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equation with different types of variable mobilities and the molecular beam epitaxy mod-
els. This new finding opens potential paths of applying time-fractional phase field models
in studying anomalous coarsening dynamics.
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1. Introduction

Phase field models have been widely exploited to study material, physical and biology systems [17,33,36,45,45,50,53]. One
important application of phase field models is to study coarsening dynamics [11,13,20,22,52], which is a widely observed
phenomenon in material systems involving micro-structures. It is characterized by the dissipation of excessive Helmholtz
free energy and the growth of a characteristic length scale [11]. Mainly if we introduce a characteristic length scale R(t),
it grows like a power function in time, i.e., R(t) ~ O(té), where « > 0 indicates the growth order. In other words, R(t)* —
R(ty)* ~ c(t —ty) for some positive constant c. Or one could characterize the coarsening by an effective energy E(t), which

decays like a power function in time, i.e. E(t) ~ O(f%), where 8 > 0 indicates the order. In other words, E(t)? — E(ty)? ~
c(tp —t) with ¢ some positive constant. This is known as a power law scaling dynamics, which has already been widely
investigated both theoretically and numerically [11,19,20]. For instance the Cahn-Hilliard equation with smooth double-well
potential and phase-dependent diffusion mobility is studied in [11], where the authors show that the coarsening dynamics
of the Cahn-Hilliard equation is relative to the mobility coefficient: for CH equation with constant mobility, the free energy
scales as O(t*%); for the two-sided degenerate mobility, the free energy scales as O(t*%), which is independent of the
volume fraction of each phase [11]; for the one-sided degenerate mobility, the free energy scales depending on the volume
fraction of the phases. The coarsening of the molecular beam epitaxy (MBE) model has also been investigated [43]: for
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the MBE model with slope selection, the free energy scales as O(t‘%) and the roughness growth scales as O(t% ); for the MBE
model without slope selection, the roughness growth scales as O(t%). However, all these studies focus on mixtures without
long-range interactions. For the more complex material mixture, taking liquid crystal polymer solution as an example or
some materials with elastic memory, the scaling dynamics would change dramatically [29,40,41]. To study such kinds of
anomalous coarsening dynamics with a simplified reaction-diffusion PDE (without considering the hydrodynamics), a new
mechanism with nonlinear evolution property should be added.

One straightforward starting point to study such anomalous coarsening dynamics would be utilizing the fractional deriva-
tives, i.e., formulating fractional phase field models. Fractional phase field models have been studied in the last few years
and have quickly attracted increased attention ever since. The study of fractional phase-field models is motivated by the sig-
nificantly increased applications of fractional partial differential equations (FPDEs) to a wide variety of areas [30,31,34] and
the rapid developed mathematical, numerical and computational analysis of FPDEs over the past few decades. The concept
of FPDEs can be explained in the context of anomalously diffusive transport. The classical second-order diffusion PDE was
first presented by Fick in his study on how water and nutrients travel through cell membranes. Einstein and Pearson de-
rived the diffusion PDE independently from first principles and random walk under the common assumptions of (i) the
existence of a mean free path and (ii) the existence of a mean time taken to perform a jump in the particle movements in
the underlying processes. Under these assumptions, the variance of a particle excursion distance is finite. The central limit
theorem concludes that the probability of finding a particle somewhere in space satisfies a Gaussian distribution, which
gives a probabilistic description of the Fickian diffusion. In the last few decades more and more diffusion processes were
found to be non-Fickian, ranging from the signaling of biological cells [32], anomalous electrodiffusion in nerve cells [21],
foraging behavior of animals [35] to viscoelastic and visco-plastic flow [34] and solute transport in groundwater [5]. In these
cases either the particle movements have many long jumps or have experienced long waiting times, namely, the assump-
tions (i) or (ii) is violated. Consequently, the processes can have large deviations from the stochastic process of Brownian
motion, leading to anomalously diffusive transport that exhibits heavy tails either in space or in time. Consequently, clas-
sical integer-order PDE models fail to provide an accurate description of these problems. In contrast, it has been shown
that these anomalously diffusive transport can be better modeled by space-fractional PDE (for super-diffusive transport) or
time-fractional PDE (for sub-diffusive transport) [30,31].

