ. We use the metric gμν ¼ diagð1;−1Þ
and Levi-Cività tensor ϵ0123 ¼ 1.
The QCD classical vacua have to be pure gauge to have

minimal energy. In the temporal gauge Ga
0 ¼ 0, they are

given by

Giðx⃗Þ ¼ ig−1U−1ðx⃗Þ∂iUðx⃗Þ; ð9Þ

with Uðx⃗Þ ∈ SUð3Þ and Uðx⃗Þ → 1 when x⃗ → ∞. The
vacuum configurations are characterized by a topological
number nw (nw ∈ Z),

nw ¼ 1

24π2

Z
d3xϵijktrðU−1∂iUÞðU−1∂jUÞðU−1∂kUÞ;

ð10Þ

also known as the winding number. As a consequence,
there is an infinite set of topologically different classical
vacua classified by the integer nw. As nw is a topological
quantity, continuous deformations of the gauge fields
cannot change it. Hence, it is not possible to go from
one vacuum class to another by a continuous transforma-
tion without passing by gauge field configurations that are
not vacua. This means that the vacuum classes are separated
by a finite energy barrier. The actual QCD vacuum is
then a superposition of all the nw vacua [13,14,27].
Such a superposition, known as the θ-vacuum, yields to
the axion term ∼θGa

μνG̃
μν
a , with θ a pseudoscalar, in the

Lagrangian (8) [28].
Gauge field configurations that go to different topologi-

cal pure gauge fields at !∞ are characterized by a nonzero
Qw ¼ nwð−∞Þ − nwð∞Þ and hence can induce a transition
from one topological vacuum to another. At zero temper-
ature, such gauge field configurations are the instantons
[29]. Instantons induce quantum tunneling between vacua
through the energy barrier, which in this case is of order

OðΛQCD=αsÞ with ΛQCD the QCD scale and αs the strong
coupling constant. At finite temperature the instantons are
color screened so that the tunneling effect is practically
suppressed at high temperature [30]. In this regime, the
transition between different vacua is induced by thermal
excitations called sphalerons [15] that connect different
vacua over the barrier.
On the other hand, taking into account [31] that for

massless quarks the axial anomaly equates to

∂μJ
μ
A ¼ g2

16π2
Ga

μνG̃
μν
a ; ð11Þ

with JμA ¼
P

fhψ̄fγμγ5ψfi the axial four-current, one can
show, integrating (11) in the four-volume, that

ðNR − NLÞ ¼ −
g2Nf

16π2

Z
d4xGa

μνG̃
μν
a ; ð12Þ

with NR=L being the net number of quarks (or minus for
antiquarks) with right- and left-handed chirality, respec-
tively. The proportionality to the number of massless
flavors Nf accounts for the fact that all the massless flavors
equally contribute to the anomaly. This result shows that a
topologically nontrivial gauge field configuration can
create or annihilate the total chirality of fermions. It could
explain how in heavy-ion collisions, on an event-by-event
basis, the QGP can become chiral.
In summary, these results link the θ-vacuum term in (8)

with the possibility of chirality change in high-T QCD due
to the existence of gluon configurations with different
winding numbers that can be connected by sphalerons.
As is known, the triangle anomaly also links the axial
current with the electromagnetic field, so a relevant ques-
tion at this point is whether the θ-vacuum term can induce
new terms in the electromagnetic sector of the quantum
effective action. In the next section we use Fujikawa’s
method [19–20] to address this question. Among several
available methods to derive the anomaly, Fujikawa’s, which
is equivalent to the heat kernel proof of the relevant index
theorem, has the advantage of most directly revealing the
topological nature of the problem.

IV. EFFECTIVE ACTION IN HOT QCD
IN A MAGNETIC FIELD

Our main goal now is to find the QCD × QED effective
action after performing a local chiral transformation that
eliminates the θ-vacuum contribution from the gluon sector.
As we will see, this transformation has two consequences.
On the one hand, it modifies the fermion spectrum that now
becomes dependent on θ. On the other hand, it does not
leave the fermion measure invariant. The corresponding
Jacobian is ill defined and has to be regularized. Using the
Fujikawa method [19] to regularize it, we will show that it
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leads to new θ-dependent contributions into the action
electromagnetic sector.
In our derivations, special attention will be paid to the

fact that the term ∼γ5∂μθ, induced in the covariant
derivative by the local chiral transformation, spoils the
Hermiticity of the Euclidean Dirac operator. To deal with
such a situation, the Fujikawa approach has to be extended
in a similar fashion to what has been done in the presence of
a chemical potential [32], or in the MDCDW phase of
quark matter [9].

