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We present a framework for the application of design and control optimization via multi-parametric programming
through four case studies. We develop design dependent multi-parametric model predictive controllers that are able to
provide the optimal control actions as functions of the system state and the design of the process at hand, via our
recently introduced PAROC framework (Pistikopoulos et al, Chem Eng Sci. 2015;136:115-138). The process and the
design dependent explicit controllers undergo a mixed integer dynamic optimization (MIDO) step for the determination
of the optimal design. The result of the MIDO is the optimal design of the process under optimal operation. We demon-
strate the framework through case studies of a tank, a continuously stirred tank reactor, a binary distillation column
and a residential cogeneration unit. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4827-4846, 2017
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Introduction

The last three decades of Process Systems Engineering
research and practice, have led both academia and industry to
the realization that the performance of a process is affected
most deterministically by its design and ability to achieve and
maintain profitable operating conditions under operational
uncertainty. It is also clear that the degree of interaction
between those two aspects is such that one cannot be deter-
mined without the consideration of the other.! As a result, a
number of approaches have been developed for addressing the
issue of operability during the early stages of process design.
Process design optimization under operational uncertainty and
feasibility, flexibility, stability, controllability, and resilience
metrics during process design have been extensively discussed
via a series of computational methods.? This formed a prelude
to the simultaneous consideration of design and control via
(1) the formulation and solution of large scale optimization
problems (including numerous decomposition approaches4),
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(2) flow sheet and graphical problem representations,” and (3)
control structure selection as part of the design optimization®
(see Table 1 for a list of publications per contribution). The
control schemes employed focused mainly on PI and PID for-
mulations while a significantly smaller portion of contributions
employed model predictive control (MPC). The contributing
factor to that decision was primarily the solution of the optimi-
zation problem corresponding to the control problem within a
design optimization formulation.>>* Nevertheless, the consid-
eration of a constrained optimization control method could con-
tribute to overcome the shortcomings associated with PI and
PID control (such as possible operational constraints violation).
In the area of simultaneous design optimization with MPC nota-
ble approaches include (1) the back-off control alpproach,lo2 2)
robust design formulations,'® and (3) multi-parametric MPC
approaches™® (see Table 1 for a list of publications per contribu-
tion). Regarding (3), the availability of the optimal solution
online via offline optimization enabled the incorporation of
explicit control actions within a (mixed integer) dynamic opti-
mization (MI)DO) formulation thus (1) avoiding the burden of
solving multiple optimization problems online, (2) transforming
the control problem into a simple linear look-up function,* and

*The explicit solution of a model predictive control problem with a linear (co—norm)
or quadratic (2—norm) objective function, polytopic constraints and linf]:(z]i4r State-space
discrete time model dynamics is piecewise linear in the optimal actions. "

November 2017 Vol. 63, No. 11 4827


http://orcid.org/0000-0001-6220-818X

Table 1. Design and Control in the Literature

Author (year)

Contribution

Perkins & co-workers (1991),” Bogle & co-workers (1989, 2000),%° Pistikopoulos &
co-workers (1994, 1997, 2001),'°"'? Floudas & co-workers (1994, 2000, 2001),'*"
Romagnoli & co-workers (1997),'® Ricardez-Sandoval & co-workers (2007, 2013),'7:18
Douglas & co-workers (1988),19-21 Skogestad & co-workers (1987, 2014),2>3
Sorensen & co-workers (2014),%* Stephanopoulos & co-workers (1988),° Ierapetritou &
co-workers (2002),%° Gani & co-workers (1995)%7

Romagnoli & co-workers (1996),%® Francisco & co-workers (2014),2° Kravaris &
co-workers (1993),3%3!

Pistikopoulos & co-workers (2000, 2002, 2003),**73¢ Swartz & co-workers (2014),%”
Ricardez-Sandoval (2012)°

Pistikopoulos & co-workers (2003, 2004),>**! Engell & co-workers (2004),** Linninger &
co-workers (2007)*

Biegler & co-workers (2007, 2008),*** Seider & co-workers (1992),* Ricardez-Sandoval &
co-workers (2008, 2016, 2017),**® Pistikopoulos & co-workers (1996),*

Feasibility, flexibility, stability, control-
lability, and resilience considerations
in steady-steady state [w/wo (MI)NLP
design optimization]

Feasibility, flexibility, controllability,
and resilience considerations in
steady-steady state (MI)DO design
optimization

Simultaneous/decomposition (MI)DO
process and P-PI-PID control design

Simultaneous/decomposition (MI)DO
process and MPC design

Simultaneous/decomposition/back-off via
(MI)NLP

Perkins & co-workers (2002, 2004, 2016),5 52 Flores-Tlacuahuac & co-workers
(2009),>* Barton & co-workers (2010, 2011, 2015),>*>7 Mitsos & co-workers (2012),%®

Linninger & co-workers (2006)>°

Gani & co-workers (1995, 2003, 2005, 2010),>>7*%2 Daoutidis & co-workers (2011),%>
Lee & co-workers (1972),* Chien & co-workers (2010),%° Mitsos & co-workers

(2014),%° Luyben (2004, 2008, 2009, 2010, 2011, 2012, 2014)57-8¢

Floudas & co-workers (1994)," Pistikopoulos & co-workers (1997),%! You & co-workers

(2012)?

Floudas & co-workers (2001), Ierapetritou & co-workers (2002),%® Barton & co-workers

Flow sheet/graphical design and
P-PI-PID control

Multi-objective approaches

Design under uncertainty

(2010, 2015),°*%7 Ricardez-Sandoval & co-workers (2013, 2015),2*%* Pistikopoulos &
co-workers (1995, 1999, 2000, 2003),>*>%7 McRae & co-workers (2007),%® Bogle &

co-workers (2006)%

Skogestad & co-workers (1987, 1989, 2014),%3°° Perkins & co-workers (2002),>

Control structure selection and design

Young & co-workers (2005),91 Stephanopoulos & co-workers (1980, 1988),92’(’3

Bogle & co-workers (2010, 2016)”*%3

Georgiadis & co-workers (2004),%° Francisco & co-workers (2014),°” Ricardez-Sandoval &

Review articles on design and control

co-workers (2009, 2011),°%% Gani & co-workers (2012),'% Mitsos & co-workers

(2014)!1!

(3) including every aspect of the MPC without any simplifica-
tions on the problem structure.

Although multi-parametric model predictive control
(mpMPC) has been employed in the past in the context of
simultaneous design and control optimization,*®**! its applica-
tion relied on an iterative procedure, because the control prob-
lem formulation needed to be adjusted for different design
alternatives based on feasibility criteria. Here, we present a
methodology, via the PAROC framework and software plat-
form,'°® where the control problem formulation is design
dependent, therefore, the explicit control actions are a function
of the design variables. As a result, a single design dependent
mpMPC formulation is able to control the process for bounded
values of the design variables without the need of reformula-
tion. The approach is showcased via four case studies on (1) a
settling tank, (2) a continuously stirred tank reactor (CSTR),
(3) a binary distillation column, and (4) a domestic cogenera-
tion of heat and power unit.

Simultaneous Design and Control Optimization
via PAROC

Given a mathematical model that describes a process based
on first principles and correlations a general form of a design
and control optimization problem formulation can be
described as in Eq. 1.
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T
min J=J P(x,y,uc,Y,d,De)dt
uc,Y ,De 0

d
S.t. E‘x:f(X7 u(,,Y7d,D€)

Ymin < y:g(xv I/t“Y, d,De) < Ymax

. ()
u™ < ue=h(x,y,Y,d,De) < ul'
Y €{0,1}
[ernim dr{lin]T S [xT7 dT}T S [le:lax’ dg;ax]T

Deyin < De < Deyyax

where, x corresponds to the system states, y to the system out-
puts, u. to the optimal control actions, Y to binary variables
corresponding to discrete design and operational decisions, d
to uncertain, bounded system disturbances, and De to the
design variables. P is the objective function that describes the
operational and investment cost of the process. f and g corre-
spond to the process dynamic and algebraic equations, respec-
tively. h describe advanced control decisions. The system
states, disturbance and design variables are assumed to be
bounded. Note that the system in Eq. 1, depending on the
nature of P, f, g, and h can be a non-linear, non-convex,
mixed-integer dynamic problem that can rarely be tackled
without simplifying assumptions that highly depend of the
nature of each individual problem. Furthermore, although
dynamic optimization algorithms can approximate an optimal
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solution to such class problems via a variety of algorithms, the
complexity arising from the simultaneous solution of the opti-
mization based control problem and the overall design optimi-
zation still remains.’*'"” We raise the need for the latter via
the development of design dependent explicit control actions
via the PAROC framework and software platform'% and their
inclusion within the mixed integer dynamic optimization
(MIDO) problem.