The same principle applies to phase-field models. If the coarsening dynamic processes experience some long-range spa-
tial interaction and so the assumption (i) is violated, the corresponding phase-field models may be better described by
space-fractional phase-field models [39]. As a matter of fact, the original phase-field model was expressed in terms of an
integration of Helmholtz free energy that has a nonlocal spatial interaction [8]. It was approximated by a Laplacian operator
just for the modeling, mathematical and numerical simplicity. On the other hand, when the material during the coarsening
process exhibits the memory effect, the assumption (ii) is violated. The corresponding phase-field model may be described
by a time-fractional phase-field model [27].

In this paper, we study time-fractional phase-field models. Our major contribution is presenting a seminal observa-
tion that time fractional phase field models have a general power laws scaling property. The scaling of effective free en-
ergy/roughness in the time-fractional phase field models during coarsening follows a similar power law as the integer phase field
models, where the power is linearly proportional to the fractional order «. By far, this is the first report in the literature, Sev-
eral numerical examples of fractional phase field models with specific choices of free energies and mobilities are presented
to verify this new observation. The rigorous asymptotic analysis of this interesting correlation will be pursed in our future
work.

In the rest of this paper, we will introduce the classical and fractional phase field models in Section 2. And in Section 3,
we will provide the numerical approximations for the fractional phase field models. Afterward, we will present the power
scaling laws for the effective free energy and roughness of the time-fractional phase field models in Section 4. In the end,
we draw a brief conclusion and point out possible future research directions.

2. Phase field models

In this section, we first briefly introduce the classical (integer) phase field models and introduce the corresponding time-
fractional phase field models subsequently. For the detailed derivation and properties of phase field models, readers are
referred to [9,34,39] and the references therein.

2.1. Cassical phase field models

Consider a bounded domain £ with smooth boundary d<2. The inner product on Q is denoted as (f,g) = [, fgdx, for all
f, g [2(2). The [? norm of f, for all feL?(Q2) is denoted as || f|| = +/(f, f).

We focus on a material system with two components. Introduce a phase variable ¢ to represent the volume fraction
of one component, such that 1 — ¢ represents the volume fraction of the other component, For the situations of a material
system with multiple components, more phase variables should be introduced. We also introduce the notation E to represent
the total free energy. Given the explicit expression of E, there are usually two types of phase field equations, namely the
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Allen-Cahn type (AC) equation, and the Cahn-Hilliard type (CH) equation [2,7,8]. Both equations are in the categories of
gradient flow models.

For the Allen-Cahn equation, the rate of change d:¢ is in the direction of decreasing gradient of the free energy func-
tional E(¢), which reads as

d¢p =—21%, in Qr =Qx (0,T],

V¢-n=0,0n a2 x (0, T], (2.1)
¢ = o, in Qp = x {0},

where A is the mobility parameter, and 2 375 is the chemical potential (the functional derivative of E with respect to ¢). Its

energy dissipation law is

dE 8E 8¢ SE\,

= Qﬂﬁdx:fQ A(M) dx < 0. (2.2)
One other property of Allen—Cahn equation is its lacking of mass conservation, i.e.

dtf pdx f 1_dx¢0 (23)

The Cahn-Hilliard equation could be interpreted as derived by following the Fick's first law, where the flux flows from
regions of high chemical potential to low chemical potential regions, which reads as

e =V- {W?) in Qr =Q x (0, T],
Vé-n=0,V4 . .n=0,0n3Q x (0,T], (2.4)
¢ =¢o.in 9-0—Q x {0},

where A is the motility parameter. For the Cahn-Hilliard equation, it possesses an energy dissipation law as follows

dE [ OE 54 5E SE _ OE
d _f 53 30 0% - fgk|v$| ax+ [ 155 V3g mds<0. (2.5)
and a mass conservation property as
dtfqbdx fv (1V3¢)dx_f W— nds = 0 (2.6)

