
Fundamenta Informaticae XXI (2001) 1–7 1

DOI 10.3233/FI-2016-0000

IOS Press

On Computing Average Common Substring Over Run Length
Encoded Sequences

Sahar Hooshmand
Department of Computer Science

University of Central Florida, Orlando, USA

sahar@cs.ucf.edu

Neda Tavakoli
School of Computational Science & Engineering

Georgia Institute of Technology, Atlanta, USA

neda.tavakoli@gatech.edu

Paniz Abedin
Department of Computer Science

University of Central Florida, Orlando, USA

paniz@cs.ucf.edu

Sharma V. Thankachan
Department of Computer Science

University of Central Florida, Orlando, USA

sharma.thankachan@ucf.edu

Abstract. The Average Common Substring (ACS) is a popular alignment-free distance measure
for phylogeny reconstruction. The ACS of a sequence X[1, x] w.r.t. another sequence Y[1, y] is

ACS(X,Y) =
1

x

x∑
i=1

max
j

lcp(X[i, x],Y[j, y])

Address for correspondence: Department of Computer Science, University of Central Florida, 117 Harris Center (Building
116), 4000 Central Florida Blvd., Orlando, Florida 32816-2362 USA. Phone: +1-407-823-5316.

2 Hooshmand et al. / On Computing ACS Over RL Encoded Sequences

The lcp(·, ·) of two input sequences is the length of their longest common prefix. The ACS can
be computed in O(n) space and time, where n = x + y is the input size. The compressed string
matching is the study of string matching problems with the following twist: the input data is in a
compressed format and the underling task must be performed with little or no decompression. In
this paper, we revisit the ACS problem under this paradigm where the input sequences are given in
their run-length encoded format. We present an algorithm to compute ACS(X,Y) in O(N logN)
time using O(N) space, where N is the total length of sequences after run-length encoding.

Keywords: String Algorithms, Suffix Trees, RL Encoding, Compression.

1. Introduction and Related Work

The Average Common Substring (ACS), proposed by Burstein et al. [1], is a simple alignment-free
sequence comparison method. This measure and its various extensions [2, 3, 4, 5, 6, 7, 8, 9] have
proven to be useful in multiple applications [10, 11, 12, 13, 14, 15]. Formally, ACS of a sequence
X[1, x] w.r.t. another sequence Y[1, y], denoted by ACS(X,Y), is

ACS(X,Y) =
1

x

x∑
i=1

L[i], where L[i] = max
j

lcp(X[i, x],Y[j, y])

The lcp(·, ·) of two input sequences is the length of their longest common prefix. The (symmetric)
distance based on ACS is [1]:

Dist(X,Y) =
1

2

(
log |Y|

ACS(X,Y)
+

log |X|
ACS(Y,X)

)
− 1

2

(
log |X|

ACS(X,X)
+

log |Y|
ACS(Y,Y)

)

The computation of ACS is straightforward in O(n) space and time using the generalized suffix
tree of X and Y, where n = x+y is the input size [1]. In this paper, we study the problem of computing
ACS, where the input sequences are X′[1, x′] and Y′[1, y′], where X′[1, x′] (resp., Y′[1, y′]) is the
sequence corresponding to the run-length encoding of X[1, x] (resp., Y[1, y]). Run-length encoding is
a simple algorithm used for data compression in which runs of data (occurring of the same character
on consecutive positions) are stored as a single character followed by the count of its consecutive
occurrences. The challenge here is to design an algorithm for computing ACS in space and time close
to O(N) instead of O(n), where N = x′ + y′. We answer this question positively by presenting the
following theorem.

Theorem 1.1. Given two input sequences in their run-length encoded format, the distance between
them based on the Average Common Substring (ACS) measure can be computed in O(N) space and
O(N logN) time, where N is the total length of sequences after run-length encoding.