The PAROC framework and software platform

Here we present the basic principles of the PAROC frame-
work in the context of simultaneous design and control optimi-
zation in the following steps and in Figure 1.

Step 1: “High fidelity” model—The “high fidelity”” model
consists of (Partial) Differential-Algebraic  Equations
(P)DAE) and describes the dynamic behavior of the process.
Utilizing first-principles and correlations, often non-linear in
nature and high in complexity, guarantees with its robustness
and quality the validity of the framework. The “high fidelity”
model features the continuous and binary design variables and
treats them as degrees of freedom that need to be optimally
determined. The modeling takes place in PSE’s gPROMS®.107

Step 2: Model approximation—The “high fidelity”” model,
although highly accurate compared to the process, is far from
ideal for the application of advanced optimization techniques.
Its dynamic nature and high complexity require an approxima-
tion step in order for approaches such as multi-parametric pro-
gramming to be considered. With (1) model accuracy
preservation and (2) complexity reduction in mind the approxi-
mation step takes place via model reduction techniques'® and/
or the statistical methods (System Identification toolbox,
MATLAB®). The key for this step is the preservation of the
design variables in the approximation step, i.e., the derivation
of linear state-space models that include the design variables in
the model expressions, symbolically described in Egs. 2 and 3.

“High fidelity” model

d
Ex(t) =f(x(1), uc(1),Y(1),d(t), De)

()
y=8(x(t),uc(2), Y (1), d(1), De)
Approximate model
dr
Xr41=A - xr+B-u.r+C -
‘ De 3)

yr=D -xr+E - u.r+e
Note the following:

e The states x € R?” in Eqgs. 2 and 3 may have different
physical meanings due to the approximation step.'°® The
optimization variables u. € R", outputs y € R?, disturbances
d € R?” and design variables De € R% have the same physi-
cal meaning in both instances.

e The approximate model is presented here in a discrete
time formulation. Continuous time formulations can be
derived equivalently.

e The binary variables Y € {0, 1}" present in the “high fidel-
ity” model may result in multiple approximate state-space
models or piecewise affine formulations (omitted here).

e The design variables De are not time dependent since the
design of the process cannot change during operation.
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e The design of the process is treated as a measured addi-
tive uncertainty within the approximate model via the term
De. Multiplicative uncertainty can be incorporated without
any changes in the framework. This can be achieved via the
consideration of robust mpMPC as described in Refs.
109-111. In such case, the use of state-estimators is also
necessary.“z’114

e The vector dr in Eq. 3 introduces disturbances as uncer-
tain bounded parameters to the approximate state-space mod-
els. The values of dy are assumed to remain constant within
the discretization time step (piecewise constant) and measur-
able at time 7 but not prior to that. Within the multi-
parametric framework, the vector dy is treated as a vector of
unknown but bounded parameters, similarly to the states at
T= 0.104,1 15

e The term e corresponds to a mismatch between the real,
measured system output and the approximate state-space
model output at the first time step and assumed fixed
throughout the horizon of the optimization formulation.

The system described in 3 can be used for advanced optimi-
zation based control formulations such as mpMPC resulting
into a quadratic problem with linear constraints."

Step 3: Multi-parametric programming—The design of
the controllers is based on the validated procedure described
in Refs. 104, 106, 116. Equation 4 shows the form of a typical
mpMPC controller.

N—1

m’jn J=xLPxy +Z (XszXkJF ()’k *Y§)TQRI< (yk*yf)) +
k=1

M—1 T
+ Z ((u(,k—uﬁk) Ry (u(,’k—uﬁk) +AuszlkAuL.7k)
k=0

st X1 =AxetBuc+Cdy
vi=Dxy+Eu.;+e
Upin < Ue g < Umax
Attyiny < Autejp < Aty
Xmin < Xk < Xmax

Ymin S Yk S Ymax
)

where x; are the state variables, u.; and uﬁ « are the control
variables and their respective set points, Au; denotes the dif-
ference between two consecutive control actions, y; and yf are
the outputs and their respective set points, d; concatenation of
the system disturbances and design variables, Qy, R, R1;, and
OR, are their corresponding weights in the quadratic objective
function, P is the stabilizing term derived from the Riccatti
Equation for discrete systems, N and M are the output horizon
and control horizon, respectively, k is the time step, A, B, C,
D, E are the matrices of the discrete linear state space model
and e denotes the mismatch between the actual system output
and the predicted output at initial time. Here, the d; vector
includes all the variables that cannot be manipulated via the
MPC problem, hence it includes the design variables as well.
In the context of multi-parametric programming the latter are
treated as parameters.

"In the case of multiplicative uncertainty the framework presented in Ref. 110 can be

utilized to derive the optimal control strategies
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Process
‘High Fidelity’ Dynamic Modeling
featuring the design variables

-—

‘ Approximate Model
featuring the design variables

ole]14]

’ Multi-Parametric Programming ‘

e e

Design dependent
multiparametric receding
horizon policies

Figure 1. The PAROC framework approach for simulta-
neous design and control. Actions within the
gray area happen once and offline.

The resulting multi-parametric program (Eq. 5) is solved
via the POP® toolbox in MATLAB®, thus acquiring a map of
optimal control actions."”

. 1
min J= 2 uLT.,THuL.‘T + uiTFTQT

S.t. WM(-,T S S+Z@T (5)

Or € @Z{OT € wamin <0r < ()maxavq,}’

u(',T € U:{u(',T € IRn‘umin < u(',T S unlaA’avn}

Due to the form of the approximate model and the MPC for-
mulation, the resulting explicit control actions are an affine
function of the design variables (Eq. 6).

uc‘.T:Ki0T+ri7 VHT S CR,
(6)

Or=[xr; uer—1;dr; De; yr; 7'

where x7, dr, yr, yi” are the states, measured disturbances, out-
puts and output set points, respectively, u.r—; are the optimal
control action at the previous time step and De are the design
variables (fixed throughout the optimization horizon of the
control problem). It is clear from Eq. 6 that the optimal action
is a function of the operation of the system (via x; and y7), the
presence of disturbances, the operating set points and, most
importantly for the simultaneous design and control frame-
work, the design variables.

More specifically, let 07 denote a value realization of the
parametric vector and u; be the corresponding optimal
actions. The i Active Constraint set of cardinality j is denoted
by W, S, and Z the inactive set by W, S, and Z and LICQ
holds. A correspond to the ; Lagrange multipliers of the
Active Set. The Karush-Kuhn-Tucker conditions for the
strictly convex problem 5 are presented in Eq. 7.

WL{ZT =S+20;
L )
Hul +FT 03 +W 27 =0

Solving the above for u’, and A7 we obtain the parametric
expressions:
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20 =(WH W) (WH ' FT+2)0,—(WH'W')'$

w1 (07)= [H*IWT(WH*IWT)“(WH*‘FT+Z)—H*1FT

K;

0 —H W (WHW')TIS

®)

Hence, the values K; and r; are analytically derived as the coef-
ficients of Eq. 8 for the i/ Active Set. The composite polyhe-
dron CR; is calculated by postulating the j Lagrange
multipliers to be larger than zero and the unconstrained set to
remain strictly unconstrained (Eq. 9). The coefficients derived
above are optimal for realizations of 07 within the composite
polyhedron CR; hence the generalized version presented in
Eq. 6.

WM;T(QT)*S*ZVOT <0
CR,': . T N N R T N
(WH'W ) " WH'FT+2)0,—(WH'W ) 'S > 0
©

For a complete review of multi-parametric programming,
properties of the solution and available solution techniques
and algorithms the reader is referred to Ref. 118.

