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THE ERDŐS–SZEKERES PROBLEM AND AN INDUCED
RAMSEY QUESTION

DHRUV MUBAYI AND ANDREW SUK

Abstract. Motivated by the Erdős–Szekeres convex polytope conjecture in Rd ,
we initiate the study of the following induced Ramsey problem for hypergraphs.
Given integers n > k > 5, what is the minimum integer gk(n) such that any
k-uniform hypergraph on gk(n) vertices with the property that any set of k + 1
vertices induces 0, 2, or 4 edges, contains an independent set of size n. Our main
result shows that gk(n) > 2cnk−4

, where c = c(k).

§1. Introduction. Given a finite point set P in d-dimensional Euclidean
space Rd , we say that P is in general position if no d + 1 members lie on a
common hyperplane. Let E Sd(n) denote the minimum integer N , such that any
set of N points in Rd in general position contains n members in convex position,
that is, n points that form the vertex set of a convex polytope. In their classic
1935 paper, Erdős and Szekeres [1] proved that in the plane, E S2(n) 6 4n . In
1960 [2], they showed that E S2(n) > 2n−2

+ 1 and conjectured this to be sharp
for every integer n > 3. Their conjecture has been verified for n 6 6 [1, 7], and
determining the exact value of E S2(n) for n > 7 is one of the longest-standing
open problems in Ramsey theory/discrete geometry. Recently [8], the second
author asymptotically verified the Erdős–Szekeres conjecture by showing that
E S2(n) = 2n+o(n).

In higher dimensions, d > 3, much less is known about E Sd(n). In [3],
Károlyi showed that projections into lower-dimensional spaces can be used to
bound these functions, since most generic projections preserve general position,
and the preimage of a set in convex position must itself be in convex position.
Hence, E Sd(n) 6 E S2(n) = 2n+o(n). However, the best known lower bound for
E Sd(n) is only of the order of 2cn1/(d−1)

, due to Károlyi and Valtr [4]. An old
conjecture of Füredi (see [5, Ch. 3]) says that this lower bound is essentially the
truth.

CONJECTURE 1.1. For d > 3, E Sd(n) = 22(n
1/(d−1)).

It was observed by Motzkin [6] that any set of d + 3 points in Rd in general
position contains either 0, 2, or 4 (d + 2)-tuples not in convex position. By
defining a hypergraph H whose vertices are N points in Rd in general position,
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and edges are (d + 2)-tuples not in convex position, then every set of d + 3
vertices induces 0, 2, or 4 edges. Moreover, by Carathéodory’s theorem (see
[5, Theorem 1.2.3]), an independent set in H would correspond to a set of points
in convex position. This leads us to the following combinatorial parameter.

Let gk(n) be the minimum integer N such that any k-uniform hypergraph
on N vertices with the property that every set of k + 1 vertices induces 0, 2,
or 4 edges, contains an independent set of size n. For k > 5, the geometric
construction of Károlyi and Valtr [4] mentioned earlier implies that

gk(n) > E Sk−2(n) > 2cn1/(k−3)
,

where c = c(k). One might be tempted to prove Conjecture 1.1 by establishing
a similar upper bound for gk(n). However, our main result shows that this is not
possible.

THEOREM 1.2. For each k > 5 there exists c = c(k) > 0 such that for any
n > k we have gk(n) > 2cnk−4

.

In the other direction, we can bound gk(n) from above as follows. For n >
k > 5 and t < k, let hk(t, n) be the minimum integer N such that any k-uniform
hypergraph on N vertices with the property that any set of k+ 1 vertices induces
at most t edges, contains an independent set of size n. In a forthcoming paper,
the authors prove the following.

THEOREM 1.3. For k > 5 and t < k, there is a positive constant c′ = c′(k, t)
such that

hk(t, n) 6 twrt (c′nk−t log n),

where twr is defined recursively as twr1(x) = x and twri+1(x) = 2twri (x).

Hence, we have the following corollary.

COROLLARY 1.4. For k > 5, there is a constant c′ = c′(k) such that

gk(n) 6 hk(4, n) 6 222c′nk−4 log n

.

