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We present a framework for the application of design and control optimization via multi-parametric programming
through four case studies. We develop design dependent multi-parametric model predictive controllers that are able to
provide the optimal control actions as functions of the system state and the design of the process at hand, via our
recently introduced PAROC framework (Pistikopoulos et al, Chem Eng Sci. 2015;136:115–138). The process and the
design dependent explicit controllers undergo a mixed integer dynamic optimization (MIDO) step for the determination
of the optimal design. The result of the MIDO is the optimal design of the process under optimal operation. We demon-
strate the framework through case studies of a tank, a continuously stirred tank reactor, a binary distillation column
and a residential cogeneration unit. VC 2017 American Institute of Chemical Engineers AIChE J, 63: 4827–4846, 2017

Keywords: multi-parametric programming, design and control integration, model predictive control

Introduction

The last three decades of Process Systems Engineering
research and practice, have led both academia and industry to

the realization that the performance of a process is affected
most deterministically by its design and ability to achieve and
maintain profitable operating conditions under operational
uncertainty. It is also clear that the degree of interaction
between those two aspects is such that one cannot be deter-
mined without the consideration of the other.1 As a result, a
number of approaches have been developed for addressing the
issue of operability during the early stages of process design.

Process design optimization under operational uncertainty and
feasibility, flexibility, stability, controllability, and resilience
metrics during process design have been extensively discussed
via a series of computational methods.2,3 This formed a prelude
to the simultaneous consideration of design and control via
(1) the formulation and solution of large scale optimization
problems (including numerous decomposition approaches4),

(2) flow sheet and graphical problem representations,5 and (3)

control structure selection as part of the design optimization6

(see Table 1 for a list of publications per contribution). The

control schemes employed focused mainly on PI and PID for-

mulations while a significantly smaller portion of contributions

employed model predictive control (MPC). The contributing

factor to that decision was primarily the solution of the optimi-

zation problem corresponding to the control problem within a

design optimization formulation.32,49 Nevertheless, the consid-

eration of a constrained optimization control method could con-

tribute to overcome the shortcomings associated with PI and

PID control (such as possible operational constraints violation).

In the area of simultaneous design optimization with MPC nota-

ble approaches include (1) the back-off control approach,102 (2)

robust design formulations,103 and (3) multi-parametric MPC

approaches38 (see Table 1 for a list of publications per contribu-

tion). Regarding (3), the availability of the optimal solution

online via offline optimization enabled the incorporation of

explicit control actions within a (mixed integer) dynamic opti-

mization ((MI)DO) formulation thus (1) avoiding the burden of

solving multiple optimization problems online, (2) transforming

the control problem into a simple linear look-up function,* and

Additional Supporting Information may be found in the online version of this
article.
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Pistikopoulos at stratos@tamu.edu.
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*The explicit solution of a model predictive control problem with a linear (12norm)
or quadratic (22norm) objective function, polytopic constraints and linear state-space
discrete time model dynamics is piecewise linear in the optimal actions.104,105
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(3) including every aspect of the MPC without any simplifica-
tions on the problem structure.

Although multi-parametric model predictive control

(mpMPC) has been employed in the past in the context of

simultaneous design and control optimization,38–41 its applica-

tion relied on an iterative procedure, because the control prob-

lem formulation needed to be adjusted for different design

alternatives based on feasibility criteria. Here, we present a

methodology, via the PAROC framework and software plat-

form,106 where the control problem formulation is design

dependent, therefore, the explicit control actions are a function

of the design variables. As a result, a single design dependent

mpMPC formulation is able to control the process for bounded

values of the design variables without the need of reformula-

tion. The approach is showcased via four case studies on (1) a

settling tank, (2) a continuously stirred tank reactor (CSTR),

(3) a binary distillation column, and (4) a domestic cogenera-

tion of heat and power unit.

Simultaneous Design and Control Optimization
via PAROC

Given a mathematical model that describes a process based

on first principles and correlations a general form of a design

and control optimization problem formulation can be

described as in Eq. 1.

min
uc;Y;De

J5

ðs

0

Pðx; y; uc; Y; d;DeÞdt

s:t:
d

dt
x5f ðx; uc; Y; d;DeÞ

ymin � y5gðx; uc;Y; d;DeÞ � ymax

umin
c � uc5hðx; y;Y; d;DeÞ � umax

c

Y 2 f0; 1g

½xT
min; dT

min�
T � ½xT ; dT �T � ½xT

max; dT
max�

T

Demin � De � Demax

(1)

where, x corresponds to the system states, y to the system out-

puts, uc to the optimal control actions, Y to binary variables

corresponding to discrete design and operational decisions, d
to uncertain, bounded system disturbances, and De to the

design variables. P is the objective function that describes the

operational and investment cost of the process. f and g corre-

spond to the process dynamic and algebraic equations, respec-

tively. h describe advanced control decisions. The system

states, disturbance and design variables are assumed to be

bounded. Note that the system in Eq. 1, depending on the

nature of P, f, g, and h can be a non-linear, non-convex,

mixed-integer dynamic problem that can rarely be tackled

without simplifying assumptions that highly depend of the

nature of each individual problem. Furthermore, although

dynamic optimization algorithms can approximate an optimal

Table 1. Design and Control in the Literature

Author (year) Contribution

Perkins & co-workers (1991),7 Bogle & co-workers (1989, 2000),8,9 Pistikopoulos &

co-workers (1994, 1997, 2001),10–12 Floudas & co-workers (1994, 2000, 2001),13–15

Romagnoli & co-workers (1997),16 Ricardez-Sandoval & co-workers (2007, 2013),17,18

Douglas & co-workers (1988),19–21 Skogestad & co-workers (1987, 2014),22,23

Sorensen & co-workers (2014),24 Stephanopoulos & co-workers (1988),25 Ierapetritou &

co-workers (2002),26 Gani & co-workers (1995)27

Feasibility, flexibility, stability, control-
lability, and resilience considerations
in steady-steady state [w/wo (MI)NLP
design optimization]

Romagnoli & co-workers (1996),28 Francisco & co-workers (2014),29 Kravaris &
co-workers (1993),30,31

Feasibility, flexibility, controllability,
and resilience considerations in
steady-steady state (MI)DO design
optimization

Pistikopoulos & co-workers (2000, 2002, 2003),32–36 Swartz & co-workers (2014),37

Ricardez-Sandoval (2012)3
Simultaneous/decomposition (MI)DO

process and P-PI-PID control design
Pistikopoulos & co-workers (2003, 2004),38–41 Engell & co-workers (2004),42 Linninger &

co-workers (2007)43
Simultaneous/decomposition (MI)DO

process and MPC design
Biegler & co-workers (2007, 2008),4,44 Seider & co-workers (1992),45 Ricardez-Sandoval &

co-workers (2008, 2016, 2017),46–48 Pistikopoulos & co-workers (1996),49

Perkins & co-workers (2002, 2004, 2016),50–52 Flores-Tlacuahuac & co-workers
(2009),53 Barton & co-workers (2010, 2011, 2015),54–57 Mitsos & co-workers (2012),58

Linninger & co-workers (2006)59

Simultaneous/decomposition/back-off via
(MI)NLP

Gani & co-workers (1995, 2003, 2005, 2010),5,27,60–62 Daoutidis & co-workers (2011),63

Lee & co-workers (1972),64 Chien & co-workers (2010),65 Mitsos & co-workers
(2014),66 Luyben (2004, 2008, 2009, 2010, 2011, 2012, 2014)67–80

Flow sheet/graphical design and
P-PI-PID control

Floudas & co-workers (1994),13 Pistikopoulos & co-workers (1997),81 You & co-workers
(2012)92

Multi-objective approaches

Floudas & co-workers (2001),15 Ierapetritou & co-workers (2002),26 Barton & co-workers
(2010, 2015),54,57 Ricardez-Sandoval & co-workers (2013, 2015),83,84 Pistikopoulos &
co-workers (1995, 1999, 2000, 2003),2,85–87 McRae & co-workers (2007),88 Bogle &
co-workers (2006)89

Design under uncertainty

Skogestad & co-workers (1987, 1989, 2014),6,39,90 Perkins & co-workers (2002),50

Young & co-workers (2005),91 Stephanopoulos & co-workers (1980, 1988),92,93

Bogle & co-workers (2010, 2016)94,95

Control structure selection and design

Georgiadis & co-workers (2004),96 Francisco & co-workers (2014),97 Ricardez-Sandoval &
co-workers (2009, 2011),98,99 Gani & co-workers (2012),100 Mitsos & co-workers
(2014)101
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solution to such class problems via a variety of algorithms, the
complexity arising from the simultaneous solution of the opti-
mization based control problem and the overall design optimi-
zation still remains.36,107 We raise the need for the latter via
the development of design dependent explicit control actions
via the PAROC framework and software platform106 and their
inclusion within the mixed integer dynamic optimization
(MIDO) problem.

