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THE ERDOS-SZEKERES PROBLEM AND AN INDUCED
RAMSEY QUESTION

DHRUV MUBAYI AND ANDREW SUK

Abstract. Motivated by the Erdés—Szekeres convex polytope conjecture in RY,
we initiate the study of the following induced Ramsey problem for hypergraphs.
Given integers n > k > 5, what is the minimum integer g(n) such that any
k-uniform hypergraph on gi(n) vertices with the property that any set of k + 1
vertices induces 0, 2, or 4 edges, contains an independent set of size n. Our main
result shows that g (n) > 2C’1k_4, where ¢ = c(k).

§1. Introduction. Given a finite point set P in d-dimensional Euclidean
space RY, we say that P is in general position if no d + 1 members lie on a
common hyperplane. Let ES;(n) denote the minimum integer N, such that any
set of N points in R? in general position contains n members in convex position,
that is, n points that form the vertex set of a convex polytope. In their classic
1935 paper, Erd6s and Szekeres [1] proved that in the plane, ES>(n) < 4". In
1960 [2], they showed that ES>(n) > 272 4 | and conjectured this to be sharp
for every integer n > 3. Their conjecture has been verified for n < 6 [1, 7], and
determining the exact value of ES»(n) for n > 7 is one of the longest-standing
open problems in Ramsey theory/discrete geometry. Recently [8], the second
author asymptotically verified the Erd6s—Szekeres conjecture by showing that
ES)(n) = 2m+om),

In higher dimensions, d > 3, much less is known about ES;(n). In [3],
Karolyi showed that projections into lower-dimensional spaces can be used to
bound these functions, since most generic projections preserve general position,
and the preimage of a set in convex position must itself be in convex position.
Hence, ES;(n) < ES»(n) = 2" However, the best known lower bound for
E S;(n) is only of the order of ZC”WH), due to Karolyi and Valtr [4]. An old
conjecture of Fiiredi (see [5, Ch. 3]) says that this lower bound is essentially the
truth.

CONJECTURE 1.1. Ford > 3, ES;(n) = 20!/

It was observed by Motzkin [6] that any set of d + 3 points in R in general
position contains either 0, 2, or 4 (d + 2)-tuples not in convex position. By
defining a hypergraph H whose vertices are N points in R¢ in general position,

Received 31 July 2018.

MSC (2010): 05D10 (primary).

The first author’s research was partially supported by NSF grant DMS-1763317. The second author was
supported by an NSF CAREER award and an Alfred Sloan Fellowship.

Downloaded from https://www.cambridge.org/core. Access paid by the UC San Diego Library, on 06 Jun 2019 at 16:39:15, subject to the Cambridge
Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/50025579319000135


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579319000135
https://www.cambridge.org/core

THE ERDOS-SZEKERES PROBLEM AND AN INDUCED RAMSEY QUESTION 703

and edges are (d + 2)-tuples not in convex position, then every set of d + 3
vertices induces 0, 2, or 4 edges. Moreover, by Carathéodory’s theorem (see
[5, Theorem 1.2.3]), an independent set in H would correspond to a set of points
in convex position. This leads us to the following combinatorial parameter.

Let gi(n) be the minimum integer N such that any k-uniform hypergraph
on N vertices with the property that every set of kK + 1 vertices induces 0, 2,
or 4 edges, contains an independent set of size n. For k > 5, the geometric
construction of Kérolyi and Valtr [4] mentioned earlier implies that

gk(n) = ESi_a(n) = 2"

where ¢ = c(k). One might be tempted to prove Conjecture 1.1 by establishing
a similar upper bound for g (n). However, our main result shows that this is not
possible.

THEOREM 1.2. For each k > 5 there exists ¢ = c(k) > 0 such that for any
n > k we have gi(n) > pent ™,

In the other direction, we can bound gy (n) from above as follows. For n >
k > 5Sandt < k, let hi (¢, n) be the minimum integer N such that any k-uniform
hypergraph on N vertices with the property that any set of k 4 1 vertices induces
at most ¢ edges, contains an independent set of size n. In a forthcoming paper,
the authors prove the following.

