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A straight-line drawing of a graph G is a mapping which assigns to each vertex a point 
in the plane and to each edge a straight-line segment connecting the corresponding two 
points. The rectilinear crossing number of a graph G , cr(G), is the minimum number of 
pairs of crossing edges in any straight-line drawing of G . Determining or estimating cr(G)

appears to be a difficult problem, and deciding if cr(G) ≤ k is known to be NP-hard. In fact, 
the asymptotic behavior of cr(Kn) is still unknown.
In this paper, we present a deterministic n2+o(1)-time algorithm that finds a straight-line 
drawing of any n-vertex graph G with cr(G) + o(n4) pairs of crossing edges. Together with 
the well-known Crossing Lemma due to Ajtai et al. and Leighton, this result implies that 
for any dense n-vertex graph G , one can efficiently find a straight-line drawing of G with 
(1 + o(1))cr(G) pairs of crossing edges.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A drawing of a graph G is a mapping f that assigns to each vertex a distinct point in the plane and to each edge uv a 
continuous arc connecting f (u) and f (v), not passing through the image of any other vertex. Two edges in a drawing cross
if their interiors have a point in common. The crossing number of G , denoted by cr(G), is the minimum number of pairs 
of crossing edges in any drawing of G . Hence, cr(G) = 0 if and only if G is planar. Determining or estimating the crossing 
number of a graph is one of the oldest problems in graph theory, with over 700 papers written on the subject. We refrain 
here from attempting to give an overview of the long history of crossing numbers and their applications in discrete and 
computational geometry, and refer the reader to the survey articles by Pach and Tóth [33], Schaefer [35], and the extensive 
bibliography maintained by Vrt’o [42].

In the present paper, we focus on straight-line drawings of a graph G , that is, drawings of G where the edges are rep-
resented by straight-line segments. We will assume that in all such drawings, no three vertices are collinear, and no point 
lies in the interior of three distinct edges. The rectilinear crossing number of G , denoted by cr(G), is the minimum number 
of pairs of crossing edges in any straight-line drawing of G . Clearly cr(G) ≤ cr(G), and a theorem of Fáry [19] states that 

* Corresponding author.
E-mail addresses: jacobfox@stanford.edu (J. Fox), pach@cims.nyu.edu (J. Pach), asuk@ucsd.edu (A. Suk).

1 Supported by a Packard Fellowship, by NSF CAREER award DMS 1352121, and by an Alfred P. Sloan Fellowship.
2 Supported by a Hungarian Science Foundation NKFI grant, by Swiss National Science Foundation Grants 200021-165977 and 200020-162884.
3 Supported by NSF grant DMS-1800736, an NSF CAREER award, and an Alfred Sloan Fellowship.
https://doi.org/10.1016/j.comgeo.2019.04.003
0925-7721/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comgeo.2019.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:jacobfox@stanford.edu
mailto:pach@cims.nyu.edu
mailto:asuk@ucsd.edu
https://doi.org/10.1016/j.comgeo.2019.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2019.04.003&domain=pdf


46 J. Fox et al. / Computational Geometry 81 (2019) 45–53
cr(G) = 0 when G is planar. On the other hand, it was shown by Bienstock and Dean [9] that there are graphs with crossing 
number four, whose rectilinear crossing numbers are arbitrarily large.

Determining the rectilinear crossing number of a graph appears to be a difficult problem. In fact, the asymptotic value 
of cr(Kn) is still unknown. The exact values for cr(Kn) are known for n ≤ 27 and n = 30, and for large n, the current best 
known bounds are

0.379972

(
n

4

)
< cr(Kn) < 0.380473

(
n

4

)
,

due to Ábrego et al. [1] and Fabila-Monroy and López [18] respectively. For more details on cr(Kn), including its striking 
connection to Sylvester’s four-point problem [39,40], see [2,36].