The PAROC framework and software platform

Here we present the basic principles of the PAROC frame-
work in the context of simultaneous design and control optimi-
zation in the following steps and in Figure 1.

Step 1: “High fidelity” model—The “high fidelity” model
consists of (Partial) Differential-Algebraic Equations
((P)DAE) and describes the dynamic behavior of the process.
Utilizing first-principles and correlations, often non-linear in
nature and high in complexity, guarantees with its robustness
and quality the validity of the framework. The “high fidelity”
model features the continuous and binary design variables and
treats them as degrees of freedom that need to be optimally
determined. The modeling takes place in PSE’s gPROMS

VR

.107

Step 2: Model approximation—The “high fidelity” model,
although highly accurate compared to the process, is far from
ideal for the application of advanced optimization techniques.
Its dynamic nature and high complexity require an approxima-
tion step in order for approaches such as multi-parametric pro-
gramming to be considered. With (1) model accuracy
preservation and (2) complexity reduction in mind the approxi-
mation step takes place via model reduction techniques108 and/
or the statistical methods (System Identification toolbox,
MATLAB

VR

). The key for this step is the preservation of the
design variables in the approximation step, i.e., the derivation
of linear state-space models that include the design variables in
the model expressions, symbolically described in Eqs. 2 and 3.

“High fidelity” model

d

dt
xðtÞ5f ðxðtÞ; ucðtÞ;YðtÞ; dðtÞ;DeÞ

y5gðxðtÞ; ucðtÞ;YðtÞ; dðtÞ;DeÞ
(2)

Approximate model

xT115A � xT1B � uc;T1C �
dT

De

2
4

3
5

yT5D � xT1E � uc;T1e

(3)

Note the following:

� The states x 2 Rq1 in Eqs. 2 and 3 may have different
physical meanings due to the approximation step.106 The
optimization variables uc 2 Rn, outputs y 2 Rq2 , disturbances
d 2 Rq3 and design variables De 2 Rq4 have the same physi-
cal meaning in both instances.
� The approximate model is presented here in a discrete
time formulation. Continuous time formulations can be
derived equivalently.
� The binary variables Y 2 f0; 1gr

present in the “high fidel-
ity” model may result in multiple approximate state-space
models or piecewise affine formulations (omitted here).
� The design variables De are not time dependent since the
design of the process cannot change during operation.

� The design of the process is treated as a measured addi-
tive uncertainty within the approximate model via the term
De. Multiplicative uncertainty can be incorporated without
any changes in the framework. This can be achieved via the
consideration of robust mpMPC as described in Refs.
109–111. In such case, the use of state-estimators is also
necessary.112–114

� The vector dT in Eq. 3 introduces disturbances as uncer-
tain bounded parameters to the approximate state-space mod-
els. The values of dT are assumed to remain constant within
the discretization time step (piecewise constant) and measur-
able at time T but not prior to that. Within the multi-
parametric framework, the vector dT is treated as a vector of
unknown but bounded parameters, similarly to the states at
T 5 0.104,115

� The term e corresponds to a mismatch between the real,
measured system output and the approximate state-space
model output at the first time step and assumed fixed
throughout the horizon of the optimization formulation.

The system described in 3 can be used for advanced optimi-
zation based control formulations such as mpMPC resulting
into a quadratic problem with linear constraints.†

Step 3: Multi-parametric programming—The design of
the controllers is based on the validated procedure described
in Refs. 104, 106, 116. Equation 4 shows the form of a typical
mpMPC controller.

min
u

J5xT
NPxN1

XN21

k51

xT
k Qkxk1 yk2yR

k

� �T
QRk yk2yR

k

� �� �
1

1
XM21

k50

uc;k2uR
c;k

� �T
Rk uc;k2uR

c;k

� �
1DuT

c;kR1kDuc;k

� �
s:t: xk115A xk1B uc;k1C dk

yk5D xk1E uc;k1e

umin � uc;k � umax

Dumin � Duc;k � Dumax

xmin � xk � xmax

ymin � yk � ymax

(4)

where xk are the state variables, uc;k and uR
c;k are the control

variables and their respective set points, Duk denotes the dif-
ference between two consecutive control actions, yk and yR

k are
the outputs and their respective set points, dk concatenation of
the system disturbances and design variables, Qk, Rk, R1k, and
QRk are their corresponding weights in the quadratic objective
function, P is the stabilizing term derived from the Riccatti
Equation for discrete systems, N and M are the output horizon
and control horizon, respectively, k is the time step, A, B, C,
D, E are the matrices of the discrete linear state space model
and e denotes the mismatch between the actual system output
and the predicted output at initial time. Here, the dk vector
includes all the variables that cannot be manipulated via the
MPC problem, hence it includes the design variables as well.
In the context of multi-parametric programming the latter are
treated as parameters.

†In the case of multiplicative uncertainty the framework presented in Ref. 110 can be
utilized to derive the optimal control strategies
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The resulting multi-parametric program (Eq. 5) is solved
via the POP

VR

toolbox in MATLAB
VR

, thus acquiring a map of
optimal control actions.117

min
uc

J5
1

2
uT

c;THuc;T1uT
c;TFThT

s:t: Wuc;T � S1ZhT

uc;T 2 U5fuc;T 2 Rnjumin � uc;T � umax;8ng

hT 2 H5fhT 2 Rqjhmin � hT � hmax; 8qg

(5)

Due to the form of the approximate model and the MPC for-
mulation, the resulting explicit control actions are an affine
function of the design variables (Eq. 6).

uc;T5KihT1ri; 8hT 2 CRi

hT5½xT ; uc;T21; dT ; De; yT ; ySP
T �

(6)

where xT, dT, yT, ySP
T are the states, measured disturbances, out-

puts and output set points, respectively, uc;T21 are the optimal
control action at the previous time step and De are the design
variables (fixed throughout the optimization horizon of the
control problem). It is clear from Eq. 6 that the optimal action
is a function of the operation of the system (via xT and yT), the
presence of disturbances, the operating set points and, most
importantly for the simultaneous design and control frame-
work, the design variables.

More specifically, let h�T denote a value realization of the
parametric vector and u�c;T be the corresponding optimal
actions. The ith Active Constraint set of cardinality j is denoted
by Ŵ ; Ŝ, and Ẑ the inactive set by �W ; �S, and �Z and LICQ
holds. k�i correspond to the j Lagrange multipliers of the
Active Set. The Karush-Kuhn-Tucker conditions for the
strictly convex problem 5 are presented in Eq. 7.

Ŵu�c;T5Ŝ1Ẑh�T

Hu�c;T1FTh�T1Ŵ
T
k�i 50

(7)

Solving the above for u�c;T and k�i we obtain the parametric
expressions:

k�i ðh�TÞ5ðŴH21Ŵ
TÞ21ðŴH21FT1ẐÞh�T2ðŴH21Ŵ

TÞ21Ŝ

u�c;Tðh�TÞ5 H21Ŵ
TðŴH21Ŵ

TÞ21ðŴH21FT1ẐÞ2H21FT
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ki

h�T 2H21Ŵ
TðŴH21Ŵ

TÞ21Ŝ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ri

(8)

Hence, the values Ki and ri are analytically derived as the coef-

ficients of Eq. 8 for the ith Active Set. The composite polyhe-

dron CRi is calculated by postulating the j Lagrange

multipliers to be larger than zero and the unconstrained set to

remain strictly unconstrained (Eq. 9). The coefficients derived

above are optimal for realizations of hT within the composite

polyhedron CRi hence the generalized version presented in

Eq. 6.