THEOREM 1.3. Fork > 5andt < k, there is a positive constant ¢’ = c'(k, t)
such that

hi(t, n) < twr, (¢'n* " logn),

where twr is defined recursively as twry(x) = x and twr; 1 1(x) = 2™ @),
Hence, we have the following corollary.

COROLLARY 1.4. Fork > 5, there is a constant ¢’ = ¢ (k) such that

ge(n) < he(d,n) <22

It is an interesting open problem to improve either the upper or lower bounds
for gr(n).

Problem 1.5. Determine the tower growth rate for g (n).

Actually, this Ramsey function can be generalized further as follows: for
every S C {0, 1, ..., k}, define gi(n, S) to be the minimum integer N such that
any N-vertex k-uniform hypergraph with the property that every set of k + 1
vertices induces s edges for some s € S, contains an independent set of size .
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General results for gi(n, S) may shed light on classical Ramsey problems, but it
appears difficult to determine even the tower height for any nontrivial cases.

§2. Proof of Theorem 1.2. Letk > 5and N = 2" where ¢ = ¢ > 0 is
sufficiently small to be chosen later. We are to produce a k-uniform hypergraph
H on N vertices with «(H) < n and every k + 1 vertices of H span 0, 2, or 4
edges. Let ¢ : (V) — ([k;”) be a random (kgl)—coloring, where each color
appears on each (k — 3)-tuple independently with probability 1/ (k ;1) For f =
(w1, ..., 0%—1) € (lyj{), where v| < v2 < -+ < vg_1, define the function s :
(kf3) — ([kgl]) as follows: for all {i, j} € ([k;”), let

Xf(f\{vi7 U]}) = {l’.]}

We define the (k — 1)-uniform hypergraph G, whose vertex set is [V ], such
that

G=Gy:= {f € (k[]i,]l> 2O (f\{u, v} =xr(f\{u,v}) forall {u, v} e (ch)}

For example, if k = 4 (which is excluded for the theorem but we allow it to
illustrate this construction) then ¢ : [N] — {12, 13,23} and for f = (vy, vy,
v3), where v; < vy < v3, we have f € G if and only if ¢ (v]) = 23, ¢ (v2) = 13,
and ¢ (v3) = 12.

Given a subset S C [N], let G[S] be the subhypergraph of G induced by the
vertex set S. Finally, we define the k-uniform hypergraph H, whose vertex set is
[NV], such that

_ [N . .
H=Hy:=jec€ X :|Gle]| is odd ¢.

CLAIM 2.1. |H[S]| is even for every S € ().

Proof. Let S € (\"'1) and suppose for contradiction that | H[S]| is odd. Then

k+1
2GISI= Y 2= > > 1=Y [Glell= ) IGlel+ Y I[Glell.
feGlS] fEG[S]eE(i) ee(f) eZH[S] ecHI[S]

eDf

The first sum on the right-hand side above is even by definition of H and the
second sum is odd by definition of H and the assumption that | H[S]| is odd.
This contradiction completes the proof. (]
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CLAIM 2.2. |Gle]| < 2foreverye € ([]Z])-

Proof. For sake of contradiction, suppose that for e = (vy, ..., vx), where
V] < --- < Vg, we have |G[e]| > 3. Lete, = e\ {v,} for p € [k] and suppose
that e;, ej,¢; € G withi < j < [. In what follows, we will find a set S of size
k —3,where S C e; and S C ¢, such that x,, (S) # x,,(S). This will give us our
contradiction since ¢;, ¢; € G implies that x,, (S) = ¢ (S) = x¢,(5).