From the derivation of the explicit/multi-parametric solu-
tion and the critical regions the following can be stated in con-
text with the framework presented here:

e Exact MPC solution: the solution of the multi-parametric
quadratic programming problem presented in Eq. 5 is solved
once and offline and the exact solution is obtained for any
feasible value of the uncertain parameters 0.

e Optimal partitioning of the parametric space: the feasi-
ble parametric space is partitioned optimally, a fact that fol-
lows the generalization of the KKT conditions in the
parametric space of a convex (with respect to the optimiza-
tion variables u.r) quadratic problem with regards to its
parameters.

e Ease of online application: the nature of the dependency
of the critical regions CR; and optimal actions u.r with
respect to the parameters reduces the online application of
the MPC to a simple look-up table algorithm (commonly
referred to as the point location problem) and function evalu-
ations, all affine. Therefore the online application of the
mpMPC is similar in complexity with a simple PI controller.
e Online application computational time: a significant,
direct result of the above is the reduction of the online com-
putational time in the range of a few milliseconds per action
which results into a very efficient simultaneous application
of MPC within a simulation or optimization context.”

e Space requirements of the solution: the partitioning of
the space can result into the creation of a large number of
critical regions that may require significant computational
space to be saved. Although typically the space requirements
here were not an issue (less than 1 MB per solution) it is
likely that solutions that require several MBs of computa-
tional space can be obtained. The space requirements can be
significantly reduced by manipulating the floating point pre-
cision of the solution (i.e., acquiring a solution with as little

“The statistics f(}r such a claim result from the online application of the controllers
within gPROMS® via C+ + programming, as described in Step 4.
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Table 2. An Indicative List of (MI)DO Algorithms in
Literature

Contribution

Algo. 1: GBD based approach. The
master problem is constructed without
the solution of an intermediate adjoint
problem at the expense of including
additional equations and search
variables

Algo. 2: Master problems are
computationally more expensive due
to addition of linearizations about the
optimal solution of the primal
problem. Additional constraints render
the master problem tighter, hence fewer
iterations suffice for a local
solution

Algo. 1: Outer approximation based
approach for global optimization.
Primal problem is not solved to global
optimality at every iteration, which
alleviates the computational burden

Algo. 2: Formulates a bilevel dynamic
optimization problem, which can be
naturally extended to a mixed-integer
dynamic optimization formulation. A
branch and bound algorithm is utilized
to solve the problem to global optimality

Full discretization by finite elements, and
solving a large scale nonconvex MINLP.
Generalized disjunctive programming
are used to solve the MINLP

MIDO problem is reformulated as a
mixed-logic dynamic optimization
problem, and solved by control vector
parameterization and direct multiple
shooting

Algo. 1: The inner level dynamic
optimization problem is replaced with a
set of surrogate models, which are
updated adaptively with every iteration

Algo. 2: MIDO is reformulated as a large
scale MINLP problem. MILP master
problem is subjected to a bilevel
decomposition algorithm based on the
inherently different time scales of the
original problem

Algo. 3: GBD based approach.
Decomposed primal problem is a set of
separable dynamic optimization
problems, and the master problem is a
mixed-integer nonlinear fractional
problem, which is solved to global
optimality by a fractional programming
algorithm

Author (year)

Pistikopoulos &
co-workers
(2003)"%°

Barton &
co-workers
(2006,
2009)!21:122

Biegler &
co-workers
(2007)'%

Marquardt &
co-workers
(2008)"**

You & co-workers
(2013, 2014,
2015)125-130

as a few decimals instead of the 16 decimals working preci-
sion of most software tools without affecting the precision of
the applied optimal action) or with recent techniques such as
the ones described in Ref. 119.

Step 4: Closed-loop validation—The framework is vali-
dated through closing the loop against the original model of
Step 1. This can happen either via the interoperability between
software tools such as gPROMS® and MATLAB® via
g¢O:MATLAB or via the straight implementation of the con-
trollers in the gPROMS® simulation via the use of C++ pro-
gramming and the creation of Dynamic Link Libraries. Note
that the validation step is necessary in order to test the behav-
ior of the control scheme for a variety of different control and
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process designs. Given that the design dependent control
scheme can satisfactorily handle the operation of the system
for different designs (efficient set point tracking, constraint
violation, stable operation are some of the criteria), the simul-
taneous design and control optimization can take place. Note
that in this work the approximate state-space models on which
the control schemes are derived treat the design variables as
measured added disturbances, a relationship that is not always
the same in the “high-fidelity” model. The purpose of this step
is also to verify whether such an approximation results in
acceptable control behavior for different designs.

Step 5: Dynamic optimization—Through the creation of
Dynamic Link Libraries the design dependent control scheme
is introduced into gPROMS®. Problem 1 is therefore reformu-
lated as in Eq. 10.

T
min J=J P(x,y,uc,Y,d,De)dt
uer,Y,De 0

d
s.t. Ex=f(x, u.,Y,d,De)

Ymin < y=8(x,uc, Y, d,De) < ypax
u.r=K;(0r)+r;, ¥Y0r € CR; (10)
Or=[xr; te,r—1; dr; De; yr; yi' )

Y €{0,1}

e L S I A

min’  “m, max’ “max

Demin < De < Demu,\‘

Problem 10 is a MIDO program which is handled via a control
vector parameterization (CVP) algorithm in gPROMS®. The
term T denotes the control time step interval and 7 the horizon
of the MIDO problem. The time-varying optimization varia-
bles are piecewise-constant functions of time over a number of
intervals which are specified by the user according to the
needs of each problem. Note that the duration of the intervals
in each step are in this case determined by the user to be equal
in duration with the control time step for synchronization
purposes.® The single vector shooting dynamic optimization
can be decomposed as follows':

e The values of the optimization variables are determined
for each interval.

e The dynamic model is simulated over the entire time
horizon.

e The value of (1) the objective function and its partial
derivatives with respect to the optimization variables and (2)
the constraints are determined.

e Convergence is checked and if needed the steps are
repeated.

According to the Optimization Guide of PSE’s gPROMS®
the CVP algorithm for (MI)DO relies on the values of the par-
tial derivatives of the problem’s objective function with
respect to the optimization variables to determine its next iter-
ation step. In the case of the design optimization variables, the
partial derivatives are needed with respect to the rest of the
“high-fidelity” model variables (x and y) as well as the control
variables (u. ). Although the derivatives of the former are cal-
culated “on the fly” via the optimization algorithm, the calcu-
lation of the derivatives of the latter can become an issue

SIn the general case this is an extra degree of freedom for the dynamic optimizer.
9IFor more information the user is referred to the optimization guide of PSE’s
gPROMS®.
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Figure 2. Schematic representation of the simulta-
neous design MIDO with embedded

mpMPC. The area within the dashed line
represents the MIDO problem.

when an external piece of software introduces the u.r values
to the problem. This burden is alleviated with the use of
mpMPC as the partial derivatives of the control actions with
respect to the design variables (optimization variables in the
(MDDO context) are available a priori via K; in Problem 10 as
exact expressions, not numerical approximations, thus utiliz-
ing in full the concept of “map of solutions” introduced in
Ref. 109. Also note that the dynamic model simulation in
gPROMS® happens based on non-uniform discretization steps
posing a technical, time synchronization challenge to the over-
all simultaneous approach. In order to overcome this, an error
function is defined for every control action which absorbs the
evaluation of the controller at the non-uniform time steps of
the simulation and only utilize the evaluation at the control
time intervals. This happens via imposing interior point con-
straints of the form err(r)=u.7—u(t)=0. The latter is zero
only at every interior point of the MIDO. The variable u(f)
therefore remains piecewise constant, between interior points,
and equal to the value of u.7 at the interior point, although
from a software point of view the variable u.r is free to be
evaluated multiple times throughout a single MIDO time step.
The evaluation of u. 7 within the MIDO time step is therefore
rejected. Also note that within the MIDO problem, the optimal
control action u.r is regarded as an optimization variable
although it is calculated via the mpMPC formulation of Step
3. The two reasons that this is happening is (1) the fact that the
action is implicitly optimized via the optimal choice of the
design variables De and the dependence of u. 7 to those varia-
bles and (2) the fact that within the MIDO problem formula-
tion this is necessary in order to achieve the synchronization
of the fixed time-step control with the MIDO problem.