The major difference of these two models is the total volume of phase variable ¢ is conserved in the Cahn-Hilliard equation,
whereas it is not in the Allen-Cahn equation. Due to such difference, the Cahn-Hilliard equation is usually used to study
multiphase fluid flows, spinodal decomposition (coarsening), nucleation etc [3,6,8,11,48,49], where the total volume of the
phase ¢ is conserved. On the other hand, the Allen-Cahn equation is usually used to study crystal growth, solid-liquid phase
transition etc [23,26,47,51], where the total volume of the phase ¢ is not conserved. Nevertheless, both the Allen-Cahn
equation and the Cahn-Hilliard equation are thermodynamically consistent, i.e. their total free energy is none increasing in
time (at constant temperature).

2.2. Time fractional phase field models

Next, we introduce the corresponding time-fractional phase field models, i.e., the time-fractional Allen-Cahn (FAC) type
equations and the time-fractional Cahn-Hilliard (FCH) type equations. Unlike the integer phase field models which could be
derived from energy variation, there is not a clear physical or thermodynamical guidance available for deriving the fractional
phase field models yet. One widely used approach is simply replacing the integer time derivatives by the fractional time
derivatives.

Denote the Caputo fractional derivative of order o as ED?’ (with a (0, 1]), which is defined by Li and Xu [25,34]

tap(x,T) drt
F(l—a)f at  (t—1)*’ O<a<l (2.7)

a=1,

SD2(x,t) :=

t

with I'(-) the Gamma function. The Caputo type time-fractional differential operator provides a mean to model the sub-
diffusive or long time memory behavior. For simplicity, we consider periodic boundary conditions for the FPDEs in this
paper. Thus, the time-fractional Allen-Cahn equation reads

D¢ = —rfk.in Qr = Q x (0, T],

. 2.8
¢ = ¢, in Qo = Q2 x {0}. (2.8)

and the time-fractional Cahn-Hilliard equation reads
§Deg = V- (WVE),in Qr = 2 x (0,T], 29)

& — o, in Qo = Q x {0}
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With this ad-hoc formulation of fractional phase field models, there are no theoretical results on elucidating the intrinsically
thermodynamic laws in them. But all available numerical study do verify their obeying similar energy dissipation laws as
their corresponding integer phase field models [9,27,39].

3. Numerical approximation of the time fractional phase field models

In order to numerically study the time-fractional phase field models, some efficient and stable numerical approximations
are necessary. Since numerical analysis is not the major focus of this paper, we briefly introduce our numerical strategies.
Readers are encouraged to read [9,38] and the references therein for details.

3.1. Stabilized fast time discretization

Overall, there are mainly two major difficulties in discretizing the models in time: the time-fractional operator, and the
nonlinear terms. Here we provide general numerical techniques to deal with these issues as follows.

Consider the time domain [0 T|, which are discretized at {ti}’;\’=1 such that 0 =1ty <ty <ty--- <ty =T. For the time frac-
tional operator, we utilize the fast evaluation strategy proposed in [16,46]. Recall the Caputo fractional derivative of order o
(0<a<1)[128]

c _ 1 tdp(x,t) dr
OD?‘Nx‘t)_F(l—a)fu ar G- G0

The fractional-in-time derivative term is split into a sum of local part and history part as following:

1 e gps(X, 5)
Aoy 5™

GD2P (X, fpy) =

1 et s (X, S) 1 e (X, 5)

“Ta-w), " Ta—oh t—=>
= G(ts1) +Ca(Crg)s (3.2)
which are approximated respectively as follows:
LX) — (X, 1)
Ctes1) = AF TZ-a) (3.3)
and
1 rext) ¢xto) f[“ P(x.s) ]
Cu(t; = — — ————ds
nlet) = F—gy | At . “h Tsre
1 -¢(x tk) ¢(X t[)) f —{r —T)5;
. o [ -t g, 30
Mi-ol ag, &, Z
3 1 [oxt) ¢x i) _a%w-u _(t )] (3.4)
= F(l —0:) Atj?.,.] t;,,ﬂ < i“hist,i\'k+1/ |- .
with
I
Unist i (tes1) = fke_“"”_”s"tﬁ(x. T)dt
0

"
— e Shal () + f e~ Gn—DSig(x, 7)dt
L
Sl

SI-ZAtk
+(1 — e~5idte _ g=silbig, AR YD (X, By )].

