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Abstract: We present the expansion of the Basic Sensitivity Theorem to a second order
Taylor approach and the implications to explicit model predictive control of quadratically
constrained systems. The expansion enables the derivation of an algorithm for the analytical
solution of convex multiparametric quadratically constraint programming (mpQCQP) problems
and explicit quadratically constrained NMPC problems. We derive the analytical parametric
expressions of the control actions for a quadratically constrained MPC problem and its
corresponding critical regions. We show the piecewise non-linear form of the solution and closed-
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1. INTRODUCTION

1.1 The Basic Sensitivity Theorem

Consider the following general optimization problem:

min
x

f(x, θ)

s.t. gi(x, θ) ≤ 0
hj(x, θ) = 0
x ∈ Rn

θ ∈ Rm

(1)

where x is the optimization variables, θ the uncertain
parameters and sets i ∈ I, j ∈ J correspond to the
inequality and equality constraint sets, respectively.

IF

(1) the functions defining the problem are twice differen-
tiable in x and if their gradients with respect to x and
the constraints are once continuously differentiable in
θ in a neighborhood of (x∗, θ∗),

(2) the second-order sufficient conditions for a local min-
imum of the problem hold at x∗ with associated
Lagrange multipliers λ∗ and µ∗,

(3) the gradients ∇gi(x
∗, θ∗) (for i ∈ I such that

gi(x
∗, θ∗) = 0) and ∇hj(x

∗, θ∗) are linearly indepen-
dent and

(4) λi ≥ 0 for i ∈ I such that gi(x
∗, θ∗) = 0

THEN

• x∗ is a local isolated minimizing point of the problem
and the associated Lagrange multipliers λ∗

i and µ∗
j

are unique
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• for θ in the neighborhood or θ∗, there exists a
unique, once continuously differentiable vector func-
tion η(θ) = [x(θ), λ(θ), µ(θ)]T satisfying the second-
order sufficient conditions for a local minimum of the
problem with associated unique Lagrange multipliers
λ(θ) and µ(θ).

• for θ near θ∗ the set of binding inequalities is un-
changed, strict complementarity slackness holds and
the binding constraint gradients are linearly indepen-
dent at x(θ).

The above conditions are known as the Basic Sensitivity
Theorem (Fiacco, 1983). If there exist λ∗

i and µ∗
j such that

the first order KKT conditions hold:

∇xL(x
∗, λ∗, µ∗, θ∗) = ∇xf(x

∗, θ∗) +

k∑
i=1

λ∗
i∇xgi(x

∗, θ∗)+

+

p∑
i=1

µ∗
j∇xhj(x

∗, θ∗) = 0

λ∗
i gi(x

∗, θ∗) = 0
hj(x

∗, θ∗) = 0
λ∗
i ≥ 0

∀i ∈ I, ∀j ∈ J
(2)

then the following vector of equations is defined:

F (x, λ, µ, θ) =

[∇xL(x, λ, µ, θ)
λigi(x, θ)
hj(x, θ)

]
(3)

Adding to the above, if there exists a non-zero vector z(x)
such that z(x)∇xxL(η, θ)z(x) ≥ 0, the basic sensitivity
theorem is identically satisfied for θ near θ∗ and can be
differentiated with respect to θ to yield explicit expressions
for the first partial derivatives of this vector function. The
aforementioned argument can be explicitly expressed as
follows:
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M(η, θ)∇θη(θ) = N(η, θ) (4)

where M is the Jacobian matrix of the vector of equations
F defined in eq. (3) with respect to the vector of variables
and Lagrange multipliers η and N is the negative of
the Jacobian matrix of F with respect to the vector of
uncertain parameters θ:

M(η, θ) = ∇ηF (η, θ)
N(η, θ) = −∇θF (η, θ)

(5)

The first order estimate of the variation of an isolated local
solution x(θ) of the original problem and the associated
unique Lagrange multipliers λ(θ) and µ(θ) can be approxi-
mated, given that∇θη(θ

∗) is available, using the first order
Taylor expansion, as follows:

Let a be the concatenation of the η and θ vectors: a =
[ηT , θT ]T

F (a) = ∇aF (a∗)(a− a∗) + F (a∗) (6)

Based on the principles of the Basic Sensitivity Theorem,
the solution η(θ) in a neighborhood of a∗ does not change,
therefore the value of F (a) in a neighborhood of a∗ remains
zero.