From an algorithmic point of view, computing cr(G) is known to be NP-hard [8]. More precisely, it is known to be 
∃R-complete, that is, complete for the existential theory of the reals (see [34,35]). On the other hand, many researchers 
have designed polynomial time algorithms for approximating crossing numbers of sparse graphs. In particular, a seminal 
result of Hopcroft and Tarjan [26] is that there is a linear time algorithm for testing planarity of a graph. Kawarabayashi 
and Reed [27] generalized their result and established a linear time algorithm that decides whether cr(G) ≤ k when k is 
fixed. Leighton and Rao [30] obtained an efficient algorithm that finds a drawing of any bounded-degree n vertex graph 
G with at most O (log4 n)(n + cr(G)) pairs of crossing edges. This was later improved by Even, Guha, and Schieber [17]
to O (log3 n)(n + cr(G)), and further improved by Arora, Rao, and Vazirani [6] to O (log2 n)(n + cr(G)). A breakthrough of 
Chuzhoy [15] gives an efficient (randomized) algorithm that finds a drawing of a bounded degree n-vertex graph with at 
most (cr(G))10 logO (1) n crossing edges. For further improvements and related results on computing cr(G), consult [14,28].

For dense graphs G , very little is known about cr(G), and as mentioned above, not even the asymptotic value of cr(Kn). 
Our main result is the following.

Theorem 1.1. There is a deterministic n2+o(1)-time algorithm for constructing a straight-line drawing of any n-vertex graph G in the 
plane with

cr(G) + O (n4/(log logn)δ)

crossing pairs of edges, where δ > 0 is an absolute constant.

A classic result of Ajtai et al. [5] and Leighton [29], known as the Crossing Lemma, implies that the rectilinear crossing 
number of any n-vertex graph with e edges is at least e3

64n2
− 4n. Hence, all n-vertex graphs G with �(n2) edges satisfy 

cr(G) ≥ �(n4). This implies the following.

Corollary 1.2. There is a deterministic n2+o(1)-time algorithm for constructing a straight-line drawing of any n-vertex graph G with 
|E(G)| ≥ εn2 , where ε > 0 is fixed, such that the drawing has at most (1 + o(1))cr(G) crossing pairs of edges.

Let us remark that the running times in Theorem 1.1 and Corollary 1.2 can be taken to be O (n222
√
log log n

). Moreover, Corol-
lary 1.2 holds with ε = �(1/(log logn)c) for some constant c > 0.

A sequence (Gn : n = 1, 2, . . .) of graphs with |V (Gn)| = n is called quasi-random with density p (where 0 < p < 1) if, for 
all subsets X, Y ⊂ V (Gn), eGn (X, Y ) = p|X ||Y | + o(n2). An important result of Chung, Graham, and Wilson [12] shows that 
being quasi-random with density p is equivalent to many other properties almost surely satisfied by the random graph 
G(n, p). Studying properties of quasi-random graphs has been an important research direction with numerous applications. 
In Section 5, we prove the following result.

Theorem 1.3. Fix 0 < p < 1 and let (Gn : n = 1, 2, . . .) be a sequence of graphs that is quasi-random with density p. Then

cr(Gn) = (1 + o(1))p2 · cr(Kn).

More generally, we show any two edge-weighted graphs which are close in cut-distance have rectilinear crossing numbers 
which are close (see Lemma 3.3). For results on crossing numbers of random graphs, consult [38].

Organization. In the next section, we collect several geometric results on planar point sets and give an exponential time al-
gorithm for computing the rectilinear crossing number of a (small) graph. In Section 3, we show that if two graphs are close 
in cut-distance, then their rectilinear crossing numbers are approximately the same. In Section 4, we prove Theorem 1.1. 
Finally in Section 5, we prove Theorem 1.3.

We omit floor and ceiling signs whenever they are not crucial. All logarithms are base 2.
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2. Order types and same-type transversals

Let V = (v1, . . . , vn) be an n-element point sequence in R2 in general position, that is, no three members of V are 
collinear. The order type of V is the mapping χ : (V3) → {+1, −1} (positive orientation, negative orientation), assigning each 
triple of V its orientation. By setting vi = (xi, yi) ∈R2, for i1 < i2 < i3,

χ({vi1 , vi2 , vi3}) = sgndet

⎛
⎝ 1 1 1

xi1 xi2 xi3
yi1 yi2 yi3

⎞
⎠ .