CRi5

�Wu�c;TðhTÞ2�S2 �ZhT < 0

ðŴH21Ŵ
TÞ21ðŴH21FT1ẐÞhT2ðŴH21Ŵ

TÞ21Ŝ > 0

8<
:

(9)

For a complete review of multi-parametric programming,

properties of the solution and available solution techniques

and algorithms the reader is referred to Ref. 118.
From the derivation of the explicit/multi-parametric solu-

tion and the critical regions the following can be stated in con-

text with the framework presented here:
� Exact MPC solution: the solution of the multi-parametric

quadratic programming problem presented in Eq. 5 is solved

once and offline and the exact solution is obtained for any

feasible value of the uncertain parameters hT.
� Optimal partitioning of the parametric space: the feasi-

ble parametric space is partitioned optimally, a fact that fol-

lows the generalization of the KKT conditions in the

parametric space of a convex (with respect to the optimiza-

tion variables uc;T) quadratic problem with regards to its

parameters.
� Ease of online application: the nature of the dependency

of the critical regions CRi and optimal actions uc;T with

respect to the parameters reduces the online application of

the MPC to a simple look-up table algorithm (commonly

referred to as the point location problem) and function evalu-

ations, all affine. Therefore the online application of the

mpMPC is similar in complexity with a simple PI controller.
� Online application computational time: a significant,

direct result of the above is the reduction of the online com-

putational time in the range of a few milliseconds per action

which results into a very efficient simultaneous application

of MPC within a simulation or optimization context.‡

� Space requirements of the solution: the partitioning of

the space can result into the creation of a large number of

critical regions that may require significant computational

space to be saved. Although typically the space requirements

here were not an issue (less than 1 MB per solution) it is

likely that solutions that require several MBs of computa-

tional space can be obtained. The space requirements can be

significantly reduced by manipulating the floating point pre-

cision of the solution (i.e., acquiring a solution with as little

Figure 1. The PAROC framework approach for simulta-
neous design and control. Actions within the
gray area happen once and offline.

‡The statistics for such a claim result from the online application of the controllers
within gPROMS

VR

via C11 programming, as described in Step 4.
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as a few decimals instead of the 16 decimals working preci-

sion of most software tools without affecting the precision of

the applied optimal action) or with recent techniques such as

the ones described in Ref. 119.
Step 4: Closed-loop validation—The framework is vali-

dated through closing the loop against the original model of

Step 1. This can happen either via the interoperability between

software tools such as gPROMS
VR

and MATLAB
VR

via

gO:MATLAB or via the straight implementation of the con-

trollers in the gPROMS
VR

simulation via the use of C11 pro-

gramming and the creation of Dynamic Link Libraries. Note

that the validation step is necessary in order to test the behav-

ior of the control scheme for a variety of different control and

process designs. Given that the design dependent control
scheme can satisfactorily handle the operation of the system
for different designs (efficient set point tracking, constraint

violation, stable operation are some of the criteria), the simul-
taneous design and control optimization can take place. Note
that in this work the approximate state-space models on which

the control schemes are derived treat the design variables as
measured added disturbances, a relationship that is not always
the same in the “high-fidelity” model. The purpose of this step
is also to verify whether such an approximation results in

acceptable control behavior for different designs.
Step 5: Dynamic optimization—Through the creation of

Dynamic Link Libraries the design dependent control scheme
is introduced into gPROMS

VR

. Problem 1 is therefore reformu-

lated as in Eq. 10.

min
uc;T ;Y;De

J5

ðs

0

Pðx; y; uc;Y; d;DeÞdt

s:t:
d

dt
x5f ðx; uc;Y; d;DeÞ

ymin � y5gðx; uc;Y; d;DeÞ � ymax

uc;T5KiðhTÞ1ri; 8hT 2 CRi

hT5½xT ; uc;T21; dT ; De; yT ; ySP
T �

Y 2 f0; 1g

½xT
min; dT

min�
T � ½xT ; dT �T � ½xT

max; dT
max�

T

Demin � De � Demax

(10)

Problem 10 is a MIDO program which is handled via a control
vector parameterization (CVP) algorithm in gPROMS

VR

. The
term T denotes the control time step interval and s the horizon
of the MIDO problem. The time-varying optimization varia-

bles are piecewise-constant functions of time over a number of
intervals which are specified by the user according to the
needs of each problem. Note that the duration of the intervals

in each step are in this case determined by the user to be equal
in duration with the control time step for synchronization
purposes.§ The single vector shooting dynamic optimization
can be decomposed as follows¶:
� The values of the optimization variables are determined

for each interval.
� The dynamic model is simulated over the entire time
horizon.
� The value of (1) the objective function and its partial
derivatives with respect to the optimization variables and (2)

the constraints are determined.
� Convergence is checked and if needed the steps are
repeated.

According to the Optimization Guide of PSE’s gPROMS
VR

the CVP algorithm for (MI)DO relies on the values of the par-

tial derivatives of the problem’s objective function with
respect to the optimization variables to determine its next iter-
ation step. In the case of the design optimization variables, the
partial derivatives are needed with respect to the rest of the

“high-fidelity” model variables (x and y) as well as the control
variables (uc;T). Although the derivatives of the former are cal-
culated “on the fly” via the optimization algorithm, the calcu-

lation of the derivatives of the latter can become an issue

Table 2. An Indicative List of (MI)DO Algorithms in

Literature

Author (year) Contribution

Pistikopoulos &
co-workers
(2003)120

Algo. 1: GBD based approach. The
master problem is constructed without
the solution of an intermediate adjoint
problem at the expense of including
additional equations and search
variables

Algo. 2: Master problems are
computationally more expensive due
to addition of linearizations about the
optimal solution of the primal
problem. Additional constraints render
the master problem tighter, hence fewer
iterations suffice for a local
solution

Barton &
co-workers
(2006,
2009)121,122

Algo. 1: Outer approximation based
approach for global optimization.
Primal problem is not solved to global
optimality at every iteration, which
alleviates the computational burden

Algo. 2: Formulates a bilevel dynamic
optimization problem, which can be
naturally extended to a mixed-integer
dynamic optimization formulation. A
branch and bound algorithm is utilized
to solve the problem to global optimality

Biegler &
co-workers
(2007)123

Full discretization by finite elements, and
solving a large scale nonconvex MINLP.
Generalized disjunctive programming
are used to solve the MINLP

Marquardt &
co-workers
(2008)124

MIDO problem is reformulated as a
mixed-logic dynamic optimization
problem, and solved by control vector
parameterization and direct multiple
shooting

You & co-workers
(2013, 2014,
2015)125–130

Algo. 1: The inner level dynamic
optimization problem is replaced with a
set of surrogate models, which are
updated adaptively with every iteration

Algo. 2: MIDO is reformulated as a large
scale MINLP problem. MILP master
problem is subjected to a bilevel
decomposition algorithm based on the
inherently different time scales of the
original problem

Algo. 3: GBD based approach.
Decomposed primal problem is a set of
separable dynamic optimization
problems, and the master problem is a
mixed-integer nonlinear fractional
problem, which is solved to global
optimality by a fractional programming
algorithm

§In the general case this is an extra degree of freedom for the dynamic optimizer.
¶For more information the user is referred to the optimization guide of PSE’s
gPROMS

VR

.
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when an external piece of software introduces the uc;T values
to the problem. This burden is alleviated with the use of
mpMPC as the partial derivatives of the control actions with
respect to the design variables (optimization variables in the
(MI)DO context) are available a priori via Ki in Problem 10 as
exact expressions, not numerical approximations, thus utiliz-
ing in full the concept of “map of solutions” introduced in
Ref. 109. Also note that the dynamic model simulation in
gPROMS

VR

happens based on non-uniform discretization steps
posing a technical, time synchronization challenge to the over-
all simultaneous approach. In order to overcome this, an error
function is defined for every control action which absorbs the
evaluation of the controller at the non-uniform time steps of
the simulation and only utilize the evaluation at the control
time intervals. This happens via imposing interior point con-
straints of the form errðtÞ5uc;T2uðtÞ50. The latter is zero
only at every interior point of the MIDO. The variable u(t)
therefore remains piecewise constant, between interior points,
and equal to the value of uc;T at the interior point, although
from a software point of view the variable uc;T is free to be
evaluated multiple times throughout a single MIDO time step.
The evaluation of uc;T within the MIDO time step is therefore
rejected. Also note that within the MIDO problem, the optimal
control action uc;T is regarded as an optimization variable
although it is calculated via the mpMPC formulation of Step
3. The two reasons that this is happening is (1) the fact that the
action is implicitly optimized via the optimal choice of the
design variables De and the dependence of uc;T to those varia-
bles and (2) the fact that within the MIDO problem formula-
tion this is necessary in order to achieve the synchronization
of the fixed time-step control with the MIDO problem.