&

e Ui 1 (8) + [{E’_s"m" —1+5A0)9(X, &)

Therefore, the fast evaluation of the Caputo fractional derivative is summarized as

Chagntl  _ o™ — " 1 ¢" ¢° -
D = e Te—a) F(l—of)[At“ ta—“";“"%l]‘ G-

n+1 n+1 n+1
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where
e—siﬁfnﬂ

s? Aty

+(1- e—Siltn _ e—s,-m,.si.Atn )¢n—l:|_

Un+l

hist, i

eSAmUR 4+ [{e“fm" —1+5;AL,)P"

We further utilize the stabilized semi-implicit strategy to discretize the nonlinear terms to end up with linear schemes.
Given the free energy E, we rewrite it as

E— %{w, ¢) +F. (36)

where L is the linear operators that can be separated from E, and F is the rest of E, ie., F =E — é(ﬁgb, ¢). With the notations
above, the semi-discrete scheme for the fractional Allen-Cahn equation is given as follows.

Scheme 3.1 (Semi-Discrete Scheme for the Fractional Allen-Cahn Equation). Given ¢", n> 1, we can get ¢"+! via

—_+1
Degr =A@ (com - g—; ) +Soa@r -3, (37)

where (o) ™ is a second-order extrapolation, and Sy is a stabilizing constant. The discrete operator ED‘[Y(,’)"H is defined in
(3.5).

The semi-discrete scheme for the fractional Cahn-Hilliard equation is given as follows.

Scheme 3.2 (Semi-Discrete Scheme for the Fractional Cahn-Hilliard Equation). Given ¢, n>1, we can get ¢"*! via

—+1
e = V- (2@ Ve + j—; ) -Sia2@m -3 +spA@m -3, (38)

where (.]n+ is a second-order extrapolation, and Sy, S; are stabilizing constants. The discrete operator ED‘[Y ¢"+1 is defined
in (3.5).

3.2. Compact finite difference spatial discretization

Here we further discretize the Scheme 3.1 and 3.2 in space using compact second order finite difference methods [14].
Consider a 2D domain € = [0, Ly] x [0, Ly], where Ly and Ly are two positive real numbers. We divide the domain into
rectangular meshes with uniform mesh sizes hy = Ly/Ny, hy = Ly/Ny, where Ny and N, are the number of meshes in each
direction.

Following the same notations as our previous work [14], we denote the sets Ex, Ey the edge-centered points for the
uniform partition, and G, G, the cell-centered points for the uniform partition, and functional spaces Cyy (center), &7
(east-west edges), and £, (north-south edges). Define the center-to-east-west-edge average and difference operators
Ag, Dy : Cypy — S,f‘:y. and the center-to-north-south-edge average and difference operators Ay, Dy : Cy,y — S,{‘iy. Denote the
full discrete Laplacian and biharmonic operator as

Ap = de(Dx) +dy(Dyp), Aj = Ap(Ap). (3.9)
With the notations above, the full discrete, linear scheme for the fractional Allen-Cahn equation is given as follows.

Scheme 3.3 (Full Discrete Scheme for the Fractional Allen-Cahn Equation). Given ¢", n> 1, we can get ¢"*! via

oD = l[ﬁnf.‘b"*‘ _(g—_;)m] +SoAn(¢m1 =G, (3.10)

where (o) ™ is a second-order extrapolation, and Sy is a stabilizing constant. The discrete operator ED‘[Y(,’)"H is defined in
(3.5).