Therefore, two n-element point sequences V = (v1, . . . , vn) and U = (u1, . . . , un) have the same order type if they are 
“combinatorially equivalent.” By lexicographically ranking each triple (i1, i2, i3), where 1 ≤ i1 < i2 < i3 ≤ n, we can describe 
each order type χ with the vector (χ1, χ2, . . .) ∈ {−1, +1}

(n
3

)
, such that χ j = +1 if and only if χ({vi1 , vi2 , vi3 }) > 0 and 

Rank(i1, i2, i3) = j. We will call the vectors χ∗ ∈ {−1, +1}
(n
3

)
abstract order types, and we say that an abstract order type χ∗

is realizable if there is a point set V in the plane whose order type realizes χ∗ . The concept of order types was introduced 
by Goodman and Pollack [24] and has played a crucial role in gathering knowledge about crossing numbers. See [24,23] for 
more background on order types.

Given k disjoint subsets V1, . . . , Vk ⊂ V , a transversal of (V1, . . . , Vk) is any k-element sequence (v1, . . . , vk) such that 
vi ∈ Vi for all i. We say that the k-tuple of parts (V1, . . . , Vk) has same-type transversals if all of its transversals have the 
same order type. One of the key ingredients in the proof of Theorem 1.1 is the following regularity lemma for same-type 
transversals established by the authors in [21]. A partition on a finite set V is called equitable if any two parts differ in size 
by at most one.

Theorem 2.1. There is an absolute constant C such that the following holds. For each 0 < ε < 1 and for any finite point set V in R2 , 
there is an equitable partition V = V1 ∪ V2 ∪ · · · ∪ V K , with 1/ε < K < ε−C , such that all but at most ε

(K
4

)
quadruples of parts 

{Vi1 , Vi2 , Vi3 , Vi4 } have same-type transversals.

For small graphs G = (V , E) with |V (G)| = K , we can compute cr(G) as follows. We generate 
(K
3

)
polynomials 

f1, f2, . . . , f(K
3

) ∈ R[x1, . . . , xK , y1, . . . , yK ], where for 1 ≤ i1 < i2 < i3 ≤ K and Rank(i1, i2, i3) = j, we have

f j = det

⎛
⎝ 1 1 1

xi1 xi2 xi3
yi1 yi2 yi3

⎞
⎠ .

Fix an abstract order type χ∗ ∈ {+1, −1}
(K
3

)
, and let j1, . . . , jr be the indices for which χ∗

j�
= +1, and let j′1, . . . , j′s be 

the indices for which χ∗
j′�

= −1. In order to decide if χ∗ is realizable, we need to see if there are real solutions to the 
polynomial system

f j1 > 0, . . . , f jr > 0 f j′1 < 0, . . . , f j′s < 0.

This is a special case of the satisfiability problem in the existential theory of the reals (see [10]). By an algorithm of Basu, 
Pollack, and Roy [7], we can decide if the polynomial system above has real solutions in 2O (K log K ) time. Moreover, if there 
are solutions, the algorithm will output a solution (x1, . . . , xK , y1, . . . , yK ), where each coordinate uses at most 2O (K log K )

bits. Hence if χ∗ is realizable, we obtain a point set V = {v1, . . . , vK } in the plane that realizes χ∗ , and each point has at 
most 2O (K log K ) bits.

If we do obtain such a point set V , we then compute the minimum number of pairs of crossing edges over all straight-
line drawings of G which uses V as its vertex set. This can be done in 2O (K log K ) time. By repeating the procedure above 
over all 2

(K
3

)
abstract order types χ∗ , we have the following.

Lemma 2.2. Given a graph G on K vertices, we can find a straight-line drawing of G with cr(G) pairs of crossing edges in 2O (K 3) time.