LetY = e\ {v;,vj,vy}and Y =Y \ {minY}. Let us first assume that i > 1
so that min Y = vy. In this case,

Xe,'(Y,U {vj}) = {lsl - 1}7

since we obtain Y’ U {v;} from e; by removing min Y and v; which are the first
and (I — 1)st elements of e;. Similarly,

Xe (Y U {v;}) = {1, i},

since we obtain Y’ U {v;} from e; by removing min ¥ and v; which are the first
and ith elements of ¢;. Because / > i + 1, we conclude that x,, (Y' U {v i) #
Xe,(Y' U {v;}) as desired.

Next, we assume thati = 1 and min Y = v, where g > 1. In this case,

Xe[(Y/U{vj}) = {q - lﬁl_ 1}’

since we obtain Y’ U {v;} from e; by removing v, and v; which are the (g — 1)st
and (I — 1)st elements of ¢;. Similarly,

Xe (Y ' Ufvj}) ={1,4"} whereq' =qifqg <landq'=qg—1ifq >,

since we obtain Y” U {v;} from ¢; by removing v; = v1 and v, which are the first
and ¢’th elements of ¢;. If ¢ # 2, then we immediately obtain ., (Y’ U {v;}) #
Xe, (Y U {v;}) as desired. On the other hand, if ¢ = 2, then ¢’ = g = 2 as well
and! > 4,s0l — 1 # g’ and again

Xe (V' U{v;) ={g =11 =1} #{1,q"} = xo, (Y' U {v;}).
This completes the proof of the claim. O

Let T3 be the (k — 1)-uniform hypergraph with vertex set S with |S| =k + 1
and three edges e[, 3, e3 such that there are three pairwise disjoint pairs pp, p2,
p3 € (3) with p; = {v;, v/} and e; = S\ p; fori € {1,2,3}.

CLam23. T3 £ G.

Proof. Suppose for a contradiction that there is a subset S C [N] of size k+ 1
such that 73 C G[S]. Using the notation above, assume without loss of generality
that v1 = minU; p; and v = min(py U p3). Let Y = §'\ (p1 U p3) and note that
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Y e (“’,ﬁ?) Let Y| C Y be the set of elements in Y that are smaller than vy, so
we have the ordering
Y1 < v < v < {u3, v}

Now, xe, (Y) is the pair of positions of v3 and vé in e1. Both of these positions
are at least |Y| + 2 as Y1 U {v;} lies before p3. On the other hand, the smallest
element of x,,(Y) is |Y1| 4+ 1 which is the position of vj in e3. This shows that
Xe; (Y) # Xe;(Y), which is a contradiction as both must be equal to ¢(Y) as
e;,e3 CG. O

We now show that every (k + 1)-set S C [N] spans 0, 2 or 4 edges of H.
By Claim 2.1, |H[S]] is even. Let G’ be the graph with vertex set S and edge
set {S\ f : f € G[S]}. So there is a one-to-one correspondence between G[S]
and G’ via the map f — S\ f.If G’ has a vertex x of degree at least three,
then |G[S \ {x}]] > 3 which contradicts Claim 2.2. Therefore G’ consists of
disjoint paths, cycles, and isolated vertices. This implies that a k-set A C S is
an edge in H exactly when S \ A is a vertex of degree one in G’. Next, observe
that Claim 2.3 implies that G’ does not contain a matching of size three, for the
complementary sets of this matching yield a copy of 73 C G. Hence, the number
of degree-one vertices in G’ is 0, 2, or 4, and therefore |H[S]| € {0, 2, 4} for all
se (1)

Let us now argue that «(H) < n, which is a straightforward application of
the probabilistic method. Indeed, we will show that this happens with positive
probability and conclude that an H with this property exists. For a given k-set,
the probability that it is an edge of H is p > 0, where p depends only on k.
Consequently, the probability that H has an independent set of size n is at most

N k=3
( )(l—p)c"
n

for some ¢’ > 0. Note that the exponent k—3 above is obtained by taking a partial
Steiner (n, k, k — 3) system S within a potential independent set of size n and
observing that we have independence within the edges of S. A short calculation
shows that this probability is less than 1 as long as c is sufficiently small. This
completes the proof of Theorem 1.2. (]
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