∇aF (a∗)(a− a∗) = 0 ⇔
[∇ηF (a∗)|∇θF (a∗)]

[
(η − η∗)T |(θ − θ∗)T

]T
= 0 ⇔

∇ηF (a∗)(η − η∗) = −∇θF (a∗)(θ − θ∗) ⇔
M(η∗, θ∗)(η − η∗) = N(η∗, θ∗)(θ − θ∗)

(7)

The last argument of eq. (6) is the exact solution of the
basic sensitivity theorem for systems that the first order
Taylor expansion can describe exactly, i.e. for systems
that consist of linear constraints and up to second degree
polynomial objective functions in terms of the continu-
ous variables and the uncertain parameters. Therefore,
the general form of problems including only continuous
variables for which eq. (6) is exact is as follows:

min
x

1

2
xTQx+ xTHT θ + cTx x

s.t. Aix ≤ bi + Fiθ
Ajx = bj + Fjθ
CRAθ ≤ CRb

x ∈ Rn

θ ∈ Rm

(8)

Note that the terms Ai, bi, Fi correspond to the ith in-
equality constraint. Equivalently for j equality constraints.
Furthermore, CRA and CRb refer to matrices of appropri-
ate size, which define the parameter space. Also note that
parameter-only dependent terms and the constant term
have been omitted from the objective function as they do
not affect the outcome of the optimization problem on the
the x(θ), λ(θ) and µ(θ) domains. Based on the findings
in eq. (6) the exact solutions of bounded multiparamet-
ric programming problems that comply with the form
presented in eq. (8) was developed. Therefore, the exact
solution of multi-parametric Quadratic Programs (mpQP)
and multiparametric Linear Programs (mpLP), as well
as their mixed integer equivalents (mpMIQP, mpMILP
respectively) were derived (for a complete literature review
the reader is referred to Oberdieck et al. (2016)).

Providing exact solutions to the multiparametric non-
linear programming problem (mpNLP) is a challenging
task (Fiacco, 1983; Fiacco and Kyparisis, 1986). Most

efforts have focused on providing approximate solutions
to the problem. In the work of Dua and Pistikopoulos
(1999), an outer-approximation of the mpNLP is created
through the linearization of the nonlinear terms of the
objective function and the constraints. Thus, the mpNLP
is transformed into a mpLP. In Johansen et al. (2002)
a quadratic approximation to the objective function and
linear approximations to the constraints are obtained and
the mpNLP is approximated by a mpQP. Johansen (2004),
proposed an approximate mp-NLP algorithm by partin-
ioning the parameter space into hybercubes. Fotiou et al.
(2006) proposed an algorithm for the solution of nonlinear
parametric optimization of polynomial functions subject
to polynomial constraints based on cylindrical algebraic
decomposition. More recently, Domı́nguez and Pistikopou-
los (2013) proposed the decomposition of a mpMINLP
into a series of approximate mpQPs, while Dua (2015);
Charitopoulos and Dua (2016) focused of multiparametric
polynomial programming (mpPP). The reader is referred
to Oberdieck et al. (2016) for a more detailed discussion
on the topic.

In the following section, we present the second order Tay-
lor expansion approach to the basic sensitivity theorem
and how this enables the exact solution of convex mul-
tiparametric Quadratically Constrained Quadratic Pro-
grams (mpQCQP) and the application to Quadratically
Constrained MPC problems.

1.2 Basic Sensitivity Theorem: The quadratic case

“If the conditions of the Basic Sensitivity Theorem hold,
with the respective assumed orders of differentiability
being p − 1 more than that assumed, with p ≥ 1, then
η(θ) ≡ [x(θ), λ(θ), µ(θ)]T ∈ Cp in a neighborhood of
θ∗. If the problem functions are analytic in (x, θ) in
a neighborhood of (x∗, θ∗), then η(θ) is analytic in a
neighborhood of θ∗” (Fiacco, 1983). Following that, given
that the conditions for the Basic Sensitivity Theorem
are fulfilled and both ∇θη(θ

∗) and ∇θθη(θ
∗) exist, the

formulation of eq. (6) can be expanded to a quadratic
approach, thus yielding:

F (a) =
1

2
(a− a∗)T∇aaF (a∗)(a− a∗)+

+∇aF (a∗)(a− a∗) + F (a∗)
(9)

Based on the principles of the Basic Sensitivity Theorem,
the solution η(θ) in a neighborhood of a∗ does not change,
therefore the value of F (a) in a neighborhood of a∗ remains
zero.

[
1

2
(a− a∗)T∇aaF (a∗) +∇aF (a∗)](a− a∗) = 0 (10)

The Taylor expansion of eq. (10) is exact for convex
problems in x with:

• Cubic or quadratic objective function. Bilinear and
trilinear terms can be included as long as the convex-
ity of the problem is preserved.

• Quadratic, linear and left-hand-side uncertainty con-
straints.