A. Regularization of the fermion Jacobian

Fujikawa’s method allows us to obtain the regularized
Jacobian of a local UAð1Þ chiral transformation that does
not leave the fermion measure invariant. In the case under
study here, such a transformation takes the form

ψðxÞ → UAψðxÞ ¼ eiθγ
5=2NfψðxÞ

ψ̄ðxÞ → ψ̄ðxÞγ0U†
Aγ0 ¼ ψ̄ðxÞeiθγ5=2Nf ð13Þ

with Nf the numbers of flavors in the theory.
In general we consider θðx⃗; tÞ. We are not interested in a

global UAð1Þ, since if θ were constant, the θ-vacuum term
in (8) would not have observable consequences because the
transformation would yield a total derivative of the Chern-
Simons current that would not contribute to the equations
of motion.
Under the local UAð1Þ, the fermion sector of the

Lagrangian (8) acquires a θ-dependent chiral coupling:

Lψ ¼ ψ̄ ½iγμð∂μ − igGμ þ iQAμ þ μδμ0 þ iγ5∂μθ=2NfÞ'ψ :
ð14Þ

Moreover, the fermion measure in the path integral

Z½Ga
μ; Aμ; θ' ¼

Z
DψDψ̄eiSψ ðG

a
μ ;Aμ;θÞ; ð15Þ

with Sψ ðGa
μ; Aμ; θÞ the fermion part of the effective action,

changes to

Dψ̄ðxÞDψðxÞ → Jψ̄JψDψ̄ðxÞDψðxÞ; ð16Þ

with Jacobians Jψ̄ ¼ Jψ ¼ ðDetUAÞ−1 ≠ 1. Therefore, the
chiral transformation (13) not only modifies the fermion
spectrum, but it also adds an extra term, the Jacobian, to the
action.
To calculate the Jacobian we first perform a Wick

rotation to Euclidean space, dx0 → −idx4, ∂0 → i∂4,
A0 → iA4, γ0→ iγ4, γ5 ≡ iγ0γ1γ2γ3 ¼ γ5E ¼ γ1γ2γ3γ4. The
Euclidean γμ are all anti-Hermitian; the Euclidean metric
becomes gEμν ¼ diagð−1;−1;−1;−1Þ. Since there is no mix
between the quark flavors, one can perform, without loss of

generality, the analysis for a single flavor and incorporate
the contributions of all the flavors in the final result.
Using hxjOjyi ¼ δ4ðx − yÞOðxÞ, valid for ultralocal

integral kernels, the Jacobian can be written as

ðDetUAÞ−1 ¼ e−Tr lnUA ¼ e−
R

d4xhxjtr lnUAjxi

¼ e
−
R

d4xδ4ð0ÞθðxÞ2Nf
itrðγ5Þ; ð17Þ

with Tr meaning functionalþmatrix trace and tr just
matrix trace.
The exponent in (17) is ill defined and needs proper

regularization. To regularize it, we follow a gauge-invariant
approach introduced by Fujikawa many years ago [19,20]
and later extended to finite temperature and density [32,33].
The essence of the Fujikawa’s method is to express the
Jacobian in the representation of the eigenfunctions of a
Euclidean operator that is gauge invariant and Hermitian
(or anti-Hermitian). Such a representation preserves the
gauge invariance of the theory and ensures that the
eigenfunctions are orthogonal and complete, so they have
real (imaginary) eigenvalues. In addition, to ensure unitar-
ity, it is essential that the operator used to define the
functional space be chosen so as to diagonalize the fermion
action. As discussed in [20], this condition is important,
since a seemingly unitary transformation based on the
eigenspace of a gauge-invariant operator that does not
diagonalize the action is actually nonunitary.
Further, to regularize the Jacobian one introduces a

damping factor in the form of an arbitrary function of
the eigenvalues of this operator with a regulator M, in such
a way that the contributions from the large momenta are
regularized when M → ∞. Below, we use the heat-kernel
regularization [31], which is based on an exponential
damping function.
In most cases, the gauge-invariant operator whose

eigenfunctions satisfy all the above requirements is the
Dirac operator of the theory =D [34]. However, in our case,
even at zero density (μ ¼ 0), the presence in the covariant
derivative of the chiral term ∼γ5∂μθ spoils the Hermiticity
of the Dirac operator in the Euclidean space and the
Fujikawa approach has to be extended, as known to happen
in the presence of a chemical potential [32], or in the
MDCDW phase [9].
In the present system, the Euclidean Dirac operator is

=DðθÞ¼=Dþ=DA, with =D¼γμð∂μ−igGa
μ
λa
2þiQAμÞHermitian

and =DA ¼ iγμγ5∂μθ=2Nf − μγ4 anti-Hermitian. Since =DðθÞ
is neither Hermitian nor anti-Hermitian, its eigenfunctions
cannot be used as a suitable representation in the Fujikawa
approach. In this case, we follow instead the method
discussed in Refs. [9,19,32].
Consider the positive-semidefinite Hermitian operators