Based on the nature of the design dynamic optimization
model and especially the existence of binary variables, suit-
able optimization solvers are employed for the task of optimiz-
ing the model at every interval. More specifically, for the
general case of MIDO an Outer approximation based method
is employed where the problem is initially reformulated to a
completely relaxed NLP. A linearized version of the model
excluding any binary variable combinations from previous
iterations is subsequently solved (master problem). Based on

the integer solution of the master problem, the primal problem

is formulated and solved. Both the primal and the fully relaxed

problem are solved via a sequential quadratic programming

algorithm. Note that in this work we use a commercially avail-

able software tool for the solution of the design (MI)DO prob-

lem. Based on the aforementioned characteristics of the solver

the solution is guaranteed to be locally optimal, even for the

DO case. For a list of available MIDO algorithms see Table 2.

The overall simultaneous design and control optimization is

schematically presented in Figure 2. The dynamic optimiza-

tion algorithm utilizes information from the process and the

optimal control actions derived multi-parametrically to deter-

mine the optimal design. The values for the optimal design are

used to calculate the numerical values of the control actions

and progress the simulation step.
The following sections present the application of the simul-

taneous design and control framework via a tank, a CSTR, a

binary distillation column and a domestic cogeneration unit

examples.

The Tank Example

This case study focuses on the design of a simple tank. A

sinusoidal inlet flow signal is introduced to a tank the outlet of

which is manipulated via a mpMPC. The purpose of the con-

troller is to maintain a certain liquid volume within the tank

regardless of the inlet. The sinusoidal form of the inlet is han-

dled as a bounded parametric uncertainty via the control prob-

lem, its nominal value and deviation is dynamically optimized

to determine the maximum deviation from the nominal value

for which the controller can maintain a liquid volume setpoint.

Given a correlation between the tank set point, the nominal

flow and its deviation the set point is dynamically calculated

and therefore so is, implicitly, the volume of the tank. The set

point is determined as a function of the nominal value and

maximum deviation of the sinusoidal inlet flow rate. The tank

volume is therefore inferred by that. Note that in order to

maintain the set point in time and reduce the size of the

dynamic optimization the dynamic optimization problem is

limited to one period of the inlet sinusoidal wave. Constraints

within the dynamic optimization ensure that the initial point of

the optimization is the same as the final point, therefore

achieving a cyclic operation that allows for the extrapolation

of the operation to larger horizons.

“High fidelity” dynamic modeling

The model of the tank is presented in Eq. 11

Figure 2. Schematic representation of the simulta-
neous design MIDO with embedded
mpMPC. The area within the dashed line
represents the MIDO problem.

Table 3. Weight Tuning for the mpMPC of the Tank

MPC design parameters Value

N 10
M 1
QRk; 8k 2 f1; . . . ;Ng 10
Rk; 8k 2 f1; . . . ;Mg 1027

xmin 2103

xmax 103

umin 0
umax 1
ymin 0
ymax 10
dmin 0
dmax 5
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dV

dt
5Fin2Fout

Fout5a � V

Fin5Fnom1Fdev � sin ðt=freqÞ

freq5
1

2 � p

(11)

where V is the volume of the liquid within the tank, Fin and
Fout the inlet and outlet flow rate, a is a proportionality param-
eter and the control variable, Fnom and Fdev are the nominal
inlet flow rate and its deviation and freq is the sinusoidal sig-
nal frequency. Note that V is the state of the system and is bi-
linear with the control variable a which makes the lineariza-
tion of the system necessary for multi-parametric program-
ming. Alternatively, a robust reformulation of the system in
discrete time would alleviate the need of approximation result-
ing in the consideration of the exact model in the multi-
parametric programming formulation. In this context, Fin

being treated as bounded parametric uncertainty, doesn’t inter-
fere with the linearity of the state-space formulation.

Model approximation

The approximation of the tank model in Eq. 11 takes place
in the System Identification Toolbox in MATLAB

VR

and results
into the linear state-space in Eq. 12.

xT1150:9980 � xT20:2536 � uc;T10:1003 � dT

yT5109:9320 � xT22:0378 � uc;T

Ts50:01s

(12)

where xT are the identified states, uc;T is the proportionality
parameter, dT is the flow at the inlet of the tank, and y is the
liquid volume in the tank.

The step and impulse responses of the system are presented
in Figures B1a, B1b, respectively.

Design of the multi-parametric model predictive
controller

The multi-parametric model predictive controller problem
is formulated and solved using POP where the optimal control

action is generated as a map of solutions and as a function of

the problem parameters.104,117 The problem formulation is

based on Eq. 4 and the tuning of the controller is presented in

Table 3.
The design variable corresponding to the volume of the tank

is introduced as a parameter at the upper bound of the output

of the system. Furthermore, the bounds for the disturbance of

the system dmin and dmax have been chosen such that dmin5

Fnom;min2Fdev;max and dmax5Fnom;max1Fdev;max. The purpose of

the controller is to maintain the volume of the liquid within

the tank at a certain set point with a maximum deviation of

less than 5%, effectively rejecting the disturbance introduced

at the inlet of the tank.

Closed-loop validation

The validation step is presented in Figure 3 where the con-

troller is tested against the original high fidelity model. The

closed loop validation of the controller happens for the follow-

ing process characteristics:
� Nominal inlet flow rate: 1:5 m3=s
� Inlet flow rate deviation: 0:5 m3=s
� Volume set point: 2 m3

Note that in the case of the tank the set point for the volume

VSP is dynamically correlated with the maximum value of the

inlet flow rate (i.e., if Fin5Fnom1Fdev � sin ðt=freqÞ½m3=s� then

VSP5ðFin1FoutÞ31s½m3�).

Dynamic optimization

The dynamic optimization in Problem 10 is formulated in

order to find the maximum value of Fdev for which the system

can track a volume set point. The Fnom value is an optimiza-

tion variable for the dynamic optimization problem. Further-

more, the optimization formulation considers the initial point

of the state variables as optimization variables. This is to

ensure that the starting point and the end point of the optimiza-

tion problem will coincide, resulting in a cyclic operation. The

full dynamic optimization problem is presented in Eq. 13. The

problem is run for 1 s (1 cycle for the disturbance sinusoidal

signal), i.e., for 100 intervals.

Figure 3. Closed loop validation of the controller against the high fidelity model.
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max
Vtank ;Fdev;Fnom;Vðt50Þ;xðt50Þ

J5

ð1

0

Fdevdt

s:t:
dVðtÞ

dt
5FinðtÞ2FoutðtÞ

FoutðtÞ5aT � VðtÞ

FinðtÞ5Fnom1Fdev � sin ðt=freqÞ

freq5
1

2 � p
mpMPCðtÞ5Ki � ½xðtÞ;FinðtÞ;VðtÞ;VSP�T1ri;

8½xðtÞ;FinðtÞ;VðtÞ;VSP�T 2 CRi

VSP5Fnom1Fdev � Vtank

errmpMPC5

ð1

0

jjVðtÞ2VSPjj
VSP

dt

End point constraints

xðt50Þ5xðt51Þ ; states of the state2space model

Vðt50Þ5Vðt51Þ; statesofthe highfidelity0model

errmpMPC � 1%

Interior point constraint 8T 2 f1; . . . ; 100g

mpMPCðt5TÞ2aT50

(13)

End point constraints in the optimization problem are intro-

duced to allow for a set point deviation of less than 1% per

cycle and to ensure cyclic operation. The purpose of the inte-

rior point constraint at every interval is to use the controller

evaluation only at the beginning of every intervals as a piece-

wise constant value. The dynamic optimization yields a nomi-

nal inlet flow rate of 2:485 m3=s with an equal deviation. The

initial volume for cyclic operation has been identified as

V54:99 m3. Furthermore, due to the maximum controller error

consideration the volume of the tank is 5:0694 m3. The error

of the mpMPC at the end of a single cycle is 0.9%.