The aforementioned problems have in common that the
function F (a) will consist of equations of up to a quadratic
polynomial order.
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M(η, θ)∇θη(θ) = N(η, θ) (4)

where M is the Jacobian matrix of the vector of equations
F defined in eq. (3) with respect to the vector of variables
and Lagrange multipliers η and N is the negative of
the Jacobian matrix of F with respect to the vector of
uncertain parameters θ:

M(η, θ) = ∇ηF (η, θ)
N(η, θ) = −∇θF (η, θ)

(5)
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= 0 ⇔
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(7)
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min
x

1

2
xTQx+ xTHT θ + cTx x

s.t. Aix ≤ bi + Fiθ
Ajx = bj + Fjθ
CRAθ ≤ CRb

x ∈ Rn

θ ∈ Rm

(8)

Note that the terms Ai, bi, Fi correspond to the ith in-
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through the linearization of the nonlinear terms of the
objective function and the constraints. Thus, the mpNLP
is transformed into a mpLP. In Johansen et al. (2002)
a quadratic approximation to the objective function and
linear approximations to the constraints are obtained and
the mpNLP is approximated by a mpQP. Johansen (2004),
proposed an approximate mp-NLP algorithm by partin-
ioning the parameter space into hybercubes. Fotiou et al.
(2006) proposed an algorithm for the solution of nonlinear
parametric optimization of polynomial functions subject
to polynomial constraints based on cylindrical algebraic
decomposition. More recently, Domı́nguez and Pistikopou-
los (2013) proposed the decomposition of a mpMINLP
into a series of approximate mpQPs, while Dua (2015);
Charitopoulos and Dua (2016) focused of multiparametric
polynomial programming (mpPP). The reader is referred
to Oberdieck et al. (2016) for a more detailed discussion
on the topic.

In the following section, we present the second order Tay-
lor expansion approach to the basic sensitivity theorem
and how this enables the exact solution of convex mul-
tiparametric Quadratically Constrained Quadratic Pro-
grams (mpQCQP) and the application to Quadratically
Constrained MPC problems.

1.2 Basic Sensitivity Theorem: The quadratic case

“If the conditions of the Basic Sensitivity Theorem hold,
with the respective assumed orders of differentiability
being p − 1 more than that assumed, with p ≥ 1, then
η(θ) ≡ [x(θ), λ(θ), µ(θ)]T ∈ Cp in a neighborhood of
θ∗. If the problem functions are analytic in (x, θ) in
a neighborhood of (x∗, θ∗), then η(θ) is analytic in a
neighborhood of θ∗” (Fiacco, 1983). Following that, given
that the conditions for the Basic Sensitivity Theorem
are fulfilled and both ∇θη(θ

∗) and ∇θθη(θ
∗) exist, the

formulation of eq. (6) can be expanded to a quadratic
approach, thus yielding:

F (a) =
1

2
(a− a∗)T∇aaF (a∗)(a− a∗)+

+∇aF (a∗)(a− a∗) + F (a∗)
(9)

Based on the principles of the Basic Sensitivity Theorem,
the solution η(θ) in a neighborhood of a∗ does not change,
therefore the value of F (a) in a neighborhood of a∗ remains
zero.

[
1

2
(a− a∗)T∇aaF (a∗) +∇aF (a∗)](a− a∗) = 0 (10)

The Taylor expansion of eq. (10) is exact for convex
problems in x with:

• Cubic or quadratic objective function. Bilinear and
trilinear terms can be included as long as the convex-
ity of the problem is preserved.

• Quadratic, linear and left-hand-side uncertainty con-
straints.

The aforementioned problems have in common that the
function F (a) will consist of equations of up to a quadratic
polynomial order.
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2. MULTIPARAMETRIC QUADRATICALLY
CONSTRAINED QUADRATIC PROBLEMS

Consider the convex multiparametric Quadratically Con-
strained Quadratic Programming (mpQCQP) problem
(11):

min
x

1

2
xTQx+ xTHT θ + cTx x

s.t. gi(x, θ) = xTQix+ xTHT
i θ +Aix ≤ bi+

+Fiθ + θTQθ,iθ
hj(x, θ) = xTQjx+ xTHT

j θ +Ajx = bj+

+Fjθ + θTQθ,jθ
CRAθ ≤ CRb

x ∈ Rn, θ ∈ Rm

i ∈ I, j ∈ J
(11)

Similarly to problem (8) the subscript i and j corresponds
to the ith inequality and jth equality respectively. The
quadratic matrices Q, Qi and Qj are positive definite and
Q is symmetric. Therefore, the dimensions of the matrices
in problem (11) are as follows:

Q,Qi, Qj : [n× n] H,Hi, Hj : [m× n] cx, Ai, Aj : [1× n]
Fi, Fj : [1×m] Qθ,i, Qθ,j : [m×m]
CRA : [r ×m] CRb : [r × 1]

(12)
Let there be a solution x∗ for a nominal parametric value
denoted by θ∗. Furthermore, let the Lagrangian function of
the above system for any active set be convex, a condition
that holds for every problem with a convex objective
function and convex quadratic constraints, then the KKT
conditions are satisfied and hold true:

∇xL(x
∗, λ∗, µ∗, θ∗) = 0

λ∗
i gi(x

∗, θ∗) = 0
hj(x

∗, θ∗) = 0
λ∗
i ≥ 0

∀i ∈ I, ∀j ∈ J

(13)