Hooshmand et al. / On Computing ACS Over RL Encoded Sequences 3

2. Notation and Background

Let Σ be the alphabet set from which the symbols in X and Y are drawn from. We denote X,X′ and
Y,Y′ as follows:

X = αf11 α
f2
2 α

f3
3 ...α

fx′
x′ and X′ = (α1, f1)(α2, f2)(α3, f3)...(αx′ , fx′)

Y = βg11 β
g2
2 β

g3
3 ...β

gy′

y′ and Y′ = (β1, g1)(β2, g2)(β3, g3)...(βy′ , gy′)

Specifically, X is the concatenation of f1 occurrences of α1 followed by f2 occurrences of α2, and
so on. Similarly, Y is the concatenation of g1 occurrences of β1 followed by g2 occurrences of
β2, and so on. Moreover, αi 6= αi+1 and βi 6= βi+1 for all values of i. Here αi, βi ∈ Σ and
fi, gi ∈ {1, 2, 3, ..., n}. The lexicographic order between two characters (c, k) and (c′, k′) in the en-
coded sequences is defined as follows: (c, k) is lexicographically smaller than (c′, k′) iff either c is
lexicographically smaller than c′ or c = c′ and k < k′. Also, define the suffixes

X′[i, x′] = (αi, fi)(αi+1, fi+1)...(αx′ , fx′) and

Y′[i, y′] = (βi, gi)(βi+1, gi+1)...(βy′ , gy′)

If a suffix is a prefix of another suffix, we say that the shortest one is lexicographically smaller. Notice
that for each X′[i, x′] (resp., Y′[i, y′]), there exists an equivalent suffix X[F (i), x] (resp., Y[G(i), y])
of X (resp., Y). Specifically,

F (i) = 1 +
∑
k<i

fk and G(i) = 1 +
∑
k<i

gk

Observation 1. The kth lexicographically smallest suffix in S and the kth lexicographically smallest
suffix in S ′ are equivalent for all values of k ∈ [1, N], where

S = {X[F (i), x] | 1 ≤ i ≤ x′} ∪ {Y[G(i), y] | 1 ≤ i ≤ y′}

and S ′ = {X′[i, x′] | 1 ≤ i ≤ x′} ∪ {Y′[i, y′] | 1 ≤ i ≤ y′}

Example 1. Consider two input sequences X = CCCCCAAAGG and Y = CCAATTTGGGG.
According to the definition of X′ and Y′, X′ = (C, 5)(A, 3)(G, 2) and Y′ = (C, 2)(A, 2)(T, 3)(G, 4).
For each suffix of X′[i, x] there exists an equivalent suffix X[F (i), x]. For instance, X[F (2), 10] =
X[6, 10] is the equivalent suffix of X′[2, 3].

The main component of our algorithm is a trie T over all strings in S. It consists of N leaves and
at most N − 1 internal nodes. Each leaf node in T corresponds to a unique suffix in S . Specifically,
the ith leftmost leaf `i corresponds to the ith lexicographically smallest suffix in S . Each internal node
v is associated with two values, (i) nodeDepth(v): the number of nodes on the path from root to v and
(ii) strDepth(v): the length of the longest common prefix over all suffixes corresponding to the leaves
under v. Additionally, we call a leaf type-X (resp., type-Y) if the suffix corresponding to it is from X
(resp., Y). The space occupancy of T is O(N) words.

4 Hooshmand et al. / On Computing ACS Over RL Encoded Sequences

Lemma 2.1. The trie T can be constructed in O(N logN) time using O(N) space.

Proof. We construct a generalized suffix tree of X′ and Y′ and then convert it into T [16, 17, 18] by
exploring Observation 1.

3. An O(N)-Space and O(n logN)-Time Algorithm

The first step is to construct T from X′ and Y′. Then, we associate each leaf node (except two1) with
two values, char(·) and freq(·) as follows: Let `a be the leaf corresponding to X[F (i+ 1), x]. Then

char(`a) = αi and freq(`a) = fi

Similarly, let `b be the leaf corresponding to Y[G(j + 1), y]. Then

char(`b) = βj and freq(`b) = gj

For each σ ∈ Σ, define (and compute)

maxRun(σ) = max{gk | k ∈ [1, y′] and βk = σ}

The key intuition behind our algorithm is the following simple observation.