The scheme for the fractional Cahn-Hilliard equation is given as follows.
Scheme 3.4 (Full Discrete Scheme for the Fractional Cahn-Hilliard Equation). Given ¢", n=1, we can get ¢"*! via
—i1+1 —1+1
§0e9m ! = d- [ @ T ND(L19™) |+, - [4,0. @D, (1) |

—n+1

+de - [40.@™ ))Dx(g—; )]+ [60.@ oy (gm)]
a1

S B 4 SoAn(@™ — BT, (311)
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Fig. 4.1. Energy scaling laws for the FCH model with constant mobility A = Aq. (2) The log — log plot of the effective energy and time with different
fractional-order «. (b) Energy decaying exponent fwo).

where (») ™ is a second-order extrapolation, and Sp, S; are stabilizing constants. The discrete operator ED‘} ¢"+1 is defined
in (3.5).

For detailed discussion on the choices of the stabilizing constants for Scheme 3.3 and 3.4, readers are referred to
[24,37,44].

4. Power law scaling dynamics

In this section, we present our numerical findings on the time-fractional phase field models, that is the scaling of effec-
tive free energy/roughness in the time-fractional phase field models during coarsening follows a similar power law as the
integer phase field models, where the power is linearly proportional to the fractional order a.

Here we consider a square domain [0 L] x [0 L] in 2D with L is the length in each direction, and choose periodic bound-
ary conditions in the following discussion. Define the roughness measure function W(t) as follows:

1 —
WU%=J——[(¢@%U—¢WJIOMQ, (41)
1€2] Jo
where (x, y.t) = K]ﬂ Jo @(x.y.t)dS2. It characterizes the fluctuations around its mean value. By the linear least square fit-
ting, we get the absolute value of slope for each linear line of energy and roughness, B(«), R(«), defined as
logio E(a, t) = B%(@) — () logit, logioW (e, t) =R’ (@) +R(a)logygt. (4.2)
where E(a, t) and W(a, t) are the energy function E(t) and roughness function W(t) with fractional order a respectively.

4.1. Power law scaling dynamics of the time fractional Cahn-Hilliard type equation

In the first example, we study the fractional Cahn-Hilliard (FCH) equation, equipped with the free energy
e 2, 1 242
E= [ |5IVeI"+-(1-¢%) |dx, (43)
ol?2 4
where the first term represents the enthalpy, and the second term is the Ginsburg-Landau (double-well) bulk energy func-

tional. The fractional Cahn-Hilliard equation with a variable mobility reads

D =V - (AM(P)Vp), (x1)eQx(0,T],
M= _£2A¢ + ¢3 - ¢’ {x! t) € Q X (0! T]! (4.4)
$(x,0) = o(x), xe,

where A(¢) is the motility parameter, which could be chosen as [11]
, . A
DA@) =hoi (WD) =hol1 —¢°l;  (iDAP) = 1+, (45)

First of all, we conduct numerical study on the FCH Eq. (4.4) with a constant mobility A(¢) = Ag. Follow the same set-
ting as [11], i.e., consider a domain [0, 47] x [0, 47], and pick £ =0.05, A9 =0.02, and choose random initial condi-
tion ¢|;—g = 0.001 x rand(—1, 1). The results are summarized in Fig. 4.1, where we have simulated several situations with
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Fig. 4.2. Energy scaling laws for the FCH model with variable mobility A = Ap|1 — ¢?|. (a) The log — log plot of the effective energy and time with different
fractional-order e. (b) Energy decaying exponent f (). This figure illustrates that the effective energy decays as O(t—% ), which is consistent with O(t~%)
as indicated in [11] for the integer Cahn-Hilliard equation.

a=0.3,05,0.7 and 0.9. We observe the energy scales approximately as 0(t~%), which is consistent with O(t‘%) as in-
dicated in [11] for the integer Cahn-Hilliard equation with constant mobility, i.e. the power of the power-law scaling is
linearly proportional to the fractional order a.

Next, we study the FCH Eq. (4.4) with variable mobility A(¢) = Ag|1 — ¢?|. We use the same initial values and parameters
as the example above. The energy plot at different time slots with various fractional orders are summarized in Fig. 4.2, We
observe that the energy scales approximately like O(t_%), which is consistent with O(t_gf) as indicated in [11] for the
integer Cahn-Hilliard equation with variable mobility A(¢) = Ag|1 — ¢?|.