In the case of the general form of eq. (11), the set of
relations in eq. (13) become for an active set of A of k
active inequality constraints, without loss of generality:

F =


[
Q+

k∑
i=1

λiQi

]
x+

[
HT +

k∑
i=1

λiH
T
i

]
θ + c+

k∑
i=1

λiAi

xTQix+ xTHT
i θ +Aix− bi − Fiθ − θTQθ,iθ

xTQjx+ xTHT
j θ +Ajx− bj − Fjθ − θTQθ,jθ




= 0
λi ≥ 0, ∀i ∈ A, ∀j ∈ J

(14)

Therefore, given that η = [xT , λT
i , µ

T
j ]

T , ∀i ∈ A, ∀j and

a = [ηT , θT ]T the first order partial derivative of F with
respect to a is defined as:

∇aF =



∇xxL ∇xλi

L ∇xµj
L ∇xθL

∇xg
T
i 0 ∇θg

T
i

∇xh
T
j ∇θh

T
j




∀i ∈ A, ∀j ∈ J

(15)

where the analytical form of the terms in eq. (15) are given
in eq. (16). Note that the partial derivatives of the equality
constraints are omitted for brevity.

∇xxL = Q+

k∑
i=1

λQT
i +

∑
j∈J

µQT
j

∇xλiL = Qix+HT
i θ +Ai

∇xµj
L = Qjx+HT

j θ +Aj

∇xθL = HT +

k∑
i=1

λHT
i +

∑
j∈J

µHT
j

∇xg
T
i = 2xTQT

i + θTHi +Ai

∇θg
T
i = xTHT

i − 2θTQT
θ,i − Fi

(16)

Note that on the contrary to the case where the opti-
mization problem consists only of linear constraints, here
the ∇aF matrix remains a function of (η, θ), i.e. a first
order Taylor expansion for the classes of problem with
quadratic constraints would only yield valid (approximate)
linear parametric solutions around a a∗ = (η∗, θ∗). The
quadratic approach presented here requires the derivation
of the matrix ∇aaF . Given that the, as shown in eq. (15)
the first order partial derivative is a 2–dimensional matrix,
it follows that the 2nd order partial derivative is augmented
by one dimension – a 3–dimensional tensor. Therefore the
matrix ∇ax1

F 1 will be derived here to show that the
matrix remains invariable with respect to all elements of
the vector a (eq. (17)).

∇ax1F =




0 Qi(:, 1)
T Qj(:, 1)

T 0
2Qi(:, 1)

T

0 Hi(:, 1)
T

2Qj(:, 1)
T Hj(:, 1)

T




∀i ∈ A, ∀j ∈ J
(17)

where Qi(:, 1) corresponds to the vector of the elements
of the first column of matrix Qi and equivalently for Qj .
The rest of the elements of the tensor ∇aaF are similarly
derived. Note that∇aaF (a) = ∇aaF (a∗), ∀a ∈ Rn+k+j+m.
Pseudo-algorithm 1 briefly describes the derivation of the
parametric solution based on the analytical solution of eq.
(10). Alternatively, a space exploration that considers all
possible combinations of active sets can be followed. Such
an approach was suggested for mpQPs by Gupta et al.
(2011) and can be applicable on the convex mpQCQP
case as well. Note that due to the non-linearity of the
constraints, a single active set may have multiple non-
linear solutions on η(θ). Therefore, every η(θ) solution
may yield different critical regions for the same active
set. Furthermore, the critical regions defined here are non-
convex as the result of the solution of a quadratic system of
equations, hence the need for a global optimizer after the
first iteration of the algorithm even for a convex QCQP
problem definition. Primal degeneracy can be handled
by identifying strongly and weakly active constraints per
active set (Gupta et al., 2011). Dual degeneracy cannot
occur since the matrices Q, Qi and Qj in problem (11) are
positive definite, Oberdieck et al. (2017).

3. ILLUSTRATIVE MULTIPARAMETRIC/EXPLICIT
NMPC EXAMPLE

Consider problem (18), (Bemporad et al., 2002):

1 In this context, x1 corresponds to the first element of the opti-
mization variable vector x.
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Algorithm 1 An mpQCQP pseudo-algorithm

1: procedure mpQCQP
2: Reformulate the mpQCQP problem to the form of

eq. (11).
3: start :
4: Treat θ as optimization variables.
5: Solve the deterministic problem via Global Opti-

mization algorithms.
6: if feasible then
7: Acquire an active set A and the vector a∗.
8: Solve analytically eq. (10), (15− 17) for η(θ).
9: Keep all real solutions.

10: loop:
11: Derive the Critical Region (CR) by

gi(x(θ), θ) ≤ 0, ∀i /∈ A and λi(θ) ≥ 0∀i ∈ A.
12: if Empty Critical Region then
13: Discard solution
14: goto loop.

15: Reverse one-by-one the constraints that define
the existing CR and add to the original mpQCQP.