Observation 2. Let `a be the leaf in T corresponding to the suffix X[F (i+1), x] for an i ∈ [1, x′−1].
Also, let X[p, x] = αhi ◦ X[F (i + 1), x] for some h ∈ [1, fi]. Specifically, p = F (i + 1) − h and “◦”
denotes concatenation. Then L[p]:

• is maxRun(αi) if h > maxRun(αi) and

• is h+ strDepth(v) otherwise, where node v is the lowest ancestor of `a such that there exists a
type-Y leaf under v with char(·) = αi and freq(·) ≥ h.

We now present an efficient algorithm for computing L[·]’s based on the above observation. First we
construct a collection {Tσ | σ ∈ Σ} of new tries from T . Specifically, the Tσ is a compact trie over
all those suffixes in T , such that char(·) of the leaves corresponding to them is σ. The total number of
nodes over all Tσ’s is O(N) as each leaf node in T belongs to exactly one Tσ. Moreover, they can be
extracted from T in O(N) total time.

Next, we pre-process each Tσ in time linear to its size for answering level ancestor queries in con-
stant time [19]. A level ancestor query (v, l) asks to return the ancestor u of v with nodeDepth(u) = l.
Finally, for each internal node v in each Tσ, we compute freq(v), which is the maximum over freq(·)’s
of all type-Y leaves under v. Note that freq(v) = 0 if all leaves under u are of type-X. This step can
also be implemented in linear time via a bottom up traversal of Tσ.

We are now ready to present the final steps of our algorithm. For p = 1, 2, 3, ..., x, we compute
L[p] using Algorithm 1 (see the pseudo-code below). Note that the node v can be computed via a
binary search (using level ancestor queries) over the nodes on the path to root in O(logN) time. This
completes the description of our algorithm. The correctness is immediate from Observation 2. The
total time complexity is O(n logN).
1Specifically, the leaves corresponding to X[F (x′), x] and Y[G(y′), y].

Hooshmand et al. / On Computing ACS Over RL Encoded Sequences 5

Algorithm 1: Computing L[p]
1: Let X[p, x] = αhi ◦ X[F (i+ 1), x]

2: if h > maxRun(αi) then L[p] = maxRun(αi)

3: else
4: Find the leaf node w in Tαi corresponding to X[F (i+ 1), x] and its lowest ancestor v

such that freq(v) ≥ h
5: Fix v as the root when i = x′

6: L[p] = h+ strDepth(v)

7: endif

4. An O(N)-Space and O(N logN)-Time Algorithm

Define A[i] for i = 1, 2, 3, ..., x′, where

A[i] =

F (i+1)−1∑
p=F (i)

L[p]

Therefore,

ACS(X,Y) =
1

x

x′∑
i=1

A[i]

We now present a new algorithm in which we compute each A[i] in O(logN) time. For each internal
node v in Tσ, define weight(v) as follows: weight(·) of the root node is 0. For any other node v with
v′ being its parent,

weight(v) = weight(v′) + freq(v)× (strDepth(v)− strDepth(v′))

By performing a top-down tree traversal, we compute weight(·) over all internal nodes in Tσ in time
linear to its size. Therefore, time over all Tσ’s is O(N). We now compute A[i]’s using the following
steps.

• For any i ∈ [1, x′ − 1], we first find the leaf node w in Tαi corresponding to the suffix
X[F (i + 1), x]. Also, find the lowest ancestor v of w, such that there exists a type-Y leaf
under v (equivalently freq(v) 6= 0) via binary search using level ancestors queries. This step
takes O(logN) time. Next, we have two cases and we handle them separately as follows. For
brevity, let m = maxRun(αi).

– If fi > m, then

A[i] = weight(v) + (1 + 2 + 3 + ...+m) +m(fi −m)

By simplifying, we have A[i] = weight(v) +m(fi − (m− 1)/2).

6 Hooshmand et al. / On Computing ACS Over RL Encoded Sequences

– If fi ≤ m, then find the lowest ancestor u of w, such that freq(u) ≥ fi (via binary search
using level ancestors queries). Then,

A[i] = weight(v)− weight(u) + fi × strDepth(u) + fi(1 + fi)/2

• For i = x′, A[i]

– is (1 + 2 + ...+ fi) = fi(fi + 1)/2 if fi ≤ m and

– is (1 + 2 + ...+m) +m(fi −m) = m(fi − (m− 1)/2), otherwise.