=D†ðθÞ=DðθÞ and =DðθÞ=D†ðθÞ and their respective eigenvalue
equations
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=D†ðθÞ=DðθÞϕn ¼ λ2nϕn =DðθÞ=D†ðθÞϕ̃n ¼ λ̃2nϕ̃n; ð18Þ

whose eigenfunctions satisfy completeness

X

n

ϕ†
nðxÞϕnðyÞ ¼ δðx − yÞ;

X

n

ϕ̃†
nðxÞϕ̃nðyÞ ¼ δðx − yÞ ð19Þ

and orthogonality

Z
d4Exϕ

†
nðxÞϕmðxÞ¼ δnm;

Z
d4Exϕ̃

†
nðxÞϕ̃mðxÞ¼ δnm ð20Þ

conditions and have real eigenvalues λn, λ̃n, known
as the singular values of =DðθÞ, =D†ðθÞ, respectively. The
ϕnðτ; x⃗Þ and ϕ̃nðτ; x⃗Þ are ordinary c-number functions
antiperiodic in τ. In (20), we introduced the notationR
d4Ex≡

R β
0 dτ

R
d3x.

It is easy to verify, as in the case studied in [32], that the
operators =D†ðθÞ=DðθÞ and =DðθÞ=D†ðθÞ share all the nonzero
eigenvalues. To see this, consider a nonzero λn and let us act
with =DðθÞ on the first equation of (18):

=DðθÞ=D†ðθÞ=DðθÞϕn ¼ λ2n=DðθÞϕn: ð21Þ

This means that =DðθÞϕn is an eigenfunction ϕ̃n of
=DðθÞ=D†ðθÞ with eigenvalue λ2n. Similarly, acting with
=D†ðθÞ on the second equation of (18), we find

=D†ðθÞ=DðθÞ=D†ðθÞϕ̃n ¼ λ̃2n=D†ðθÞϕ̃n: ð22Þ

Hence, we also see that =D†ðθÞϕ̃n is an eigenfunction of
=D†ðθÞ=DðθÞ with eigenvalues λ̃2n, so λ2n ¼ λ̃2n. Then, we
define from now on, for nonzero λn, ϕ̃n ¼ λ−1n =DðθÞϕn.
Now we can expand the fermion fields in the bases of the

Hermitian operators =D†ðθÞ=DðθÞ and =DðθÞ=DðθÞ† as

ψðxÞ ¼
X

n

anϕnðxÞ; ψ̄ðxÞ ¼
X

n

b̄nϕ̃†
nðxÞ; ð23Þ

with an, bn the Grassmann numbers. In the representation
of these eigenfunctions, the Jacobian of flavor f in (16)
takes the form

JðfÞψ JðfÞψ̄ ¼ e
− 1
2Nf

tr
R
d4ExθðxÞ

P
n
½ϕ†

nðxÞiγ5ϕnðxÞþϕ̃†
nðxÞiγ5ϕ̃nðxÞ'; ð24Þ

and the fermionic part of the action is diagonalized:

SF ¼
Z

d4Exψ̄=DðθÞψ ¼
X

n

λnb̄nan: ð25Þ

We now apply the standard heat-kernel regularization
method [31] and introduce damping factors for each term in
(24) with a regulator M that will be taken to infinity at the
end. The regularized Jacobian then becomes

JðfÞψ JðfÞψ̄ ¼ e
− 1
2Nf

ðIRþĨRÞ; ð26Þ

where

IR ¼ lim
M→∞

Z
d4ExθðxÞtr

X

n

ϕ†
nðxÞiγ5e−λ

2
n=M2

ϕnðxÞ

¼ lim
M→∞

Z
d4ExθðxÞtr

X

n

ϕ†
nðxÞiγ5e−=D

†ðθÞ=DðθÞ=M2
ϕnðxÞ

≡ lim
M→∞

Z
d4ExθðxÞI; ð27Þ

and

ĨR ¼ lim
M→∞

Z
d4ExθðxÞtr

X

n

ϕ̃†
nðxÞiγ5e−λ

2
n=M2

ϕ̃nðxÞ

¼ lim
M→∞

Z
d4ExθðxÞtr

X

n

ϕ̃†
nðxÞiγ5e−=DðθÞ=D†ðθÞ=M2

ϕ̃nðxÞ

≡ lim
M→∞

Z
d4ExθðxÞĨ; ð28Þ

with

=D†ðθÞ=DðθÞ ¼ þ
iqf
4

½γμ; γν'Fμν þ
1

4
½γμ; γν'Gμν

− i
sgnðqfÞ
2Nf

γ5½γμ; γ4'μ∂μθ þ
!∂μθ

2Nf

"
2

− ðDμÞ2 þ i
sgnðqfÞ
2Nf

½γμ; γν'γ5∂μθDν þ μ2

ð29Þ

=DðθÞ=D†ðθÞ ¼ þ
iqf
4

½γμ; γν'Fμν þ
1

4
½γμ; γν'Gμν

− i
sgnðqfÞ
2Nf

γ5½γμ; γ4'μ∂μθ þ
!∂μθ

2Nf

"
2

− ðDμÞ2 − i
sgnðqfÞ
2Nf

½γμ; γν'γ5∂μθDν þ μ2:

ð30Þ

Here, Dμ ¼ ∂μ− igGa
μ
λa
2 þ iqfAμ, and Gμν ¼−ig∂μGa

ν
λa
2 þ

ig∂νGa
μ
λa
2 −g2½Ga

μ
λa
2 ;G

b
ν
λb
2 ', and we used that ½Dμ; Dν' ¼

iqfFμν þGμν.
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Once the Jacobian is regularized, it is convenient to change the basis to the free-wave eigenfunctions jζi, ð=∂jζi ¼ i=kjζiÞ,
to find

I ¼ tr
X

n

hϕnjxiiγ5e−=D
†ðθÞ=DðθÞ=M2hxjϕni

¼ tr
Z

d4Ek
ð2πÞ4

Z
d4Ek

0

ð2πÞ4
X

n

hϕnjζihζjxiiγ5e−=D
†ðμ;θÞ=Dðμ;θÞ=M2hxjζ0ihζ0jϕni

¼ tr
Z

d4Ek
ð2πÞ4

Z
d4Ek

0

ð2πÞ4
hζ0jζihζjxiiγ5e−=D

†ðθÞ=DðθÞ=M2hxjζ0i

¼ tr
Z

d4Ek
ð2πÞ4

e−ikxiγ5e−=D
†ðθÞ=DðθÞ=M2

eikx

¼ tr
Z

d4Ek
ð2πÞ4

iγ5e−=D
†ðk;θÞ=Dðk;θÞ=M2

; ð31Þ

and similarly for Ĩ,

Ĩ ¼ tr
X

n

hϕ̃njxiiγ5e−=DðθÞ=D†ðθÞ=M2hxjϕ̃ni ¼ tr
Z

d4Ek
ð2πÞ4

iγ5e−=Dðk;θÞ=D†ðk;θÞ=M2
; ð32Þ

with =D†ðk; θÞ=Dðk; θÞ and =Dðk; θÞ=D†ðk; θÞ given, respectively, by (29) and (30) withDμ replaced by (ikμ þDμ). In (31) and
(32) we introduced the notation

Z
d4Ek
ð2πÞ4

¼ 1

β

X

n

Z
d3k⃗
ð2πÞ3

; k4 ¼
ð2nþ 1Þπ

β
; n ¼ 0;!1;!2;…; β ¼ 1=T: ð33Þ

At this point, we make the variable change kμ → Mkμ in (31) and (32), use them back in (27) and (28), and take the trace
and the limit M → ∞. We can readily verify that

lim
M→∞

ðI þ ĨÞ ¼ lim
M→∞

#
tr
Z

d4Ek
ð2πÞ4

iγ5e−=D
†ðk;θÞ=Dðk;θÞ=M2 þ tr

Z
d4Ek
ð2πÞ4

iγ5e−=Dðk;θÞ=D†ðk;θÞ=M2

$

¼ 2

Z
d4Ek
ð2πÞ4

e−k
2

!
−
q2f
32

triγ5½γμ; γν'½γα; γβ'FμνFαβ þ
1

32
triγ5½γμ; γν'½γα; γβ'GμνGαβ

"
; ð34Þ

where tr refers to the trace in Dirac and color matrices.
Taking advantage of the formula [35]

1

β

Xþ∞

n¼−∞
exp ½−k24' ¼

1

β

Xþ∞

n¼−∞
exp

#
−
ð2nþ 1Þ2π2

β2

$
¼

Z
∞

−∞

dk0

2π
exp ½−ðk0Þ2'; ð35Þ

we can then do the integrals in (34) and use them to write

IR þ ĨR ¼ lim
M→∞

Z
d4ExθðxÞðI þ ĨÞ

¼ 2

16π2

Z
d4ExθðxÞ

!
−
q2f
32

triγ5½γμ; γν'½γα; γβ'FμνFαβ þ
1

32
triγ5½γμ; γν'½γα; γβ'GμνGαβ

"
;

¼ −i
Ncq2f
8π2

Z
d4xθðxÞFμνF̃μν − i

g2

16π2

Z
d4xθðxÞGa

μνG̃
μν
a ; ð36Þ

where in the last line of (36) we went to Minkowski space and used trγ5½γμ; γν'½γα; γβ' ¼ −16iϵμναβ. We also introduced the
dual tensors F̃μν ¼ 1