See [3,4] for an alternative heuristic method for computing cr(G).

3. Cut-distance and the Frieze–Kannan regularity lemma

An edge-weighted graph G = (V , E) is a graph with weights wG(uv) ∈ [0, 1] associated with each edge uv ∈ E(G). For 
convenience, set wG(uv) = 0 if uv /∈ E(G). For S, T ⊂ V (G), we define

eG(S, T ) =
∑

wG(uv).
u∈S,v∈T
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Note that if the sets S and T have a nonempty intersection, the weights of the edges running in S ∩ T are counted twice. 
Let G and G ′ be two edge weighted labeled graphs with the same vertex set V = {v1, . . . , vn}. The cut-distance between G
and G ′ is defined as

d(G,G ′) = max
S,T⊂V

|eG(S, T ) − eG ′(S, T )| .

Hence, the cut-distance between two labeled graphs measures how different the two graphs are when considering the size 
of various cuts. This concept has played a crucial role in the work of Frieze and Kannan [22] on efficient approximation 
algorithms for dense graphs. See [11] and the book [31] for more results on cut-distance.

We generalize the concept of crossing numbers to edge weighted graphs as follows. Let D be a straight-line drawing of 
G in the plane, and let XD ⊂ (E(G)

2

)
denote the set of pairs of crossing edges in the drawing. The rectilinear crossing number

of the edge-weighted graph G is defined as

cr(G) = min
D

∑
(uv,st)∈XD

wG(uv) · wG(st),

where the minimum is taken over all straight-line drawings of G . Thus for any unweighted graph G = (V , E), we can assign 
weights wG(uv) = 1 for uv ∈ E(G) and wG(uv) = 0 for uv /∈ E(G) so that the definition of cr(G) remains consistent. By 
copying the proof of Lemma 2.2 almost verbatim, we have the following lemma.

Lemma 3.1. Let G be an edge weighted graph on K vertices, where the weight of each edge uses at most B bits. Then we can find a 
straight-line drawing of G with cr(G) weighted edge crossings in 2O (K 3)B2 time.

Another key ingredient used in the proof of Theorem 1.1 is a variant of Szemerédi’s regularity lemma developed by 
Frieze and Kannan. Szemerédi’s regularity lemma [41] is one of the most powerful tools in modern combinatorics and gives 
a rough structural characterization of all graphs. According to the lemma, for every ε > 0 there is K = K (ε) such that every 
graph has an equitable vertex partition into at most K parts such that all but at most an ε fraction of the pairs of parts 
behave “regularly.”4 The dependence of K on 1/ε is notoriously strong. It follows from the proof that K (ε) may be taken 
to be an exponential tower of twos of height ε−O (1) . Gowers [25] used a probabilistic construction to show that such an 
enormous bound is indeed necessary. This is quite unfortunate, because in algorithmic applications of the regularity lemma 
this parameter typically has a negative impact on the efficiency. Consult [13], [37], [20] for other proofs that improve on 
various aspects of the result.

Frieze and Kannan [22] developed a weaker notion of regularity which is sufficient for certain algorithmic applications, 
and for which the dependence on the approximation parameter ε is much better. Let ε > 0 and let G = (V , E) be a graph 
on n vertices. An equitable partition P : V = V1 ∪· · ·∪ V K is said to be ε-Frieze-Kannan-regular if for all subsets S, T ⊂ V (G), 
we have∣∣∣∣∣∣eG(S, T ) −

∑
1≤i, j≤K

eG(Vi, V j)
|S ∩ Vi||T ∩ V j|

|Vi||V j|

∣∣∣∣∣∣ < εn2.

Frieze and Kannan [22] showed that for any ε > 0, every graph G = (V , E) has an ε-Frieze-Kannan-regular partition with K
parts, where 1/ε < K < 2O (ε−2) . Moreover, such a partition can be found in randomized O (n2)-time. For the algorithm we 
present in the next section, we will use the following more recent algorithmic version due to Dellamonica et al.