Based on the nature of the design dynamic optimization
model and especially the existence of binary variables, suit-
able optimization solvers are employed for the task of optimiz-
ing the model at every interval. More specifically, for the
general case of MIDO an Outer approximation based method
is employed where the problem is initially reformulated to a
completely relaxed NLP. A linearized version of the model
excluding any binary variable combinations from previous
iterations is subsequently solved (master problem). Based on
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the integer solution of the master problem, the primal problem
is formulated and solved. Both the primal and the fully relaxed
problem are solved via a sequential quadratic programming
algorithm. Note that in this work we use a commercially avail-
able software tool for the solution of the design (MI)DO prob-
lem. Based on the aforementioned characteristics of the solver
the solution is guaranteed to be locally optimal, even for the
DO case. For a list of available MIDO algorithms see Table 2.
The overall simultaneous design and control optimization is
schematically presented in Figure 2. The dynamic optimiza-
tion algorithm utilizes information from the process and the
optimal control actions derived multi-parametrically to deter-
mine the optimal design. The values for the optimal design are
used to calculate the numerical values of the control actions
and progress the simulation step.

The following sections present the application of the simul-
taneous design and control framework via a tank, a CSTR, a
binary distillation column and a domestic cogeneration unit
examples.

The Tank Example

This case study focuses on the design of a simple tank. A
sinusoidal inlet flow signal is introduced to a tank the outlet of
which is manipulated via a mpMPC. The purpose of the con-
troller is to maintain a certain liquid volume within the tank
regardless of the inlet. The sinusoidal form of the inlet is han-
dled as a bounded parametric uncertainty via the control prob-
lem, its nominal value and deviation is dynamically optimized
to determine the maximum deviation from the nominal value
for which the controller can maintain a liquid volume setpoint.
Given a correlation between the tank set point, the nominal
flow and its deviation the set point is dynamically calculated
and therefore so is, implicitly, the volume of the tank. The set
point is determined as a function of the nominal value and
maximum deviation of the sinusoidal inlet flow rate. The tank
volume is therefore inferred by that. Note that in order to
maintain the set point in time and reduce the size of the
dynamic optimization the dynamic optimization problem is
limited to one period of the inlet sinusoidal wave. Constraints
within the dynamic optimization ensure that the initial point of
the optimization is the same as the final point, therefore
achieving a cyclic operation that allows for the extrapolation
of the operation to larger horizons.

“High fidelity” dynamic modeling
The model of the tank is presented in Eq. 11

Table 3. Weight Tuning for the mpMPC of the Tank

MPC design parameters Value
N 10
M 1
OR,Vk € {1,...,N} 10
Ry, Vk € {1,....M} 1077
Xmin -10°
Xmax 10°
Upmin 0
Umax 1
Ymin 0
Ymax 10
dmin 0
dmax 5
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Figure 3. Closed loop validation of the controller against the high fidelity model.
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Fin=Fnomt+Faey - sSin (t/freq)
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where V is the volume of the liquid within the tank, F;, and
F,,, the inlet and outlet flow rate, a is a proportionality param-
eter and the control variable, F,,,, and F,, are the nominal
inlet flow rate and its deviation and freq is the sinusoidal sig-
nal frequency. Note that V is the state of the system and is bi-
linear with the control variable ¢ which makes the lineariza-
tion of the system necessary for multi-parametric program-
ming. Alternatively, a robust reformulation of the system in
discrete time would alleviate the need of approximation result-
ing in the consideration of the exact model in the multi-
parametric programming formulation. In this context, F;,
being treated as bounded parametric uncertainty, doesn’t inter-
fere with the linearity of the state-space formulation.

Model approximation

The approximation of the tank model in Eq. 11 takes place
in the System Identification Toolbox in MATLAB® and results
into the linear state-space in Eq. 12.

x7r+1=0.9980 - x7—0.2536 - u.7+0.1003 - dr
yr=109.9320 - x7—2.0378 - u.r
T,=0.01s

12)

where x; are the identified states, u.r is the proportionality
parameter, dr is the flow at the inlet of the tank, and y is the
liquid volume in the tank.

The step and impulse responses of the system are presented
in Figures Bla, B1b, respectively.

Design of the multi-parametric model predictive
controller

The multi-parametric model predictive controller problem
is formulated and solved using POP where the optimal control
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action is generated as a map of solutions and as a function of
the problem parameters.m‘l’117 The problem formulation is
based on Eq. 4 and the tuning of the controller is presented in
Table 3.

The design variable corresponding to the volume of the tank
is introduced as a parameter at the upper bound of the output
of the system. Furthermore, the bounds for the disturbance of
the system d,,;, and d,,,, have been chosen such that d,,;,=
Frommin=F dgevmax and dyax =F pommax +F dev max- The purpose of
the controller is to maintain the volume of the liquid within
the tank at a certain set point with a maximum deviation of
less than 5%, effectively rejecting the disturbance introduced
at the inlet of the tank.

Closed-loop validation

The validation step is presented in Figure 3 where the con-
troller is tested against the original high fidelity model. The
closed loop validation of the controller happens for the follow-
ing process characteristics:

e Nominal inlet flow rate: 1.5m?/s
e Inlet flow rate deviation: 0.5m? /s
e Volume set point: 2 m?

Note that in the case of the tank the set point for the volume
V5P is dynamically correlated with the maximum value of the
inlet flow rate (i.e., if Fiy=Fom+Faev - sin (¢/freq)[m? /s] then
VSP = (F i+ F ) X 1s[m?]).

Dynamic optimization

The dynamic optimization in Problem 10 is formulated in
order to find the maximum value of F,, for which the system
can track a volume set point. The F,,,, value is an optimiza-
tion variable for the dynamic optimization problem. Further-
more, the optimization formulation considers the initial point
of the state variables as optimization variables. This is to
ensure that the starting point and the end point of the optimiza-
tion problem will coincide, resulting in a cyclic operation. The
full dynamic optimization problem is presented in Eq. 13. The
problem is run for 1 s (1 cycle for the disturbance sinusoidal
signal), i.e., for 100 intervals.
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max J=| Fydt
Viank sF devsFnom,V (1=0) x(t=0)

f=}

dv(t

~—

S.t. 7:Fin(t)_F0m(t)

dt

Fou(t)=ar - V(1)
Fin (t> :Fnon1+Fdev - sin (t/freq)

1
freq A

mpMPC(1)=K; - [x(t), Fin (1), V(2), VSF)" + 1,

VIx(1), Fin(1), V(2), VSP]" € CR;

13)

VSP:Fnam—'—Fdev S Vtank

€Ir''mpMpPC ZJ

1 SP
V(t)—V
|| () H It

VSP

End point constraints

x(t=0)=x(t=1) , states of the state—space model
V(t=0)=V(t=1), statesofthe highfidelity/model

errmpmpe < 1%

Interior point constraint V7 € {1,...,100}
mpMPC(t=T)—ar=0

End point constraints in the optimization problem are intro-
duced to allow for a set point deviation of less than 1% per
cycle and to ensure cyclic operation. The purpose of the inte-
rior point constraint at every interval is to use the controller
evaluation only at the beginning of every intervals as a piece-
wise constant value. The dynamic optimization yields a nomi-
nal inlet flow rate of 2.485m?/s with an equal deviation. The
initial volume for cyclic operation has been identified as
V=4.99 m?. Furthermore, due to the maximum controller error
consideration the volume of the tank is 5.0694 m>. The error
of the mpMPC at the end of a single cycle is 0.9%.