2 ϵ
μναβFαβ and G̃μν ¼ 1

2 ϵ
μναβGαβ, and we used that trGμνG̃μν ¼ − g2

2 G
a
μνG̃

μν
a .
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Inserting (36) in (26), we find that the regularized Jacobian of a single flavor is

JðfÞψ JðfÞψ̄ ¼ exp
%
i
1

Nf

Z
d4xθðxÞ

#
Ncq2f
16π2

FμνF̃μν þ g2

32π2
Ga

μνG̃
μν
a

$&
: ð37Þ

Hence, taking into account the Jacobian for all the flavors, we find that the net contribution from the measure to the
action is

JψJψ̄ ¼ exp
%
i
Z

d4xθðxÞ e2

24π2
FμνF̃μν þ i

Z
d4xθðxÞ g2

32π2
Ga

μνG̃
μν
a

&
: ð38Þ

Notice that the second term in the exponent eliminates the original θ-vacuum term of (8), which was the goal we set for
ourselves from the beginning of this section. At the same time, a new axion term has emerged, one that nowmixes θ with the
electromagnetic field Fμν.
After incorporating the Jacobian into the partition function (15), the fermion effective action becomes

SψðGa
μ; Aμ; θÞ ¼

Z
d4x

#
ψ̄iγμð∂μ − igGμ þ iQAμ þ μδμ0 þ iγ5∂μθ=6Þψ þ θðxÞ e2

24π2
FμνF̃μν

$

¼
Z

d4x½ψ̄iγμð∂μ − igGμ þ iQAμ þ μδμ0 þ iγ5∂μθ=6Þψ − e2

6π2
∂μθðxÞϵμανβAα∂νAβ'

¼
Z

d4x
#
ψ̄iγμð∂μ − igGμ þ iQAμ þ μδμ0 þ iδμ0γ5μ5Þψ −

e2

π2
μ5ϵ0ανβAα∂νAβ

$
; ð39Þ

where in the second line we integrated by part the last term
for convenience, and in the third line, to touch base with the
CME studies, we assumed that θ only depends on time and
used ∂μθðxÞ=6 ¼ μ5, for a constant μ5, in agreement with
the case considered in [4].
Notice that because of the induced Abelian axion

term θe2
24π2 FμνF̃μν in the action, the electromagnetism in

this theory will be described by the equations of axion
electrodynamics.

V. CHARGES AND CURRENTS IN
HOT QCD AT B ≠ 0

In this section we shall calculate all the contributions to
the electric four-current. We start from the effective action
of the gauge fields

ΓðA;GÞ ¼ −
1

4

Z
d4xFμνFμν

−
e2μ5
π2

Z
d4xϵ0ανβAα∂νAβ − i lnZ; ð40Þ

with

Z¼
Z

DψDψ̄ei
R
d4x½ψ̄iγμð∂μ−igGμþiQAμþμδμ0þiδμ0γ5μ5Þψ : ð41Þ

We then integrate in the fermion integrate in the fermion
fields and make an expansion in powers of all the gauge
fields, so that ΓðA;GÞ becomes

ΓðA;GÞ¼−VΩþ
Z

d4x
#
−
1

4
FμνFμν−

e2μ5
π2

ϵ0ανβAα∂νAβ

$

þ
X∞

n¼1

Z
dx1…dxnΠμ1;μ2;…μnðx1;x2;…xnÞ

×Aμ1ðx1Þ…AμnðxnÞþ (( ( ð42Þ

with V the four-volume; Ω ¼ ΩðT; BÞ the thermodynamic
potential; Πμ1;μ2;…μn the one-loop polarization operators
with internal lines of fermions and n external lines of
photons; and ( ( ( indicates terms containing powers of the
gluon field, which are not relevant for our goal.
We are interested in the linear response of the magnet-

ized and hot QCD plasma to a small electromagnetic probe
Ã. Furthermore, for consistency of the approximation, we
can neglect all the radiative corrections of order higher than
α, as α is the order of the axion term in (40). These two
conditions imply that we shall cut the series in (42) at
n ¼ 1, which can be shown to provide the medium
corrections to the Maxwell equations that are linear in
the electromagnetic field and of the desired order in α.
Thus, we keep in the polarization operator series the n ¼ 1
order and reduce (42) to

ΓðAÞ ≃ −VΩþ
Z

d4x
#
−
1

4
FμνFμν −

e2μ5
π2

ϵ0ανβAα∂νAβ

$

−
Z

d4xAμðxÞJμðxÞ; ð43Þ
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where JμðxÞ ¼ ðJ0; JÞ represents the contribution of the
ordinary (nonanomalous) electric four-current, determined
by the one-loop tadpole diagrams.