The CSTR Example

A fixed volume CSTR is used here as a case study for

simultaneous design and control optimization. The goal is to

optimize the volume of the tank reactor assuming perfect con-

trol at the outlet of the reactor, (i.e., the total outlet flow rate at

the outlet of the reactor is determined by the inlet and no other

phenomena are assumed to affect it.). The concentration of the

reactants and mass flow rate at the inlet of the reactor are

treated as known and unknown disturbances, respectively. A
sinusoidal behavior of flow and concentration is assumed. The
sinusoidal form of the inlet is handled as a bounded parametric
uncertainty via the control problem, its nominal value and
deviation is dynamically optimized at the MIDO step to deter-
mine the maximum deviation from the nominal value for
which the controller can maintain a minimal reactant concen-
tration at the outlet of the CSTR. On the contrary to the previ-
ous example, here we take into account the possibility of
having a settling tank prior to the CSTR that will stabilize the
inlet flow. Its cost of equipment and operation is taken into
account in the overall cost minimization of the CSTR, which
is the objective of the design optimization problem. A multi-

Table 4. Weight Tuning for the mpMPC of the CSTR

MPC design parameters Value

N 3
M 3
QRk;8k 2 f1; . . . ;Ng 53105

Rk;8k 2 f1; . . . ;Mg 1
xmin 0 100½ �T
xmax 20 450½ �T
umin 200
umax 500
ymin 0 100½ �T
ymax 20 450½ �T

dmin 0 500½ �T
dmax 20 1000½ �T

Figure 4. Closed loop validation of the controller
against the high fidelity model.

(a) Tank usage for a fixed initial Ca0;nom5
10 mol=L(optimal). (b) Tank usage for a fixed initial

Ca0;nom58 mol=L.
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parametric controller is introduced to manipulate the tempera-
ture of the heating jacket in order to minimize the concentra-
tion of the reactants at the outlet.

“High fidelity” dynamic modeling

The model of the CSTR is presented in Eq. 14

dCa

dt
5

m

q � V � ðCa02CaÞ2k0 � Ca � e
2Ea
R�T

dT

dt
5

m � Cp � ðT02TÞ1V � DHrxn � Ca � k0 � e
2Ea
R�T 1UA � ðTc2TÞ

V � q � Cp

Ca05Ca0;nom1Ca0;dev � sin ðt=freqÞ

m5mnom1mdev � swyb

dswyb

dt
5yb � ð1=freqÞ � cos ðt=freqÞ

freq5100=ð2 � pÞ
(14)

where Ca and Ca0 is the concentration of the reactants in the
reactor and at the inlet, respectively, m is the mass flow rate at
the inlet and outlet of the reactor, V is the volume of the reac-
tor, k0 is the rate constant of the reaction, Ea is the activation
energy, R is the ideal gas constant, T is the temperature in the
reactor and at the reactor outlet, Cp is the overall heat capacity,
T0 is the temperature of the inlet flow stream, DHrxn is the rate
of reaction, UA is the overall heat transfer coefficient, and Tc

the temperature in the heating jacket of the reactor. Ca and T
are the states of the system, Tc is the control variable, and V is
the design variable. The last four equations of the model

represent the sinusoidal form of the disturbances. The binary
variable yb denotes the existence and operation or not of a set-
tling tank prior to the CSTR. Notice that the binary variable
appears in the differential form of the sinusoidal wave in order
to affect the rate of change of the concentration and mass flow
rate rather than the value itself.

Model approximation

The approximation of the tank model in Eq. 14 takes place
in the System Identification Toolbox in MATLAB

VR

and results
into the linear state-space in Eq. 15.

xT115

0:9627 0:006032

0:7177 0:8839

2
4

3
5 � xT1

20:005116

0:09858

2
4

3
5

�uc;T1

20:02026 29:429 � 1025

0:384 0:001842

2
4

3
5 � dT

De

2
4

3
5

yT5

1 0

0 1

2
4

3
5 � xT

Ts510s

(15)

where xT are the identified states, uc;T is the temperature of the
jacket, dT is the concentration of the reactants at the inlet of
the CSTR, De is the volume of the CSTR, and y is the concen-
tration of the reactants at the outlet of the reactor and the tem-
perature of the outlet stream.

The step and impulse responses of the system are presented
in Figures B2a, B2b, respectively.

Design of the multi-parametric model predictive
controller

The multi-parametric model predictive controller problem
is formulated based on Eq. 4 and solved with POP.117 The
objective of the mpMPC is to minimize the concentration of
the reactants at the outlet of the reactor. The tuning of the con-
troller is presented in Table 4.

The purpose of the controller is to minimize the concentration
of the reactant at the outlet of the CSTR and effectively reject
the disturbances at the concentration introduced at the inlet.

Closed-loop validation

The validation step is presented in Figure 4 where the con-
troller is tested against the original high fidelity model. Here it
is assumed that no settling tank exists prior to the CSTR (i.e.,
yb 5 1). The closed loop validation of the controller happens
for the following process characteristics:
� CSTR Volume: 750 m3

� Ca0;nom: 3 mol=L
� Ca0;dev: 1 mol=L
� mnom: 2 m3=s
� mdev: 0:5 m3=s

Dynamic optimization

The objective of the dynamic optimization is to determine
(1) the optimal volume of the CSTR, (2) the necessity for a
settling tank prior to the CSTR and its settling time (3) the
nominal and deviation values for the concentration of reac-
tants and flow rate at the inlet of the reactor. This is done by
minimizing a total cost function as shown in Eq. 16. At the
starting point of the optimization, we assume that both the Ca0

and m start at their nominal value.

Table 5. Characteristic Equations for a Binary Distillation

Column

Description Equation

Component mass
balance

dMi;k

dt 5Lk11xi;k111Vk21yi;k211Fkzi;f

1Rkxi;D2Lkxi;k2Vkyi;k;
8k 2 f2 . . .Ntrays21g

Total mass balance dMk

dt 5Lk111Vk211Fk1Rk2Lk

2Vk; 8k 2 f2 . . .Ntrays21g
Vapor molar flow rate Vk5Vk215VB; 8k 2 f2 . . .Ntrays21g
Hold-up Volk5

Mk

qLmix;k

Liquid level Levelk5
L

2=3

k

1:84qLmix;kLweir
1Hweir

Tray area Atray5
0:8pD2

c

4

Weir length Lweir50:77Dc

Reboiler vapor liquid
equilibrium

15
P0

benz;Bxi;B1P0
tol;Bð12xi;BÞ

P

Condenser vapor liquid
equilibrium

15Pð xi;D

P0
benz;D

1
12xi;D

P0
tol;D

Þ

Relative volatility a5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

benz;D
P0

benz;B

P0
tol;D

P0
tol;B

r
yi;k5

axi;k

11xi;kða21Þ

Reboiler and reflux drum
molar balance

dMi;B

dt 5L1xi;12Bxi;B2VByi;B

MB5
Mi;B

xi;B

dMi;D

dt 5VNtraysðyi;Ntrays2xi;DÞ
MD5

Mi;D

xi;D

Reboiler and reflux drum
energy balance

05L12B2VB

05VD2RRk2D

Component i is benzene, tray number is k 2 f1 . . .Ntraysg unless stated
otherwise.
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max
V;mdev;mnom;Cadev;Canom;yb

J5CostTotal

s:t:
dCaðtÞ

dt
5

mðtÞ
q � V � ðCa0ðtÞ2CaðtÞÞ2k0 � CaðtÞ � e

2Ea
R�TðtÞ

dTðtÞ
dt

5
mðtÞ � Cp � ðT02TðtÞÞ1V � DHrxn � CaðtÞ � k0 � e

2Ea
R�TðtÞ1UA � ðTc;T2TðtÞÞ

V � q � Cp

Ca05Ca0;nom1Ca0;dev � sin ðt=freqÞ

m5mnom1mdev � swyb

dswyb

dt
5yb � ð1=freqÞ � cos ðt=freqÞ

freq5100=ð2 � pÞ

mpMPCðtÞ5Ki � ½xðtÞ;Ca0ðtÞ;VðtÞ;CaðtÞ; TðtÞ;CaSP�T1ri;

8½xðtÞ;Ca0ðtÞ;VðtÞ;CaðtÞ;TðtÞ;CaSP�T 2 CRi

CaSP50

Objective function

CostTotal5CostEquipment1CostOperational

CostEquipment510 � ððV2750Þ=pÞ110001400 � yb;f

dCostOperational

dt
5m � ðCa0ðtÞ2CaðtÞÞ24 � yb

Interior point constraint 8T 2 f1; . . . ; 100g

yb2M � yb;f � 0

mpMPCðt5TÞ2Tc;T50

TðtÞ � 450

(16)