16: goto start
17: else
18: Terminate.

min
ui

xT
NPxN +

N−1∑
i=0

xT
i Qxi + uT

i Rui

s.t. xi+1 = Axi +Bui, ∀i ∈ [0, ..., N − 1]
−2 ≤ ui ≤ 2, ∀i ∈ [0, ..., N − 1]

[−1.5 −1.5]
T ≤ xi ≤ [1.5 1.5]

T
, ∀i ∈ [0, . . . , N ]

u2
0 ≤ xT

0 x0

A =

[
0.7326 −0.1722
0.0861 0.9909

]
, B =

[
0.0861
0.0045

]

(18)
where,Q is the identity matrix,R = 0.01, P is the terminal
weight matrix derived via the discrete time Riccati equa-
tion and N = 2 2 . Note that on the contrary to a standard
LQR, the first input action u0 is quadratically constrained
with respect to the initial values of the states at each step
of the receding horizon. Via forward substitution problem
(18) is reformulated to the equivalent mpQCQP form of
problem (19):

min
u0,u1

0.0261u2
0 + 0.0194u0u1 + 0.0218u2

1 + 0.2908u0x0,1

+0.2917u0x0,2 + 0.1747u1x0,1 + 0.1753u1x0,2+
3.1284x2

0,1 + 7.2476x0,1x02 + 3.1284x2
0,2

s.t. u2
0 − x2

01 − x2
0,2 ≤ 0

0.0623u0 + 0.0861u1 ≤ 1.5− 0.5219x0,1 + 0.2968x0,2

0.0119u0 + 0.0045u1 ≤ 1.5− 0.1484x0,1 + 0.9671x0,2

−0.0623u0 − 0.0861u1 ≤ 1.5 + 0.5219x0,1 − 0.2968x0,2

−0.0119u0 − 0.0045u1 ≤ 1.5 + 0.1484x0,1 − 0.9671x0,2

0.0861u0 ≤ 1.5− 0.7236x0,1 + 0.1722x0,2

0.0045u0 ≤ 1.5− 0.0861x0,1 − 0.9909x0,2

−0.0861u0 ≤ 1.5 + 0.7236x0,1 − 0.1722x0,2

−0.0045u0 ≤ 1.5 + 0.0861x0,1 + 0.9909x0,2

u0 ≤ 2,−u0 ≤ 2, u1 ≤ 2,−u1 ≤ 2
x0,1 ≤ 1.5,−x0,1 ≤ 1.5, x0,2 ≤ 1.5,−x0,2 ≤ 1.5

(19)

2 Note that in this particular case, the output/control horizon of the
MPC does not affect the computational complexity of the problem
as the quadratic constraint involves only elements of the first step of
the receding horizon.

In the above formulation, the optimization variables are
the control actions u0 and u1, while the initial states
x01 and x02 are treated as uncertain parameters. Note
that the objective function and the quadratic constraint
are convex with respect to the optimization variables. To
illustrate the solution procedure we present analytically
the derivation of the solution of a single critical region
corresponding to initial parametric values of (x0,1, x0,2) =
(1, 0), and following Algorithm 1 from step 5 onwards.
The deterministic possibly non-convex, nonlinear problem
is solved in GAMS (Tawarmalani and Sahinidis, 2005;
Misener and Floudas, 2014) and the global solution along
with the corresponding Lagrange multipliers are obtained
(eq. (20)).

u0 = −1 u1 = −2
λ1 = 0.1 λ2 = 0.068

(20)

The Lagrange function is constructed based on the active
constraints – in this case the quadratic and upper bound
for u1 = 2 – and the first derivatives with respect to
the optimization variables are calculated. Therefore, the
function F is defined as follows (eq. (21)).

F =

0.0522u0 + 0.0194u1 + 0.2908x01 + 0.2917x02 + 2λ1u0

0.0194u0 + 0.0436u1 + 0.1747x01 + 0.1753x02 − λ2

u2
0 − x2

01 − x2
02

−u1 − 2




= 0
(21)

A second-order Taylor expansion around the nominal point
a∗ = [u∗

0, u
∗
1, λ

∗
i , x

∗
0,1, x

∗
0,2] = {−1,−2, 0.1, 0.068, 1, 0} is

constructed as follows

∇aF =



0.0522 + 2λ1 0.0194 2u0 0 0.2908 0.2917

0.0194 0.0436 0 −1 0.1747 0.1753
2u0 0 0 0 −2x01 −2x02

0 −1 0 0 0 0




(22)

∇aF (a∗) =



0.2522 0.0194 −2 0 0.2908 0.2917
0.0194 0.0436 0 −1 0.1747 0.1753
−2 0 0 0 −2 0
0 −1 0 0 0 0


 (23)

For the ∇aaF calculation only nonzero elements of matri-
ces are reported

∇au0
F {1, 3} = 2

∇au0
F {3, 1} = 2

∇au1
F = 0

∇aλ1
F {1, 1} = 2

∇aλ2
F = 0

∇ax0,1
F {3, 5} = −2

∇ax0,2F {3, 6} = −2

(24)