A. Anomalous charges and currents at B ≠ 0

The anomalous charge and current densities are derived
from the third term in the right-hand side of (43). For a
magnetic field in the z direction (B ¼ −F12) this term
reduces to

Γanom ¼ e2μ5
π2

Z
d4xA3B: ð44Þ

Taking the variation with respect to the electromagnetic
potential, we obtain

J0anom ¼ 0 ð45Þ

J3anom ¼ −κ
!∂θ
dt

"
B ¼ −

e2μ5
π2

B; ð46Þ

where the coefficient κ of Eq. (5) is given by κ ¼ e2=6π2.
The anomalous current density (46) can be seen as a

polarization current associated with a time-dependent
electric polarization P that is linear in the magnetic field,

Janom ¼ ∂tP ¼ −
e2B
6π2

∂tθ; ⇒ P ¼ −
!
e2θ
6π2

"
B: ð47Þ

We highlight that the anomalous current runs opposite to
the magnetic field.
Equation (47) shows that the hot QGP in a magnetic field

modeled by the effective action (43) exhibits linear mag-
netoelectricity. This is a consequence of the P-symmetry
breaking produced by the chiral anomaly term. The
magnetoelectricity here has some similarity to that found
in the MDCDW phase [8,9], where P is also broken, but
different from the one found in the magnetic-CFL phase of
color superconductivity [36], where P is not broken and the
effect is a consequence of an anisotropic electric suscepti-
bility [37], so it is not linear.

B. Ordinary charge and current at B ≠ 0

The ordinary current density Jμ with chiral chemical
potential μ5 can be found with different methods. The
magnetic field is assumed to be along the x3 direction. As
shown in [4], only the LLL contributes to it. Below, we

reproduce the same result but using the tadpole diagram
from the last term of (43).

1. Quark propagator in the LLL

First, we need to find the LLL propagator of each quark
flavor. The LLL inverse quark propagator is

G−1
LLLðpÞ ¼ γμkðp̃

k
μ þ μ5δμ0γ5Þ −m; ð48Þ

where p̃k
μ ¼ ðp0 − μ; p3Þ. It is easy to verify that the

propagator GLLLðpÞ, which satisfies

G−1
LLLðpÞGLLLðpÞ ¼ GLLLðpÞG−1

LLLðpÞ ¼ I; ð49Þ

can be written as

GLLLðpÞ ¼
AB

detG−1
LLLðpÞ

; ð50Þ

with

A ¼ −γ5G−1
LLLðpÞγ5

¼ γμkðp̃
k
μ þ μ5δμ0γ5Þ þm ð51Þ

and

B ¼ −γ1Aγ1 ¼ ðp̃2
k − μ25 −m2ÞI þ 2iμ5p3ðiγ1γ2Þ: ð52Þ

It is convenient to express it as a combination of the spin
projectors Δð!Þ ¼ ðI ! iγ1γ2Þ=2,

GLLLðpÞ ¼
γkμp̃

μ
þ þm

ðp̃0Þ2 − ε2þ
ΔðþÞ þ γkμp̃μ

− þm
ðp̃0Þ2 − ε2−

Δð−Þ; ð53Þ

where p̃ν
! ¼ ðp0−μ;0;0;p3!μ5Þ; γkν ¼ðγ0;0;0;γ3Þ; and

ε! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp3 ! μ5Þ2 þm2

p
.

Keeping in mind that the LLL quarks only have one spin
projection (parallel/antiparallel to the field for positive/
negative charged quarks), the LLL propagator reduces to

GðfÞLLLðpÞ ¼ GLLLðpÞΔðsgnðqfÞÞ: ð54Þ

2. The tadpole contribution

The tadpole diagram in the LLL for each flavor con-
tributes to the four-current as

JμðfÞLLLðsgnðqfÞÞ ¼ −
qfjqfBjNc

ð2πÞ2β
X

p4

Z
∞

−∞
dp3tr½iγμGE

ðfÞLLLðkÞ'

¼ −
qfjqfBjNc

ð2πÞ2β
X

p4

Z
∞

−∞
dp3tr

#
γμ

γ4ðp4 þ iμÞ þ γ3ðp3 þ sgnðqfÞμ5Þ −m
ðp4 þ iμÞ2 þ ε2sgnðqfÞ

ΔðsgnðqfÞÞ
$
; ð55Þ
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where we did the Wick rotation to Euclidean space
and introduced the Matsubara’s sum with p4 ¼

ð2nþ1Þπ
β ,

n ¼ 0; 1; 2;…, β ¼ 1=T.
Taking the trace in (55), we have

tr½γνðγμkp̃
μ
! −mÞΔð!Þ' ¼ −2p̃4; ν ¼ 4 ð56Þ

tr½γνðγμkp̃
μ
! −mÞΔð!Þ' ¼ 0; ν ¼ 1; 2 ð57Þ

tr½γνðγμkp̃
μ
! −mÞΔð!Þ' ¼ −2p̃3

! ; ν ¼ 3 ð58Þ

with p̃ν
! ¼ ðp4 þ iμ; 0; 0; p3 ! μ5Þ in Euclidean space.