The binary variable yb;f is introduced in the interior point

constraints in order to account for the existence of the settling

tank equipment only if yb—corresponding to the operation of

the tank—is active at any interior point. Since the latter is a

piecewise constant variable if its value is one in at least one

interval then the tank should exist. Therefore, an equipment

cost associated with that is taken into account in the objective

function. The temperature constraint is present to ensure the

feasibility of the controller evaluation. The optimization

results yield that the existence of the tank is necessary and

operated until the concentration at the outlet of the CSTR

approaches zero. The optimization results are presented

below:

� CSTR Volume: 500 m3

� Ca0;nom: 10 mol=L
� Ca0;dev: 5 mol=L
� mnom: 7 m3=s
� mdev: 2 m3=s

The tank is used at the start-up of the CSTR operation in
order to normalize the concentration of the reactants until the
controller can effectively manage the sinusoidal concentration
deviation. It is clear that for different initial conditions
(Ca0;nom) the time period for which the tank is operated will
vary. The initial concentration reported as optimal is by defini-
tion that concentration that would cause the greatest settling
time to the CSTR operation. This is shown in Figures 5a, b

Figure 5. Tank usage optimization results for fixed Ca0;nom.
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where the dynamic optimization has been repeated for a fixed

Ca0;nom58 mol=L. The deviation from the optimal solution in

the case where Ca0 was fixed to 8 mol=L is 25.4%.

The Binary Distillation Column Example

The distillation column model describes the binary separa-

tion of benzene and toluene. The column is allowed a maxi-

mum number of trays to be 30 with no restriction on feed tray

location. The purity in the top has a desired set point of 0.98

and the purity in the bottom has a desired setpoint of 0.02. The

feed composition is assumed sinusoidal and is optimized simi-

larly to the previous two examples.

“High fidelity” dynamic modeling

The distillation column utilizes mass and energy balances

and thermodynamic relations to build the full model. The fol-

lowing assumptions have been made:
� Fast energy dynamics.
� Relative volatility.
� Constant molar hold up in condenser.
� Immediate pressure response.

Mass balances for each tray, reboiler, and condenser are

used while assuming constant molar hold up in the total con-

denser. Energy balances are used in the reboiler and condenser

while assuming an average temperature throughout the col-

umn. Relative volatility is used to determine vapor and liquid

correlations in each tray and in the reboiler. The model

assumes the reflux flow rate and the boil up rate to be the con-

trollable variables in the system, and the molar hold ups to be

the states of the system. Column diameter, reflux tray position,

and feed tray position are the design variables, while the pres-

ence and position of the reboiler and condenser are fixed. Den-

sity of the liquid hold up on the trays is assumed to follow

from a linear combination of the component densities.
The model of the binary distillation column is adapted from

Ref. 131. The characteristic equations of the model are pre-

sented in 5 and in Appendix A, Table 1 for the nomenclature.
Antoine equations were used to determine vapor pressures

at the top and bottom of the distillation column and the log-

mean temperature approach was used for the heat exchange at

the condenser and the reboiler. Since the “high-fidelity” model

used here is a simplified model, the limiting constraints of the

columns operation are expressed via thermodynamic limits

which are manifested via the Antoine equations and subse-

quently the relative volatility relations. The distillation column

is a multiple input multiple output system where the reflux

flow rate and boil up flow rate are the degrees of freedom to

the system, and the purity in the top and bottom is the output.

The composition at the feed is treated as a disturbance to the

system operation.

Model approximation

The high fidelity model of the distillation column consists

of 501 states and nonlinear equations. Random sets of I/O for

different designs from the “high fidelity” model are introduced

into the System Identification Toolbox in MATLAB
VR

to

acquire a linear state-space model of the form of Eq. 3. The

identified state-space model is shown in Eq. 17.

xT115

0:9533 20:05507

0:0264 0:5494

2
4

3
5 xT1

20:01609 20:01346

20:1129 0:08987

2
4

3
5 uc;T1

20:1257 29:703 � 1025 24:163 � 1024

1:005 7:184 � 1024 25:874 � 1025

2
4

3
5 dT

De

2
4

3
5

yT5

20:2357 20:354

0:1098 20:4719

2
4

3
5 xT

Ts51s

(17)

where xT are the identified states, uc;T are the reflux flow rate

and the boil up rate, dT is the composition of the feed, and De
is the feed and reflux tray location. Note that the column diam-

eter is correlated to the minimum vapor flow rate and therefore

is the design decision of the system (see Eq. 18). Also note

that the location of the trays are integer variables the handling

of which in terms of multi-parametric programming will be

discussed in the next section.
The step and impulse responses of the system are presented

in Figures B3a, B3b, respectively.

Design of the multi-parametric model predictive

controller

Similarly to the tank example in section the problem formula-

tion is based on Eq. 4 and the tuning of the controller is pre-

sented in Table 6. Note that since the boil up flow rate is limited

by the column diameter as presented in Eq. 18, the mpMPC is

modified to account for the square of the column diameter as a

design parameter. Note that since the column diameter is always

greater than zero and it does not appear anywhere else within

the mpMPC formulation we can define a new parameter p5D2
c

which renders Eq. 18 linear inequality constraint.

0:4514 � VB � D2
c (18)

The integer parameters corresponding to the tray locations are

reformulated into binary parameters and solved based on the

algorithm presented in Ref. 132. An alternative formulation could

be the treatment of integer parameters as continuous parameters

(similar to handling binary variables in Ref. 133) since the integer

value realization of the parameter is a subset of their continuous

values and the realization is not an mpMPC decision.
The objective of the design dependent controller is to main-

tain the purity set points for the top and bottom product at

98% vol and 2% vol regardless of the disturbance at the inlet

of the system. Small deviations are allowed but penalized in

the design optimization formulation.

Closed-loop validation

The validation step can be seen in Figure 6 where the con-

troller is tested against the original high fidelity model. Note

that the closed-loop validation needs to happen and be satis-

factory for a range of different designs. Here we present the

closed loop validation for a distillation column with the fol-

lowing characteristics:
� Condenser area: 100 m2

.

� Reboiler area: 282:427 m2
.

� Diameter of column: 1:9 m.

� Reflux tray position: 18.
� Feed tray position: 9.
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Dynamic optimization

The dynamic optimization in Problem 10 is then formulated
and solved allowing for the optimizer to select the optimal
value for the area of the condenser, area of the reboiler, reflux
tray location, feed tray location, and diameter of the column.
To account for the reflux and feed tray location changing addi-
tional equations were added or modified as seen in Table 7.

Allowing the dynamic optimization to run over a time span

of 1 h, the results obtained are presented in Table 8.
It can be seen that by utilizing the simultaneous design and

control approach presented here, a distillation column with a
smaller annualized total cost is designed.

The Domestic Cogeneration Unit Example

The domestic internal combustion engine powered cogene-
ration example of Refs. 134,135 is used here. For the domestic

cogeneration unit we assume the possibility of a dual mode of
operation, i.e., the unit can either follow an electricity demand
(Mode 1 operation) or a hot water demand (Mode 2 operation)
based on cost of operation criteria. The decentralized control
schemes for this purpose are described in Ref. 134 in detail.
The unit is assumed to provide heat and power to an area con-
nected to the electricity and natural gas grid, therefore, any
power that the unit cannot cover are covered by the grid, at a
cost.** Similarly surplus of electrical power is provided to the
grid, at a revenue and heat in the form of water discarded at a
cost. The design aspect is the size of the internal combustion
engine. Indicatively, a larger engine can potential cover
greater demands but requires a greater investment cost. Con-
versely, a smaller engine might be less cost effective in the
long term operation of the plant. A sinusoidal demand for elec-
trical power and hot water is assumed. Previously we pre-
sented a similar example with Mode 1 operation where the
simultaneous design and control employed PI controllers and
later a mpMPC was formulated to fit the optimal design.136,137

Here, we formulate the explicit controllers to be design

Table 8. Results of the Current Approach and Comparison

with Ref. 131

Current
approach

Comparison
with Ref. 131

Condenser area (m2) 120 132
Reboiler area (m2) 266 276
Diameter of column (m) 1.62 1.65
Reflux tray 25 25
Feed tray 12 12
Total cost (k$) 590 620

Table 7. Additional/Modified Equations for Dynamic

Optimization

Description Equation

Feed tray location Fk5Fdf
k;
XNtrays

k51

df
k51

Reflux tray location Rk5Rdr
k;
XNtrays

k51

dr
k51

Feed tray location
only below reflux

df
k2
XNtrays

k05k

dr
k0 � 0

Component mass
balance

XNtrays

k05k

dr
k0

 !
dMi;k

dt 5Lk11xi;k111Vk21yi;k211

Fkzi;f 1Rkxi;d2Lkxi;k2Vkyi;k;

8k 2 f2::;Ntrays21g

Total mass balance
XNtrays

k05k

dr
k0

 !
dMk

dt 5Lk111Vk211Fk

1Rk2Lk2Vk; 8k 2 f2::;Ntrays21g

Reboiler cost Creb50:6 � 101:3 M&S
280

104AR

144�2:542

� �0:65

� 3:22 � 1:35

Total cost TotalCost5OpCost1 1
3
ðCcolumn1Creb1CcondÞ

Component i is benzene, tray number is k 2 f1 . . .Ntraysg unless stated
otherwise.