The CSTR Example

A fixed volume CSTR is used here as a case study for
simultaneous design and control optimization. The goal is to
optimize the volume of the tank reactor assuming perfect con-
trol at the outlet of the reactor, (i.e., the total outlet flow rate at
the outlet of the reactor is determined by the inlet and no other
phenomena are assumed to affect it.). The concentration of the
reactants and mass flow rate at the inlet of the reactor are

Table 4. Weight Tuning for the mpMPC of the CSTR

MPC design parameters Value

N 3

M 3
OR;,Vk € {1,...,N} 5%10°
R, Vk € {1,...,M} 1
Xoin [0 100]"
Ymax [20 450]"
Unin 200
Unax 500
Yomin [0 100]"
Vimas [20 450]"
i [0 500])
Ay [20 1000]"
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treated as known and unknown disturbances, respectively. A
sinusoidal behavior of flow and concentration is assumed. The
sinusoidal form of the inlet is handled as a bounded parametric
uncertainty via the control problem, its nominal value and
deviation is dynamically optimized at the MIDO step to deter-
mine the maximum deviation from the nominal value for
which the controller can maintain a minimal reactant concen-
tration at the outlet of the CSTR. On the contrary to the previ-
ous example, here we take into account the possibility of
having a settling tank prior to the CSTR that will stabilize the
inlet flow. Its cost of equipment and operation is taken into
account in the overall cost minimization of the CSTR, which
is the objective of the design optimization problem. A multi-

88 sp
<5, ‘ ‘ .
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450 : ; ;
400 : : :
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~.500 T T - '
5480 L%
2 460+ 4 ; ; , -
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Figure 4. Closed loop validation of the controller
against the high fidelity model.
(a) Tank wusage for a fixed initial Cagpom=

10 mol/L(optimal). (b) Tank usage for a fixed initial
Cap nom=8 mol /L.
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Table 5. Characteristic Equations for a Binary Distillation
Column

Description Equation

dM,
G =Liv1Xigr1 tVicyik—1 HFizip

FRXip —LiXi k= ViYiks
Vk € {2.. Ntrays—1}

Bl =Ly A Vi +F AR — Ly
—Vi, Yk e {2.. Ntrays—1}

Vi=Vi—1=Vs, Vk € {2 . .Ntrays—l}

Component mass
balance

Total mass balance

Vapor molar flow rate

Hold-up Vol = M
Prmick 53
Liquid level Levely= g —1— 4puf,,\,k I +Hyeir
0.87D?
Tray area Apray= =7+
Weir length Lyoiy=0.77D,
. .o Py pis Py 5 (1=Xip)
Reboiler vapor liquid | = s B s T8
equilibrium 1
Condenser vapor liquid 1=P(52 + —2)
equihbnum benz,D tol.D
0 PO
e Joree — benzD" benzB PO
Relative volatility o e P
— X k
Yik= o)
. dm,
Reboiler and reflux drum 4 =Lixi1—Bxig—VgYip
molar balance "
— iB
M=%
dMip _
a VN{rays (yi.Ntrayx _Xi‘D)
_Mip
MD - XiD
Reboiler and reflux drum 0=L,—B—Vjp
energy balance
0= VD —2R k -D

Component i is benzene, tray number is k € {1...Ntrays} unless stated
otherwise.

parametric controller is introduced to manipulate the tempera-
ture of the heating jacket in order to minimize the concentra-
tion of the reactants at the outlet.
“High fidelity” dynamic modeling

The model of the CSTR is presented in Eq. 14
dCa _ m

7 _p-—V . (Cao—Ca)—ko -Ca - 6%57‘!

dT _m-Cp- (To—T)+V - AH,y, - Ca - ko - ¥ +UA - (T.—T)
dt V-p-Cp
Cag=Cag pom+Cag gev - sin (t/freq)

M= Myom T Meey - SWy,

Py, (1/freq) - cos (1freq)

freq=100/(2 - m)
(14

where Ca and Ca is the concentration of the reactants in the
reactor and at the inlet, respectively, m is the mass flow rate at
the inlet and outlet of the reactor, V is the volume of the reac-
tor, kg is the rate constant of the reaction, E, is the activation
energy, R is the ideal gas constant, 7 is the temperature in the
reactor and at the reactor outlet, C,, is the overall heat capacity,
Ty is the temperature of the inlet flow stream, AH,., is the rate
of reaction, UA is the overall heat transfer coefficient, and T,
the temperature in the heating jacket of the reactor. C, and T
are the states of the system, T is the control variable, and V is
the design variable. The last four equations of the model
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represent the sinusoidal form of the disturbances. The binary
variable y;, denotes the existence and operation or not of a set-
tling tank prior to the CSTR. Notice that the binary variable
appears in the differential form of the sinusoidal wave in order
to affect the rate of change of the concentration and mass flow
rate rather than the value itself.

Model approximation

The approximation of the tank model in Eq. 14 takes place
in the System Identification Toolbox in MATLAB® and results
into the linear state-space in Eq. 15.

0.9627 0.006032 —0.005116
X741 = Xrt
0.7177  0.8839 0.09858
—0.02026 —9.429-107° dr
UerT :
0.384 0.001842 Dpe| (15
10
yr= Xr
0 1
T,=10s

where x7 are the identified states, u. 7 is the temperature of the
jacket, dr is the concentration of the reactants at the inlet of
the CSTR, De is the volume of the CSTR, and y is the concen-
tration of the reactants at the outlet of the reactor and the tem-
perature of the outlet stream.

The step and impulse responses of the system are presented
in Figures B2a, B2b, respectively.

Design of the multi-parametric model predictive
controller

The multi-parametric model predictive controller problem
is formulated based on Eq. 4 and solved with POP.''" The
objective of the mpMPC is to minimize the concentration of
the reactants at the outlet of the reactor. The tuning of the con-
troller is presented in Table 4.

The purpose of the controller is to minimize the concentration
of the reactant at the outlet of the CSTR and effectively reject
the disturbances at the concentration introduced at the inlet.

Closed-loop validation

The validation step is presented in Figure 4 where the con-
troller is tested against the original high fidelity model. Here it
is assumed that no settling tank exists prior to the CSTR (i.e.,
yp = 1). The closed loop validation of the controller happens
for the following process characteristics:

e CSTR Volume: 750 m*
Cag pom: 3 mol /L

Cag gev: 1 mol/L

Mpom: 23 /s

Mger: 0.5m3 /s

Dynamic optimization

The objective of the dynamic optimization is to determine
(1) the optimal volume of the CSTR, (2) the necessity for a
settling tank prior to the CSTR and its settling time (3) the
nominal and deviation values for the concentration of reac-
tants and flow rate at the inlet of the reactor. This is done by
minimizing a total cost function as shown in Eq. 16. At the
starting point of the optimization, we assume that both the Cay
and m start at their nominal value.
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max J=Costro

V. mdes Muom-Cades Catnom Vi
dCa(t) (1)
dt

.t
S v

=" (Cao()—~Cal(t))~ko - Ca(r) - 5T

o
dT(6) _m(t) - Cp - (To=T(1))+V - Ay - Calt) - ko - 75+ UA - (Ter —T(1))

V-p-Cp

Cay :CaO,nom +CaOﬁdev - sin (t/fre‘Q)

M= Moy +Meey = SWy,

dswy,

By, - (1/freq) - cos (t/freq)

dt
freg=100/(2 - n)

mpMPC(t) =K - [X(l‘), Ca()(t)’ V(t)a Ca(t)> T(t)v CaSP]TJrria

16)

V[x(r), Cao (1), V(t), Ca(t), T(1), Ca’F])" € CR;

Ca’f =0

Objective function

COStTotal = COStEquipmem + COStOperational

Costeguipmens=10 - ((V—750)/7)+1000+400 - yp ¢

dCostoperationa
dCostoperaionat _,  (Cay (1)~ Ca(r))—4 - yy

dt

Interior point constraint VT € {1,...,100}

yo—M - ypy <0
mpMPC(r=T)—T,7=0
T(r) <450

The binary variable yj is introduced in the interior point
constraints in order to account for the existence of the settling
tank equipment only if y,—corresponding to the operation of
the tank—is active at any interior point. Since the latter is a
piecewise constant variable if its value is one in at least one
interval then the tank should exist. Therefore, an equipment
cost associated with that is taken into account in the objective
function. The temperature constraint is present to ensure the
feasibility of the controller evaluation. The optimization
results yield that the existence of the tank is necessary and
operated until the concentration at the outlet of the CSTR
approaches zero. The optimization results are presented

below:

Ca
(mol/l)
=

o o
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o

S - . - -

0 50 100 150 200 250
Time (s)

1: operating)
o
o o -

Tank operation

(y

e CSTR Volume: 500 m*
e Cagpom: 10mol/L
e Caggev: 5mol/L
® Mypm: Tm?/s
® Mg 2m3 /s

The tank is used at the start-up of the CSTR operation in
order to normalize the concentration of the reactants until the
controller can effectively manage the sinusoidal concentration
deviation. It is clear that for different initial conditions
(Cap nom) the time period for which the tank is operated will
vary. The initial concentration reported as optimal is by defini-
tion that concentration that would cause the greatest settling
time to the CSTR operation. This is shown in Figures 5a, b
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(a) Tank usage for a fixed initial Cag nem = 10mol/l (b) Tank usage for a fixed initial Cag nom = 8mol/l.