We find that the LLL does not contribute to the
ordinary transverse electric current density (J1;2LLL ¼ 0)
due to the zero trace (57). Hence, only a current along

the magnetic-field direction and a charge density can have
nontrivial values.

3. Ordinary charge density

The LLL contribution to the ordinary electric charge of
each quark flavor is obtained by substituting (56) in (55) as

J4ðfÞLLLðsgnðqfÞÞ

¼
qfjqfBjNc

2π2β

X

p4

Z
∞

−∞
dp3

2ðp4þ iμÞ
ðp4þ iμÞ2þ ε2sgnðqfÞ

; ð59Þ

with ε2sgnðqfÞ ¼ ðp3 þ sgnðqfÞμ5Þ2 þm2. Carrying out the
Matsubara sum in (59), and making the analytic continu-
ation to Minkowski space, we obtain

J0ðfÞLLLðsgnðqfÞÞ ¼
qfjqfBjNc

2π2

Z
∞

−∞
dp3½nF½βðεsgnðqfÞ þ μÞ' − nF½βðεsgnðqfÞ − μÞ''; ð60Þ

where nFðβxÞ ¼ ½1þ expðβxÞ'−1 is the Fermi-Dirac distribution.
Notice that the electric charge does not depend on μ5, as can be easily seen by a variable change in p3 in (60). From (60),

it is evident that if the baryon chemical potential μ is zero, the electric charge density is zero. It is then consistent to neglect
the electric charge in the hot QGP system, where the corrections ðμ=TÞn are really very small.

4. Ordinary current density

The LLL contribution of a single flavor to the three-component of the ordinary electric current is obtained by substituting
(58) in (55),

J3ðfÞLLLðsgnðqfÞÞ ¼
qfjqfBjNc

2π2β

X

p4

Z
∞

−∞
dp3

p3 þ sgnðqfÞμ5
ðp4 þ iμÞ2 þ ε2sgnðqfÞ

; ð61Þ

with ε2sgnðqfÞ ¼ ðp3 þ sgnðqfÞμ5Þ2 þm2. Carrying out the Matsubara sum in (61) and returning to Minkowski space, we
obtain

J3ðfÞLLLðsgnðqfÞÞ ¼
qfjqfBjNc

ð2πÞ2

Z
Λ

−Λ
dp3

p3 þ sgnðqfÞμ5
εsgnðqfÞ

#
1 −

X

!
nF½βðεsgnðqfÞ ! μÞ'

$

¼
qfjqfBjNc

ð2πÞ2

Z
Λ

−Λ
dp3 d

dp3

#
εsgnðqfÞ þ

X

!

1

β
log n−1F ½−βðεsgnðqfÞ ! μÞ'

$

¼
qfjqfBjNc

2π2
sgnðqfÞμ5: ð62Þ

Summing in flavor, we find the net ordinary current to be

J3LLLðμ5Þ ¼
X

f¼u;d;s

J3LLLðsgnðqfÞÞ ¼
e2μ5
π2

B: ð63Þ

If we take qf ¼ e and Nc ¼ 1 in (62), we find the same
expression obtained in [4] for the current of a single
fermion with charge e and chiral chemical potential μ5.
Notice that the ordinary current J3LLL in (63) is equal to

minus the anomalous current density (46), so they cancel
out in (2), as we had previously announced. It is worth
emphasizing that the particle mass, temperature and bar-
yonic chemical potential do not make any contribution to
this current.

VI. CME AND AHE IN WEYL SEMIMETALS

Weyl semimetals are three-dimensional, topologi-
cally nontrivial materials that present linearly dispersing
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quasiparticle excitations of opposite chiralities in the
vicinity of the two so-called Weyl points [38].
Around a Weyl node, the low-energy theory of the WSM

in Euclidean space is described by the action [39]

S ¼
Z

d4xEψ̄ ½iγμð∂μ þ ieAμ þ ibμγ5Þ'ψ ; ð64Þ

with bμ ¼ ðb; b4Þ, where b is the separation in momentum
of the two Weyl nodes and b4 is the separation in energy.
The action (64) describes a gapless system, but similarly

to QCD, under a strong coupling regime, the system can
become gapped [40]. Nevertheless, the coupling critical
value needed to produce the condensate that makes the
theory gapped is too high to be realized in condensed
matter systems. On the other hand, in the presence of a
magnetic field the condensate can be induced even in the
weak-coupling regime, similar to the phenomenon of
magnetic catalysis of chiral symmetry breaking that can
take place in QED and QCD [41]. In this case, however,
due to the momentum-space separation of the Weyl
nodes, the chiral symmetry breaking occurs through a
momentum-dependent particle-hole condensate that breaks
translational invariance and represents a charge-density
wave [42]. Nevertheless, the dynamical gap generated by
magnetic catalysis is always a very small parameter [41]
and can be neglected; thus the action (64) is a good
approximation.
The bμ term can be eliminated in (64) by the gauge chiral

transformation

ψðxÞ ¼ e−iθðxÞγ
5=2ψðxÞ

ψ̄ðxÞ ¼ ψ̄ðxÞe−iθðxÞγ5=2; ð65Þ

with θðxÞ ¼ 2bμxμ. But as in the QCD case, the partition
function measure is not invariant and the Jacobian, after
regularization by the Fujikawa method, gives rise to a
contribution θðxÞFμνF̃μν to the action [39],