The analytical solution of the system of eq. (10) for the
problem at hand yields the parametric expressions for the
control actions and Lagrange multipliers of eq. (25).

u0 = −
√
x2
0,1 + x2

0,2

u1 = −2

λ1 =
1

u0
(−0.0261u0 − 0.1454x0,1 − 0.1459x0,2 + 0.0193)

λ2 = 0.0194u0 + 0.1747x0,1 + 0.1753x0,2 − 0.0873
(25)
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Algorithm 1 An mpQCQP pseudo-algorithm

1: procedure mpQCQP
2: Reformulate the mpQCQP problem to the form of

eq. (11).
3: start :
4: Treat θ as optimization variables.
5: Solve the deterministic problem via Global Opti-

mization algorithms.
6: if feasible then
7: Acquire an active set A and the vector a∗.
8: Solve analytically eq. (10), (15− 17) for η(θ).
9: Keep all real solutions.

10: loop:
11: Derive the Critical Region (CR) by

gi(x(θ), θ) ≤ 0, ∀i /∈ A and λi(θ) ≥ 0∀i ∈ A.
12: if Empty Critical Region then
13: Discard solution
14: goto loop.

15: Reverse one-by-one the constraints that define
the existing CR and add to the original mpQCQP.

16: goto start
17: else
18: Terminate.

min
ui

xT
NPxN +

N−1∑
i=0

xT
i Qxi + uT

i Rui

s.t. xi+1 = Axi +Bui, ∀i ∈ [0, ..., N − 1]
−2 ≤ ui ≤ 2, ∀i ∈ [0, ..., N − 1]

[−1.5 −1.5]
T ≤ xi ≤ [1.5 1.5]

T
, ∀i ∈ [0, . . . , N ]

u2
0 ≤ xT

0 x0

A =

[
0.7326 −0.1722
0.0861 0.9909

]
, B =

[
0.0861
0.0045

]

(18)
where,Q is the identity matrix,R = 0.01, P is the terminal
weight matrix derived via the discrete time Riccati equa-
tion and N = 2 2 . Note that on the contrary to a standard
LQR, the first input action u0 is quadratically constrained
with respect to the initial values of the states at each step
of the receding horizon. Via forward substitution problem
(18) is reformulated to the equivalent mpQCQP form of
problem (19):

min
u0,u1

0.0261u2
0 + 0.0194u0u1 + 0.0218u2

1 + 0.2908u0x0,1

+0.2917u0x0,2 + 0.1747u1x0,1 + 0.1753u1x0,2+
3.1284x2

0,1 + 7.2476x0,1x02 + 3.1284x2
0,2

s.t. u2
0 − x2

01 − x2
0,2 ≤ 0

0.0623u0 + 0.0861u1 ≤ 1.5− 0.5219x0,1 + 0.2968x0,2

0.0119u0 + 0.0045u1 ≤ 1.5− 0.1484x0,1 + 0.9671x0,2

−0.0623u0 − 0.0861u1 ≤ 1.5 + 0.5219x0,1 − 0.2968x0,2

−0.0119u0 − 0.0045u1 ≤ 1.5 + 0.1484x0,1 − 0.9671x0,2

0.0861u0 ≤ 1.5− 0.7236x0,1 + 0.1722x0,2

0.0045u0 ≤ 1.5− 0.0861x0,1 − 0.9909x0,2

−0.0861u0 ≤ 1.5 + 0.7236x0,1 − 0.1722x0,2

−0.0045u0 ≤ 1.5 + 0.0861x0,1 + 0.9909x0,2

u0 ≤ 2,−u0 ≤ 2, u1 ≤ 2,−u1 ≤ 2
x0,1 ≤ 1.5,−x0,1 ≤ 1.5, x0,2 ≤ 1.5,−x0,2 ≤ 1.5

(19)

2 Note that in this particular case, the output/control horizon of the
MPC does not affect the computational complexity of the problem
as the quadratic constraint involves only elements of the first step of
the receding horizon.

In the above formulation, the optimization variables are
the control actions u0 and u1, while the initial states
x01 and x02 are treated as uncertain parameters. Note
that the objective function and the quadratic constraint
are convex with respect to the optimization variables. To
illustrate the solution procedure we present analytically
the derivation of the solution of a single critical region
corresponding to initial parametric values of (x0,1, x0,2) =
(1, 0), and following Algorithm 1 from step 5 onwards.
The deterministic possibly non-convex, nonlinear problem
is solved in GAMS (Tawarmalani and Sahinidis, 2005;
Misener and Floudas, 2014) and the global solution along
with the corresponding Lagrange multipliers are obtained
(eq. (20)).

u0 = −1 u1 = −2
λ1 = 0.1 λ2 = 0.068

(20)

The Lagrange function is constructed based on the active
constraints – in this case the quadratic and upper bound
for u1 = 2 – and the first derivatives with respect to
the optimization variables are calculated. Therefore, the
function F is defined as follows (eq. (21)).