Theorem 3.2 ([16]). There is an absolute constant c such that the following holds. For each ε > 0 and for any graph G = (V , E) on n
vertices, there is a deterministic algorithm which finds an ε-Frieze-Kannan-regular partition on V with at most 2ε−c

parts, and runs 
in 22ε−c

n2-time.

Given an n-vertex graph G = (V , E), let P : V = V1 ∪ · · · ∪ V K be an ε-Frieze-Kannan-regular partition obtained from 
Theorem 3.2. We now define two edge-weighted complete graphs G/P and GP as follows. Let G/P be the edge-weighted 
graph on the vertex set {1, . . . , K } and with edge weights

wG/P (i j) = eG(Vi, V j)

(n/K )2
1 ≤ i �= j ≤ K .

Let GP be an edge-weighted graph with vertex set V = V (G), and with edge weights

4 For a pair (Vi, V j) of vertex subsets, the density d(Vi, V j) is defined as eG (Vi ,V j )

|Vi ||V j | . The pair (Vi, V j) is called ε-regular if for all V ′
i ⊂ Vi and V ′

j ⊂ V j

with |V ′
i | ≥ ε|Vi | and |V ′

j | ≥ ε|V j |, we have |d(V ′
i , V ′

j) − d(Vi , V j)| ≤ ε.
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wGP (uv) =

⎧⎪⎨
⎪⎩

eG (Vi ,V j)

(n/K )2
if u ∈ Vi, v ∈ V j , 1 ≤ i �= j ≤ K ;

0 if u, v ∈ Vi , 1 ≤ i ≤ K .

Thus, the Frieze–Kannan regularity lemma says that d(G, GP ) < εn2, which implies that G/P is a small graph that gives 
a good approximation of G . We now prove the following lemma which establishes a relationship between cr(G) and cr(GP ).

Lemma 3.3. Let ε ∈ (0, 1/2) and let G and G ′ be two n-vertex edge-weighted graphs on the same vertex set V , such that each edge 
has weight at most 1. If d(G, G ′) < εn2 , then we have

|cr(G) − cr(G ′)| ≤ ε
1
4C n4,

where C is an absolute constant from Theorem 2.1.

Proof. Consider a straight-line drawing D of G = (V , E) in the plane such that if XD ⊂ (E
2

)
denotes the set of pairs of 

crossing edges in D, we have

cr(G) =
∑

(e1,e2)∈XD

wG(e1)wG(e2). (1)

With slight abuse of notation, let V be the point set in the plane representing the vertices of G in the drawing D. 
We can assume that V is in general position. With approximation parameter ε1/(4C) , we apply Theorem 2.1 to the point 
set V and obtain an equitable partition V = V1 ∪ · · · ∪ V K , where K ≤ ε−1/4, such that all but at most ε1/(4C)

(K
4

)
quadru-

ples of parts (Vi1 , Vi2 , Vi3 , Vi4) have same-type transversals. Let T ⊂ ([K ]
4

)
be the set of quadruples (i1, i2, i3, i4) such that 

(Vi1 , Vi2 , Vi3 , Vi4) has same type transversal and every such transversal is in convex position. Then for each such quadruple, 
we can order the elements (i1, i2, i3, i4) ∈ T so that every segment with one endpoint in Vi1 and the other in Vi2 crosses 
every segment with one endpoint in Vi3 and the other in Vi4 . Therefore, we have

cr(G) ≥
∑

(i1,i2,i3,i4)∈T

eG(Vi1 , Vi2)eG(Vi3 , Vi4). (2)

On the other hand, let us consider the drawing D′ of G ′ on the same point set V = V1 ∪ · · · ∪ V K . We say that the 
quadruple (v1, v2, v3, v4) ∈

(V
4

)
is bad if two members lie in a single part V j , or if all four members lie in distinct parts 