To better understand the dynamics induced by the time-fractional phase field models, we present a time series of 2D
snapshots for the coarsening dynamics. We point out that the difference between the time-fractional phase field models
and integer phase field models lie in the timescales of coarsening. After rescaling, models with different fractional order o
predict qualitative similar patterns.

Remark 4.1. Rigorous analysis and comparisons on pattern formation between the CH and FCH models would be out of
this paper's scope. Here we point out several nice references for interested readers. A good review on the integer phase
field model formulation, numerical approximations and different instability mechanisms could be found in [18]. Experiment
calibrations on the Cahn-Hilliard equation with stability analysis is available in [15]. Some seminal work on discovering how
the order of the fractional derivative can change conditions of instability and longtime dynamics in time-fractional partial
differential equations include [4,12,42].

First of all, some 2D snapshots at different time slots are presented in Fig. 4.3 for the FCH model (4.4) with constant
mobility A = Ag. As indicated in Fig. 4.1, the FCH model with larger fractional order o has faster evolution dynamics, which
is consistent with the observation in Fig. 4.3. But the patterns resulted from the FCH model with different fractional order
a are qualitatively similar, saying if we compare Fig. 4.3 (b)-5, (c)-3 and (d}-2. In other words, tuning the fractional order
is a good mechanism for tuning the timescales, which could be utilized to model anomalous dynamics for mixtures with
memory effects or long-range interactions.

The corresponding coarsening dynamics for FCH model (4.4) with variable mobility A(¢) = Ag|1 — ¢?| at different time
steps are summarized in Fig. 4.4. We observe that FCH models with different fractional order o predict qualitative similar
coarsening patterns, and it is the time scale that differs from each other. Mainly larger fractional order leads to faster
evolution dynamics, which is consistent with the energy decaying dynamics in Fig. 4.2,

4.2. Power law scaling dynamics of the time-fractional Allen-Cahn type equation

In the second example, we study the time fractional Allen-Cahn type equation. In particular, we consider fractional
molecular beam epitaxy (FMBE) model. Given a smooth domain 2, we use ¢(x,t) : 2 — R to denote the height function of
MBE. The effective free energy is proposed as

E@) = [ [S1808 + £ a2 (46)

Here the first term represents the isotropic surface diffusion effect with £ a constant controlling the surface diffusion
strength, and the second term approximates the Enrlich-Schwoebel effect that the adatoms stick to the boundary from
an upper terrace, contributing to the steepening of mounds in the film [10].
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(d) =09

Fig. 4.3. Time snapshots of coarsening dynamics driven by the FCH model (2.9) with constant mobility A =A;. (a-d) The profiles of ¢ at t =
5,25, 50, 100, 150 for various fractional order « = 0.3, 0.5, 0.7 and 0.9 are presented, respectively.

If we choose f(V¢) = 1(|V@|? —1)2, the corresponding FMBE model with slope selection reads

§oro(x.0) = —M(£2A% — V- (V9 ~1)V9)). (x.0) R x O.T],
¢(x,0) =gp(x), xe.

(4.7)

For the FMBE model with slope selection, the energy scaling laws are summarized in Fig. 4.5. It indicates that the energy

scales approximately like 0(t~%), which is consistent with O(t‘é) as indicated in [43] for the integer MBE equation with
slope selection. Similarly, as shown in Fig. 4.6, the roughness scales approximately like 0(t¥), which is consistent with

O(t’}) as indicated in [43] for the integer MBE equation with slope selection.
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(a) @ =0.3

(d) =09

Fig. 44. Time snapshots of coarsening dynamics driven by the FCH model with variable mobility A = Ag|1 —¢@?|. (a-d) The profiles of ¢ at t =
5,25, 50, 100, 125 for various fractional order « = 0.3, 0.5, 0.7 and 0.9 are presented, respectively.