It is an interesting open problem to improve either the upper or lower bounds
for gk(n).

Problem 1.5. Determine the tower growth rate for gk(n).

Actually, this Ramsey function can be generalized further as follows: for
every S ⊂ {0, 1, . . . , k}, define gk(n, S) to be the minimum integer N such that
any N -vertex k-uniform hypergraph with the property that every set of k + 1
vertices induces s edges for some s ∈ S, contains an independent set of size n.
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General results for gk(n, S) may shed light on classical Ramsey problems, but it
appears difficult to determine even the tower height for any nontrivial cases.

§2. Proof of Theorem 1.2. Let k > 5 and N = 2cnk−4
where c = ck > 0 is

sufficiently small to be chosen later. We are to produce a k-uniform hypergraph
H on N vertices with α(H) < n and every k + 1 vertices of H span 0, 2, or 4
edges. Let φ :

(
[N ]
k−3

)
→

(
[k−1]

2

)
be a random

(k−1
2

)
-coloring, where each color

appears on each (k − 3)-tuple independently with probability 1/
(k−1

2

)
. For f =

(v1, . . . , vk−1) ∈
(
[N ]
k−1

)
, where v1 < v2 < · · · < vk−1, define the function χ f :( f

k−3

)
→
(
[k−1]

2

)
as follows: for all {i, j} ∈

(
[k−1]

2

)
, let

χ f ( f \ {vi , v j }) = {i, j}.

We define the (k − 1)-uniform hypergraph G, whose vertex set is [N ], such
that

G=Gφ :=

{
f ∈

(
[N ]

k − 1

)
:φ( f \ {u, v})=χ f ( f \ {u, v}) for all {u, v} ∈

(
f
2

)}
.

For example, if k = 4 (which is excluded for the theorem but we allow it to
illustrate this construction) then φ : [N ] → {12, 13, 23} and for f = (v1, v2,

v3), where v1 < v2 < v3, we have f ∈ G if and only if φ(v1) = 23, φ(v2) = 13,
and φ(v3) = 12.

Given a subset S ⊂ [N ], let G[S] be the subhypergraph of G induced by the
vertex set S. Finally, we define the k-uniform hypergraph H , whose vertex set is
[N ], such that

H = Hφ :=
{

e ∈
(
[N ]

k

)
: |G[e]| is odd

}
.

CLAIM 2.1. |H [S]| is even for every S ∈
(
[N ]
k+1

)
.

Proof. Let S ∈
(
[N ]
k+1

)
and suppose for contradiction that |H [S]| is odd. Then

2|G[S]| =
∑

f ∈G[S]

2=
∑

f ∈G[S]

∑
e∈(S

k)
e⊃ f

1=
∑

e∈(S
k)

|G[e]| =
∑

e 6∈H [S]

|G[e]|+
∑

e∈H [S]

|G[e]|.

The first sum on the right-hand side above is even by definition of H and the
second sum is odd by definition of H and the assumption that |H [S]| is odd.
This contradiction completes the proof. �
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CLAIM 2.2. |G[e]| 6 2 for every e ∈
(
[N ]

k

)
.

Proof. For sake of contradiction, suppose that for e = (v1, . . . , vk), where
v1 < · · · < vk , we have |G[e]| > 3. Let ep = e \ {vp} for p ∈ [k] and suppose
that ei , e j , el ∈ G with i < j < l. In what follows, we will find a set S of size
k− 3, where S ⊂ ei and S ⊂ el , such that χei (S) 6= χel (S). This will give us our
contradiction since ei , el ∈ G implies that χei (S) = φ(S) = χel (S).

Let Y = e \ {vi , v j , vl} and Y ′ = Y \ {min Y }. Let us first assume that i > 1
so that min Y = v1. In this case,

χei (Y
′
∪ {v j }) = {1, l − 1},

since we obtain Y ′ ∪ {v j } from ei by removing min Y and vl which are the first
and (l − 1)st elements of ei . Similarly,

χel (Y
′
∪ {v j }) = {1, i},

since we obtain Y ′ ∪ {v j } from el by removing min Y and vi which are the first
and i th elements of el . Because l > i + 1, we conclude that χei (Y

′
∪ {v j }) 6=

χel (Y
′
∪ {v j }) as desired.

