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Abstract. The Average Common Substring (ACS) is a popular alignment-free distance measure
for phylogeny reconstruction. The ACS of a sequence X[1, x] w.r.t. another sequence Y[1, y] is

ACS(X,Y) =
1

x

x∑
i=1

max
j

lcp(X[i, x],Y[j, y])
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The lcp(·, ·) of two input sequences is the length of their longest common prefix. The ACS can
be computed in O(n) space and time, where n = x + y is the input size. The compressed string
matching is the study of string matching problems with the following twist: the input data is in a
compressed format and the underling task must be performed with little or no decompression. In
this paper, we revisit the ACS problem under this paradigm where the input sequences are given in
their run-length encoded format. We present an algorithm to compute ACS(X,Y) in O(N logN)
time using O(N) space, where N is the total length of sequences after run-length encoding.

Keywords: String Algorithms, Suffix Trees, RL Encoding, Compression.

1. Introduction and Related Work

The Average Common Substring (ACS), proposed by Burstein et al. [1], is a simple alignment-free
sequence comparison method. This measure and its various extensions [2, 3, 4, 5, 6, 7, 8, 9] have
proven to be useful in multiple applications [10, 11, 12, 13, 14, 15]. Formally, ACS of a sequence
X[1, x] w.r.t. another sequence Y[1, y], denoted by ACS(X,Y), is

ACS(X,Y) =
1

x

x∑
i=1

L[i], where L[i] = max
j

lcp(X[i, x],Y[j, y])

The lcp(·, ·) of two input sequences is the length of their longest common prefix. The (symmetric)
distance based on ACS is [1]:

Dist(X,Y) =
1

2

(
log |Y|

ACS(X,Y)
+

log |X|
ACS(Y,X)

)
− 1

2

(
log |X|

ACS(X,X)
+

log |Y|
ACS(Y,Y)

)

The computation of ACS is straightforward in O(n) space and time using the generalized suffix
tree of X and Y, where n = x+y is the input size [1]. In this paper, we study the problem of computing
ACS, where the input sequences are X′[1, x′] and Y′[1, y′], where X′[1, x′] (resp., Y′[1, y′]) is the
sequence corresponding to the run-length encoding of X[1, x] (resp., Y[1, y]). Run-length encoding is
a simple algorithm used for data compression in which runs of data (occurring of the same character
on consecutive positions) are stored as a single character followed by the count of its consecutive
occurrences. The challenge here is to design an algorithm for computing ACS in space and time close
to O(N) instead of O(n), where N = x′ + y′. We answer this question positively by presenting the
following theorem.

Theorem 1.1. Given two input sequences in their run-length encoded format, the distance between
them based on the Average Common Substring (ACS) measure can be computed in O(N) space and
O(N logN) time, where N is the total length of sequences after run-length encoding.
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2. Notation and Background

Let Σ be the alphabet set from which the symbols in X and Y are drawn from. We denote X,X′ and
Y,Y′ as follows:

X = αf11 α
f2
2 α

f3
3 ...α

fx′
x′ and X′ = (α1, f1)(α2, f2)(α3, f3)...(αx′ , fx′)

Y = βg11 β
g2
2 β

g3
3 ...β

gy′

y′ and Y′ = (β1, g1)(β2, g2)(β3, g3)...(βy′ , gy′)

Specifically, X is the concatenation of f1 occurrences of α1 followed by f2 occurrences of α2, and
so on. Similarly, Y is the concatenation of g1 occurrences of β1 followed by g2 occurrences of
β2, and so on. Moreover, αi 6= αi+1 and βi 6= βi+1 for all values of i. Here αi, βi ∈ Σ and
fi, gi ∈ {1, 2, 3, ..., n}. The lexicographic order between two characters (c, k) and (c′, k′) in the en-
coded sequences is defined as follows: (c, k) is lexicographically smaller than (c′, k′) iff either c is
lexicographically smaller than c′ or c = c′ and k < k′. Also, define the suffixes

X′[i, x′] = (αi, fi)(αi+1, fi+1)...(αx′ , fx′) and

Y′[i, y′] = (βi, gi)(βi+1, gi+1)...(βy′ , gy′)

If a suffix is a prefix of another suffix, we say that the shortest one is lexicographically smaller. Notice
that for each X′[i, x′] (resp., Y′[i, y′]), there exists an equivalent suffix X[F (i), x] (resp., Y[G(i), y])
of X (resp., Y). Specifically,

F (i) = 1 +
∑
k<i

fk and G(i) = 1 +
∑
k<i

gk

Observation 1. The kth lexicographically smallest suffix in S and the kth lexicographically smallest
suffix in S ′ are equivalent for all values of k ∈ [1, N ], where

S = {X[F (i), x] | 1 ≤ i ≤ x′} ∪ {Y[G(i), y] | 1 ≤ i ≤ y′}

and S ′ = {X′[i, x′] | 1 ≤ i ≤ x′} ∪ {Y′[i, y′] | 1 ≤ i ≤ y′}

Example 1. Consider two input sequences X = CCCCCAAAGG and Y = CCAATTTGGGG.
According to the definition of X′ and Y′, X′ = (C, 5)(A, 3)(G, 2) and Y′ = (C, 2)(A, 2)(T, 3)(G, 4).
For each suffix of X′[i, x] there exists an equivalent suffix X[F (i), x]. For instance, X[F (2), 10] =
X[6, 10] is the equivalent suffix of X′[2, 3].