F =

0.0522u0 + 0.0194u1 + 0.2908x01 + 0.2917x02 + 2λ1u0

0.0194u0 + 0.0436u1 + 0.1747x01 + 0.1753x02 − λ2

u2
0 − x2

01 − x2
02

−u1 − 2




= 0
(21)

A second-order Taylor expansion around the nominal point
a∗ = [u∗

0, u
∗
1, λ

∗
i , x

∗
0,1, x

∗
0,2] = {−1,−2, 0.1, 0.068, 1, 0} is

constructed as follows

∇aF =



0.0522 + 2λ1 0.0194 2u0 0 0.2908 0.2917

0.0194 0.0436 0 −1 0.1747 0.1753
2u0 0 0 0 −2x01 −2x02

0 −1 0 0 0 0




(22)

∇aF (a∗) =



0.2522 0.0194 −2 0 0.2908 0.2917
0.0194 0.0436 0 −1 0.1747 0.1753
−2 0 0 0 −2 0
0 −1 0 0 0 0


 (23)

For the ∇aaF calculation only nonzero elements of matri-
ces are reported

∇au0
F {1, 3} = 2

∇au0
F {3, 1} = 2

∇au1
F = 0

∇aλ1
F {1, 1} = 2

∇aλ2
F = 0

∇ax0,1
F {3, 5} = −2

∇ax0,2F {3, 6} = −2

(24)

The analytical solution of the system of eq. (10) for the
problem at hand yields the parametric expressions for the
control actions and Lagrange multipliers of eq. (25).

u0 = −
√
x2
0,1 + x2

0,2

u1 = −2

λ1 =
1

u0
(−0.0261u0 − 0.1454x0,1 − 0.1459x0,2 + 0.0193)

λ2 = 0.0194u0 + 0.1747x0,1 + 0.1753x0,2 − 0.0873
(25)
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Table 1. The full solution of the mpNMPC
problem per CR: Optimal Control Action Def-

inition

OptimalControlActionDefinition

CR1

u0 = −
√

x2
0,1 + x2

0,2

u1 = −2

λ1 =
1

u0
(−0.0261u0 − 0.1454x0,1 − 0.1459x0,2 + 0.0193)

λ2 = 0.0194u0 + 0.1747x0,1 + 0.1753x0,2 − 0.0873

CR2

u0 =

√
x2
0,1 + x2

0,2

u1 = 2

λ1 =
1

u0
(−0.0261u0 − 0.1454x0,1 − 0.1458x0,2 − 0.0193)

λ2 = −0.0194u0 − 0.1747x0,1 − 0.1753x0,2 − 0.0873

CR3

u0 =

√
x2
0,1 + x2

0,2

u1 = −0.4450u0 − 4.0069x0,1 − 4.0206x0,2

λ1 =
1

u0
(−0.0218u0 − 0.1065x0,1 − 0.1068x0,2)

CR4

u0 = −
√

x2
0,1 + x2

0,2

u1 = −0.4450u0 − 4.0069x0,1 − 4.0206x0,2

λ1 =
1

u0
(−0.0218u0 − 0.1065x0,1 − 0.1068x0,2)

CR5

u0 = −4.8904x0,1 − 4.9050x0,2

u1 = −1.8309x0,1 − 1.8381x0,2

CR6

u0 = −2
u1 = −2
λ1 = 0.2908x0,1 + 0.2917x0,2 − 0.1432
λ2 = 0.1747x0,1 + 0.1753x0,2 − 0.1260

CR7

u0 = 2
u1 = 2
λ1 = −0.2908x0,1 − 0.2917x0,2 − 0.1432
λ2 = −0.1747x0,1 − 0.1753x0,2 − 0.1260

By substituting the parametric solution to the inactive
constraints and imposing positive Lagrange multipliers the
resulting critical region is defined (eq. (26))√

x2
0,1 + x2

0,2 − 2 ≤ 0

−0.0045
√
x2
0,1 + x2

0,2 + 0.0861x0,1 + 0.9909x0,2 − 1.5 ≤ 0

−0.0119
√
x2
0,1 + x2

0,2 + 0.1484x0,1 + 0.9671x0,2 − 1.5090 ≤ 0

0.0194
√
x2
0,1 + x2

0,2 − 0.1747x0,1 − 0.1753x0,2 + 0.0873 ≤ 0

x0,1 − 1.5 ≤ 0
x0,2 − 1.5 ≤ 0

(26)

The procedure is repeated until the termination of algo-
rithm 1 and the results are summarized in Tables 1 and
2. Note that in CR1 − CR4 the parametric results of the
Lagrange multipliers and critical region definitions are a

function of u0, i.e. the term ±
√
x2
0,1 + x2

0,2 is replaced with

u0. Observe that:

• The definition of critical regions in CR1 and CR2 are
linear with respect to u0, x0,1 and x0,2 because (i) the
quadratic constraint involves only u0 (not u1) and (ii)
the active set of the aforementioned CRs includes the
quadratic constraint.