Table 6. Weight Tuning for the mpMPC of the Distillation

Column

MPC design parameters Value

N 3

M 1

QRk;8k 2 f1; . . . ;Ng
107 0

0 107

" #

Rk;8k 2 f1; . . . ;Mg
1022 0

0 1022

" #
xmin 2103 2103


 �T
xmax 103 103


 �T
umin 2 3½ �T

umax 4:7 7½ �T

ymin 0 0½ �T

ymax 1 1½ �T

dmin 0:45 1 1½ �T

dmax 0:5 30 30½ �T

Figure 6. Closed loop validation of the controller
against the high fidelity model.

**The cost of electrical power fluctuates between night time and day time which is
taken into account in this example.
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dependent, similarly to the three previous examples and pro-

ceed with a dynamic design optimization.

“High fidelity” dynamic modeling

The high “fidelity model” of the cogeneration unit features

the interactions of each component of the unit. It is based on

first principles and correlations and is a non-linear DAE sys-

tem with 379 equations, 15 of which are differential, and 6

degrees of freedom. An overview is presented in Table 9 and

Table 2. The full model can be found in Ref. 135.
The necessity of the model approximation and the decentrali-

zation of such a system lies with the fact that (1) its complexity

would pose a significant challenge for advanced optimization

techniques and (2) the different modes of operation require

advanced control schemes as explained in Ref. 134. The latter

can be comprehended by the fact that the process is multi-

product, as it is able to produce simultaneously usable heat and

power. The dependence between heat and power generation

although, makes it impossible to produce both of them simulta-

neously at the desired level, at all times.
The CHP unit is treated as the interactions of the heat gener-

ation subsystem with the power generation subsystem.134 The

power generation subsystem is design dependent as the

amount of power generated from the unit is directly affected

by the size of the internal combustion engine. The heat recov-

ery subsystem is dependent on the power generation, as it cor-

relates the amount of hot water produced and its temperature

to the operating level of the power generation subsystem.

Treating the power generation level as a known disturbance

(in the case of Mode 1 operation) or as a projected operating

level set point (in the case of Mode 2 operation) results only

into an indirect design correlation. Therefore, we proceed here

considering only the directly affected design dependent power

generation subsystem. The formulation for the heat recovery

subsystem follows exactly the principles presented in Ref.

134.

Model approximation

The approximate model for the power generation subsys-

tems is identified via System Identification in MATLAB
VR

. In

order for this to happen, I/O data for a range of different

designs are introduced. The input to the system is the opening

of the throttle valve which manipulates the amount of air and

fuel that enters the combustion chambers of the internal com-

bustion engine. Based on the size of the engine (treated here

as a measured disturbance), the power output is affected as

shown in Eq. 19. The state-space model for the heat recovery

subsystem is presented in Eq. 20.

xT1150:9799 � xT10:006328 � uc;T16:516 � De

yT57:839 � xT

Ts50:1s

(19)

where xT are the identified states, uc;T is the throttle valve

opening, dT and De is the volume of the internal combustion

engine. The output yT is the electrical power generated via the

subsystem.

xT115

0:997 0:1026 20:002958

20:001527 0:9404 0:1663

20:05827 20:05636 0:179

2
66664

3
77775 � xT

1

20:007864 0:001107

0:2801 20:03306

21:28 0:1464

2
66664

3
77775 � uc;T

yT5 2529:9 22:827 0:2521½ � � xT

Ts50:1s

(20)

where xT are the identified states and uc;T are the power gener-

ation level and water flow rate in the heat recovery subsystem.

The output yT is the temperature of the hot water at the outlet

of the system. Note that depending on the mode of operation

of the CHP system one of the inputs is treated as a measured

disturbance to the system (i.e., the power generation level is

treated as a measured disturbance in Mode 1 and the water

flow rate is treated as a measured disturbance in Mode 2).

Table 9. Residential CHP Model Overview

Description Equation

Throttle valve—fuel
and air manipulation

_mth5cdAth
Pabffiffiffiffiffiffiffiffiffiffiffiffi
RbTab

p w
Pab

Pmn

� �
Manifolds—pressure

difference driven
flow for the inlet air
and exhaust gases

d

dt
mmn5 _mmn;in2 _mmn;out

_V mn;out5cpf Pmn2Pmn;out

� �
_V mn

d

dt
E5 _mmn;inhmn;in2 _mmn;outhmn;out

Internal combustion
engine—energy and
mass balances

_mex5
Pmn

RbTmn

Vd

4p
gvlxen

_mmn;out hmn;out1
X

i5aircomp:

xair;ih
o
f ;air;i

� � !

1 _m/ h/1
X

j5fuelcomp:

x/;jh
o
f ;fuel;j

� � !

2 _mex hex1
X

k5exhaustcomp:

xex;kho
f ;ex;k

� � !

5 _Qf 1
_Qcg!cw1 _W c1 _W en

Crankshaft—Torque
generation

Toen5
PmebVd

4p

Generator—power
generation
through torque

d

dt
Tocl5

1

Fl
ðToen2ToclÞ

Pec5genToclxen

Engine cooling system—
energy balances

d

dt
Ti5

_Qin;i2
_Qout;i

micp;i

8i 2 engine cooling

system components

_Qa!b5TCabAabðTa2TbÞ
8a; b 2 engine cooling

system components

Heat exchangers—
energy balances

Q5UADTmean

DTmean5
DTin2DTout

log
��� DTin

DTout

���� �
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The step and impulse responses of the entire system are pre-

sented in Figures B4a, B4b, respectively.

Design of the multi-parametric model predictive

controller

The multi-parametric model predictive controller problem

(based on Eq. 4) is formulated and solved with POP.117 The

tuning of the controller is presented in Table 10. The tuning of

the controllers for the heat recovery subsystem is omitted here

as it has been presented previously and is identical to Ref.

134.
Note the following:

� The minimum value of the throttle valve opening is not

equal to 0. This means that there is a minimum operating

level for the CHP unit and that we do not account for the

system ability to switch off as part of the control strategy.
� The maximum output is linearly correlated to the size of

the internal combustion engine based on the function

ymax50:0011 � De14:5148, where ymax is the maximum

power output in 310kW and De is the internal combustion

engine volume (treated in the context of mpMPC as the dis-

turbance d).
In Mode 1, the control scheme attempts to (1) cover the

electrical power demand and (2) produce water of a predefined

temperature, regardless of the flow rate. In Mode 2, the control

scheme attempts to produce hot water of (1) a predefined flow

rate an (2) temperature, regardless of the operating level of the

power generation subsystem. The most important limiting fac-

tor for the controller performance of the CHP system is to

guarantee that there exist no violation of the water temperature

above 100oC due to a possible overshoot. Further information

regarding this can be found in Ref. 134.

Closed-loop validation

Closing the loop of the CHP system involves both operating

modes. In Figure 7 the simulation presents a power driven

operation for the first 120 s and the last 50 s. A heat recovery

driven operation is shown for time between 120 and 300 s.

The simulation follows a variable electrical power and hot

water flow rate demand. It is assumed that the hot water tem-

perature at the outlet is 70oC. The design of the internal com-

bustion engine for this operation is 1500 cc.
In Figures 8 and 9 present the response of the Mode 1 and

Mode 2 control scheme, respectively, for different designs.