Vi1 , Vi2 , Vi3 , Vi4 such that (Vi1 , Vi2 , Vi3 , Vi4) does not have same-type transversals. By Theorem 2.1, we have at most

K

(
n/K�
2

)(
n

2

)
+ ε

1
4C

(
K

4

)⌈ n

K

⌉4 ≤ n4

4K
+ Kn2 + ε

1
4C

(
n

4

)
≤ 2ε

1
4C

(
n

4

)
,

bad quadruples. Notice that if (Vi1 , Vi2 , Vi3 , Vi4) has same type transversals, and every such transversal is not in convex 
position, then (Vi1 , Vi2 , Vi3 , Vi4 ) only contributes to bad quadruples and disjoint edges. Therefore, since each edge has 
weight at most one, we have

cr(G ′) ≤
∑

(i1,i2,i3,i4)∈T

eG ′(Vi1 , Vi2)eG ′(Vi3 , Vi4) + 2ε
1
4C

(
n

4

)
.

Since d(G, G ′) < εn2, and by (2), we have

cr(G ′) ≤ ∑
(i1,i2,i3,i4)∈T

eG ′(Vi1 , Vi2)eG ′(Vi3 , Vi4) + 2ε
1
4C

(n
4

)

≤ ∑
(i1,i2,i3,i4)∈T

(eG(Vi1 , Vi2) + εn2)(eG(Vi3 , Vi4) + εn2) + 2ε
1
4C

(n
4

)

≤ cr(G) + ε1/2n4

2 + ε n4

4! + 2ε
1
4C

(n
4

)

≤ cr(G) + ε
1
4C n4.

The last inequality follows from the fact that C is a sufficiently large constant. A symmetric argument also shows that 
cr(G) ≤ cr(G ′) + ε

1
4C n4, and the statement follows. �
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Let G be an edge-weighted graph on the vertex set V = {1, . . . , K } with weights wG(i, j) ∈ [0, 1]. The blow-up G[m] of 
G is the edge-weighted graph obtained from G by replacing each vertex i by an independent set Ui of order m, and each 
edge between Ui and U j has weight wG (i, j) for i �= j.

Lemma 3.4. Let G and G[m] be described as above. Then
0 ≤ cr(G[m]) −m4cr(G) ≤ K 3m4.

Proof. We start by proving the second inequality first. Fix a drawing D of G such that if X denotes the set of pairs of 
crossing edges in D, we have∑

(e1,e2)∈X

wG(e1)wG(e2) = cr(G).

Let V be the point set in the plane representing the vertices of G in the drawing. We can assume that V is in general 
position. We draw the blow-up graph G[m] as follows. For each point v ∈ V in the plane, we choose a very small δ and add 
m − 1 points in the disk centered at v with radius δ. These points will represent Uv . By choosing δ sufficiently small, every 
quadruple of parts (Ui1 , Ui2 , Ui3 , Ui4 ) will have same-type transversals. Moreover, we can do this so that the resulting point 
set is in general position. Finally if uv ∈ E(G), we draw all edges between the point sets Uu and Uv . Let Xm denote the set 
of pairs of crossing edges in our drawing of G[m].

Set U = U1 ∪ · · · ∪ UK . We say that the quadruple (u1, u2, u3, u4) of points in U is bad if two of its members lie in a 
single part Ui . Hence the number of bad quadruples in U is at most K

(m
2

)(Km
2

)
. Since each edge has weight at most one, we 

have

cr(G[m]) ≤ ∑
(e1,e2)∈Xm

wG[m](e1)wG[m](e2)

≤ m4cr(G) + K
(m
2

)(Km
2

)

≤ m4cr(G) + K 3m4.

On the other hand, now consider a drawing D′ of G[m] such that if X ′ denotes the set of pairs of crossing edges in D′ , we 
have

cr(G[m]) =
∑

(e1,e2)∈X ′
wG[m](e1)wG[m](e2).