In summary, the time complexity is O(N logN) plus O(logN) for each i in [1, x′]. Therefore, total
time is O(N logN). The correctness follows from Observation 2 and the definition of weight(·). This
completes the proof of Theorem 1.

Acknowledgments

This research is supported in part by the U.S. National Science Foundation under CCF-1704552 and
CCF-1703489.

References

[1] Burstein D, Ulitsky I, Tuller T, Chor B. Information theoretic approaches to whole genome phylogenies.
In: Proceedings of the 9th Annual International Conference on Research in Computational Molecular
Biology (RECOMB). 2005 pp. 283–295.

[2] Aluru S, Apostolico A, Thankachan SV. Efficient alignment free sequence comparison with bounded
mismatches. In: Proceedings of the 19th Annual International Conference on Research in Computational
Molecular Biology (RECOMB). 2015 pp. 1–12.

[3] Apostolico A, Guerra C, Landau GM, Pizzi C. Sequence similarity measures based on bounded hamming
distance. Theoretical Computer Science, 2016. 638:76–90.

[4] Leimeister CA, Morgenstern B. kmacs: the k-mismatch average common substring approach to alignment-
free sequence comparison. Bioinformatics, 2014. 30(14):2000–2008.

[5] Manzini G. Longest Common Prefix with Mismatches. In: Proceedings of the 22nd International Sympo-
sium on String Processing and Information Retrieval (SPIRE). Springer, 2015 pp. 299–310.

[6] Thankachan SV, Apostolico A, Aluru S. A Provably Efficient Algorithm for the k-Mismatch Average
Common Substring Problem. Journal of Computational Biology, 2016. 23(6):472–482.

[7] Thankachan SV, Chockalingam SP, Liu Y, Apostolico A, Aluru S. ALFRED: a practical method for
alignment-free distance computation. Journal of Computational Biology, 2016. 23(6):452–460.

[8] Thankachan SV, Chockalingam SP, Liu Y, Krishnan A, Aluru S. A greedy alignment-free distance es-
timator for phylogenetic inference. In: Proceedings of 5th International Conference on Computational
Advances in Bio and Medical Sciences (ICCABS). 2015 .

Hooshmand et al. / On Computing ACS Over RL Encoded Sequences 7

[9] Thankachan SV, Aluru C, Chockalingam SP, Aluru S. Algorithmic Framework for Approximate Matching
Under Bounded Edits with Applications to Sequence Analysis. In: Proceedings of the 922nd Annual
International Conference on Research in Computational Molecular Biology (RECOMB). 2018 pp. 211–
224.

[10] Apostolico A. Maximal words in sequence comparisons based on subword composition. In: Algorithms
and Applications, pp. 34–44. Springer, 2010.

[11] Bonham-Carter O, Steele J, Bastola D. Alignment-free genetic sequence comparisons: a review of recent
approaches by word analysis. Briefings in bioinformatics, 2013. p. bbt052.

[12] Chang G, Wang T. Phylogenetic analysis of protein sequences based on distribution of length about
common substring. The Protein Journal, 2011. 30(3):167–172.

[13] Comin M, Verzotto D. Alignment-free phylogeny of whole genomes using underlying subwords. Algo-
rithms for Molecular Biology, 2012. 7(1):1.

[14] Domazet-Lošo M, Haubold B. Efficient estimation of pairwise distances between genomes. Bioinformat-
ics, 2009. 25(24):3221–3227.

[15] Guyon F, Brochier-Armanet C, Guénoche A. Comparison of alignment free string distances for complete
genome phylogeny. Advances in Data Analysis and Classification, 2009. 3(2):95–108.

[16] Weiner P. Linear pattern matching algorithms. In: Proceedings of the 14th Annual IEEE Symposium on
Switching and Automata Theory (SWAT). 1973 pp. 1–11.

[17] McCreight EM. A space-economical suffix tree construction algorithm. Journal of the ACM (JACM),
1976. 23(2):262–272.

[18] Farach M. Optimal Suffix Tree Construction with Large Alphabets. In: 38th Annual Symposium on
Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997. 1997
pp. 137–143.

[19] Bender MA, Farach-Colton M. The LCA Problem Revisited. In: LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings. 2000 pp. 88–
94.