Note that the same design dependent controller is used for dif-

ferent closed-loop simulations. Despite that, the different

designs cause a different response to the system. For example,

the throttle valve opening is different between the different

designs which leads to different fuel consumption therefore to

different operating cost of the CHP unit. Although the differ-

ence is relatively small (i.e., the characteristics of the overall

profile are similar) those differences suffice to affect the long

Figure 7. Closed loop validation of the controller against the high fidelity model.

Table 10. Weight Tuning for the mpMPC of the CHP Unit

MPC design parameters Value

N 3
M 3
QRk;8k 2 f1; . . . ;Ng 31.25
R1k;8k 2 f1; . . . ;Mg 0.1
xmin 0
xmax 5
umin 0.01
umax 1
ymin 0
ymax 11
dmin 1500
dmax 5000
Dumin 20.1
Dumax 0.1
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term operating cost of the unit. The more intense operation of
the smaller engine in comparison with the less intense opera-
tion of the larger engine is a clear trade-off between invest-
ments and operational cost, an aspect that the optimal design
takes into account. Table 11 shows a snapshot of the explicit
actions for an engine size of 1500 cc and Table 12 for an
engine size of 4500 cc. The upper graphs within Tables 11 and
12 show the optimal action uc;T applied to the system as a
function of the approximate states xT while the lower graphs
the critical region that corresponds to that action. The expres-
sions of the control actions that correspond to the same critical
region are identical for different designs. The effect of the dif-
ferent designs to the optimal action is visible from the fact that
for actions corresponding to the same critical region the
numerical value that is ultimately applied to the system is
different.

Figure 10 represents a snapshot of the power generation

of the CHP system for different designs under a fixed

power demand step change scenario. More specifically, the

different responses of the system (yT) are plotted against

the optimal actions (uc;T) for three different designs of the

internal combustion engine volume (De). This shows that

although an advanced design dependent control scheme

has been employed there still exists a difference between

the closed loop response of the system when yTðuc;TÞ is

regarded.

Dynamic optimization

The dynamic optimization formulation for the CHP system

is similar to the previous three examples. More specifically, a

sinusoidal demand is introduced for both the electrical power

and hot water flow rate while the temperature for the hot water

Figure 9. Design dependent mpMPC—Mode 2.

Figure 8. Design dependent mpMPC—Mode 1.
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is maintained at 70oC. The pricing for the electrical power
fluctuates between a high value during the day and a low value
during the night time. The purpose of the dynamic optimiza-
tion problem in this case is dual:

� The determination of the size of the internal combustion
engine of the CHP.

� The determination of the operating mode of the system
for a given demand scenario and pricing scheme.

Table 12. Optimal Action as a Function of the Parameters and Design Variable (De54500cc)

u4500
c;T 5f ðh;DeÞ

CRT5153239 u4500
c;T515uT50

opt 10:1

CRT5252924 u4500
c;T5253:15xT10:004u4500

c;T5121:02 � 1025De27:9yT17:9ySP
T 10:0849

CRT5352924 u4500
c;T5353:15xT10:004u4500

c;T5221:02 � 1025De27:9yT17:9ySP
T 10:0849

CRT5452924 u4500
c;T5453:15xT10:004u4500

c;T5321:02 � 1025De27:9yT17:9ySP
T 10:0849

CRT5552924 u4500
c;T5553:15xT10:004u4500

c;T5421:02 � 1025De27:9yT17:9ySP
T 10:0849

CRT5652915 u4500
c;T5653:04xT10:04u4500

c;T5529:85 � 1026De214:81yT114:81ySP
T

CRT5752519 u4500
c;T575u4500

c;T5620:1

CRT5852915 u4500
c;T5853:04xT10:04u4500

c;T5729:85 � 1026De214:81yT114:81ySP
T

CRT5952915 u4500
c;T5953:04xT10:04u4500

c;T5829:85 � 1026De214:81yT114:81ySP
T

CRT51052915 u4500
c;T51053:04xT10:04u4500

c;T5929:85 � 1026De214:81yT114:81ySP
T

Figure 10. Design dependent mpMPC—state and optimal action propagation for different designs.

Table 11. Optimal Action as a Function of the Parameters and Design Variable (De51500cc)

u1500
c 5f ðh;DeÞ

CRT5152287 u1500
c;T5150:02

CRT5252775 u1500
c;T5250:02

CRT5352915 u1500
c;T5353:05xT10:0351u1500

c;T5229:89 � 1026De214:81yT114:81ySP
T

CRT5452757 u1500
c;T545u1500

c;T5310:1

CRT5553112 u1500
c;T555u1500

c;T5410:1

CRT5653122 u1500
c;T565u1500

c;T5510:1

CRT5752924 u1500
c;T5753:15xT10:004u1500

c;T5621:02 � 1025De27:9yT17:9ySP
T 10:0849

CRT5852924 u1500
c;T5853:15xT10:004u1500

c;T5721:02 � 1025De27:9yT17:9ySP
T 10:0849

CRT5952924 u1500
c;T5953:15xT10:004u1500

c;T5821:02 � 1025De27:9yT17:9ySP
T 10:0849

CRT51052924 u1500
c;T51053:15xT10:004u1500

c;T5921:02 � 1025De27:9yT17:9ySP
T 10:0849
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The objective function is formulated as a Total cost function

that includes (1) the investment cost of the CHP, (2) the oper-

ating cost of the unit as a function of the amount of fuel

required for electrical power and heat production, (3) the cost
of external resources required to cover possible demand short-

ages, (4) the cost of discarding surplus heat (in the form of hot

water), and (5) the revenues from selling surplus power to the

grid.
The MIDO algorithm converges to the an operation based

on the day and night pricing of electrical power, i.e., the sys-
tem prefers to operate on a power production driven operation

during the day when the electricity price is higher and revert

to a heat generation driven demand during night time. Further-

more, the size of the internal combustion engine converges to

2203 cc, a value that does not correspond to the upper or lower
bound of the design variable. It is clear through testing several

demand scenarios (and from previous studies137) that the oper-

ating mode of the system is primarily a matter of fuel and elec-

tricity price. More specifically, the choice for the operating

mode of the CHP system, although here optimized for a given

demand scenario and electricity price scheme, is a matter that
needs to be determined as the fluctuation in demand and pric-

ing happens. Therefore, this is a matter of an economic/opera-

tional optimization for demand side uncertainty, such as a

scheduling formulation as described in Ref. 1.

Computational Statistics and Requirements

All computational experiments were performed on a com-

puter running Windows 7 Enterprise, SP1, MATLABR2015b
VR

64bit, gPROMS
VR

4.2 64bit and Visual Studio 2012. The

computer was equipped with 16 GB of RAM and Intel
VR

CoreTMi7–4790 clocked at 3.60GHz.
The computational time scales for the mpMPC and MIDO

problems are reported in Table 13.

Concluding Remarks

We presented a framework for the application of design and
control optimization via multi-parametric programming

although four case studies. Through the formulation of a DO

with mpMPC where we ensure cyclic operation we determined

the size of a simple tank. The size of a CSTR was determined

via the formulation of a design MIDO and a corresponding

multi-parameric controller. In that case, the possibility of add-
ing a settling tank was also considered. The binary distillation

column example was revisited and the size, and key tray loca-

tions were determined via a design MIDO formulation and

mpMPC with the latter taking into account discrete alterna-

tives. The common basis for these three examples is that the
operation of the aforementioned equipment focuses on a sim-

ple objective. In the case of the tank the operating objective is

to maintain a volume set point. The CSTR attempts to produce

as much product as possible with a temperature constraint and

the distillation column aims to achieve a certain purity level.
On the contrary to the previous three examples the case of

the CHP is different in the sense that its operation is variable,

i.e., the system should be able to follow different operating set

points at different times. Although a simultaneous design and

control approach provides great insight regarding its operation,

particularly the change between operating modes within the

day, it is not able to determine the long term operation of the

system efficiently. In other words, a decision about a long

term characteristic (such as the size of the internal combustion

engine) of a variably operating system (alternating operating

set points) cannot be made without considering the optimality

of the aforementioned set points, especially in a case of a

multi-product process. Therefore, subject of our current work

is the simultaneous consideration of the optimality of the set

points based on midterm financial criteria, i.e., the inclusion of

simultaneous reactive scheduling formulations of such

systems.
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