Let V (G[m]) = U1 ∪ · · · ∪ UK . By selecting one point from each Ui , we obtain a drawing of G which has at least cr(G)

weighted pairs of crossing edges. Summing over all of these mK distinct drawings of G , each weighted crossing appears 
mK−4 times. Therefore,

cr(G[m]) ≥ cr(G) ·mK /mK−4 =m4cr(G).

This completes the proof. �
4. Proof of Theorem 1.1

The algorithm. Input: Let G be a graph with vertex set V = {v1, v2, . . . , vn}.

1. Set ε = (log logn)
−1
2c , where c is defined in Theorem 3.2. We apply Theorem 3.2 to G with approximation parameter 

ε, and obtain an equitable partition P : V = V1 ∪ · · · ∪ V K on our vertex set with the desired properties such that 
1/ε < K < 2ε−c = 2

√
log log n . This can be done deterministically in n2+o(1)-time using the algorithm of Dellamonica et al. 

[16].

2. Let G/P be the edge-weighted graph on the vertex set {1, . . . , K } with edge weights wG/P (i j) = eG (Vi ,V j)

|Vi ||V j | . Using 
Lemma 3.1, we can find a drawing of G/P with cr(G/P) weighted pairs of crossing edges. Let U = {u1, . . . , uK } be 
the point set for such a drawing where each point uses at most 2O (K log K ) bits. This can be done in 2O (K 3) = no(1) time.

3. We draw G = (V , E) as follows. Let L be the set of lines spanned by U , and let δ be the minimum positive distance5
between the points in U and the lines in L. Note that δ uses at most 2O (K log K ) bits since the line spanned by any two 

5 The distance between a point and a line in the plane is the length of the line segment which joins the point to the line and is perpendicular to the 
line.
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points in U will have the form y = m0x + b0, where m0 and b0 uses at most 2O (K log K ) bits. Therefore, the distance 
between a point in U and the line y =m0x +b0 will use at most 2O (K log K ) bits. Set D(i, δ/10) to be the disk centered at 
ui with radius δ/10. We place the points of Vi in D(i, δ/10) so that the point set V1∪· · ·∪V K is in general position, and 
each point uses at most 2O (K log K ) < O (n) bits. Notice that every quadruple of parts (Vi1 , Vi2 , Vi3 , Vi4) has same-type 
transversals. We then draw all edges of G on this point set. This can be done in O (n2) time.

4. Return: the drawing of G .

The total running time for the algorithm above is n2+o(1) .
Let D be the drawing of G = (V , E) obtained from the algorithm above, where V = {v1, . . . , vn} ⊂ R2, and let X denote 

the set of pairs of crossing edges in D. We say that the quadruple of points {vi1 , vi2 , vi3 , vi4 } in V is bad if two of its 
members lie in a single disk D( j, δ/10). Hence there are at most n4/(2K ) bad quadruples. Therefore

|X | ≤
( n

K

)4
cr(G/P) + n4

2K
. (3)

Just as above, let GP be the edge weighted graph with vertex set V (same as G), with edge weights wGP (uv) =
eG(Vi, V j)/(n/K )2, if u ∈ Vi , v ∈ V j and i �= j, and wGP (uv) = 0 otherwise. Since GP is an (n/K )-blow-up of G/P , by 
the proof of Lemma 3.4, we have

( n

K

)4
cr(G/P) ≤ cr(GP ). (4)

Since Theorem 3.2 implies that the cut-distance between G and GP satisfies d(G, GP ) < εn2, Lemma 3.3 implies that

cr(GP ) ≤ cr(G) + ε
1
4C n4. (5)

Putting together (3), (4), and (5), shows that

|X | < cr(G) + O

(
n4

(log logn)δ

)
,

where δ is an absolute constant. This completes the proof of Theorem 1.1.

5. The rectilinear crossing number of quasi-random graphs

Proof of Theorem 1.3. Let D be a straight-line drawing of Gn in the plane with exactly cr(Gn) edge crossings, and let V =
{v1, v2, . . . , vn} be the point set in the plane that represents the vertices of Gn in the drawing. Without loss of generality, 
we can assume no three members of V are collinear, no two members of V share the same x-coordinate, and V is ordered 
by increasing x-coordinate.