S ¼
Z

d4xE

%
ψ̄ ½iγμð∂μ þ ieAμÞ'ψ þ ie2

32π2
θðxÞFμνF̃μν

&
:

ð66Þ

The θ-vacuum term in (66) produces anomalous charge
and current terms analogous to those considered in Sec. II.
We note that the covariant derivative in (66) does not
depend on θ, so the ordinary charge and currents cannot
eliminate here the anomalous contributions coming from
the θ-vacuum term. We conclude that WSM are natural
systems where in principle both anomalous transport
phenomena, CME and AHE, could be realized.
Notwithstanding, the realization of the CME in WSM

has also been contested. In [43] it was argued that the CME

is an artifact of linearizing the quasiparticle dispersion
relations near the nodes, but that going beyond the low-
energy approximation in the full lattice model, it is absent.
On the other hand, the AHE was found to remain robust in
realistic Weyl semimetals defined on the lattice [43]. In
another direction, it was shown in [44] that the existence or
not of the CME depends on the order in which the zero
limits of frequency and momentum are taken: ω → 0 and
k → 0. If the static limit ω → 0 is taken first, the system is
in equilibrium and the CME is absent as predicted in [43].
On the contrary, by taking first the plasmon limit, k → 0,
the CME survives. In this case the system is in non-
equilibrium. There was also an extra physical argument
[45], based on energy reasonings, to discard the CME in the
equilibrium system.

VII. CONCLUDING REMARKS

We have shown that in the presence of a magnetic field,
the QCD θ-vacuum with a time-dependent θ ¼ 2Nfμ5t
gives rise to a couple of currents (anomalous and ordinary)
moving in opposite directions along the magnetic field that
cancel each other out. The anomalous current (46) is
produced by the time-dependent medium polarization
induced by the axion term of the action. This current is
opposite to the field direction. On the other hand, the
ordinary current (63) is produced by the combined effect of
the chiral imbalance generated in the hot QGP and the
single spin projection of the LLL quarks, so that right and
left quarks of a given flavor always move in opposite
directions, parallel or antiparallel to the magnetic field. Any
excess of one chirality necessarily leads to a net charge
separation. This is the hallmark of the CME [3].
Any of the two currents alone (anomalous or ordinary),

by considering a time-dependent polarization or a stable
drift of quarks with different chiralities, would imply a
situation of nonequilibrium emerging within a treatment
that has assumed thermodynamic equilibrium, which
would be contradictory. The fact that the two currents
are equal and opposite ensures an equilibrium situation.
It is worth mentioning that in several recent publications

the existence of the CEM in equilibrium was also ques-
tioned. In [46], using lattice field theory, the CME current
was calculated, and it was found that, in the equilibrium
bulk, the CME does not exist, while the CME current may
appear close to the boundary in the case of a finite-size
system, although the integrated total CME current remains
zero. On a separate analysis [47], based on the Wigner’s
transform technique applied to Green functions, the equi-
librium CME was found to be also absent in the properly
regularized quantum field theory.
We argued that the lack of CME in the model considered

in this paper is a consequence of the trivial topology of
the fermions in this system. The topology in this case is
associated with the gluon vacuum, and it never gets
transferred to the fermions, whose spectrum remains
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symmetric, hence topologically trivial, even after the local
chiral transformation. That is why the topology of the gluon
vacuum cannot leave an imprint into the electromagnetism
of the system. This explains why, even considering the
baryon chemical potential, the electric charge is indepen-
dent from the chiral chemical potential, and why here no
macroscopic effect like the CME current exists in equilib-
rium. This is in sharp contrast with the situation in the
MDCDW phase of QCD at finite density. There, the
topology of the system comes from the fermion ground
state and affects the fermion spectrum, which is asymmetric
for the LLL quarks. As a consequence, the anomalous Hall

current is not canceled by the ordinary one. The anomalous
current and hence the anomalous transport in the MDCDW
phase are robust because the current has a topological
origin [8–9]. We speculate that the same analysis applies to
the WSMs, where, as discussed in the last section, the AHE
remains robust even when one goes beyond the low-energy
approximation, while the CME does not.
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