• The term ±
√

x2
0,1 + x2

0,2 appears in the denominators

of fractions only in critical regions were the point
(x0,1, x0,2) = (0, 0) is not included.

The resulting critical regions are presented in Fig. 1.
The linear state-space system is simulated starting from

Table 2. The full solution of the mpNMPC
problem per CR: Analytical Critical Region

Definition

CriticalRegionDefinition

CR1

−u0 − 2 ≤ 0
0.0045u0 + 0.0861x0,1 + 0.9909x0,2 − 1.5 ≤ 0
0.0119u0 + 0.1484x0,1 + 0.9671x0,2 − 1.5090 ≤ 0
−0.0194u0 − 0.1747x0,1 − 0.1753x0,2 + 0.0873 ≤ 0
x0,1 − 1.5 ≤ 0
x0,2 − 1.5 ≤ 0

CR2

u0 − 2 ≤ 0
−0.0045u0 − 0.0861x0,1 − 0.9909x0,2 − 1.5 ≤ 0
−0.0119u0 − 0.1484x0,1 − 0.9671x0,2 − 1.5090 ≤ 0
0.0194u0 + 0.1747x0,1 + 0.1753x0,2 + 0.0873 ≤ 0
−x0,1 − 1.5 ≤ 0
−x0,2 − 1.5 ≤ 0

CR3

−0.4450u0 − 4.0069x0,1 − 4.0206x0,2 − 2 ≤ 0
1

u0
(0.0218u0 + 0.1065x0,1 + 0.1068x0,2) ≤ 0

−x0,1 − 1.5 ≤ 0
−x0,2 − 1.5 ≤ 0

CR4

0.4450u0 + 4.0069x0,1 + 4.0206x0,2 − 2 ≤ 0
1

u0
(0.0218u0 + 0.1065x0,1 + 0.1068x0,2) ≤ 0

x0,1 − 1.5 ≤ 0
x0,2 − 1.5 ≤ 0

CR5

u2
0 − x2

0,1 − x2
0,2 ≤ 0

x0,1 − 1.5 ≤ 0
x0,2 − 1.5 ≤ 0
−x0,1 − 1.5 ≤ 0
−x0,2 − 1.5 ≤ 0

CR6

0.1484x0,1 + 0.9671x0,2 − 1.5328 ≤ 0
0.0861x0,1 + 0.9909x0,2 − 1.5090 ≤ 0

−x2
0,1 − x2

0,2 + 4 ≤ 0

x0,1 − 1.5 ≤ 0

CR7

−0.1484x0,1 − 0.9671x0,2 − 1.5328 ≤ 0
−0.0861x0,1 − 0.9909x0,2 − 1.5090 ≤ 0

−x2
0,1 − x2

0,2 + 4 ≤ 0

−x0,1 − 1.5 ≤ 0

Fig. 1. The Critical Regions of the mpNMPC

x0,1 = x0,2 = 1 (see Fig. 2). Furthermore, the first optimal
action u0 as a function of x0 is shown in Fig. 3. Observe
that:

• The control action is continuous and piecewise non-
linear.

• Non-smooth transitions occur between critical regions

The above are a result of (i) the problem consisting only of
continuous variables and (ii) the convexity of the problem
with respect to the optimization variables on both the
objective function (Fig. 4) and the feasible space.
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Fig. 4. Objective function value over the feasible space

4. CONCLUDING REMARKS

We presented a quadratic approach to the Basic Sensi-
tivity Theorem and its applicability on multiparametric
Quadratically Constrained Quadratic Programming prob-
lems. An analytical pseudo-algorithm for the solution of
such problems was applied on a quadratically constrained
MPC formulation and the results were evaluated. We
showed the continuity of the critical regions and corre-
sponding optimal actions for convex mpQCQP and dis-
cussed elements of the solution properties. Further steps

include the efficient solution of the resulting quadratic sys-
tems of equations with respect to the parameters and the
expansion of the procedure to different classes of QCQP
and NMPC problems.
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4. CONCLUDING REMARKS

We presented a quadratic approach to the Basic Sensi-
tivity Theorem and its applicability on multiparametric
Quadratically Constrained Quadratic Programming prob-
lems. An analytical pseudo-algorithm for the solution of
such problems was applied on a quadratically constrained
MPC formulation and the results were evaluated. We
showed the continuity of the critical regions and corre-
sponding optimal actions for convex mpQCQP and dis-
cussed elements of the solution properties. Further steps

include the efficient solution of the resulting quadratic sys-
tems of equations with respect to the parameters and the
expansion of the procedure to different classes of QCQP
and NMPC problems.
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