Next, we assume that i = 1 and min Y = vq where q > 1. In this case,

χei (Y
′
∪ {v j }) = {q − 1, l − 1},

since we obtain Y ′ ∪ {v j } from ei by removing vq and vl which are the (q − 1)st
and (l − 1)st elements of ei . Similarly,

χel (Y
′
∪ {v j }) = {1, q ′} where q ′ = q if q < l and q ′ = q − 1 if q > l,

since we obtain Y ′ ∪{v j } from el by removing vi = v1 and vq which are the first
and q ′th elements of el . If q 6= 2, then we immediately obtain χei (Y

′
∪ {v j }) 6=

χel (Y
′
∪ {v j }) as desired. On the other hand, if q = 2, then q ′ = q = 2 as well

and l > 4, so l − 1 6= q ′ and again

χei (Y
′
∪ {v j }) = {q − 1, l − 1} 6= {1, q ′} = χel (Y

′
∪ {v j }).

This completes the proof of the claim. �

Let T3 be the (k − 1)-uniform hypergraph with vertex set S with |S| = k + 1
and three edges e1, e2, e3 such that there are three pairwise disjoint pairs p1, p2,

p3 ∈
(S

2

)
with pi = {vi , v

′

i } and ei = S \ pi for i ∈ {1, 2, 3}.

CLAIM 2.3. T3 6⊂ G.

Proof. Suppose for a contradiction that there is a subset S ⊂ [N ] of size k+1
such that T3 ⊂ G[S]. Using the notation above, assume without loss of generality
that v1 = min∪i pi and v2 = min(p2 ∪ p3). Let Y = S \ (p1 ∪ p3) and note that
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Y ∈
(e1∩e3

k−3

)
. Let Y1 ⊂ Y be the set of elements in Y that are smaller than v1, so

we have the ordering
Y1 < v1 < v2 < {v3, v

′

3}.

Now, χe1(Y ) is the pair of positions of v3 and v′3 in e1. Both of these positions
are at least |Y1| + 2 as Y1 ∪ {v2} lies before p3. On the other hand, the smallest
element of χe3(Y ) is |Y1| + 1 which is the position of v1 in e3. This shows that
χe1(Y ) 6= χe3(Y ), which is a contradiction as both must be equal to φ(Y ) as
e1, e3 ⊂ G. �

We now show that every (k + 1)-set S ⊂ [N ] spans 0, 2 or 4 edges of H .
By Claim 2.1, |H [S]| is even. Let G ′ be the graph with vertex set S and edge
set {S \ f : f ∈ G[S]}. So there is a one-to-one correspondence between G[S]
and G ′ via the map f → S \ f . If G ′ has a vertex x of degree at least three,
then |G[S \ {x}]| > 3 which contradicts Claim 2.2. Therefore G ′ consists of
disjoint paths, cycles, and isolated vertices. This implies that a k-set A ⊂ S is
an edge in H exactly when S \ A is a vertex of degree one in G ′. Next, observe
that Claim 2.3 implies that G ′ does not contain a matching of size three, for the
complementary sets of this matching yield a copy of T3 ⊂ G. Hence, the number
of degree-one vertices in G ′ is 0, 2, or 4, and therefore |H [S]| ∈ {0, 2, 4} for all
S ∈

(
[N ]
k+1

)
.

Let us now argue that α(H) < n, which is a straightforward application of
the probabilistic method. Indeed, we will show that this happens with positive
probability and conclude that an H with this property exists. For a given k-set,
the probability that it is an edge of H is p > 0, where p depends only on k.
Consequently, the probability that H has an independent set of size n is at most(

N
n

)
(1− p)c

′nk−3

for some c′ > 0. Note that the exponent k−3 above is obtained by taking a partial
Steiner (n, k, k − 3) system S within a potential independent set of size n and
observing that we have independence within the edges of S. A short calculation
shows that this probability is less than 1 as long as c is sufficiently small. This
completes the proof of Theorem 1.2. �
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