On the other hand, if we choose f(V¢) = —% In(1 + |V¢|?), the corresponding time-fractional MBE model without slope
selection reads

D (x,t) = —M(32A2¢,+V . (%)), x.t) e Qx (0,T],
¢(x,0) =gp(x), xef.

For the time-fractional MBE model without slope selection, the roughness scales approximately like 0(t%), which is consis-

(4.8)

tent with O(t%) as indicated in [43] for the integer MBE equation without slope selection. The results are summarized in
Fig. 4.7.

Time sequences of roughness (A¢) for the time-fractional MBE models are summarized in Fig. 4.8 (with slope selection)
and Fig. 4.9 (without slope selection). They predict qualitative similar patterns as the integer MBE models [9,23,43,47].
And we also observer the time-fractional MBE models with larger fractional order a evolve faster, which agrees with the
energy/roughness scaling as presented in Fig. 4.5 and Fig. 4.6.
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Fig. 4.5. Energy scaling laws for the time-fractional molecular beam epitaxy equation with slope selection. (a) The log — log plot of the effective energy
and time with different fractional-order «. (b) The least-square fitted energy decay power g for different fractional order c.
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Fig. 4.6. Roughness scaling laws for the FMBE model with slope selection. (a) The log — log plot of the roughness and time with different fractional-order
«. (b) The least-square fitted roughness growth power R(«) for different fractional order «.
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Fig. 4.7. Roughness growth scaling laws for the FMBE model without slope selection. (a) The log — log plot of the roughness and time with different
fractional-order «. (b) The least-square fitted roughness growth power R(«) for different fractional order «.
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(¢) a=0.7
(d) =029

Fig. 4.8. Time snapshots of the roughness (A¢) evolution of the FMBE model with slope selection. (a-d) The snapshots of A¢ at time t =
5,50, 100, 150, 200 for various fractional order @ = 0.3, 0.5, 0.7 and 0.9 are presented, respectively.

5. Conclusion

In this paper, we focus on the time-fractional phase field models (the Allen-Cahn equation and the Cahn-Hilliard equa-
tion) and their scaling laws during coarsening dynamics, discovering correlations of effective energy scaling laws and the
fractional order a.

For the time-fractional Cahn-Hilliard equation, we study the power law scaling behavior of effective free energies with
both constant mobility and variable mobility in coarsening dynamics. For FCH model with constant mobility, the effective
free energy scales as O[t‘%), which is consistent with the well known result (t_%] for integer order Cahn-Hilliard model
[11]. For the FCH model with phase-variable dependent mobility A = Ag|1 — ¢2|, the effective free energy scales as O(t_% ),
which is consistent with the result of O(t_ill) for the integer Cahn-Hilliard equation with such variable mobility.

For the time-fractional molecular beam epitaxy (MBE) model, the scaling behavior of the effective free energies and
roughnesses has been investigated. Specifically, we observe: the effective free energy decays as 0(t~%) and the roughness
Erows as 0(t%) for the MBE model with slope selection; and the roughness grows as 0(t%) for the MBE model without
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(d) =09

Fig. 49. Time snapshots of the roughness | A¢) evolution of FMBE model without slope selection. (a-d) The snapshots of Ag¢ at time t = 5, 50, 100, 150, 200
for fractional order o = 0.3,0.5,0.7 and 0.9 are presented, respectively.

slope selection. That is to say, the coarsening rate of MBE model could be manipulated by the fractional order a, and it
follows a power law with the power linearly proportional to a.

Overall, we investigate time-fractional phase field models and discover a general power-law scaling property. The effec-
tive free energy/roughness of the time-fractional phase field models during coarsening follows a similar power scaling law as the
integer phase field models, where the power is linearly proportional to the fractional order . These general power-law scaling
dynamics are verified numerically against several phase field models, including the Cahn-Hilliard (CH) equations with dif-
ferent variable mobilities and molecular beam epitaxy (MBE) models. This is the first time in literature to report/discover
such scaling correlation. This new finding sheds light on applying time-fractional phase field models in studying anomalous
coarsening dynamics. Rigorous asymptotic analysis of this interesting correlation will be pursed in our future work.
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