(Optimal).

Figure 5. Tank usage optimization results for fixed Cag nom-
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where the dynamic optimization has been repeated for a fixed
Cag nom=8 mol/L. The deviation from the optimal solution in
the case where Cag was fixed to 8 mol/L is 25.4%.

The Binary Distillation Column Example

The distillation column model describes the binary separa-
tion of benzene and toluene. The column is allowed a maxi-
mum number of trays to be 30 with no restriction on feed tray
location. The purity in the top has a desired set point of 0.98
and the purity in the bottom has a desired setpoint of 0.02. The
feed composition is assumed sinusoidal and is optimized simi-
larly to the previous two examples.

“High fidelity” dynamic modeling

The distillation column utilizes mass and energy balances
and thermodynamic relations to build the full model. The fol-
lowing assumptions have been made:

e Fast energy dynamics.

Relative volatility.

Constant molar hold up in condenser.

Immediate pressure response.

Mass balances for each tray, reboiler, and condenser are
used while assuming constant molar hold up in the total con-
denser. Energy balances are used in the reboiler and condenser
while assuming an average temperature throughout the col-
umn. Relative volatility is used to determine vapor and liquid
correlations in each tray and in the reboiler. The model
assumes the reflux flow rate and the boil up rate to be the con-
trollable variables in the system, and the molar hold ups to be
the states of the system. Column diameter, reflux tray position,
and feed tray position are the design variables, while the pres-
ence and position of the reboiler and condenser are fixed. Den-
sity of the liquid hold up on the trays is assumed to follow
from a linear combination of the component densities.

The model of the binary distillation column is adapted from
Ref. 131. The characteristic equations of the model are pre-
sented in 5 and in Appendix A, Table 1 for the nomenclature.

Antoine equations were used to determine vapor pressures
at the top and bottom of the distillation column and the log-
mean temperature approach was used for the heat exchange at
the condenser and the reboiler. Since the “high-fidelity” model
used here is a simplified model, the limiting constraints of the
columns operation are expressed via thermodynamic limits
which are manifested via the Antoine equations and subse-
quently the relative volatility relations. The distillation column
is a multiple input multiple output system where the reflux
flow rate and boil up flow rate are the degrees of freedom to
the system, and the purity in the top and bottom is the output.
The composition at the feed is treated as a disturbance to the
system operation.

Model approximation

The high fidelity model of the distillation column consists
of 50+ states and nonlinear equations. Random sets of I/O for
different designs from the “high fidelity” model are introduced
into the System Identification Toolbox in MATLAB® to
acquire a linear state-space model of the form of Eq. 3. The
identified state-space model is shown in Eq. 17.
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0.9533
XT+17=

—0.05507 —0.01609
XT +
0.0264

—0.01346
u(:‘T+

0.5494 —0.1129  0.08987

—0.1257 —9.703-107° —4.163-107*] [ dr
1.005 7.184-107% —5.874-107° | | De
—0.2357 —0.354

yr= X1
0.1098 —0.4719

Ty=1s

A7)

where x7 are the identified states, u.r are the reflux flow rate
and the boil up rate, dy is the composition of the feed, and De
is the feed and reflux tray location. Note that the column diam-
eter is correlated to the minimum vapor flow rate and therefore
is the design decision of the system (see Eq. 18). Also note
that the location of the trays are integer variables the handling
of which in terms of multi-parametric programming will be
discussed in the next section.

The step and impulse responses of the system are presented
in Figures B3a, B3b, respectively.

Design of the multi-parametric model predictive
controller

Similarly to the tank example in section the problem formula-
tion is based on Eq. 4 and the tuning of the controller is pre-
sented in Table 6. Note that since the boil up flow rate is limited
by the column diameter as presented in Eq. 18, the mpMPC is
modified to account for the square of the column diameter as a
design parameter. Note that since the column diameter is always
greater than zero and it does not appear anywhere else within
the mpMPC formulation we can define a new parameter p=D3
which renders Eq. 18 linear inequality constraint.

0.4514 - Vg < D2 (18)

The integer parameters corresponding to the tray locations are
reformulated into binary parameters and solved based on the
algorithm presented in Ref. 132. An alternative formulation could
be the treatment of integer parameters as continuous parameters
(similar to handling binary variables in Ref. 133) since the integer
value realization of the parameter is a subset of their continuous
values and the realization is not an mpMPC decision.

The objective of the design dependent controller is to main-
tain the purity set points for the top and bottom product at
98% vol and 2% vol regardless of the disturbance at the inlet
of the system. Small deviations are allowed but penalized in
the design optimization formulation.

Closed-loop validation

The validation step can be seen in Figure 6 where the con-
troller is tested against the original high fidelity model. Note
that the closed-loop validation needs to happen and be satis-
factory for a range of different designs. Here we present the
closed loop validation for a distillation column with the fol-
lowing characteristics:

e Condenser area: 100 m?,
Reboiler area: 282.427 m?.
Diameter of column: 1.9m_
Reflux tray position: 18.
Feed tray position: 9.
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Table 6. Weight Tuning for the mpMPC of the Distillation

Table 7. Additional/Modified Equations for Dynamic

Column Optimization
MPC design parameters Value Description Equation
N 3 Ntrays
M 1 Feed tray location Fk=F5£, Z 6’2=1
k=1
Ry, Vk € {1 N 1070 Nirays
ke {l,..., ) i o
O { } 0 107 Reflux tray location Ry=RJ;, Z =1
k=1
10~ 2 0 Ntrays
Ry, Vk € {1,....M} 0 102 Feed tray location o, — Z o, <0
T only below reflux k1=k
Xmin [ - 103 - 103 ] Ntrays
Xomax [ 10 10° }T Component mass <Z 52,) (Mj—r‘ =L 1 Xigr1 Vi 1ik—1+
' T balance kr=k
Umin (2 3] Fizig+Rixia—LiXi g —Viyiks
Upnax 47 71"
Vk € {2..,Ntrays—1
Ymin [O O}T { 'y }
Ymax [ 1 1 }T Ntrays
A (045 1 l]T Total mass balance Z o, %:LH] +Vi1+Fy
min : k1=k
e [0.5 30 30] +Ry—Ly—Vy, Yk € {2..,Ntrays—1}

Dynamic optimization

The dynamic optimization in Problem 10 is then formulated
and solved allowing for the optimizer to select the optimal
value for the area of the condenser, area of the reboiler, reflux
tray location, feed tray location, and diameter of the column.
To account for the reflux and feed tray location changing addi-
tional equations were added or modified as seen in Table 7.

Allowing the dynamic optimization to run over a time span
of 1 h, the results obtained are presented in Table 8.

It can be seen that by utilizing the simultaneous design and
control approach presented here, a distillation column with a
smaller annualized total cost is designed.

The Domestic Cogeneration Unit Example

The domestic internal combustion engine powered cogene-
ration example of Refs. 134,135 is used here. For the domestic
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Figure 6. Closed loop validation of the controller
against the high fidelity model.
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Reboiler cost

280 \ 1442547
TotalCost= OpCOS[+ % (C('olumn +Crep+ C('mzd)

0.65
Crep=0.6 - 101.3M< 10°Ag ) 322135

Total cost

Component i is benzene, tray number is & € {1...Nirays} unless stated
otherwise.