Set ε = n−1/2C , where C is defined in Theorem 2.1. By Theorem 2.1, there is an equitable partition V = V1 ∪ · · · ∪ V K

into K parts, where K ≤ ε−C = √
n, such that all but at most ε

(K
4

)
quadruples (Vi1 , Vi2 , Vi3 , Vi4) of parts have same-type 

transversals. Let Q ⊂ (V
4

)
be the set of quadruples in V that are in convex position. Since the number of quadruples in Q

is equal to the number of crossing segments induced by the point set V , we have |Q | ≥ cr(Kn). We say that a quadruple 
(vi1 , vi2 , vi3 , vi4 ) ∈ Q is bad if two of its members lie in a single part V j , or if they lie in distinct parts of (V j1 , V j2 , V j3 , V j4 )

the does not have same-type transversals. Hence the number of bad quadruples in Q is at most

K

(
n/K

2

)(
n

2

)
+ ε

(
K

4

)⌈ n

K

⌉4 ≤ n4

4K
+ ε

(
n

4

)
.

Let T denote the number of quadruples of parts (Vi1 , Vi2 , Vi3 , Vi4), where each such quadruple (Vi1 , Vi2 , Vi3 , Vi4 ) has 
same-type transversals and each such transversal is in convex position. Then we have

T ·
( n

K

)4 ≥ |Q | −
(

n4

4K
+ ε

(
n

4

))
≥ cr(Kn) −

(
n4

4K
+ ε

(
n

4

))
.

Since

cr(Gn) ≥ T
(
p�n/K�2 − o(n2)

)2 = Tp2�n/K�4 − o(n4),

this implies

cr(Gn) ≥ p2cr(Kn) − p2
(

n4 + ε

(
n
))

− o(n4) = p2cr(Kn) − o(n4).

4K 4
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On the other hand, drawing Gn in the plane by placing its vertices on a point set that minimizes the number of quadru-
ples in convex position, one can follow the arguments above to show that

cr(Gn) ≤ p2cr(Kn) + o(n4).

This completes the proof of Theorem 1.3. �
6. Concluding remarks

Pach et al. [32] introduced the following alternative notion of crossing number. For any positive integer k ≥ 1, the 
geometric k-planar crossing number of G , denoted by crk , is the minimum number of crossings between edges of the same 
color over all k-edge-colorings of G and all straight-line drawings of G . By following the proof of Theorem 1.1 almost 
verbatim, we have the following theorem. We note that one needs to slightly modify the proof of Lemma 3.3, by coloring 
the edges of G ′ between parts Vi1 and Vi2 (Vi3 and Vi4 ), so that the number of edges in color i between the two parts in 
G ′ is roughly the same as the number of edges in color i between the two parts in G .

Theorem 6.1. Let k ≥ 1 be a fixed constant. Given any n-vertex graph G, there is a deterministic n2+o(1)-time algorithm that finds a 
straight-line drawing of G in the plane, and a k-coloring of the edges in G, such that the number of monochromatic pairs of crossing 
edges in the drawing is at most crk(G) + O (n4/(log logn)δ), where δ is an absolute constant.

We suspect that Theorem 1.1 also holds for other crossing number variants.
Let us also remark that the rectilinear crossing number is a testable parameter, which means that there is a constant time 

randomized algorithm for approximating the rectilinear crossing number. More precisely, for each ε > 0 there is t = t(ε) > 0
such that the following holds. If G is a graph on n vertices, by sampling a random induced subgraph H of G on t vertices, 
we can approximate with probability of success at least .99 the rectilinear crossing number of G with error at most εn4. 
We do this by noting that the random sample H is, with probability at least .99, close in cut-distance to G (see the Lovász 
book [31] for details). By Lemma 3.3, if they are close in cut-distance, we get that cr(G) is within εn4 of cr(H)n

4

t4
.
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