The main component of our algorithm is a trie T over all strings in S. It consists of N leaves and
at most N − 1 internal nodes. Each leaf node in T corresponds to a unique suffix in S . Specifically,
the ith leftmost leaf `i corresponds to the ith lexicographically smallest suffix in S . Each internal node
v is associated with two values, (i) nodeDepth(v): the number of nodes on the path from root to v and
(ii) strDepth(v): the length of the longest common prefix over all suffixes corresponding to the leaves
under v. Additionally, we call a leaf type-X (resp., type-Y) if the suffix corresponding to it is from X
(resp., Y). The space occupancy of T is O(N) words.
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Lemma 2.1. The trie T can be constructed in O(N logN) time using O(N) space.

Proof. We construct a generalized suffix tree of X′ and Y′ and then convert it into T [16, 17, 18] by
exploring Observation 1.

3. An O(N)-Space and O(n logN)-Time Algorithm

The first step is to construct T from X′ and Y′. Then, we associate each leaf node (except two1) with
two values, char(·) and freq(·) as follows: Let `a be the leaf corresponding to X[F (i+ 1), x]. Then

char(`a) = αi and freq(`a) = fi

Similarly, let `b be the leaf corresponding to Y[G(j + 1), y]. Then

char(`b) = βj and freq(`b) = gj

For each σ ∈ Σ, define (and compute)

maxRun(σ) = max{gk | k ∈ [1, y′] and βk = σ}

The key intuition behind our algorithm is the following simple observation.

Observation 2. Let `a be the leaf in T corresponding to the suffix X[F (i+1), x] for an i ∈ [1, x′−1].
Also, let X[p, x] = αhi ◦ X[F (i + 1), x] for some h ∈ [1, fi]. Specifically, p = F (i + 1) − h and “◦”
denotes concatenation. Then L[p]:

• is maxRun(αi) if h > maxRun(αi) and

• is h+ strDepth(v) otherwise, where node v is the lowest ancestor of `a such that there exists a
type-Y leaf under v with char(·) = αi and freq(·) ≥ h.

We now present an efficient algorithm for computing L[·]’s based on the above observation. First we
construct a collection {Tσ | σ ∈ Σ} of new tries from T . Specifically, the Tσ is a compact trie over
all those suffixes in T , such that char(·) of the leaves corresponding to them is σ. The total number of
nodes over all Tσ’s is O(N) as each leaf node in T belongs to exactly one Tσ. Moreover, they can be
extracted from T in O(N) total time.

Next, we pre-process each Tσ in time linear to its size for answering level ancestor queries in con-
stant time [19]. A level ancestor query (v, l) asks to return the ancestor u of v with nodeDepth(u) = l.
Finally, for each internal node v in each Tσ, we compute freq(v), which is the maximum over freq(·)’s
of all type-Y leaves under v. Note that freq(v) = 0 if all leaves under u are of type-X. This step can
also be implemented in linear time via a bottom up traversal of Tσ.

We are now ready to present the final steps of our algorithm. For p = 1, 2, 3, ..., x, we compute
L[p] using Algorithm 1 (see the pseudo-code below). Note that the node v can be computed via a
binary search (using level ancestor queries) over the nodes on the path to root in O(logN) time. This
completes the description of our algorithm. The correctness is immediate from Observation 2. The
total time complexity is O(n logN).
1Specifically, the leaves corresponding to X[F (x′), x] and Y[G(y′), y].
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Algorithm 1: Computing L[p]
1: Let X[p, x] = αhi ◦ X[F (i+ 1), x]

2: if h > maxRun(αi) then L[p] = maxRun(αi)

3: else
4: Find the leaf node w in Tαi corresponding to X[F (i+ 1), x] and its lowest ancestor v

such that freq(v) ≥ h
5: Fix v as the root when i = x′

6: L[p] = h+ strDepth(v)

7: endif

4. An O(N)-Space and O(N logN)-Time Algorithm

Define A[i] for i = 1, 2, 3, ..., x′, where

A[i] =

F (i+1)−1∑
p=F (i)

L[p]

Therefore,

ACS(X,Y) =
1

x

x′∑
i=1

A[i]

We now present a new algorithm in which we compute each A[i] in O(logN) time. For each internal
node v in Tσ, define weight(v) as follows: weight(·) of the root node is 0. For any other node v with
v′ being its parent,

weight(v) = weight(v′) + freq(v)× (strDepth(v)− strDepth(v′))

By performing a top-down tree traversal, we compute weight(·) over all internal nodes in Tσ in time
linear to its size. Therefore, time over all Tσ’s is O(N). We now compute A[i]’s using the following
steps.

• For any i ∈ [1, x′ − 1], we first find the leaf node w in Tαi corresponding to the suffix
X[F (i + 1), x]. Also, find the lowest ancestor v of w, such that there exists a type-Y leaf
under v (equivalently freq(v) 6= 0) via binary search using level ancestors queries. This step
takes O(logN) time. Next, we have two cases and we handle them separately as follows. For
brevity, let m = maxRun(αi).

– If fi > m, then

A[i] = weight(v) + (1 + 2 + 3 + ...+m) +m(fi −m)

By simplifying, we have A[i] = weight(v) +m(fi − (m− 1)/2).
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– If fi ≤ m, then find the lowest ancestor u of w, such that freq(u) ≥ fi (via binary search
using level ancestors queries). Then,

A[i] = weight(v)− weight(u) + fi × strDepth(u) + fi(1 + fi)/2

• For i = x′, A[i]

– is (1 + 2 + ...+ fi) = fi(fi + 1)/2 if fi ≤ m and

– is (1 + 2 + ...+m) +m(fi −m) = m(fi − (m− 1)/2), otherwise.

In summary, the time complexity is O(N logN) plus O(logN) for each i in [1, x′]. Therefore, total
time is O(N logN). The correctness follows from Observation 2 and the definition of weight(·). This
completes the proof of Theorem 1.
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