Table 8. Results of the Current Approach and Comparison
with Ref. 131

Current Comparison

approach with Ref. 131
Condenser area (m?) 120 132
Reboiler area (m?) 266 276
Diameter of column (m) 1.62 1.65
Reflux tray 25 25
Feed tray 12 12
Total cost (k$) 590 620

cogeneration unit we assume the possibility of a dual mode of
operation, i.e., the unit can either follow an electricity demand
(Mode 1 operation) or a hot water demand (Mode 2 operation)
based on cost of operation criteria. The decentralized control
schemes for this purpose are described in Ref. 134 in detail.
The unit is assumed to provide heat and power to an area con-
nected to the electricity and natural gas grid, therefore, any
power that the unit cannot cover are covered by the grid, at a
cost.** Similarly surplus of electrical power is provided to the
grid, at a revenue and heat in the form of water discarded at a
cost. The design aspect is the size of the internal combustion
engine. Indicatively, a larger engine can potential cover
greater demands but requires a greater investment cost. Con-
versely, a smaller engine might be less cost effective in the
long term operation of the plant. A sinusoidal demand for elec-
trical power and hot water is assumed. Previously we pre-
sented a similar example with Mode 1 operation where the
simultaneous design and control employed PI controllers and
later a mpMPC was formulated to fit the optimal design.'**'%’
Here, we formulate the explicit controllers to be design

*#*The cost of electrical power fluctuates between night time and day time which is
taken into account in this example.
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Table 9. Residential CHP Model Overview

Description Equation

Throttle valve—fuel
and air manipulation

Manifolds—pressure
difference driven
flow for the inlet air
and exhaust gases

—— Pap <Pab)
th—CdAth

\/R[)’Tub P
% M :mmn,in _mmn.our

an‘out:Cpf(Pnln_Pmmaur)

an EE:mmn.inhmn,in 7mmn.()uthmn.(mr
Pun Va

Moy = — 1,1 Wen
R/;Tm” 4n

mmn.oul <hmn.0u1+ Z (xair,ih;{air',')>

i=aircomp.

) <’7¢+ Z (xrw'h_?,fuel.j))

Internal combustion
engine—energy and
mass balances

Jj=fuelcomp.
— iy <hex + Z (x&\’-,k h;,z/,\'.k)
k=exhaustcomp.
= Q/ + Qz'gﬂt'w + Wl' + WC‘"
PoerV,
Crankshaft—Torque T0py= —1224
generation d Ai”
Generator—power —Toq=— (Toen—Toe)
generation dt Fl
through torque Pec=n,,To.we,
ET‘= Qin‘i_Qoutj
Engine cooling system— ar’ miCp,i

energy balances Vi € engine cooling

system components

0 s =TCapAap(Ta—T)

Va,b € engine cooling

system components

Heat exchangers— O=UAAT ean
energy balances AT, —AT.
ATmmn = meW’
1 m
”g< AT,y >

dependent, similarly to the three previous examples and pro-
ceed with a dynamic design optimization.

“High fidelity” dynamic modeling

The high “fidelity model” of the cogeneration unit features
the interactions of each component of the unit. It is based on
first principles and correlations and is a non-linear DAE sys-
tem with 379 equations, 15 of which are differential, and 6
degrees of freedom. An overview is presented in Table 9 and
Table 2. The full model can be found in Ref. 135.

The necessity of the model approximation and the decentrali-
zation of such a system lies with the fact that (1) its complexity
would pose a significant challenge for advanced optimization
techniques and (2) the different modes of operation require
advanced control schemes as explained in Ref. 134. The latter
can be comprehended by the fact that the process is multi-
product, as it is able to produce simultaneously usable heat and
power. The dependence between heat and power generation
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although, makes it impossible to produce both of them simulta-
neously at the desired level, at all times.

The CHP unit is treated as the interactions of the heat gener-
ation subsystem with the power generation subsystem.'** The
power generation subsystem is design dependent as the
amount of power generated from the unit is directly affected
by the size of the internal combustion engine. The heat recov-
ery subsystem is dependent on the power generation, as it cor-
relates the amount of hot water produced and its temperature
to the operating level of the power generation subsystem.
Treating the power generation level as a known disturbance
(in the case of Mode 1 operation) or as a projected operating
level set point (in the case of Mode 2 operation) results only
into an indirect design correlation. Therefore, we proceed here
considering only the directly affected design dependent power
generation subsystem. The formulation for the heat recovery
subsystem follows exactly the principles presented in Ref.
134.

Model approximation

The approximate model for the power generation subsys-
tems is identified via System Identification in MATLAB®. In
order for this to happen, I/O data for a range of different
designs are introduced. The input to the system is the opening
of the throttle valve which manipulates the amount of air and
fuel that enters the combustion chambers of the internal com-
bustion engine. Based on the size of the engine (treated here
as a measured disturbance), the power output is affected as
shown in Eq. 19. The state-space model for the heat recovery
subsystem is presented in Eq. 20.

Xr4+1=0.9799 - x7+0.006328 - u.r+6.516 - De
yr=7.839 - xr (19)
T,=0.1s
where x7 are the identified states, u.r is the throttle valve
opening, dy and De is the volume of the internal combustion

engine. The output yr is the electrical power generated via the
subsystem.

0.997 0.1026  —0.002958
xre1=| —0.001527  0.9404 0.1663 | -xr
—0.05827 —0.05636  0.179
—0.007864  0.001107
(20)
+| 02801  —0.03306 | - ucr
—-1.28 0.1464
yr=[—529.9 —2.827 0.2521] x;
T,=0.1s

where x7 are the identified states and u. r are the power gener-
ation level and water flow rate in the heat recovery subsystem.
The output y7 is the temperature of the hot water at the outlet
of the system. Note that depending on the mode of operation
of the CHP system one of the inputs is treated as a measured
disturbance to the system (i.e., the power generation level is
treated as a measured disturbance in Mode 1 and the water
flow rate is treated as a measured disturbance in Mode 2).
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Table 10. Weight Tuning for the mpMPC of the CHP Unit

MPC design parameters Value
N 3
M 3
OR;,Vk € {1,...,N} 31.25
R1;,Vk € {1,...,M} 0.1
Xmin 0
'xm(l/\ 5
Upin 0.01
um(u ‘l
Ymin
YmaA 1 1
doyin 1500
7. 5000
Upmin —0.1
Aty 0.1

The step and impulse responses of the entire system are pre-
sented in Figures B4a, B4b, respectively.

Design of the multi-parametric model predictive
controller

The multi-parametric model predictive controller problem
(based on Eq. 4) is formulated and solved with POP."'" The
tuning of the controller is presented in Table 10. The tuning of
the controllers for the heat recovery subsystem is omitted here
as it has been presented previously and is identical to Ref.
134.

Note the following:

e The minimum value of the throttle valve opening is not
equal to 0. This means that there is a minimum operating
level for the CHP unit and that we do not account for the
system ability to switch off as part of the control strategy.

e The maximum output is linearly correlated to the size of
the internal combustion engine based on the function

80

D
o

Temperature (°C)
B
o

20
0 L n n
0 100 200 300
1
|
] |
o~
o
205
o
=
[o)
o
" I
0 100 200 300
Time (s)

Ymax=0.0011 - De+4.5148, where y,,,. is the maximum
power output in X10kW and De is the internal combustion
engine volume (treated in the context of mpMPC as the dis-
turbance d).

In Mode 1, the control scheme attempts to (1) cover the
electrical power demand and (2) produce water of a predefined
temperature, regardless of the flow rate. In Mode 2, the control
scheme attempts to produce hot water of (1) a predefined flow
rate an (2) temperature, regardless of the operating level of the
power generation subsystem. The most important limiting fac-
tor for the controller performance of the CHP system is to
guarantee that there exist no violation of the water temperature
above 100°C due to a possible overshoot. Further information
regarding this can be found in Ref. 134.

Closed-loop validation

Closing the loop of the CHP system involves both operating
modes. In Figure 7 the simulation presents a power driven
operation for the first 120 s and the last 50 s. A heat recovery
driven operation is shown for time between 120 and 300 s.
The simulation follows a variable electrical power and hot
water flow rate demand. It is assumed that the hot water tem-
perature at the outlet is 70°C. The design of the internal com-
bustion engine for this operation is 1500 cc.

In Figures 8 and 9 present the response of the Mode 1 and
Mode 2 control scheme, respectively, for different designs.
Note that the same design dependent controller is used for dif-
ferent closed-loop simulations. Despite that, the different
designs cause a different response to the system. For example,
the throttle valve opening is different between the different
designs which leads to different fuel consumption therefore to
different operating cost of the CHP unit. Although the differ-
ence is relatively small (i.e., the characteristics of the overall
profile are similar) those differences suffice to affect the long

-
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Figure 7. Closed loop validation of the controller against the high fidelity model.
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Figure 8. Design dependent mpMPC —Mode 1.

term operating cost of the unit. The more intense operation of
the smaller engine in comparison with the less intense opera-
tion of the larger engine is a clear trade-off between invest-
ments and operational cost, an aspect that the optimal design
takes into account. Table 11 shows a snapshot of the explicit
actions for an engine size of 1500 cc and Table 12 for an
engine size of 4500 cc. The upper graphs within Tables 11 and
12 show the optimal action u.r applied to the system as a
function of the approximate states x; while the lower graphs
the critical region that corresponds to that action. The expres-
sions of the control actions that correspond to the same critical
region are identical for different designs. The effect of the dif-
ferent designs to the optimal action is visible from the fact that
for actions corresponding to the same critical region the
numerical value that is ultimately applied to the system is
different.
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Figure 10 represents a snapshot of the power generation
of the CHP system for different designs under a fixed
power demand step change scenario. More specifically, the
different responses of the system (y;) are plotted against
the optimal actions (u.7) for three different designs of the
internal combustion engine volume (De). This shows that
although an advanced design dependent control scheme
has been employed there still exists a difference between
the closed loop response of the system when yr(u.r) is
regarded.

Dynamic optimization

The dynamic optimization formulation for the CHP system
is similar to the previous three examples. More specifically, a
sinusoidal demand is introduced for both the electrical power
and hot water flow rate while the temperature for the hot water
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Figure 9. Design dependent mpMPC —Mode 2.
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Table 11. Optimal Action as a Function of the Parameters and Design Variable (De=1500cc)

ul>0=£(0,De)

Optimal Action 1500cc CRr=1=2287

Bou CRy—,=2775
j.‘; . CRy—3=2915
gor CR7-4=2757
%006 o062 ook 0% 0ose CRy—5=3112

o 3500 CRr=6=3122
E’smnf_\_l_—|— CRr-7=2924
_:g 2500 CR7-3=2924
S CRr=9=2924

R % Timess‘:teps 2 " CRy-10=2924

Uer=10

3%, =002
30, =0.02

ul323=3.05:07 +0.0351u}30, ~9.89 - 10 °De—14.81yr +14.81y5"

<T%

41500 — 1500
U4 =t p=310.1

1500 — 1500
Upr=5=U.T= 4+01

1500 _uli()O
UeT=6 cT=5

ul3P0,=3.15x7+0.004u32¢ —1.02 - 107°De—7.9y7+7.9y5F +0.0849

+0.1

!0 =3.15x7+0.004u!30, — 1.02 - 10> De—7.9y7+7.9y;" +0.0849
}5;’09—3 1507 +0.004u3% —1.02 - 1072 De—7.9y7r+7.9y5" +0.0849
130 10=3.15x7+0.004u!32, —1.02 - 10> De—7.9y7+7.9y5" +0.0849

Table 12. Optimal Action as a Function of the Parameters and Design Variable (De=4500cc)

U =f(0,De)

Optimal Action 4500cc CRy-1=3239
% ol CRT:Z =2924
<03 CRr-3=2924
Eo2
Bo01 CR7-4=2924
% o066 0068 007 0072 0074 CRy=5=2924
tates -
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% CRT:7 =2519
%auuo—l CRy—3=2915
E o U CRy—9=2915
4TimeBSteps ? 10 CRr-10=2915

4500 — ul= 0
Uor=1= opl +0.1

U0, =3.1507+0.004u 32, —1.02 -
1.02-
U0, =3.1507+0.004u /30— 1.02 -

1073De—7.9y7+7.9y3F +0.0849
Ul 05 =3.15x7+0.004u 72, — 1073De—7.9y7+7.9y5" +0.0849
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U305 =3.15x7+0.00412, —1.02 -
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1073De—7.9y7+7.9y5" +0.0849

U0 =3.04x7+0.04u50 5

US00 = 4500 —
Uer=77 U, 0.1

4500 =3.

4500
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P05 =3.04x7+0.041!50 —9.85 - 107 °De—14.81yr+14.81y;"

00 10=3.04x7 +0.04u52 —

U 0= 9.85- 10 °De—14.81yr+14.81y5"

is maintained at 70°C. The pricing for the electrical power °
fluctuates between a high value during the day and a low value
during the night time. The purpose of the dynamic optimiza-

tion problem in this case is dual:

The determination of the size of the internal combustion
engine of the CHP.

The determination of the operating mode of the system
for a given demand scenario and pricing scheme.
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Figure 10. Design dependent mpMPC —state and optimal action propagation for different designs.
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Table 13. Computational Time Statistics

Time scale
Case study -
mpMPC offline
(MDDO problem problems
Simple tank <1 min <5 min
CSTR <10 min <5 min
Distillation column <2h <10 min
CHP <12 h <1 h (for all problems
combined)

The objective function is formulated as a Total cost function
that includes (1) the investment cost of the CHP, (2) the oper-
ating cost of the unit as a function of the amount of fuel
required for electrical power and heat production, (3) the cost
of external resources required to cover possible demand short-
ages, (4) the cost of discarding surplus heat (in the form of hot
water), and (5) the revenues from selling surplus power to the
grid.

The MIDO algorithm converges to the an operation based
on the day and night pricing of electrical power, i.e., the sys-
tem prefers to operate on a power production driven operation
during the day when the electricity price is higher and revert
to a heat generation driven demand during night time. Further-
more, the size of the internal combustion engine converges to
2203 cc, a value that does not correspond to the upper or lower
bound of the design variable. It is clear through testing several
demand scenarios (and from previous studies'”) that the oper-
ating mode of the system is primarily a matter of fuel and elec-
tricity price. More specifically, the choice for the operating
mode of the CHP system, although here optimized for a given
demand scenario and electricity price scheme, is a matter that
needs to be determined as the fluctuation in demand and pric-
ing happens. Therefore, this is a matter of an economic/opera-
tional optimization for demand side uncertainty, such as a
scheduling formulation as described in Ref. 1.

Computational Statistics and Requirements

All computational experiments were performed on a com-
puter running Windows 7 Enterprise, SP1, MATLABR2015b®
64bit, gPROMS® 4.2 64bit and Visual Studio 2012. The
computer was equipped with 16 GB of RAM and Intel®
Core™i7-4790 clocked at 3.60GHz.

The computational time scales for the mpMPC and MIDO
problems are reported in Table 13.

Concluding Remarks

We presented a framework for the application of design and
control optimization via multi-parametric programming
although four case studies. Through the formulation of a DO
with mpMPC where we ensure cyclic operation we determined
the size of a simple tank. The size of a CSTR was determined
via the formulation of a design MIDO and a corresponding
multi-parameric controller. In that case, the possibility of add-
ing a settling tank was also considered. The binary distillation
column example was revisited and the size, and key tray loca-
tions were determined via a design MIDO formulation and
mpMPC with the latter taking into account discrete alterna-
tives. The common basis for these three examples is that the
operation of the aforementioned equipment focuses on a sim-
ple objective. In the case of the tank the operating objective is
to maintain a volume set point. The CSTR attempts to produce

AIChE Journal November 2017 Vol. 63, No. 11
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as much product as possible with a temperature constraint and
the distillation column aims to achieve a certain purity level.

On the contrary to the previous three examples the case of
the CHP is different in the sense that its operation is variable,
i.e., the system should be able to follow different operating set
points at different times. Although a simultaneous design and
control approach provides great insight regarding its operation,
particularly the change between operating modes within the
day, it is not able to determine the long term operation of the
system efficiently. In other words, a decision about a long
term characteristic (such as the size of the internal combustion
engine) of a variably operating system (alternating operating
set points) cannot be made without considering the optimality
of the aforementioned set points, especially in a case of a
multi-product process. Therefore, subject of our current work
is the simultaneous consideration of the optimality of the set
points based on midterm financial criteria, i.e., the inclusion of
simultaneous reactive scheduling formulations of such
systems.
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